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Abstract—The rapid rise of deepfake technology, which pro-
duces realistic but fraudulent digital content, threatens the
authenticity of media. Deepfakes manipulate videos, images, and
audio, spread misinformation, blur the line between real and
fake, and highlight the need for effective detection approaches.
Traditional deepfake detection approaches often struggle with
sophisticated, customized deepfakes, especially in terms of gen-
eralization and robustness against malicious attacks. This paper
introduces ViGText, a novel approach that integrates images
with Vision Large Language Model (VLLM) Text explanations
within a Graph-based framework to improve deepfake detection.
The novelty of ViGText lies in its integration of detailed
explanations with visual data, as it provides a more context-
aware analysis than captions, which often lack specificity and
fail to reveal subtle inconsistencies. ViGText systematically
divides images into patches, constructs image and text graphs,
and integrates them for analysis using Graph Neural Networks
(GNNs) to identify deepfakes. Through the use of multi-level fea-
ture extraction across spatial and frequency domains, ViGText
captures details that enhance its robustness and accuracy to
detect sophisticated deepfakes. Extensive experiments demon-
strate that ViGText significantly enhances generalization and
achieves a notable performance boost when it detects user-
customized deepfakes. Specifically, average F1 scores rise from
72.45% to 98.32% under generalization evaluation, and reflects
the model’s superior ability to generalize to unseen, fine-tuned
variations of stable diffusion models. As for robustness, ViGText
achieves an increase of 11.1% in recall compared to other
deepfake detection approaches against state-of-the-art foundation
model-based adversarial attacks. ViGText limits classification
performance degradation to less than 4% when it faces targeted
attacks that exploit its graph-based architecture and marginally
increases the execution cost. ViGText combines granular visual
analysis with textual interpretation, establishes a new benchmark
for deepfake detection, and provides a more reliable framework
to preserve media authenticity and information integrity.
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I. INTRODUCTION

Recent advancements in deep learning, particularly in gen-
erative models, have enabled the creation of highly realistic
synthetic media. The term deepfake refers to synthetic content
generated by altering or replacing a person’s appearance or
voice in images, videos, or audio, which makes it increasingly
difficult to distinguish from authentic media [1l]. The rise
of deepfake technology introduces serious challenges to the
accuracy and trustworthiness of digital media, and raises
concerns in domains such as politics, media, and entertainment
[2]. Along this line, recent reports have highlighted a surge
in deepfake pornography targeting young women, including
underage individuals, in South Korea [3]], [4]. Alarmingly, the
Korean Teachers Union reports that over 200 schools have
been impacted, with a notable increase in deepfakes which
target teachers in recent years, according to the Ministry
of Education [5]. In Ukraine, deepfakes have been used to
disseminate misinformation and manipulate public perception
during the ongoing conflict [[6], [[7]. This Al-generated content,
which convincingly fabricates events or statements, contributes
to public confusion and complicates the distinction between
truth and deception. As deepfakes become more advanced,
the ability to distinguish between real and synthetic content
becomes increasingly difficult. As the prevalence of deepfake
videos and images grows, it not only fuels the spread of
misinformation but also poses significant threats to privacy
[8l], security [9], and public trust [10]. These concerns have
driven extensive research which aim to detect deepfakes, and
emphasize the urgent need for effective solutions to address
this escalating issue [[L1], [12], [13], [14].

Prior Approaches and Limitations. Recent efforts in
deepfake image detection have mainly relied on learning-
based methods. These approaches typically start with a labeled
dataset that contains real and deepfake images. The objective
is to train a model to detect deepfakes and generalize this
detection capability to new, unforeseen deepfakes. Commonly
used models include Convolutional Neural Networks (CNNs)
and simpler, more traditional models such as feed forward
neural networks. [15] uses CNNs to classify image patches,
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Fig. 1. An overview of the proposed ViGText’s approach.

while [16] enhances detection by capturing global textures
with Gram-Net. [[1']] focuses on re-synthesizing images to an-
alyze residual errors, and [[18] demonstrates cross-architecture
generalization in CNN classifiers. Additionally, [19] presents
lightweight CNNs that target mesoscopic image properties.
More recently, there has been a shift towards simpler models
and novel feature extraction techniques. [20] utilizes frequency
domain features with a basic feed-forward neural network,
[21]] combines image and caption features from a foundation
model, and [22] shows that a linear layer trained on features
from a large and non-deepfake-specific foundation model can
achieve effective classification and generalization. Sifat et
al. in [23] analyze current deepfake detection methods and
identify key challenges. They demonstrate that many existing
approaches fail to generalize effectively when exposed to user-
customized or fine-tuned versions of the generative models
used during training. Additionally, they highlight that these
methods are highly susceptible to adversarial attacks generated
with advanced foundation models. These findings point to
a significant gap in current techniques, which struggle to
adapt to the unpredictable nature of deepfakes in real-world
scenarios.

Challenges. Deepfake detection faces solid challenges,
particularly in achieving robustness against an ever-evolving
threat landscape. The rapid development of generative Al
technologies frequently outpaces detection capabilities, which
leaves defenses unprepared to address new attack vectors [23]].
Another key challenge lies in the integration of textual and
visual data. Current approaches rely on image captions that

lack the depth and specificity needed to capture the subtle
characteristics required for effective detection [21]. Even in
scenarios where detailed textual data is available, it is non-
trivial to integrate this information with visual data in a
meaningful way [21]. Traditional methods often concatenate
visual and textual embeddings in a straightforward manner,
that fails to fully utilize their complementary properties.
Another challenge is the need for generalizability across a
wide variety of deepfake models. Existing methods frequently
exhibit significant performance degradation when applied to
fine-tuned or customized generative models, which emphasizes
their lack of adaptability to novel threats [23]. To overcome
these challenges, it is critical to explore advanced integration
strategies that can effectively combine textual and visual
information, and integrate their complementary strengths.

An Overview of the Proposed ViGText. To overcome
the above challenges, we present ViGText, a new deepfake
detection approach that integrates image analysis and text-
based explanations from a Vision Large Language Model
(VLLM) in a graph-based framework, as shown in Fig. [I}
The novelty of ViGText lies in its ability to unify visual and
textual analysis through tailored graph construction, which al-
lows for the detection of subtle inconsistencies with enhanced
generalization and robustness. The process begins as the input
image is divided into square patches, each represented as
a node in an image graph. Each patch is embedded while
taking into account spatial and frequency information, with the
latter extracted using the Discrete Cosine Transform (DCT).
Edges are then added to connect adjacent patches, to capture
local spatial dependencies. Alongside the image graph, an
explanation graph is constructed with the use of a VLLM
to generate textual explanations for the patches. Explanation
graphs are integrated with the image graph such that each
explanation is connected to the patches it describes, which
forms a dual-graph structure. This dual graph is then analyzed
by a Graph Neural Network (GNN) to determine whether the
image is real or fake. While recent methods use image captions
for deepfake detection [21]], ViGText integrates detailed tex-
tual explanations within a graph structure, combining spatial
and frequency features to improve generalization to fine-tuned
models and robustness against adversarial images.

Summary of Contributions. This work presents the fol-
lowing contributions.

e Introduction of a Dual-Graph Framework for Enhanced De-
tection: We propose ViGText, a novel approach that unifies
image analysis with textual explanations generated by VLLMs.
ViGText embeds each image patch as it considers both
spatial and frequency features, then organizes the visual and
textual data into a dual-graph structure which achieves a more
robust integration for deepfake detection.

e Enhanced Generalization to Diverse Generative Models:
ViGText achieves superior generalization across a wide
variety of user-customized, fine-tuned variants of generative
models without the need to train on the base model im-
ages. Through effective integration of context-aware expla-
nations and frequency-domain features in the graph frame-



work, ViGText mitigates the substantial performance degra-
dation observed in prior methods when confronted with user-
customized models.

e Robustness Against Evolving Threats: ViGText demon-
strates strong resilience against adversarial attacks, that include
novel foundation model-based threats. This robustness ad-
dresses vulnerabilities where existing methods fail against ad-
versarial manipulations intentionally crafted through advanced
vision foundation models.

e Extended Testing on Generalization Datasets: To evaluate
generalization in diverse scenarios, we introduce an extended
dataset that comprises eight new testing sets derived from
user-customized fine-tuned variants of the Stable Diffusion 3.5
model [24]. This expansion, alongside pre-existing datasets,
enables a more comprehensive assessment of detection per-
formance across a broader range of generative models.

II. BACKGROUND

Deepfakes. Deepfakes are a form of synthetic media where
artificial intelligence (Al) is used to create hyper-realistic but
fake images, videos, or audio recordings. The technology
behind deepfakes involves advanced machine learning tech-
niques, particularly deep learning algorithms, which analyze
large datasets of real images or audio to generate new, highly
convincing content [25], [26]. Initially developed for entertain-
ment and creative purposes, deepfakes have rapidly evolved,
raising significant ethical, legal, and societal concerns [27],
[28]. Deepfakes can be used maliciously to fabricate videos
of individuals saying or doing things they never actually did,
leading to potential harm, such as misinformation, identity
theft, and reputational damage [29], [30]. The growing ac-
cessibility of deepfake technology has sparked global debates
on the need for regulation, detection methods, and public
awareness to mitigate the risks associated with this powerful
technology.

Graph Neural Networks. Graph neural networks (GNNs)
[31] have significantly advanced the field of deep learning by
extending it to graph-structured data. These models process
messages across graph edges and aggregate this information
at nodes. The workflow of a GNN entails extracting low-
dimenstional embeddings from a graph inputs utilizing boith
local node features and grpah topology. GNNs are known to
be effective as classifiers in various domains. For instance, in
fraud detection [32], they utilize the relational information in
transaction networks. Similarly, in drug discovery [33], GNNs
help in understanding molecular structures. They have also
been successfully applied in social network analysis [34] and
recommendation systems [35]], demonstrating their versatility
and strength as classifiers. The ability of GNNs to handle
complex relational data and their adaptability to different types
of graph-structured information make them a powerful tool in
numerous state of the art (SoTA) applications.

NLP Using GNNs GNNs have emerged as a powerful tool
in Natural Language Processing (NLP) by effectively captur-
ing complex dependencies within text through graph repre-
sentations. Unlike traditional sequence-based models, GNNs

enable the modeling of syntactic and semantic relationships
by representing words, sentences, or documents as nodes in a
graph, with edges characterizing various linguistic connections
[36], [37]. This approach has proven particularly effective in
tasks such as relation extraction [38]], text classification [39],
[40], and sentiment analysis [41], where understanding the
intrinsic structure of language is crucial.

Vision Large Language Models and Visual Prompting
Vision Large Language Models (VLLMs) represent a rapidly
advancing area of artificial intelligence that combines visual
and textual data to perform a wide range of tasks, including
image captioning [42], [43], question answering [43]], classifi-
cation, and segmentation [44]. A notable recent development
in this field is the concept of visual prompting [45]], [46]]. This
technique involves using specific visual instructions to guide
a model’s interpretation or generation of text, akin to how text
prompting is used in natural language processing to generate
responses based on textual prompts. In visual prompting, the
model is given an image or a modified version of an image,
rather than relying solely on textual input. Recent research
has demonstrated the effectiveness of visual prompting in
improving the adaptability and performance of AI models
across various tasks. By incorporating visual instructions such
as marks or annotations, these techniques assist models in
tackling complex tasks, such as robotic manipulation [47],
image processing [48]], and perception [49], without requiring
additional fine-tuning.
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Fig. 2. An Illustration of the threat model.

III. THREAT MODEL AND ASSUMPTIONS

The threat model includes an adversary (malicious actor)
who generates deepfakes and targets detection evasion, while
a defender tries to detect these deepfakes. This interaction is
depicted in Fig. |2l We characterize the threat model by de-
tailing the objectives, knowledge, and capabilities of both the
adversary and the defender. The adversary’s objective is to pro-
duce deepfakes that evade detection by the defender’s system.
The adversary possesses advanced generative technologies,
including the ability to fine-tune base models to create diverse
and realistic deepfakes. Recent parameter-efficient fine-tuning



techniques, such as Low-Rank Adaptation (LoRA) [50], have
made it feasible for adversaries with limited computational
resources to create customized variants of foundational models
like Stable Diffusion [51]]. These fine-tuned variants introduce
subtle variations that make detection challenging and degrade
performance even without explicit knowledge of the defender’s
methods [23]]. Moreover, while our experiments involve edits
made using StyleCLIP which is a text-driven image editing
method operating in the latent space of StyleGAN2 [52]], we
do not claim these represent real-world partial manipulations
such as face swaps or reenactments. Instead, we use these
edits to simulate a distinct adversarial behavior: minimal and
localized semantic changes that retain the identity and overall
image context. This falls within the broader category of fully
synthetic images but provides a useful starting point for study-
ing targeted manipulations that aim to evade detection through
subtle changes rather than drastic ones. These controlled
manipulations help us study the challenge of detecting small
but meaningful changes, adding a different kind of adversarial
tactic to our threat model.

As for the defender, its objective is to efficiently detect
deepfakes and generalize detection capabilities across a wide
range of fine-tuned variants. Access to the base generative
model, from which adversaries derive their fine-tuned variants,
is a practical and effective approach because many generative
models are publicly available or widely accessible on website
like huggingface [33]. Fine-tuning techniques like LoRA [50]
typically modify only specific layers or parameters while
retaining the core characteristics of the base model. These
shared traits, such as architecture patterns, feature representa-
tions, and generative tendencies, remain largely intact across
variants. By focusing on these foundational traits, the defender
can generalize detection capabilities to fine-tuned variants
without the impractical need to train on every possible one.
Another objective for the defender is to ensure robustness
against adversarial attacks, particularly those generated using
advanced foundation models. These models enable adversaries
to craft subtle, highly deceptive manipulations that can bypass
detection. Robustness is critical to maintain the reliability of
detection systems in the face of increasingly sophisticated and
adaptive threats. For this objective, the defender aims to create
systems that can withstand evolving attack strategies while
preserving the integrity of their results.

IV. THE PROPOSED VIGTEXT

In this section, we detail the ViGText approach, which
is illustrated in the block diagram in Fig. [3] and involves
constructing graphs from both image patches and generated
explanations, extracting features, and integrating these graphs
before utilizing a GNN for detection. We begin by discussing
the motivation for using explanations generated by VLLMs.
Following this, we formulate the problem of deepfake de-
tection with the availability of images with text. We then
introduce a graph-based framework that combines textual and
image data, providing a richer context for analysis. Finally, we
describe the process of generating these textual explanations
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and their subsequent integration with images into a unified
graph structure.

A. From Captions to Explanations

Fig. 4. Generated image misclassified as real by DE-FAKE [21].

ViGText builds upon a similar concept used in existing
techniques like DE-FAKE [21]], which incorporates image cap-
tions alongside visual data for deepfake detection. However,
captions often provide only broad descriptions of the image,
which lack the specificity needed to identify inconsistencies.
For example, as shown in Fig. ] DE-FAKE misclassifies a
deepfake as real based on the caption “a kitchen and dining



area”, which describes the scene in generic terms without
addressing visual details that might indicate manipulation.
For instance, a VLLM-generated explanation might state,
”The cabinets and hanging lights show natural reflections and
shadows, indicating a real environment”, or “The table and
chairs have detailed textures and consistent lighting, which
are characteristic of a real image”.

These detailed explanations capture specific features that
contribute to an image’s perceived authenticity. However,
VLLMs alone are not capable of accurately classifying images
as real or fake [54]. This is where ViGText excels. Through
the analysis of both the visual content and the corresponding
explanations, ViGText identifies inconsistencies between the
described features and the actual visual elements. For instance,
if an explanation mentions realistic shadows and reflections,
but the image lacks these elements or displays unnatural
artifacts, such discrepancies serve as strong indicators that
the image may be a deepfake. The combination of detailed
explanations with visual analysis allows ViGText to address
the limitations of caption-based approaches like DE-FAKE and
delivers a more robust and reliable framework for deepfake
detection.

B. Problem Formulation

With the above-mentioned explanations, the problem of
deepfake detection, with a focus on generalizability and ad-
versarial robustness, requires optimizing a classifier function f
that maps an input image I and its corresponding explanation
E to a binary output {0, 1}, where 0 indicates a real image and
1 indicates a fake image. In a machine learning-based solution,
the objective is to maximize the accuracy of this classifier over
a dataset D = {(I;, Fy,y;)},, where y; are the ground truth
labels as expressed as (T).

IIlIl* E ]I I +5 El =Y; > Tr,

Maximize:

Subject to:
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where [; are the input images, F; are the generated explana-
tions, and y; are the labels (O for real, 1 for fake). The indicator
function I(-) returns 1 if its condition is true and O otherwise.
A represents allowable perturbations for testing robustness,
with 7,- as the required robustness threshold. D,,.,, denotes the
distribution of unseen data, 74 is the generalization threshold
that must be met, and E denotes expectation. This problem
requires careful consideration of how images and textual data
are integrated to fully grasp the benefits of including textual
information. f is the binary classifier characterizing detection,
y is the ground truth label (O for real, 1 for fake).

=y)] > 74,

C. Visual and Textual Integration

The integration of textual and visual data is crucial for
effective deepfake detection. While DE-FAKE [21]] uses sim-
ple concatenation of embeddings for captions and images,

this approach fails to capture detailed interdependencies. In
contrast, ViGText employs a graph-based model, which
integrates textual explanations and visual data to establish
meaningful relationships.

To explore the impact of integration methods, the following
experiment is conducted, we compare two approaches: DE-
FAKE, which uses explanations as textual input but arbitrarily
concatenates their embeddings with image embeddings, and
ViGText. Table [[] summarizes the results of this comparison.

(@) (b)

Fig. 5. Image overlay with grid: (a) original, (b) with grid overlay.

TABLE 1
PERFORMANCE COMPARISON OF VIGTExT VS. DE-FAKE [21]] WHEN
BOTH APPROACHES ARE GIVEN THE SAME EXPLANATIONS AS THE
TEXTUAL INPUT (THE HIGHEST IS IN BOLD).

Accuracy | Recall | Precision F1
DE-FAKE w/Explanations 90.00 91.20 89.00 90.10
ViGText 99.25 99.80 98.52 99.26

The results in Table [] show a clear difference in perfor-
mance. Simply replacing captions with explanations and con-
catenating their embeddings with image features does not lead
to accurate detection. DE-FAKE achieves an accuracy of 90%,
despite the use of richer explanations instead of simple cap-
tions. This showcases a key limitation: the arbitrary integration
of textual and visual data by concatenation fails to capture their
complex interdependencies. Unlike the simple techniques used
in DE-FAKE, the graph structure allows ViGText to capture
intricate interdependencies between textual explanations and
visual features, which enables a more detailed understanding
and significantly improves detection performance.

D. Explanation-Patch Integrated Graph Construction

Explanation Generation. The generation of explanations
to determine whether an image is real or fake using the
VLLM is achieved through a process called visual prompt-
ing. In ViGText, this involves overlaying the image with
a grid of equally sized square patches, each systematically
labeled (e.g., Al, A2, A3, A4, BI1, etc.). Both the overlaid
image and the original image are fed to the VLLM, which
enables it to produce explanations that are directly linked to
these localized areas. Fig. [3] illustrates this grid overlay. This
segmentation framework ensures accurate integration with the



A Sample Textual Explanation

{B3,B4}: The window blinds have uneven spacing, and
the light passing through does not align properly with
the individual slats, which suggests an error in rendering
light and shadows. {D1,D2}: The oven appears to have
a distorted handle, and the reflection and shadow around
it don’t conform to the expected perspective and lighting.
{D3}: The drawer underneath the stove has irregular
handles that are asymmetrical, which is not typical for
kitchen design and could be an oversight by the AL

Fig. 6. An example for textual explanations, each corresponding to specific
patches in the image.

image graph, that links explanations to corresponding patches.
Sample generated explanations are shown in Fig. [f] while the
prompt template is provided in Fig. [IT]in Appendix [A]

Grid-based explanations are essential because, while a sin-
gle full-image explanation can describe the whole scene, it
doesn’t clarify how to associate parts of the explanation with
specific image regions for graph construction. The grid ties
each explanation to a patch, enabling precise cross-modal
edges. However, this introduces a trade-off: smaller patches
capture fine details but may lose global context, while larger
patches do the opposite. ViGText balances this by choos-
ing intermediate patch sizes and uses the GNN’s message
passing to merge local and global cues into coherent, human-
understandable reasoning. We analyze this trade-off in more
detail in SectionVl

It is important to note that ViGText, in its design phi-
losophy, does not rely on the VLLM as a standalone trust
anchor. Rather, it uses the VLLM as a fully local, defender-
controlled component, avoiding risks tied to external or opaque
models. The VLLM provides fine-grained textual descriptions
of lighting, geometry, and texture, which are cross-verified
against visual patch features within the dual graph structure.
During training, the GNN learns from both matching and
deliberately mismatched image-explanation pairs, enabling it
to detect inconsistencies across modalities. This ensures that
ViGText can reveal manipulations through statistical discrep-
ancies between textual and visual cues, even under adversarial
scenarios, making the overall system more robust and reliable.

Image Graph Construction. After generating the explana-
tions, ViGText construct a graph that represents patches of
the image and its corresponding explanations. The process be-
gins by building the image graph, where each node represents
a patch of the image, and nodes corresponding to adjacent
patches are connected by undirected edges, as illustrated in the
left-hand side of Fig. [7{b). To represent each patch as a node,
ViGText utilizes ConvNeXt-Large [55], a foundation image
feature extraction model trained on a subset of the LAION-5B
dataset [56]. This model extracts feature embeddings for each
patch. Additionally, the DCT-transformed patch, illustrated in
the right hand side of Fig. [/(a), is passed through the same
feature extraction model to produce an embedding. Finally,
the two embeddings (image and DCT-based) are averaged to

create a robust and comprehensive feature representation for
the patch, which is then assigned to the corresponding node
in the graph. This dual-domain representation enhances the
graph’s ability to capture both spatial and frequency-based
artifacts, which are crucial for detecting subtle manipulations
in deepfake images.

Text Graph Construction. To represent the explanations
as graphs, each word in the sentence is depicted as a node,
and edges between nodes reflect the grammatical relationships
among the words, which are extracted using the dependency
parser from spaCy [57]. This structure illustrates how the
words interact within the sentence. This method not only
captures the roles of the words but also their interactions,
resulting in a comprehensive and structured representation
of the explanations. ViGText uses Jina [38], an embedding
model, to extract features for the words, assigning each node
its corresponding embedding. Finally, ViGText integrates
these explanation graphs with the image graph by connecting
each node in the explanation graph to the corresponding patch
node in the image graph. Fig. [7(b) shows a sample explanation
graph integrated with its patch nodes.

Algorithm 1 Patch and Explanation Integrated Graph Con-

struction
1: Input: An image I, image feature extraction model M, word
feature extraction model B, VLLM.
2: Output: Patch and Explanation Word Correspondence Graph
3: Overlay I with the grid mask to produce the image Q.
4: Query the VLLM with Q to produce patch-specific explanations.

5: Split T into patches and extract spatial features for each patch
using M.

6: Apply the DCT transformation to each patch and extract
frequency-domain features using M.

7. Average the spatial and frequency-domain features to create
combined embeddings for each patch.

8: Construct the image graph with nodes representing patches and
features corresponding to their combined embeddings.

9: Construct a graph for each explanation with nodes representing
words and edges based on grammatical relationships, extracting
word features using B.

10: Integrate the image graph with the explanation graphs by con-
necting each explanation graph node to the corresponding patch
node in the image graph.

11: Return the unified graph containing the image graph and the
explanation graphs.

The process of constructing the Patch and Explanation
Integrated Graph, detailed in Algorithm [I| and illustrated in
Figures [l| and begins by overlaying the image I with
a grid mask to produce a modified image Q (Step [3). The
modified image is used to query the VLLM, which generates
patch-specific explanations associated with the grid regions
(Step [). The image is split into patches, and spatial features
are extracted for each patch using the model M (Step [5).
Additionally, each patch undergoes a DCT, and frequency-
domain features are extracted using the same model (Step
[). The spatial and frequency-domain features are averaged
to form the final feature embeddings for each patch (Step
[7). These embeddings are used to construct the image graph,
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Fig. 7. A sample image graph and its corresponding explanation graph construction and integration: (a) The image with the applied grid (left) alongside the
patches and their corresponding DCT (right), and (b) The image graph (left) alongside a sample explanation graph (right), illustrating only connecting 2 nodes
(all nodes in the explanation graph are connected to the corresponding patch nodes in the actual implementation).

with nodes representing patches and edges connecting adjacent
patches (Step [8). For each explanation, a graph is created
where nodes correspond to individual words, and edges encode
their grammatical relationships. Word features are extracted
using the word embedding model B (Step [9). The explanation
graphs are then integrated with the image graph by connecting
word nodes to their corresponding patch nodes based on the
spatial association between explanations and patches (Step[10).
The unified graph, which combines both the visual and textual
data, is returned as the output (Step [TT).

V. EXPERIMENTS

In this section, we evaluate the performance of ViGText
through a series of experiments designed to address the
questions summarized in Table Our results demonstrate
that ViGText achieves state-of-the-art detection perfor-
mance in terms of multiple classification metrics. Moreover,
ViGText exhibits strong generalization capabilities, which
handle datasets derived from various fine-tuned generative
models. Notably, ViGText demonstrates robustness against
both foundation model-powered adversarial attacks and tar-
geted attacks crafted with substantial knowledge of its mech-
anisms. Additionally, the system’s performance remains re-
silient to variations in design choices, indicating a degree of
flexibility in its configuration. Overall, ViGText achieves
these advancements with a computational cost that remains
comparable to, or tolerable in relation to, existing state-of-
the-art approaches. The source code and information about
the datasets used in this work can be found in the following
repository: ViGText.

TABLE I
A SUMMARY OF RESEARCH QUESTIONS AND KEY ANSWERS.

Property Investigated
Detection effectiveness
Generalization

Robustness

Sensitivity to design choices
Empirical costs

Key Result

Highly effective
Strong generalization
High robustness
Generally insensitive
Tolerable

(IENEN IS o)

A. The Setup, Dataset, and Baselines

We use the datasets introduced by Sifat et al. [23]], which
address critical limitations in existing deepfake research.
Specifically, highlights the lack of control over content
and image quality in many existing datasets, which can lead
to overestimated performance for state-of-the-art detection
methods. To mitigate this issue, constructs two care-
fully curated datasets designed to provide improved control
and enable a more accurate evaluation of deepfake detection
approaches.

e The Stable Diffusion (SD) Dataset contains real images
from the LAION-AESTHETICS dataset [59] and fake images
generated using the Realistic Vision v1.4 model [60]. The
dataset spans a broad range of content types, including people,
nature, objects, illustrations, and digital art. It is structured to
ensure balance, with 16,000 images for training, 2,000 for
validation, and 2,000 for testing, equally divided between real
and fake images. A key focus of this dataset is to evaluate
the generalization of deepfake detection approaches to images
generated by fine-tuned variants of generative models, as gen-
eralization remains a persistent challenge for existing methods.
To assess this, the dataset includes 16 additional testing sets
derived from the base SD 1.5 model. Of these, 8 testing sets
feature images generated using the Full Model (FM) fine-
tuning approach—where all parameters are updated—and the
remaining 8 are created using Low-Rank Adaptation (LoRA)
fine-tuning [50]], a computationally efficient method that up-
dates only a subset of the model’s parameters. Remarkably,
even without specific adversarial intent, the images from these
fine-tuned variants cause significant performance degradation
in many state-of-the-art detection methods, as evidenced by
[23]. This highlights the growing threat posed by the de-
mocratization of fine-tuning techniques and the urgent need
for robust, generalizable detection systems. Furthermore, we
extend the testing on generalization by creating 8 additional
testing sets corresponding to 8 new LoRA fine-tuned variants
of the Stable Diffusion 3.5 model [24], the current state-of-
the-art open-sourced generative model. We choose to include
only LoRA fine-tuned variants in this extension due to the
significantly larger size of the Stable Diffusion 3.5 model at
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8 billion parameters. While LoRA [50] fine-tuning is com-
putationally efficient, fine-tuning all the parameters of such a
large model would require substantial computational resources
that are impractical for most use cases. Table [XI| in Appendix
contains more information about the Stable Diffusion 3.5
LoRA models [24]]. This extension provides a comprehensive
evaluation of detection methods under challenging scenarios
posed by the latest advancements in generative Al, further
emphasizing the necessity for detection systems to be both
robust and adaptive.

e StyleCLIP Dataset: This dataset consists of a balanced
collection of real and fake face images, specifically designed
to study robustness against adversarial attacks using vision
foundation models. Real images are sourced from the Flickr-
Faces-HQ (FFHQ) dataset [61], a high-quality collection of
face images, while fake images are generated using Style-
GAN2 [52], a widely adopted generative model for face
synthesis. The dataset is balanced, with 16,000 images for
training, and 2,000 images each for validation and testing.
Unlike the SD dataset, the StyleCLIP dataset emphasizes
robustness evaluation under adversarial scenarios. As detailed
in [23]], adversarial attacks in this context involve manipu-
lating the semantic properties of face images, such as altering
expressions, adding accessories, or modifying facial attributes,
without introducing perceptible noise. These attacks use vision
foundation models as surrogates to optimize manipulations,
enabling the generation of adversarial deepfakes that evade
detection. To thoroughly evaluate this challenge, three state-
of-the-art foundation models, EfficientNet [62]], ViT [63], and
CLIPResNet [64], are employed as surrogate models. These
models are used to create three additional adversarial testing
sets, each tailored to exploit the weaknesses of existing deep-
fake detection approaches. This dataset, therefore, provides
a critical benchmark for assessing the resilience of detection
systems in adversarial settings, highlighting the vulnerabilities
exposed by foundation model-powered attacks.

To extend our evaluation, we implemented a more advanced
adversarial attack that simulates an attacker with significant
knowledge of ViGText. This hypothetical attacker is as-
sumed to possess detailed insights into the training dataset
and the graph creation pipeline used by ViGText. Based
on these assumptions, the attacker creates a surrogate model
designed to mimic ViGText’s functionality. The surrogate
model comprises two Graph Convolutional Layers and uses
the Dinov2 [65] and Jina [58]] foundation models for extracting
image and word embeddings, respectively. This surrogate is
trained on the StyleCLIP dataset, achieving high performance
across classification metrics, with accuracy, recall, precision,
and F1 scores all exceeding 95%. Using this surrogate model,
we further train the StyleGAN2 [52] generative model to pro-
duce adversarial images. These images are specifically crafted
to evade detection by the surrogate and, consequently, by
ViGText. The attack optimizes the generator by minimizing
the cross-entropy loss between the surrogate logits z and the
target label y, with y chosen as the label for real images so

that the generator produces evasive adversarial examples:

Laay = —Exc(o) [ylogp(z) + (1 —y)log(1 — p(2))], (2)

where G(6) is the StyleGAN2 generator with parameters 6
, p(z) represents the surrogate model’s output probabilities
for the real label, and x ~ G(¢) are the generated images.
This setup allows us to evaluate ViGText against adversarial
images crafted by an attacker that closely mimics the real-
world threat of a knowledgeable adversary.

It is important to note that while the StyleCLIP dataset
and its surrogate-based attacks effectively test robustness
under strong visual manipulations, they do not account for
coordinated attacks that simultaneously target both the image
and the VLLM-generated explanations. Executing such dual-
objective attacks would require white-box access to both
the image generator and the VLLM, enabling gradient-based
optimization across components. This substantially increases
the complexity and computational cost, placing it beyond the
scope of our current evaluation and leaving it as an open
direction for future research.

We report classical classification metrics for all experiments
conducted in this section, which include accuracy, precision,
recall, and f1 scores. As for the baselines, we select 3 of
the state-of-the-art approaches that perform decently in the
analysis in [23]]. These approaches are:

e DCT [20]: This approach works by extracting frequency-
domain features from images using a discrete cosine transform
(DCT) to identify subtle artifacts. These features are log-
scaled for better performance and then used to train a Logistic
Regression classifier, which effectively differentiates between
real and fake images.

e DE-FAKE [21]]: This approach builds a deepfake detector
using the CLIP model [64] by augmenting the image’s embed-
ding with the embedding of the text prompt used to generate
the image. These augmented embeddings are used to train a
2-layer multilayer perceptron as a classifier.

e UnivCLIP [22]: This recent approach utilizes a large
foundation model, specifically the CLIP:ViT-L/14 model [64].
This approach extracts features from the frozen CLIP:ViT
model and then uses either a nearest neighbor classifier or
a linear classification layer, with further training, to determine
if an image is real or fake. The linear classifier is preferred
here for better performance.

While recent approaches such as ObjectFormer [66] and
detectors built on large-scale vision-language models (VLMs)
[67], [68] demonstrate promising detection capabilities, they
also depend on resource-intensive architectures like dense
transformer attention or billion-parameter language models.
These designs face scalability limitations that hinder their
practicality for widespread deployment. In contrast, our focus
is on methods that balance strong detection performance with
computational efficiency. ViGText demonstrates state-of-the-
art accuracy and robustness on up-to-date, challenging datasets
reflecting modern generative techniques, while maintaining a
lightweight graph-based architecture, which ensures broader
applicability and scalability.



For ViGText, we use a consistent GNN architecture across
all experiments. The model comprises three Graph Attention
Network (GAT) layers with two attention heads, followed
by batch normalization and ReLU activation after each layer.
Dropout is applied after each layer to prevent overfitting
by regularizing the training process. The node features are
aggregated using global mean pooling before being passed to
a fully connected layer for final classification.

The model is trained for 40 epochs using the Adam op-
timizer [70] to minimize Cross Entropy loss, with learning
rate scheduling employed to adjust the learning rate dynam-
ically during training. All experiments are conducted with
a 4x4 patch size and utilize Qwen2-VL-7B-Instruct as
the explanation-generating VLLM. The experiments are per-
formed on a workstation equipped with 64 GB of RAM, an §
GB RTX 2070 GPU, and a 32-core Intel Xeon processor.

B. Performance Analysis
TABLE III

PERFORMANCE ANALYSIS ON THE RESPECTIVE TESTING SETS OF THE
DATASETS (THE HIGHEST IS IN BOLD).

Approach SD StyleCLIP

PP Accuracy | Precision | Recall F1 Accuracy | Precision | Recall Fl1
DCT 85.50 83.30 88.80 | 85.96 98.80 98.22 99.40 | 98.80
DE-FAKE 92.45 91.17 94.00 925 74.05 7534 71.50 | 7337
UnivCLIP 93.04 92.33 93.89 | 93.10 93.04 93.79 92.19 | 92.99
ViGText 99.25 99.8 98.52 | 99.26 99.60 99.90 99.21 | 99.60

We begin by addressing Q1: How effective is ViGText
at detecting deepfakes? To evaluate this, we compare the
performance of ViGText against the baselines mentioned
above using the specified quality metrics across both datasets.
As shown in Table [T, ViGText consistently outperforms
the latest state-of-the-art techniques, demonstrating a strong
capability to detect deepfakes generated by various approaches
and reflecting the practical threat landscape of deepfake tech-
niques.

These results highlight the effectiveness of ViGText’s
unique integration of visual and textual information through a
dual-graph structure. Through the use of spatial and frequency
embeddings, as well as detailed context-aware textual expla-
nations, ViGText achieves superior detection performance.
Additional experiments on images from state-of-the-art diffu-
sion APIs and under advanced adversarial attacks are reported
in Appendix and further sample cases only detected by
ViGText are illustrated in Appendix

C. Generalization

Here, we address Q2: Can ViGText generalize well
enough to detect images generated by various fine-tuned
variants? This evaluation focuses primarily on the SD dataset.
ViGText is trained using the training data from this dataset
and tested on 24 separate testing sets corresponding to fine-
tuned variants of different SD models. These testing sets
are split between Full Model (FM) fine-tuned and LoRA
fine-tuned variants. Fig. [8[a) shows the average performance
metrics across the 8 FM fine-tuned variants of the SD 1.5
model, while Fig. B(b) and Fig. [Bfc) illustrate the results
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Fig. 8. Generalizing performance on (a) Stable Diffusion 1.5 FM fine-tuned
models, (b) Stable Diffusion 1.5 LoRA fine-tuned models and (c) Stable
Diffusion 3.5 LoRA fine-tuned models.

for the 16 LoRA fine-tuned variants of the SD 1.5 and 3.5,
respectively.

As illustrated in Fig. [§} ViGText demonstrates superior
generalization performance compared to baseline methods
across all metrics, which showcases its ability to detect fake
images generated by diverse fine-tuned models. This is partic-
ularly significant given that traditional data-driven approaches
often exhibit decreased performance when tested on data
with altered distributions, such as those arising from fine-
tuned generative models. In contrast, ViGText mitigates this
limitation through its graph-based framework, which focuses
on learning the structural topologies of the graphs derived from
data points. Additionally, ViGText uses frequency domain
features that are content-agnostic, capturing subtle features that
are invariant to the content of the images. These features play
a critical role to enhance generalization as they reduce depen-
dence on the underlying data distribution or the characteristics



EfficientNet

ViT

CLIP-ResNet

100

80

60

40

Score (%)

Accuracy Recall Precision F1 Accuracy

DCT BN DE-FAKE

Recall

BN UnivCLIP

Precision F1 Accuracy Recall Precision F1

B ViGText J

Fig. 9. Bar plots illustrating the robustness performance of ViGText and baseline approaches on adversarially manipulated testing sets of the StyleCLIP
dataset. Each plot corresponds to a different surrogate foundation model—EfficientNet, ViT, and CLIP-ResNet—used to craft the adversarial manipulations.

of the generative models used during training. ViGText
combines its graph-based architecture with frequency domain
analysis, to effectively adapt to varied and challenging test
scenarios, which reinforces generalization.

D. Robustness

In this subsection, we address Q3: How robust is ViGText
against foundation model-based adversarial attacks and
manipulations on images? For this purpose, we focus on the
StyleCLIP dataset and its associated adversarially manipulated
testing sets. These testing sets are crafted using a state-of-
the-art adversarial attack [23]], which uses foundation models
trained on extensive datasets to generate manipulations that
reduce the performance of conventional detection methods.
The manipulations aim to exploit subtle semantic properties
of the images, making the attacks more effective without
introducing perceptible noise.

We train ViGText on the training portion of the StyleCLIP
dataset, then test on these manipulated sets, with each testing
set corresponding to a different surrogate foundation model,
EfficientNet, ViT, and CLIP-ResNet, used to generate the
adversarial attacks. As shown in Fig. 0] ViGText consis-
tently outperforms other methods across all evaluated metrics.
This demonstrates that ViGText exhibits significantly less
performance degradation when faced with adversarial attacks
compared to baseline approaches. The resilience of ViGText
is particularly noteworthy given the sophistication of the
attacks, which utilize foundation models trained on millions
of diverse images to approximate high-quality surrogates. This
inherent robustness makes ViGText an effective solution for
combating adversarial manipulations.

Next, we evaluate the robustness of ViGText in a scenario
where the adversary has substantial knowledge about the
detection system. The adversary is assumed to have access
to the same training dataset (StyleCLIP dataset) and the same
pipeline used for to construct graph structures between images
and textual explanations. This setup models a highly capable
and informed adversary to rigorously assess ViGText’s re-
silience under such a challenging threat model. To simulate
this scenario, we design a surrogate detection model with a
reasonably chosen architecture that mimics the characteristics
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of ViGText. The surrogate model is trained using the Style-
CLIP dataset and achieves over 95% on all detection metrics
(accuracy, precision, recall, and F1 score) when evaluated
on the StyleCLIP testing set. This high-performing surrogate
is then used to generate adversarial images by optimizing
the StyleGAN2 [52] generator to minimize the cross-entropy
loss between the surrogate’s logits and the target label (real
images), which effectively crafts evasive examples.

We test ViGText on these adversarial images, and it
achieves an accuracy of 95.85%, recall of 91.7%, precision
of 99.2%, and an F1 score of 95.67%, compared to the
original metrics of accuracy 99.6%, precision 99.9%, recall
99.21%, and F1 score 99.6%. While these adversarial images
have a greater impact on ViGText’s performance compared
to foundation model-based attacks, this outcome is expected
as the surrogate closely mirrors the actual detection system,
which provides the adversary with a considerable advantage.

The previous results highlight ViGText’s robustness, even
against an adversary with significant knowledge of its design
and training data. The graph-based framework, integration
of frequency-domain features, and effective combination of
visual and textual information enable ViGText to maintain
strong detection performance under this extreme threat model.
This demonstrates ViGText’s capability to withstand attacks
from resourceful and well-informed adversaries.

TABLE IV
PERFORMANCE WITH SD AS THE TEST SET ACROSS DIFFERENT IMAGE
RESOLUTIONS (THE HIGHEST IS IN BOLD).

Resoluti 450x450 512x512 550x550
esolution Acc | Prec | Rec F1 Acc | Prec | Rec F1 Acc | Prec | Rec F1
DCT 46.60 | 6.20 |32.29 | 10.40 | 85.50 | 83.30 | 88.80 | 85.90 | 51.60 | 6.20 | 67.39 | 11.35
DE-FAKE | 93.40 | 93.90 | 92.97 | 93.43 | 92.40 | 91.10 | 94.00 | 92.50 | 93.45 | 94.10 | 92.89 | 93.49
UnivCLIP | 92.29 | 92.09 | 92.46 | 92.28 | 93.00 | 92.30 | 93.90 | 93.10 | 92.44 | 92.19 | 92.66 | 92.43
ViGText | 96.40 | 99.90 | 93.28 | 96.53 | 99.25 | 99.80 | 98.52 | 99.26 | 97.20 | 95.20 | 99.17 | 97.14
Continuing with the robustness evaluation, we test
ViGText against manipulations caused by changes in image

resolution. This is an important aspect of robustness, as
practical applications often involve input images that vary in
resolution due to diverse capture conditions or post-processing
steps. Table presents the results on the SD dataset, which
originally consists of 512x512 resolution images. While Ta-



ble shows the corresponding results for the StyleCLIP
dataset, which originally consists of 1024x1024 resolution
images.

The results in Table [[Vldemonstrate that ViGText achieves
minimal degradation in performance across all tested resolu-
tions on the SD dataset. This consistent performance highlights
its robustness to resolution changes, with accuracy, precision,
recall, and F1 scores remaining high. Notably, ViGText
outperforms all baseline methods at each resolution, which
suggests that its graph-based framework contributes to its
ability to adapt effectively to variations in image resolution.

TABLE V
PERFORMANCE WITH SD AS THE TEST SET ACROSS DIFFERENT
GEOMETRIC WARP OPERATIONS (THE HIGHEST IS IN BOLD).

Technique Rotate Scale and Translate
Acc | Prec | Rec F1 | Acc | Prec | Rec | Fl
DCT 546 549 | 514 |53.0 575|625 |374|46.8
DE-FAKE | 86.8 | 81.7 | 95.0 | 87.8 | 89.2 | 86.0 | 93.6 | 89.6
UnivCLIP | 88.1 | 84.0 | 94.1 | 88.8 (90.9 | 86.6 | 96.9 | 91.5
ViGText | 98.0 | 96.1 | 100.0 | 98.0 | 99.6 | 99.9 | 99.2 | 99.6

Next, Tables [V] and present the performance of all
evaluated methods on the SD dataset under geometric and
appearance-based warp operations, respectively. ViGText
demonstrates consistently superior metrics across these trans-
formations, indicating robust resilience to spatial distortions.
In particular, ViGText maintains high accuracy, precision,
recall, and F1 scores even when subjected to significant
geometric modifications, showcasing its adaptability in real-
world scenarios where images may be rotated or spatially
transformed. For completeness, we also include supplementary
experiments that cover variations in resolution as well as
geometric and appearance-based warp operations on the Style-
CLIP dataset in Appendix |[E} further demonstrating the con-
sistency of ViGText’s performance across different datasets
and manipulation types.

TABLE VI
PERFORMANCE WITH SD AS THE TEST SET ACROSS DIFFERENT
APPEARANCE-BASED WARP OPERATIONS (THE HIGHEST IS IN BOLD).

Blurring
Prec | Rec
67.00 | 90.54
95.70 | 90.11
96.39 | 89.84
99.90 | 95.42

Brightness
Prec | Rec
78.7 | 85.6
92.7|91.7
90.9 | 92.2
99.2 1 99.9

Technique

DCT
DE-FAKE
UnivCLIP
ViGText

Acc
80.00
92.60
92.74
97.60

F1
77.01
92.82
93.01
97.66

Acc
81.2
92.2
914
99.6

F1
81.9
922
91.5
99.6

Finally, Table reports results for adversarial robustness
using the Fast Gradient Sign Method (FGSM) [72] and Pro-
jected Gradient Descent (PGD) [73] attacks at varying noise
levels. Here, ViGText maintains a clear advantage over the
other methods, achieving the highest accuracy in all tested con-
ditions. Even at higher noise magnitudes, ViGText exhibits
a notable margin of improvement compared to competing
approaches. This strong adversarial resilience, combined with
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TABLE VII
ACCURACY AGAINST ADVERSARIAL IMAGES USING FGSM AND PGD
ATTACKS (THE HIGHEST IS IN BOLD).

N DCT | DE-FAKE | UnivCLIP | ViGText
Attack | Noise (¢)
0.0001 | 82.41 88.21 82.37 96.43
FGSM 0.001 | 75.78 83.02 54.99 93.71
0.01 71.09 71.48 37.19 89.19
0.0001 |35.16 63.52 61.84 91.46
PGD 0.001 16.24 61.04 56.55 87.83
0.01 9.47 58.36 51.31 80.94
No Attack — 85.50 92.45 93.04 99.25

its robustness to geometric and appearance-based transfor-
mations, confirms the suitability of ViGText for handling
diverse and challenging manipulations in practice.

E. Sensitivity to Design Choices

In this subsection, we investigate Q4: How sensitive is
ViGText to the design choices made during its develop-
ment? We explore the sensitivity of ViGText to the number
of patches into which the image is divided, and evaluate
the effect of the number of patches on performance across
different datasets and scenarios.

TABLE VIII
PERFORMANCE ON SD DATASET AND STYLECLIP DATASET ACROSS
DIFFERENT PATCH SIZES

Patches SD Dataset StyleCLIP Dataset
Acc | Prec | Rec F1 Acc | Prec | Rec F1
3x3 98.00 | 96.15 [ 99.90 | 98.04 { 99.60 | 99.21 | 99.90 | 99.60
4x4 99.25199.80(98.52(99.26 | 99.60 | 99.90 | 99.21 | 99.60
5x5 98.40196.90(99.90 | 98.43199.90 | 99.90 | 99.80 | 99.90

Table summarizes the results on the SD and StyleCLIP
datasets when we vary the patch size. The results show that the
performance on both datasets remains relatively stable across
patch sizes, indicating that ViGText is not overly sensitive
to this parameter. However, moving to the generalization
performance on the fine-tuned model datasets in Table
we observe a notable increase in performance as the patch size
decreases (and consequently, the number of patches increases).

TABLE IX
PERFORMANCE ON LORA AND FM FINETUNED MODELS ACROSS
DIFFERENT NUMBERS OF IMAGE PATCHES.

Patches SD 1.5 LoRA SD 1.5 FM SD 3.5 LoRA
Acc | Prec | Rec F1 Acc | Prec | Rec F1 Acc | Prec | Rec F1
3x3 192.68 |98.92 ] 91.85|95.19 | 97.06 | 98.98 | 97.32 | 98.13 | 98.96 | 99.00 | 99.70 | 99.35
4x4 | 97.25]96.00 | 98.45 | 97.18 | 98.50 | 98.49 | 98.45 | 98.49 | 99.30 | 99.79 | 98.80 | 99.28
5x5 [98.70 | 99.19 | 99.17 | 99.18 | 99.26 | 99.20 | 99.87 | 99.53 | 99.35 | 99.20 | 99.99 | 99.60

The increase in performance as the number of patches
increases can be attributed to the nature of the artifacts present
in these images. As shown in Fig. [I0] images generated
by LoRA fine-tuned models (Fig. a)) and FM fine-tuned
models (Fig. [I0[b)) contain localized artifacts that are better



captured with smaller patches. When we decrease the patch
size the spatial granularity of the graph increases, which allows
the model to better localize and represent these distortions.
Smaller patches also create more graph nodes, which enhances
the model’s sensitivity to subtle variations in localized regions,
further improving its ability to generalize.

TABLE X
AVERAGE PERFORMANCE ON THE 3 ADVERSRIALLY MANIPULATED
TESTING SETS OF THE STYLECLIP DATASET ACROSS DIFFERENT NUMBER
OF IMAGE PATCHES.

Patches Acc Prec Rec F1
3x3 99.30 | 99.20 | 99.40 | 99.30
4x4 97.76 | 96.33 | 99.18 | 97.71
5x5 86.56 | 98.56 | 74.13 | 83.23

We notice a different behavior, as seen in Table@ where the
performance on adversarially manipulated testing sets of the
StyleCLIP dataset exhibits the opposite trend, with larger patch
sizes yielding better results. This behavior is likely because
adversarial images (Fig. [I0[c)) lack clear artifacts, and smaller
patches may fail to capture meaningful features. For these
images, the signal within individual patches is weaker, and
the increase in the number of graph nodes can dilute the
signal, which makes it harder for ViGText to distinguish
between real and fake content. Additionally, smaller patches
reduce the ability of the graph to capture global patterns, which
are crucial to detect adversarial manipulations designed for
evasion.

LoRA Finetuned FM Finetuned

g

Log(DCT)

Fig. 10. Log DCT frequency spectrum showing (a) artifacts for images
generated using LoRA fine-tuned models, (b) artifacts for ones generated
using FM fine-tuned models and (c) no artifacts in the adversarial generated
images. Red circles showcasing the artifacts.

The sensitivity of ViGText to patch size is closely tied
to the nature of the images being analyzed. For artifact-rich
images, smaller patches enhance performance by capturing
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localized distortions, while for artifact-free adversarial images,
larger patches are more effective as they preserve global con-
text. This suggests that an adaptive patching strategy, which
dynamically adjusts patch size based on the characteristics of
the input image, could further enhance ViGText’s robustness
and generalization capabilities.

F. Cost Analysis

Finally, we address QS: How costly is it to run ViGText?
We compare ViGText to UnivCLIP, which demonstrated the
second-best overall performance across the previous experi-
ments. The time cost is measured as the total time required
to preprocess the image, run the model inference, and, for
ViGText, includes graph construction. These results are
averaged over 2000 test samples.

On average, UnivCLIP takes 1.650 seconds per image
from preprocessing to inference, while ViGText takes only
slightly more at 1.755 seconds. This marginal increase in
time cost, just 0.105 seconds, highlights the efficiency of
ViGText. The results demonstrate that ViGText achieves
its superior detection performance with minimal additional
computational cost. The use of advances in VLLMs, such
as Qwen2 [71]], significantly contributes to this efficiency.
Qwen2-VL-7B-Instruct is a compact yet powerful model that
provides a deep understanding of image content and generates
detailed textual explanations with low computational overhead.
Through these advances, ViGText is able to integrate high-
quality explanations into its graph-based framework while
maintaining a competitive runtime.

These findings showcase that ViGText not only excels in
detection accuracy and robustness but also remains practical
for real-world deployment, as it achieves state-of-the-art per-
formance with a near-negligible increase in time cost.

VI. RELATED WORK

Deepfake Detection. Recent deepfake detection approaches
can be broadly categorized based on the model architecture
into two main approaches: CNN-based approaches and tra-
ditional machine learning models-based approaches. CNN-
based approaches focus on utilizing deep learning architec-
tures to detect fake images. For instance, [[13] explores the
characteristics of fake images that enable detection across
different generative models and datasets. This study introduces
a patch-based classifier with limited receptive fields, which
emphasizes local image artifacts rather than global structures.
[16] presents Gram-Net, a model that enhances fake face
detection by concentrating on global texture features, which
improves robustness and generalization across various GAN
models and image distortions. [17] also aims to improve
robustness and generalization but takes a different approach
by re-synthesizing images through tasks like super-resolution,
denoising, and colorization, instead of relying solely on fre-
quency artifacts. Additionally, [19] targets facial video forg-
eries using two lightweight CNN architectures that analyze
mesoscopic properties—features that lie between fine details
and high-level content.



Traditional machine learning-based approaches have re-
cently shifted focus from complex deep learning architectures
to advanced feature extraction techniques to train simpler
models for deepfake detection. In [20], the authors discuss
using frequency domain features to detect diffusion model
deepfakes, and highlight how these features can reveal subtle
artifacts that are not easily visible in the spatial domain.
Similarly, [21] proposes to combine text prompt features with
generated image features as input to a simple classifier, which
allows it to learn associations between textual and visual con-
tent for accurate fake image detection. Lastly, [22] introduces
an approach to detect fake images generated by various mod-
els, which includes those unseen during training, by utilizing
a feature space not specifically trained for deepfake detec-
tion. The authors in [23] examine the previously mentioned
approaches, and highlight their vulnerabilities in the face of
new threats. These threats primarily involve easily accessible
user-customized generative models and adversarial deepfakes
created using foundation models. The study demonstrates
that these approaches struggle to generalize when faced with
images generated by user-customized variants. Furthermore,
there is a significant degradation in performance when trying
to detect images that have been adversarially generated to
evade detection with the use of large foundation models.

VII. DISCUSSION

Impact of the Study. The impact of this study lies in
its substantial advancement of deepfake detection technology.
By integrating visual and textual data through a graph-based
framework, this approach directly enhances the reliability
and robustness of detection methods against challenges posed
by evolving generative models. The methodology improves
the generalization capability to user-customized models and
enhances resilience against sophisticated adversarial attacks.
These advancements are particularly critical to safeguard me-
dia authenticity and trustworthiness, which are under increas-
ing threat from the spread of Al-generated synthetic content.

Beyond deepfake detection, the study’s methodology can
be adapted to applications which require the differentiation of
real from fake or harmful from beneficial phenomena. Process-
ing data alongside textual explanations enriches analysis by
providing contextual insights and enhancing interpretability.
For instance, in toxic chemical identification, explanations
can detail features associated with toxicity. In drug discovery,
combining biological imagery with textual descriptions can
uncover relationships between structures. Similarly, in content
moderation, document verification, and fake news detection,
textual explanations can complement visual data to enable
more comprehensive and reliable assessments.

Limitations. While the study achieves notable progress,
several limitations must be acknowledged. First, the current
threat model and evaluation focus on fully synthetic images,
including latent-space manipulations such as those produced
by StyleCLIP [23]]. Although these can simulate localized
semantic edits, they do not represent real-world partial manip-
ulations such as face swaps, reenactments, or spliced content.
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Second, the framework is currently limited to the visual modal-
ity and does not yet support audio or video inputs. Extending
to these modalities requires addressing new challenges such
as modeling temporal dynamics, aligning asynchronous mul-
timodal signals, and handling variability in recording quality
and noise. Finally, from a technical perspective, the use of
fixed-size patches in graph construction and word-to-patch
linking strategies may limit adaptability to image content
complexity and reduce contextual precision, pointing to clear
areas for future improvement.

Future Work. Future directions include enhancing the
alignment between image patches and textual explanations
through adaptive linking mechanisms that consider contextual
dependencies more effectively. Adaptive patching strategies,
where patch size and graph connectivity adjust dynamically
based on image content, may improve scalability and local-
ization precision. Incorporating heterogeneous graph neural
networks is another promising step, enabling more expressive
representations by modeling diverse node and edge types.
While this work focuses on images, extending the approach to
other modalities such as audio and video introduces substantial
challenges. Video-based deepfakes require temporal modeling
to track spatial and motion coherence across frames, while
audio-based detection involves extracting meaningful acoustic
features that align with visual or textual cues. Additionally,
multimodal fusion presents issues of synchronization, vary-
ing signal quality, and modality-specific adversarial attacks.
Addressing these complexities would require redesigning the
model architecture to process time-series data, support multi-
stream alignment, and remain robust to cross-modal incon-
sistencies. Lastly, building on frequency-domain robustness,
future work can explore the use of learned transformation
bases or multi-resolution representations to better generalize
across both synthetic and real-world manipulations and im-
prove resistance to adversarial perturbations.

VIII. CONCLUSION

In this work, we introduce ViGText, a framework for
deepfake detection that integrates explanations from VLLMs
with visual data in a dual-graph structure. This novel ap-
proach addresses critical limitations in existing methods, as
it demonstrates exceptional generalization to fine-tuned and
user-customized deepfakes, robust resistance to adversarial
manipulations, and adaptability to diverse testing scenarios.
Through the use of graph-based representations that combine
spatial and frequency domain features with detailed textual
explanations, ViGText achieves state-of-the-art detection
performance. ViGText distinguishes itself by seamlessly
bridging visual and textual modalities, which enables it to
detect subtle artifacts and inconsistencies that trouble tradi-
tional methods. Despite ViGText’s advanced capabilities,
it maintains computational efficiency, that ensures practical
feasibility for real-world deployment. This makes ViGText a
scalable solution capable of addressing the growing challenges
posed by the rapid evolution of generative models and adver-
sarial techniques. As synthetic media technologies continue to



advance, the need for robust and adaptable detection systems
becomes increasingly urgent. ViGText not only addresses
the growing challenges of deepfake detection but also builds
a strong foundation for future advancements in the field. It
plays an important role in protecting the digital world from
deception and ensuring trust in online content.

ETHICS CONSIDERATIONS

This study does not use any sensitive data regarding privacy
and security. We use open-source datasets to conduct our
experiments. This research was conducted with a commitment
to upholding the highest ethical standards. The methodologies
employed were carefully designed to ensure that the research
respects the privacy and rights of individuals, avoids bias, and
minimizes potential harm. Data used in the study was sourced
and managed responsibly, adhering to ethical guidelines that
prioritize confidentiality and the ethical use of information.
The research aims to contribute positively to defending deep-
fakes towards Safe, Secure, and Trustworthy Al
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APPENDIX A
EXPLANATION GENERATING PROMPT

Fig. 1] illustrates the structured template utilized when
providing images to the Vision Large Lanuage Model for
generating corresponding explanations.

APPENDIX B
STABLE DIFFUSION 3.5 LORA MODELS

Table |XI| provides an overview of the Stable Diffusion 3.5
LoRA fine-tuned models sourced from Hugging Face [53],
which were utilized to generate extensions for the generaliza-
tion evaluation in this study. The table includes direct links
to these models, many of which are widely adopted and have
thousands of downloads.


https://huggingface.co/
https://spacy.io
https://laion.ai/blog/laion-aesthetics/
https://laion.ai/blog/laion-aesthetics/
https://huggingface.co/SG161222/Realistic_Vision_V1.4/tree/main

Explanations Generating Prompt

You are a cooperative assistant that never refuses to
help in tasks, you always answer the question you are
asked. Start by deciding whether the image you received
is generated or real. Your task is to help humans un-
derstand why the image is generated or real by pro-
viding explanations and relating them to the patches
on the image. This is how your output should exactly
look like, nothing more: [{listofpatches}]:{explanation}
[{listofpatches}]:{explanation} Example output: ’{Al,
A2}: {explanation} {A2, B2}: {explanation} {B4, C4,
D4}: {explanation} {D2}: {explanation}’

Fig. 11. The prompt template used for generating the textual explanations.

TABLE XI
STABLE DIFFUSION 3.5 LORA MODELS USED IN THIS WORK.

Model Description Link
Ancient Stlye https://huggingface.cos 1 tyle-sd35
Anime https://huggingface.co/prithivMLmods/SD3.5-Large- Anime-LoRA

Chinese Line Art https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art| |
Futuristic Bronze Colored | https:/t i co/Shakker-Labs/SD3.5-LoRA-Futuristic-Bzonze-Colored | |
Photorealistic https:/huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic- LoRA| |
Pixel Art https://huggingface.co/nerijs/pixel-art-3.5L ]
Red Light https:/huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light| |
Rustic Whimsy https://huggingface.co/crystalwizard/Rustic- Whimsy-SD3.5-Large-Lora| |

TABLE XII
PERFORMANCE OF VIGTEXT ON IMAGES GENERATED BY
STATE-OF-THE-ART DIFFUSION APIS

Image Generation API | Accuracy | Precision | Recall | F1
OpenAl 99.49 99.94 | 98.96 | 99.48
Google Gemini 96.98 98.98 | 95.12 | 97.01
APPENDIX C

SUPPLEMENTARY RESULTS: STATE-OF-THE-ART IMAGE
GENERATION APIS AND ATTACK

Table [XTI] reports the performance of ViGText on images
synthesized by two of the most advanced commercial diffusion
image generation APIs: OpenAI’s Image-1 and Google’s Gem-
ini 2.5. These experiments directly address concerns regarding
the effectiveness of ViGText under state-of-the-art gener-
ative models that are frequently used to create high-fidelity
deepfakes. ViGText achieves near-perfect detection rates,
maintaining 99.49% accuracy on OpenAl-generated images
and 96.98% on Gemini ones.

TABLE XIII
PERFORMANCE OF VIGTEXT UNDER THE CHIMERA RECAPTURE +
DEEPFAKE ATTACK

Tested Images | Accuracy | Precision | Recall | Fl1
Benign Images 99.49 99.96 99.12 | 99.56
Attacked Images | 82.08 83.00 81.51 | 82.25

Table [XIIIl demonstrates ViGText’s resilience under more
sophisticated adversarial scenarios, specifically the two-stage
“Chimera” attack introduced by Park et al. (USENIX Security
2025) [[74]. This attack combines both physical recapture and
deepfake manipulations designed to fool image authenticity
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detectors. Despite these challenging conditions, ViGText
sustains an accuracy of 82.08% on attacked images, signif-
icantly higher than the 58.5-69.0% range reported for leading
public detectors evaluated in the Chimera study. This confirms
ViGText’s suitability for defending against emerging hybrid
deepfake threats.

APPENDIX D
SUPPLEMENTARY RESULTS: SAMPLE IMAGES

Fg 12. Sle imges from the SD dataset that were correctly classified
exclusively by ViGText, while all other baselines failed. Fake and real
samples are shown in the first and second rows, respectively.

Fig. [12] shows sample images from the SD dataset that are
uniquely classified correctly by ViGText, while all other
baseline methods misclassify them. The first row in Fig.
[12] displays fake samples, and the second row shows real
samples, highlighting the superior detection of ViGText in
distinguishing between real and generated content.

APPENDIX E
SUPPLEMENTARY RESULTS: RESOLUTION AND WARP
OPERATIONS ON STYLECLIP DATASET

TABLE XIV
PERFORMANCE WITH STYLECLIP AS THE TEST SET ACROSS DIFFERENT
IMAGE RESOLUTIONS (THE HIGHEST IS IN BOLD).

Resolution 900x900 1024x1024 1100x1100
Acc | Prec | Rec F1 Acc | Prec | Rec Fl1 Acc | Prec | Rec F1
DCT 61.20 | 95.40 | 56.65 | 71.08 | 98.80 | 98.20 | 99.40 | 98.80 | 68.40 | 46.80 | 82.39 | 59.69
DE-FAKE | 74.25 | 71.60 | 75.61 | 73.55 | 74.00 | 75.30 | 71.50 | 73.30 | 74.20 | 71.60 | 75.53 | 73.51
UnivCLIP | 93.09 | 92.49 | 93.62 | 93.05 | 93.00 | 93.80 | 92.10 [ 92.90 | 93.09 | 92.09 | 93.97 | 93.03
ViGText | 99.00 | 99.90 | 98.04 | 99.01 | 99.60 | 99.90 | 99.21 | 99.60 | 99.20 | 99.99 | 98.43 | 99.21

Similar to Table[[V] Table shows that ViGText main-
tains high detection performance on the StyleCLIP dataset
across the tested resolutions, which include the original reso-
lution of 1024x1024 and the adjusted resolutions of 900x900
and 1100x1100. Even at non-native resolutions, ViGText
achieves the highest performance among all methods, with
metrics such as accuracy and F1 score exceeding 99% across
all cases. While some baselines exhibit significant degradation
at resolutions other than the original, Vi GText shows remark-
able robustness, which showcases its adaptability to varying
input dimensions.


https://huggingface.co/reverentelusarca/ancient-style-sd35
https://huggingface.co/prithivMLmods/SD3.5-Large-Anime-LoRA
https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art
https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Futuristic-Bzonze-Colored
https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA
https://huggingface.co/nerijs/pixel-art-3.5L
https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light
https://huggingface.co/crystalwizard/Rustic-Whimsy-SD3.5-Large-Lora

TABLE XV
PERFORMANCE WITH STYLECLIP AS THE TEST SET ACROSS DIFFERENT
GEOMETRIC WARP OPERATIONS (THE HIGHEST IS IN BOLD).

Rotate Scale and Translate
Acc | Prec | Rec | F1 | Acc | Prec | Rec | F1
DCT 52.2153.8(31.239.5|704|79.8|54.6 | 64.8
DE-FAKE | 68.8 | 75.5 | 55.7 | 64.1 | 69.4 | 71.5 | 64.5 | 67.8
UnivCLIP | 93.0 | 93.8 1 92.2 92,9 | 87.0 | 80.2 | 98.4 | 88.4
ViGText | 94.8 | 94.4 | 95.2 | 94.8 | 99.6 | 87.9 | 98.4 | 92.4

Technique

Tables[XV]and [XVI] present the performance of all evaluated
techniques on the StyleCLIP dataset under geometric and
appearance-based warp operations, respectively. The results
further highlight the versatility and robustness of ViGText
across different types of distortions.

In Table which evaluates rotation and scale-translate
operations, ViGText achieves the highest metrics across all
categories, maintaining accuracies of 94.8% under rotation
and an impressive 99.6% under scaling and translation. These
results show the ability of ViGText to generalize to sub-
stantial geometric transformations, a critical capability given
the prevalence of spatial manipulations in both benign and
adversarial image pipelines.

TABLE XVI
PERFORMANCE WITH STYLECLIP AS THE TEST SET ACROSS DIFFERENT
APPEARANCE-BASED WARP OPERATIONS (THE HIGHEST IS IN BOLD).

Blurring Brightness
Acc | Prec | Rec F1 | Acc | Prec | Rec | F1
DCT 65.80 | 99.20 | 59.47 | 74.36 | 94.1 | 89.6 | 99.8 | 94.4
DE-FAKE | 73.90 | 72.10 | 74.79 | 73.42 | 73.2 | 76.4 | 67.3 | 71.5
UnivCLIP | 93.19 | 92.89 | 93.46 | 93.17 | 89.7 | 89.3 | 90.2 | 89.8
ViGText | 99.4 | 99.8 | 99.01 | 99.4 | 99.6 | 99.2 | 99.9 | 99.6

Technique

Meanwhile, Table examines resilience to appearance-
based alterations, such as blurring and brightness adjustments.
Here, ViGText achieves near-perfect performance, consis-
tently outperforming the other methods by a wide margin.
For instance, it records 99.4% accuracy under blurring and
99.6% under brightness changes, coupled with balanced pre-
cision, recall, and F1 scores. These findings demonstrate that
ViGText not only excels under geometric distortions but also
maintains high fidelity under varied photometric perturbations,
reinforcing its practical utility for real-world scenarios where
image quality and lighting often fluctuate.
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