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Abstract—The rapid rise of deepfake technology, which pro-
duces realistic but fraudulent digital content, threatens the
authenticity of media. Deepfakes manipulate videos, images, and
audio, spread misinformation, blur the line between real and
fake, and highlight the need for effective detection approaches.
Traditional deepfake detection approaches often struggle with
sophisticated, customized deepfakes, especially in terms of gen-
eralization and robustness against malicious attacks. This paper
introduces ViGText, a novel approach that integrates images
with Vision Large Language Model (VLLM) Text explanations
within a Graph-based framework to improve deepfake detection.
The novelty of ViGText lies in its integration of detailed
explanations with visual data, as it provides a more context-
aware analysis than captions, which often lack specificity and
fail to reveal subtle inconsistencies. ViGText systematically
divides images into patches, constructs image and text graphs,
and integrates them for analysis using Graph Neural Networks
(GNNs) to identify deepfakes. Through the use of multi-level fea-
ture extraction across spatial and frequency domains, ViGText
captures details that enhance its robustness and accuracy to
detect sophisticated deepfakes. Extensive experiments demon-
strate that ViGText significantly enhances generalization and
achieves a notable performance boost when it detects user-
customized deepfakes. Specifically, average F1 scores rise from
72.45% to 98.32% under generalization evaluation, and reflects
the model’s superior ability to generalize to unseen, fine-tuned
variations of stable diffusion models. As for robustness, ViGText
achieves an increase of 11.1% in recall compared to other
deepfake detection approaches against state-of-the-art foundation
model-based adversarial attacks. ViGText limits classification
performance degradation to less than 4% when it faces targeted
attacks that exploit its graph-based architecture and marginally
increases the execution cost. ViGText combines granular visual
analysis with textual interpretation, establishes a new benchmark
for deepfake detection, and provides a more reliable framework
to preserve media authenticity and information integrity.

I. INTRODUCTION

Recent advancements in deep learning, particularly in gen-

erative models, have enabled the creation of highly realistic

synthetic media. The term deepfake refers to synthetic content

generated by altering or replacing a person’s appearance or

voice in images, videos, or audio, which makes it increasingly

difficult to distinguish from authentic media [1]. The rise

of deepfake technology introduces serious challenges to the

accuracy and trustworthiness of digital media, and raises

concerns in domains such as politics, media, and entertainment

[2]. Along this line, recent reports have highlighted a surge

in deepfake pornography targeting young women, including

underage individuals, in South Korea [3], [4]. Alarmingly, the

Korean Teachers Union reports that over 200 schools have

been impacted, with a notable increase in deepfakes which

target teachers in recent years, according to the Ministry

of Education [5]. In Ukraine, deepfakes have been used to

disseminate misinformation and manipulate public perception

during the ongoing conflict [6], [7]. This AI-generated content,

which convincingly fabricates events or statements, contributes

to public confusion and complicates the distinction between

truth and deception. As deepfakes become more advanced,

the ability to distinguish between real and synthetic content

becomes increasingly difficult. As the prevalence of deepfake

videos and images grows, it not only fuels the spread of

misinformation but also poses significant threats to privacy

[8], security [9], and public trust [10]. These concerns have

driven extensive research which aim to detect deepfakes, and

emphasize the urgent need for effective solutions to address

this escalating issue [11], [12], [13], [14].

Prior Approaches and Limitations. Recent efforts in

deepfake image detection have mainly relied on learning-

based methods. These approaches typically start with a labeled

dataset that contains real and deepfake images. The objective

is to train a model to detect deepfakes and generalize this

detection capability to new, unforeseen deepfakes. Commonly

used models include Convolutional Neural Networks (CNNs)

and simpler, more traditional models such as feed forward

neural networks. [15] uses CNNs to classify image patches,
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Fig. 1. An overview of the proposed ViGText’s approach.

while [16] enhances detection by capturing global textures

with Gram-Net. [17] focuses on re-synthesizing images to an-

alyze residual errors, and [18] demonstrates cross-architecture

generalization in CNN classifiers. Additionally, [19] presents

lightweight CNNs that target mesoscopic image properties.

More recently, there has been a shift towards simpler models

and novel feature extraction techniques. [20] utilizes frequency

domain features with a basic feed-forward neural network,

[21] combines image and caption features from a foundation

model, and [22] shows that a linear layer trained on features

from a large and non-deepfake-specific foundation model can

achieve effective classification and generalization. Sifat et

al. in [23] analyze current deepfake detection methods and

identify key challenges. They demonstrate that many existing

approaches fail to generalize effectively when exposed to user-

customized or fine-tuned versions of the generative models

used during training. Additionally, they highlight that these

methods are highly susceptible to adversarial attacks generated

with advanced foundation models. These findings point to

a significant gap in current techniques, which struggle to

adapt to the unpredictable nature of deepfakes in real-world

scenarios.

Challenges. Deepfake detection faces solid challenges,

particularly in achieving robustness against an ever-evolving

threat landscape. The rapid development of generative AI

technologies frequently outpaces detection capabilities, which

leaves defenses unprepared to address new attack vectors [23].

Another key challenge lies in the integration of textual and

visual data. Current approaches rely on image captions that

lack the depth and specificity needed to capture the subtle

characteristics required for effective detection [21]. Even in

scenarios where detailed textual data is available, it is non-

trivial to integrate this information with visual data in a

meaningful way [21]. Traditional methods often concatenate

visual and textual embeddings in a straightforward manner,

that fails to fully utilize their complementary properties.

Another challenge is the need for generalizability across a

wide variety of deepfake models. Existing methods frequently

exhibit significant performance degradation when applied to

fine-tuned or customized generative models, which emphasizes

their lack of adaptability to novel threats [23]. To overcome

these challenges, it is critical to explore advanced integration

strategies that can effectively combine textual and visual

information, and integrate their complementary strengths.

An Overview of the Proposed ViGText. To overcome

the above challenges, we present ViGText, a new deepfake

detection approach that integrates image analysis and text-

based explanations from a Vision Large Language Model

(VLLM) in a graph-based framework, as shown in Fig. 1.

The novelty of ViGText lies in its ability to unify visual and

textual analysis through tailored graph construction, which al-

lows for the detection of subtle inconsistencies with enhanced

generalization and robustness. The process begins as the input

image is divided into square patches, each represented as

a node in an image graph. Each patch is embedded while

taking into account spatial and frequency information, with the

latter extracted using the Discrete Cosine Transform (DCT).

Edges are then added to connect adjacent patches, to capture

local spatial dependencies. Alongside the image graph, an

explanation graph is constructed with the use of a VLLM

to generate textual explanations for the patches. Explanation

graphs are integrated with the image graph such that each

explanation is connected to the patches it describes, which

forms a dual-graph structure. This dual graph is then analyzed

by a Graph Neural Network (GNN) to determine whether the

image is real or fake. While recent methods use image captions

for deepfake detection [21], ViGText integrates detailed tex-

tual explanations within a graph structure, combining spatial

and frequency features to improve generalization to fine-tuned

models and robustness against adversarial images.

Summary of Contributions. This work presents the fol-

lowing contributions.

• Introduction of a Dual-Graph Framework for Enhanced De-

tection: We propose ViGText, a novel approach that unifies

image analysis with textual explanations generated by VLLMs.

ViGText embeds each image patch as it considers both

spatial and frequency features, then organizes the visual and

textual data into a dual-graph structure which achieves a more

robust integration for deepfake detection.

• Enhanced Generalization to Diverse Generative Models:

ViGText achieves superior generalization across a wide

variety of user-customized, fine-tuned variants of generative

models without the need to train on the base model im-

ages. Through effective integration of context-aware expla-

nations and frequency-domain features in the graph frame-
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work, ViGText mitigates the substantial performance degra-

dation observed in prior methods when confronted with user-

customized models.

• Robustness Against Evolving Threats: ViGText demon-

strates strong resilience against adversarial attacks, that include

novel foundation model-based threats. This robustness ad-

dresses vulnerabilities where existing methods fail against ad-

versarial manipulations intentionally crafted through advanced

vision foundation models.

• Extended Testing on Generalization Datasets: To evaluate

generalization in diverse scenarios, we introduce an extended

dataset that comprises eight new testing sets derived from

user-customized fine-tuned variants of the Stable Diffusion 3.5

model [24]. This expansion, alongside pre-existing datasets,

enables a more comprehensive assessment of detection per-

formance across a broader range of generative models.

II. BACKGROUND

Deepfakes. Deepfakes are a form of synthetic media where

artificial intelligence (AI) is used to create hyper-realistic but

fake images, videos, or audio recordings. The technology

behind deepfakes involves advanced machine learning tech-

niques, particularly deep learning algorithms, which analyze

large datasets of real images or audio to generate new, highly

convincing content [25], [26]. Initially developed for entertain-

ment and creative purposes, deepfakes have rapidly evolved,

raising significant ethical, legal, and societal concerns [27],

[28]. Deepfakes can be used maliciously to fabricate videos

of individuals saying or doing things they never actually did,

leading to potential harm, such as misinformation, identity

theft, and reputational damage [29], [30]. The growing ac-

cessibility of deepfake technology has sparked global debates

on the need for regulation, detection methods, and public

awareness to mitigate the risks associated with this powerful

technology.

Graph Neural Networks. Graph neural networks (GNNs)

[31] have significantly advanced the field of deep learning by

extending it to graph-structured data. These models process

messages across graph edges and aggregate this information

at nodes. The workflow of a GNN entails extracting low-

dimenstional embeddings from a graph inputs utilizing boith

local node features and grpah topology. GNNs are known to

be effective as classifiers in various domains. For instance, in

fraud detection [32], they utilize the relational information in

transaction networks. Similarly, in drug discovery [33], GNNs

help in understanding molecular structures. They have also

been successfully applied in social network analysis [34] and

recommendation systems [35], demonstrating their versatility

and strength as classifiers. The ability of GNNs to handle

complex relational data and their adaptability to different types

of graph-structured information make them a powerful tool in

numerous state of the art (SoTA) applications.

NLP Using GNNs GNNs have emerged as a powerful tool

in Natural Language Processing (NLP) by effectively captur-

ing complex dependencies within text through graph repre-

sentations. Unlike traditional sequence-based models, GNNs

enable the modeling of syntactic and semantic relationships

by representing words, sentences, or documents as nodes in a

graph, with edges characterizing various linguistic connections

[36], [37]. This approach has proven particularly effective in

tasks such as relation extraction [38], text classification [39],

[40], and sentiment analysis [41], where understanding the

intrinsic structure of language is crucial.

Vision Large Language Models and Visual Prompting

Vision Large Language Models (VLLMs) represent a rapidly

advancing area of artificial intelligence that combines visual

and textual data to perform a wide range of tasks, including

image captioning [42], [43], question answering [43], classifi-

cation, and segmentation [44]. A notable recent development

in this field is the concept of visual prompting [45], [46]. This

technique involves using specific visual instructions to guide

a model’s interpretation or generation of text, akin to how text

prompting is used in natural language processing to generate

responses based on textual prompts. In visual prompting, the

model is given an image or a modified version of an image,

rather than relying solely on textual input. Recent research

has demonstrated the effectiveness of visual prompting in

improving the adaptability and performance of AI models

across various tasks. By incorporating visual instructions such

as marks or annotations, these techniques assist models in

tackling complex tasks, such as robotic manipulation [47],

image processing [48], and perception [49], without requiring

additional fine-tuning.
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Fig. 2. An Illustration of the threat model.

III. THREAT MODEL AND ASSUMPTIONS

The threat model includes an adversary (malicious actor)

who generates deepfakes and targets detection evasion, while

a defender tries to detect these deepfakes. This interaction is

depicted in Fig. 2. We characterize the threat model by de-

tailing the objectives, knowledge, and capabilities of both the

adversary and the defender. The adversary’s objective is to pro-

duce deepfakes that evade detection by the defender’s system.

The adversary possesses advanced generative technologies,

including the ability to fine-tune base models to create diverse

and realistic deepfakes. Recent parameter-efficient fine-tuning
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techniques, such as Low-Rank Adaptation (LoRA) [50], have

made it feasible for adversaries with limited computational

resources to create customized variants of foundational models

like Stable Diffusion [51]. These fine-tuned variants introduce

subtle variations that make detection challenging and degrade

performance even without explicit knowledge of the defender’s

methods [23]. Moreover, while our experiments involve edits

made using StyleCLIP which is a text-driven image editing

method operating in the latent space of StyleGAN2 [52], we

do not claim these represent real-world partial manipulations

such as face swaps or reenactments. Instead, we use these

edits to simulate a distinct adversarial behavior: minimal and

localized semantic changes that retain the identity and overall

image context. This falls within the broader category of fully

synthetic images but provides a useful starting point for study-

ing targeted manipulations that aim to evade detection through

subtle changes rather than drastic ones. These controlled

manipulations help us study the challenge of detecting small

but meaningful changes, adding a different kind of adversarial

tactic to our threat model.

As for the defender, its objective is to efficiently detect

deepfakes and generalize detection capabilities across a wide

range of fine-tuned variants. Access to the base generative

model, from which adversaries derive their fine-tuned variants,

is a practical and effective approach because many generative

models are publicly available or widely accessible on website

like huggingface [53]. Fine-tuning techniques like LoRA [50]

typically modify only specific layers or parameters while

retaining the core characteristics of the base model. These

shared traits, such as architecture patterns, feature representa-

tions, and generative tendencies, remain largely intact across

variants. By focusing on these foundational traits, the defender

can generalize detection capabilities to fine-tuned variants

without the impractical need to train on every possible one.

Another objective for the defender is to ensure robustness

against adversarial attacks, particularly those generated using

advanced foundation models. These models enable adversaries

to craft subtle, highly deceptive manipulations that can bypass

detection. Robustness is critical to maintain the reliability of

detection systems in the face of increasingly sophisticated and

adaptive threats. For this objective, the defender aims to create

systems that can withstand evolving attack strategies while

preserving the integrity of their results.

IV. THE PROPOSED VIGTEXT

In this section, we detail the ViGText approach, which

is illustrated in the block diagram in Fig. 3 and involves

constructing graphs from both image patches and generated

explanations, extracting features, and integrating these graphs

before utilizing a GNN for detection. We begin by discussing

the motivation for using explanations generated by VLLMs.

Following this, we formulate the problem of deepfake de-

tection with the availability of images with text. We then

introduce a graph-based framework that combines textual and

image data, providing a richer context for analysis. Finally, we

describe the process of generating these textual explanations

Fig. 3. Block diagram of the proposed ViGText pipeline, illustrating the
key components and processes.

and their subsequent integration with images into a unified

graph structure.

A. From Captions to Explanations

Fig. 4. Generated image misclassified as real by DE-FAKE [21].

ViGText builds upon a similar concept used in existing

techniques like DE-FAKE [21], which incorporates image cap-

tions alongside visual data for deepfake detection. However,

captions often provide only broad descriptions of the image,

which lack the specificity needed to identify inconsistencies.

For example, as shown in Fig. 4, DE-FAKE misclassifies a

deepfake as real based on the caption ”a kitchen and dining
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area”, which describes the scene in generic terms without

addressing visual details that might indicate manipulation.

For instance, a VLLM-generated explanation might state,

”The cabinets and hanging lights show natural reflections and

shadows, indicating a real environment”, or ”The table and

chairs have detailed textures and consistent lighting, which

are characteristic of a real image”.

These detailed explanations capture specific features that

contribute to an image’s perceived authenticity. However,

VLLMs alone are not capable of accurately classifying images

as real or fake [54]. This is where ViGText excels. Through

the analysis of both the visual content and the corresponding

explanations, ViGText identifies inconsistencies between the

described features and the actual visual elements. For instance,

if an explanation mentions realistic shadows and reflections,

but the image lacks these elements or displays unnatural

artifacts, such discrepancies serve as strong indicators that

the image may be a deepfake. The combination of detailed

explanations with visual analysis allows ViGText to address

the limitations of caption-based approaches like DE-FAKE and

delivers a more robust and reliable framework for deepfake

detection.

B. Problem Formulation

With the above-mentioned explanations, the problem of

deepfake detection, with a focus on generalizability and ad-

versarial robustness, requires optimizing a classifier function f

that maps an input image I and its corresponding explanation

E to a binary output {0, 1}, where 0 indicates a real image and

1 indicates a fake image. In a machine learning-based solution,

the objective is to maximize the accuracy of this classifier over

a dataset D = {(Ii, Ei, yi)}
n
i=1, where yi are the ground truth

labels as expressed as (1).

Maximize:
1

n

n∑

i=1

I({(Ii, Ei) = yi)

Subject to: min
δ∈∆

1

n

n∑

i=1

I(f(Ii + δ, Ei) = yi) ≥ τr,

E(I,E,y)∼Dnew
[I(f(I, E) = y)] ≥ τg,

(1)

where Ii are the input images, Ei are the generated explana-

tions, and yi are the labels (0 for real, 1 for fake). The indicator

function I(·) returns 1 if its condition is true and 0 otherwise.

∆ represents allowable perturbations for testing robustness,

with τr as the required robustness threshold. Dnew denotes the

distribution of unseen data, τg is the generalization threshold

that must be met, and E denotes expectation. This problem

requires careful consideration of how images and textual data

are integrated to fully grasp the benefits of including textual

information. f is the binary classifier characterizing detection,

y is the ground truth label (0 for real, 1 for fake).

C. Visual and Textual Integration

The integration of textual and visual data is crucial for

effective deepfake detection. While DE-FAKE [21] uses sim-

ple concatenation of embeddings for captions and images,

this approach fails to capture detailed interdependencies. In

contrast, ViGText employs a graph-based model, which

integrates textual explanations and visual data to establish

meaningful relationships.

To explore the impact of integration methods, the following

experiment is conducted, we compare two approaches: DE-

FAKE, which uses explanations as textual input but arbitrarily

concatenates their embeddings with image embeddings, and

ViGText. Table I summarizes the results of this comparison.

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

(a) (b)

Fig. 5. Image overlay with grid: (a) original, (b) with grid overlay.

TABLE I
PERFORMANCE COMPARISON OF VIGTEXT VS. DE-FAKE [21] WHEN

BOTH APPROACHES ARE GIVEN THE SAME EXPLANATIONS AS THE

TEXTUAL INPUT (THE HIGHEST IS IN BOLD).

Accuracy Recall Precision F1

DE-FAKE w/Explanations 90.00 91.20 89.00 90.10

ViGText 99.25 99.80 98.52 99.26

The results in Table I show a clear difference in perfor-

mance. Simply replacing captions with explanations and con-

catenating their embeddings with image features does not lead

to accurate detection. DE-FAKE achieves an accuracy of 90%,

despite the use of richer explanations instead of simple cap-

tions. This showcases a key limitation: the arbitrary integration

of textual and visual data by concatenation fails to capture their

complex interdependencies. Unlike the simple techniques used

in DE-FAKE, the graph structure allows ViGText to capture

intricate interdependencies between textual explanations and

visual features, which enables a more detailed understanding

and significantly improves detection performance.

D. Explanation-Patch Integrated Graph Construction

Explanation Generation. The generation of explanations

to determine whether an image is real or fake using the

VLLM is achieved through a process called visual prompt-

ing. In ViGText, this involves overlaying the image with

a grid of equally sized square patches, each systematically

labeled (e.g., A1, A2, A3, A4, B1, etc.). Both the overlaid

image and the original image are fed to the VLLM, which

enables it to produce explanations that are directly linked to

these localized areas. Fig. 5 illustrates this grid overlay. This

segmentation framework ensures accurate integration with the

5



A Sample Textual Explanation

{B3,B4}: The window blinds have uneven spacing, and

the light passing through does not align properly with

the individual slats, which suggests an error in rendering

light and shadows. {D1,D2}: The oven appears to have

a distorted handle, and the reflection and shadow around

it don’t conform to the expected perspective and lighting.

{D3}: The drawer underneath the stove has irregular

handles that are asymmetrical, which is not typical for

kitchen design and could be an oversight by the AI.

Fig. 6. An example for textual explanations, each corresponding to specific
patches in the image.

image graph, that links explanations to corresponding patches.

Sample generated explanations are shown in Fig. 6, while the

prompt template is provided in Fig. 11 in Appendix A.

Grid-based explanations are essential because, while a sin-

gle full-image explanation can describe the whole scene, it

doesn’t clarify how to associate parts of the explanation with

specific image regions for graph construction. The grid ties

each explanation to a patch, enabling precise cross-modal

edges. However, this introduces a trade-off: smaller patches

capture fine details but may lose global context, while larger

patches do the opposite. ViGText balances this by choos-

ing intermediate patch sizes and uses the GNN’s message

passing to merge local and global cues into coherent, human-

understandable reasoning. We analyze this trade-off in more

detail in SectionV.

It is important to note that ViGText, in its design phi-

losophy, does not rely on the VLLM as a standalone trust

anchor. Rather, it uses the VLLM as a fully local, defender-

controlled component, avoiding risks tied to external or opaque

models. The VLLM provides fine-grained textual descriptions

of lighting, geometry, and texture, which are cross-verified

against visual patch features within the dual graph structure.

During training, the GNN learns from both matching and

deliberately mismatched image-explanation pairs, enabling it

to detect inconsistencies across modalities. This ensures that

ViGText can reveal manipulations through statistical discrep-

ancies between textual and visual cues, even under adversarial

scenarios, making the overall system more robust and reliable.

Image Graph Construction. After generating the explana-

tions, ViGText construct a graph that represents patches of

the image and its corresponding explanations. The process be-

gins by building the image graph, where each node represents

a patch of the image, and nodes corresponding to adjacent

patches are connected by undirected edges, as illustrated in the

left-hand side of Fig. 7(b). To represent each patch as a node,

ViGText utilizes ConvNeXt-Large [55], a foundation image

feature extraction model trained on a subset of the LAION-5B

dataset [56]. This model extracts feature embeddings for each

patch. Additionally, the DCT-transformed patch, illustrated in

the right hand side of Fig. 7(a), is passed through the same

feature extraction model to produce an embedding. Finally,

the two embeddings (image and DCT-based) are averaged to

create a robust and comprehensive feature representation for

the patch, which is then assigned to the corresponding node

in the graph. This dual-domain representation enhances the

graph’s ability to capture both spatial and frequency-based

artifacts, which are crucial for detecting subtle manipulations

in deepfake images.

Text Graph Construction. To represent the explanations

as graphs, each word in the sentence is depicted as a node,

and edges between nodes reflect the grammatical relationships

among the words, which are extracted using the dependency

parser from spaCy [57]. This structure illustrates how the

words interact within the sentence. This method not only

captures the roles of the words but also their interactions,

resulting in a comprehensive and structured representation

of the explanations. ViGText uses Jina [58], an embedding

model, to extract features for the words, assigning each node

its corresponding embedding. Finally, ViGText integrates

these explanation graphs with the image graph by connecting

each node in the explanation graph to the corresponding patch

node in the image graph. Fig. 7(b) shows a sample explanation

graph integrated with its patch nodes.

Algorithm 1 Patch and Explanation Integrated Graph Con-

struction
1: Input: An image I, image feature extraction model M, word

feature extraction model B, VLLM.
2: Output: Patch and Explanation Word Correspondence Graph
3: Overlay I with the grid mask to produce the image Q.
4: Query the VLLM with Q to produce patch-specific explanations.

5: Split I into patches and extract spatial features for each patch
using M.

6: Apply the DCT transformation to each patch and extract
frequency-domain features using M.

7: Average the spatial and frequency-domain features to create
combined embeddings for each patch.

8: Construct the image graph with nodes representing patches and
features corresponding to their combined embeddings.

9: Construct a graph for each explanation with nodes representing
words and edges based on grammatical relationships, extracting
word features using B.

10: Integrate the image graph with the explanation graphs by con-
necting each explanation graph node to the corresponding patch
node in the image graph.

11: Return the unified graph containing the image graph and the
explanation graphs.

The process of constructing the Patch and Explanation

Integrated Graph, detailed in Algorithm 1 and illustrated in

Figures 1 and 3, begins by overlaying the image I with

a grid mask to produce a modified image Q (Step 3). The

modified image is used to query the VLLM, which generates

patch-specific explanations associated with the grid regions

(Step 4). The image is split into patches, and spatial features

are extracted for each patch using the model M (Step 5).

Additionally, each patch undergoes a DCT, and frequency-

domain features are extracted using the same model (Step

6). The spatial and frequency-domain features are averaged

to form the final feature embeddings for each patch (Step

7). These embeddings are used to construct the image graph,
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Image Graph Explanation Graph
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Fig. 7. A sample image graph and its corresponding explanation graph construction and integration: (a) The image with the applied grid (left) alongside the
patches and their corresponding DCT (right), and (b) The image graph (left) alongside a sample explanation graph (right), illustrating only connecting 2 nodes
(all nodes in the explanation graph are connected to the corresponding patch nodes in the actual implementation).

with nodes representing patches and edges connecting adjacent

patches (Step 8). For each explanation, a graph is created

where nodes correspond to individual words, and edges encode

their grammatical relationships. Word features are extracted

using the word embedding model B (Step 9). The explanation

graphs are then integrated with the image graph by connecting

word nodes to their corresponding patch nodes based on the

spatial association between explanations and patches (Step 10).

The unified graph, which combines both the visual and textual

data, is returned as the output (Step 11).

V. EXPERIMENTS

In this section, we evaluate the performance of ViGText

through a series of experiments designed to address the

questions summarized in Table II. Our results demonstrate

that ViGText achieves state-of-the-art detection perfor-

mance in terms of multiple classification metrics. Moreover,

ViGText exhibits strong generalization capabilities, which

handle datasets derived from various fine-tuned generative

models. Notably, ViGText demonstrates robustness against

both foundation model-powered adversarial attacks and tar-

geted attacks crafted with substantial knowledge of its mech-

anisms. Additionally, the system’s performance remains re-

silient to variations in design choices, indicating a degree of

flexibility in its configuration. Overall, ViGText achieves

these advancements with a computational cost that remains

comparable to, or tolerable in relation to, existing state-of-

the-art approaches. The source code and information about

the datasets used in this work can be found in the following

repository: ViGText.

TABLE II
A SUMMARY OF RESEARCH QUESTIONS AND KEY ANSWERS.

Q Property Investigated Key Result

1 Detection effectiveness Highly effective

2 Generalization Strong generalization

3 Robustness High robustness

4 Sensitivity to design choices Generally insensitive

5 Empirical costs Tolerable

A. The Setup, Dataset, and Baselines

We use the datasets introduced by Sifat et al. [23], which

address critical limitations in existing deepfake research.

Specifically, [23] highlights the lack of control over content

and image quality in many existing datasets, which can lead

to overestimated performance for state-of-the-art detection

methods. To mitigate this issue, [23] constructs two care-

fully curated datasets designed to provide improved control

and enable a more accurate evaluation of deepfake detection

approaches.

• The Stable Diffusion (SD) Dataset contains real images

from the LAION-AESTHETICS dataset [59] and fake images

generated using the Realistic Vision v1.4 model [60]. The

dataset spans a broad range of content types, including people,

nature, objects, illustrations, and digital art. It is structured to

ensure balance, with 16,000 images for training, 2,000 for

validation, and 2,000 for testing, equally divided between real

and fake images. A key focus of this dataset is to evaluate

the generalization of deepfake detection approaches to images

generated by fine-tuned variants of generative models, as gen-

eralization remains a persistent challenge for existing methods.

To assess this, the dataset includes 16 additional testing sets

derived from the base SD 1.5 model. Of these, 8 testing sets

feature images generated using the Full Model (FM) fine-

tuning approach—where all parameters are updated—and the

remaining 8 are created using Low-Rank Adaptation (LoRA)

fine-tuning [50], a computationally efficient method that up-

dates only a subset of the model’s parameters. Remarkably,

even without specific adversarial intent, the images from these

fine-tuned variants cause significant performance degradation

in many state-of-the-art detection methods, as evidenced by

[23]. This highlights the growing threat posed by the de-

mocratization of fine-tuning techniques and the urgent need

for robust, generalizable detection systems. Furthermore, we

extend the testing on generalization by creating 8 additional

testing sets corresponding to 8 new LoRA fine-tuned variants

of the Stable Diffusion 3.5 model [24], the current state-of-

the-art open-sourced generative model. We choose to include

only LoRA fine-tuned variants in this extension due to the

significantly larger size of the Stable Diffusion 3.5 model at
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8 billion parameters. While LoRA [50] fine-tuning is com-

putationally efficient, fine-tuning all the parameters of such a

large model would require substantial computational resources

that are impractical for most use cases. Table XI in Appendix

B contains more information about the Stable Diffusion 3.5

LoRA models [24]. This extension provides a comprehensive

evaluation of detection methods under challenging scenarios

posed by the latest advancements in generative AI, further

emphasizing the necessity for detection systems to be both

robust and adaptive.

• StyleCLIP Dataset: This dataset consists of a balanced

collection of real and fake face images, specifically designed

to study robustness against adversarial attacks using vision

foundation models. Real images are sourced from the Flickr-

Faces-HQ (FFHQ) dataset [61], a high-quality collection of

face images, while fake images are generated using Style-

GAN2 [52], a widely adopted generative model for face

synthesis. The dataset is balanced, with 16,000 images for

training, and 2,000 images each for validation and testing.

Unlike the SD dataset, the StyleCLIP dataset emphasizes

robustness evaluation under adversarial scenarios. As detailed

in [23], adversarial attacks in this context involve manipu-

lating the semantic properties of face images, such as altering

expressions, adding accessories, or modifying facial attributes,

without introducing perceptible noise. These attacks use vision

foundation models as surrogates to optimize manipulations,

enabling the generation of adversarial deepfakes that evade

detection. To thoroughly evaluate this challenge, three state-

of-the-art foundation models, EfficientNet [62], ViT [63], and

CLIPResNet [64], are employed as surrogate models. These

models are used to create three additional adversarial testing

sets, each tailored to exploit the weaknesses of existing deep-

fake detection approaches. This dataset, therefore, provides

a critical benchmark for assessing the resilience of detection

systems in adversarial settings, highlighting the vulnerabilities

exposed by foundation model-powered attacks.

To extend our evaluation, we implemented a more advanced

adversarial attack that simulates an attacker with significant

knowledge of ViGText. This hypothetical attacker is as-

sumed to possess detailed insights into the training dataset

and the graph creation pipeline used by ViGText. Based

on these assumptions, the attacker creates a surrogate model

designed to mimic ViGText’s functionality. The surrogate

model comprises two Graph Convolutional Layers and uses

the Dinov2 [65] and Jina [58] foundation models for extracting

image and word embeddings, respectively. This surrogate is

trained on the StyleCLIP dataset, achieving high performance

across classification metrics, with accuracy, recall, precision,

and F1 scores all exceeding 95%. Using this surrogate model,

we further train the StyleGAN2 [52] generative model to pro-

duce adversarial images. These images are specifically crafted

to evade detection by the surrogate and, consequently, by

ViGText. The attack optimizes the generator by minimizing

the cross-entropy loss between the surrogate logits z and the

target label y, with y chosen as the label for real images so

that the generator produces evasive adversarial examples:

Ladv = −E
x∼G(θ) [y log p(z) + (1− y) log(1− p(z))] , (2)

where G(θ) is the StyleGAN2 generator with parameters θ

, p(z) represents the surrogate model’s output probabilities

for the real label, and x ∼ G(θ) are the generated images.

This setup allows us to evaluate ViGText against adversarial

images crafted by an attacker that closely mimics the real-

world threat of a knowledgeable adversary.

It is important to note that while the StyleCLIP dataset

and its surrogate-based attacks effectively test robustness

under strong visual manipulations, they do not account for

coordinated attacks that simultaneously target both the image

and the VLLM-generated explanations. Executing such dual-

objective attacks would require white-box access to both

the image generator and the VLLM, enabling gradient-based

optimization across components. This substantially increases

the complexity and computational cost, placing it beyond the

scope of our current evaluation and leaving it as an open

direction for future research.

We report classical classification metrics for all experiments

conducted in this section, which include accuracy, precision,

recall, and f1 scores. As for the baselines, we select 3 of

the state-of-the-art approaches that perform decently in the

analysis in [23]. These approaches are:

• DCT [20]: This approach works by extracting frequency-

domain features from images using a discrete cosine transform

(DCT) to identify subtle artifacts. These features are log-

scaled for better performance and then used to train a Logistic

Regression classifier, which effectively differentiates between

real and fake images.

• DE-FAKE [21]: This approach builds a deepfake detector

using the CLIP model [64] by augmenting the image’s embed-

ding with the embedding of the text prompt used to generate

the image. These augmented embeddings are used to train a

2-layer multilayer perceptron as a classifier.

• UnivCLIP [22]: This recent approach utilizes a large

foundation model, specifically the CLIP:ViT-L/14 model [64].

This approach extracts features from the frozen CLIP:ViT

model and then uses either a nearest neighbor classifier or

a linear classification layer, with further training, to determine

if an image is real or fake. The linear classifier is preferred

here for better performance.

While recent approaches such as ObjectFormer [66] and

detectors built on large-scale vision-language models (VLMs)

[67], [68] demonstrate promising detection capabilities, they

also depend on resource-intensive architectures like dense

transformer attention or billion-parameter language models.

These designs face scalability limitations that hinder their

practicality for widespread deployment. In contrast, our focus

is on methods that balance strong detection performance with

computational efficiency. ViGText demonstrates state-of-the-

art accuracy and robustness on up-to-date, challenging datasets

reflecting modern generative techniques, while maintaining a

lightweight graph-based architecture, which ensures broader

applicability and scalability.
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For ViGText, we use a consistent GNN architecture across

all experiments. The model comprises three Graph Attention

Network (GAT) [69] layers with two attention heads, followed

by batch normalization and ReLU activation after each layer.

Dropout is applied after each layer to prevent overfitting

by regularizing the training process. The node features are

aggregated using global mean pooling before being passed to

a fully connected layer for final classification.

The model is trained for 40 epochs using the Adam op-

timizer [70] to minimize Cross Entropy loss, with learning

rate scheduling employed to adjust the learning rate dynam-

ically during training. All experiments are conducted with

a 4x4 patch size and utilize Qwen2-VL-7B-Instruct [71] as

the explanation-generating VLLM. The experiments are per-

formed on a workstation equipped with 64 GB of RAM, an 8

GB RTX 2070 GPU, and a 32-core Intel Xeon processor.

B. Performance Analysis

TABLE III
PERFORMANCE ANALYSIS ON THE RESPECTIVE TESTING SETS OF THE

DATASETS (THE HIGHEST IS IN BOLD).

Approach
SD StyleCLIP

Accuracy Precision Recall F1 Accuracy Precision Recall F1

DCT 85.50 83.30 88.80 85.96 98.80 98.22 99.40 98.80

DE-FAKE 92.45 91.17 94.00 92.5 74.05 75.34 71.50 73.37

UnivCLIP 93.04 92.33 93.89 93.10 93.04 93.79 92.19 92.99

ViGText 99.25 99.8 98.52 99.26 99.60 99.90 99.21 99.60

We begin by addressing Q1: How effective is ViGText

at detecting deepfakes? To evaluate this, we compare the

performance of ViGText against the baselines mentioned

above using the specified quality metrics across both datasets.

As shown in Table III, ViGText consistently outperforms

the latest state-of-the-art techniques, demonstrating a strong

capability to detect deepfakes generated by various approaches

and reflecting the practical threat landscape of deepfake tech-

niques.

These results highlight the effectiveness of ViGText’s

unique integration of visual and textual information through a

dual-graph structure. Through the use of spatial and frequency

embeddings, as well as detailed context-aware textual expla-

nations, ViGText achieves superior detection performance.

Additional experiments on images from state-of-the-art diffu-

sion APIs and under advanced adversarial attacks are reported

in Appendix C, and further sample cases only detected by

ViGText are illustrated in Appendix D.

C. Generalization

Here, we address Q2: Can ViGText generalize well

enough to detect images generated by various fine-tuned

variants? This evaluation focuses primarily on the SD dataset.

ViGText is trained using the training data from this dataset

and tested on 24 separate testing sets corresponding to fine-

tuned variants of different SD models. These testing sets

are split between Full Model (FM) fine-tuned and LoRA

fine-tuned variants. Fig. 8(a) shows the average performance

metrics across the 8 FM fine-tuned variants of the SD 1.5

model, while Fig. 8(b) and Fig. 8(c) illustrate the results
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Fig. 8. Generalizing performance on (a) Stable Diffusion 1.5 FM fine-tuned
models, (b) Stable Diffusion 1.5 LoRA fine-tuned models and (c) Stable
Diffusion 3.5 LoRA fine-tuned models.

for the 16 LoRA fine-tuned variants of the SD 1.5 and 3.5,

respectively.

As illustrated in Fig. 8, ViGText demonstrates superior

generalization performance compared to baseline methods

across all metrics, which showcases its ability to detect fake

images generated by diverse fine-tuned models. This is partic-

ularly significant given that traditional data-driven approaches

often exhibit decreased performance when tested on data

with altered distributions, such as those arising from fine-

tuned generative models. In contrast, ViGText mitigates this

limitation through its graph-based framework, which focuses

on learning the structural topologies of the graphs derived from

data points. Additionally, ViGText uses frequency domain

features that are content-agnostic, capturing subtle features that

are invariant to the content of the images. These features play

a critical role to enhance generalization as they reduce depen-

dence on the underlying data distribution or the characteristics
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Fig. 9. Bar plots illustrating the robustness performance of ViGText and baseline approaches on adversarially manipulated testing sets of the StyleCLIP
dataset. Each plot corresponds to a different surrogate foundation model—EfficientNet, ViT, and CLIP-ResNet—used to craft the adversarial manipulations.

of the generative models used during training. ViGText

combines its graph-based architecture with frequency domain

analysis, to effectively adapt to varied and challenging test

scenarios, which reinforces generalization.

D. Robustness

In this subsection, we address Q3: How robust is ViGText

against foundation model-based adversarial attacks and

manipulations on images? For this purpose, we focus on the

StyleCLIP dataset and its associated adversarially manipulated

testing sets. These testing sets are crafted using a state-of-

the-art adversarial attack [23], which uses foundation models

trained on extensive datasets to generate manipulations that

reduce the performance of conventional detection methods.

The manipulations aim to exploit subtle semantic properties

of the images, making the attacks more effective without

introducing perceptible noise.

We train ViGText on the training portion of the StyleCLIP

dataset, then test on these manipulated sets, with each testing

set corresponding to a different surrogate foundation model,

EfficientNet, ViT, and CLIP-ResNet, used to generate the

adversarial attacks. As shown in Fig. 9, ViGText consis-

tently outperforms other methods across all evaluated metrics.

This demonstrates that ViGText exhibits significantly less

performance degradation when faced with adversarial attacks

compared to baseline approaches. The resilience of ViGText

is particularly noteworthy given the sophistication of the

attacks, which utilize foundation models trained on millions

of diverse images to approximate high-quality surrogates. This

inherent robustness makes ViGText an effective solution for

combating adversarial manipulations.

Next, we evaluate the robustness of ViGText in a scenario

where the adversary has substantial knowledge about the

detection system. The adversary is assumed to have access

to the same training dataset (StyleCLIP dataset) and the same

pipeline used for to construct graph structures between images

and textual explanations. This setup models a highly capable

and informed adversary to rigorously assess ViGText’s re-

silience under such a challenging threat model. To simulate

this scenario, we design a surrogate detection model with a

reasonably chosen architecture that mimics the characteristics

of ViGText. The surrogate model is trained using the Style-

CLIP dataset and achieves over 95% on all detection metrics

(accuracy, precision, recall, and F1 score) when evaluated

on the StyleCLIP testing set. This high-performing surrogate

is then used to generate adversarial images by optimizing

the StyleGAN2 [52] generator to minimize the cross-entropy

loss between the surrogate’s logits and the target label (real

images), which effectively crafts evasive examples.

We test ViGText on these adversarial images, and it

achieves an accuracy of 95.85%, recall of 91.7%, precision

of 99.2%, and an F1 score of 95.67%, compared to the

original metrics of accuracy 99.6%, precision 99.9%, recall

99.21%, and F1 score 99.6%. While these adversarial images

have a greater impact on ViGText’s performance compared

to foundation model-based attacks, this outcome is expected

as the surrogate closely mirrors the actual detection system,

which provides the adversary with a considerable advantage.

The previous results highlight ViGText’s robustness, even

against an adversary with significant knowledge of its design

and training data. The graph-based framework, integration

of frequency-domain features, and effective combination of

visual and textual information enable ViGText to maintain

strong detection performance under this extreme threat model.

This demonstrates ViGText’s capability to withstand attacks

from resourceful and well-informed adversaries.

TABLE IV
PERFORMANCE WITH SD AS THE TEST SET ACROSS DIFFERENT IMAGE

RESOLUTIONS (THE HIGHEST IS IN BOLD).

Resolution
450x450 512x512 550x550

Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

DCT 46.60 6.20 32.29 10.40 85.50 83.30 88.80 85.90 51.60 6.20 67.39 11.35

DE-FAKE 93.40 93.90 92.97 93.43 92.40 91.10 94.00 92.50 93.45 94.10 92.89 93.49

UnivCLIP 92.29 92.09 92.46 92.28 93.00 92.30 93.90 93.10 92.44 92.19 92.66 92.43

ViGText 96.40 99.90 93.28 96.53 99.25 99.80 98.52 99.26 97.20 95.20 99.17 97.14

Continuing with the robustness evaluation, we test

ViGText against manipulations caused by changes in image

resolution. This is an important aspect of robustness, as

practical applications often involve input images that vary in

resolution due to diverse capture conditions or post-processing

steps. Table IV presents the results on the SD dataset, which

originally consists of 512x512 resolution images. While Ta-
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ble XIV shows the corresponding results for the StyleCLIP

dataset, which originally consists of 1024x1024 resolution

images.

The results in Table IV demonstrate that ViGText achieves

minimal degradation in performance across all tested resolu-

tions on the SD dataset. This consistent performance highlights

its robustness to resolution changes, with accuracy, precision,

recall, and F1 scores remaining high. Notably, ViGText

outperforms all baseline methods at each resolution, which

suggests that its graph-based framework contributes to its

ability to adapt effectively to variations in image resolution.

TABLE V
PERFORMANCE WITH SD AS THE TEST SET ACROSS DIFFERENT

GEOMETRIC WARP OPERATIONS (THE HIGHEST IS IN BOLD).

Technique
Rotate Scale and Translate

Acc Prec Rec F1 Acc Prec Rec F1

DCT 54.6 54.9 51.4 53.0 57.5 62.5 37.4 46.8

DE-FAKE 86.8 81.7 95.0 87.8 89.2 86.0 93.6 89.6

UnivCLIP 88.1 84.0 94.1 88.8 90.9 86.6 96.9 91.5

ViGText 98.0 96.1 100.0 98.0 99.6 99.9 99.2 99.6

Next, Tables V and VI present the performance of all

evaluated methods on the SD dataset under geometric and

appearance-based warp operations, respectively. ViGText

demonstrates consistently superior metrics across these trans-

formations, indicating robust resilience to spatial distortions.

In particular, ViGText maintains high accuracy, precision,

recall, and F1 scores even when subjected to significant

geometric modifications, showcasing its adaptability in real-

world scenarios where images may be rotated or spatially

transformed. For completeness, we also include supplementary

experiments that cover variations in resolution as well as

geometric and appearance-based warp operations on the Style-

CLIP dataset in Appendix E, further demonstrating the con-

sistency of ViGText’s performance across different datasets

and manipulation types.

TABLE VI
PERFORMANCE WITH SD AS THE TEST SET ACROSS DIFFERENT

APPEARANCE-BASED WARP OPERATIONS (THE HIGHEST IS IN BOLD).

Technique
Blurring Brightness

Acc Prec Rec F1 Acc Prec Rec F1

DCT 80.00 67.00 90.54 77.01 81.2 78.7 85.6 81.9

DE-FAKE 92.60 95.70 90.11 92.82 92.2 92.7 91.7 92.2

UnivCLIP 92.74 96.39 89.84 93.01 91.4 90.9 92.2 91.5

ViGText 97.60 99.90 95.42 97.66 99.6 99.2 99.9 99.6

Finally, Table VII reports results for adversarial robustness

using the Fast Gradient Sign Method (FGSM) [72] and Pro-

jected Gradient Descent (PGD) [73] attacks at varying noise

levels. Here, ViGText maintains a clear advantage over the

other methods, achieving the highest accuracy in all tested con-

ditions. Even at higher noise magnitudes, ViGText exhibits

a notable margin of improvement compared to competing

approaches. This strong adversarial resilience, combined with

TABLE VII
ACCURACY AGAINST ADVERSARIAL IMAGES USING FGSM AND PGD

ATTACKS (THE HIGHEST IS IN BOLD).

—
DCT DE-FAKE UnivCLIP ViGText

Attack Noise (ϵ)

FGSM

0.0001 82.41 88.21 82.37 96.43

0.001 75.78 83.02 54.99 93.71

0.01 71.09 71.48 37.19 89.19

PGD

0.0001 35.16 63.52 61.84 91.46

0.001 16.24 61.04 56.55 87.83

0.01 9.47 58.36 51.31 80.94

No Attack — 85.50 92.45 93.04 99.25

its robustness to geometric and appearance-based transfor-

mations, confirms the suitability of ViGText for handling

diverse and challenging manipulations in practice.

E. Sensitivity to Design Choices

In this subsection, we investigate Q4: How sensitive is

ViGText to the design choices made during its develop-

ment? We explore the sensitivity of ViGText to the number

of patches into which the image is divided, and evaluate

the effect of the number of patches on performance across

different datasets and scenarios.

TABLE VIII
PERFORMANCE ON SD DATASET AND STYLECLIP DATASET ACROSS

DIFFERENT PATCH SIZES

Patches
SD Dataset StyleCLIP Dataset

Acc Prec Rec F1 Acc Prec Rec F1

3x3 98.00 96.15 99.90 98.04 99.60 99.21 99.90 99.60

4x4 99.25 99.80 98.52 99.26 99.60 99.90 99.21 99.60

5x5 98.40 96.90 99.90 98.43 99.90 99.90 99.80 99.90

Table VIII summarizes the results on the SD and StyleCLIP

datasets when we vary the patch size. The results show that the

performance on both datasets remains relatively stable across

patch sizes, indicating that ViGText is not overly sensitive

to this parameter. However, moving to the generalization

performance on the fine-tuned model datasets in Table IX,

we observe a notable increase in performance as the patch size

decreases (and consequently, the number of patches increases).

TABLE IX
PERFORMANCE ON LORA AND FM FINETUNED MODELS ACROSS

DIFFERENT NUMBERS OF IMAGE PATCHES.

Patches
SD 1.5 LoRA SD 1.5 FM SD 3.5 LoRA

Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

3x3 92.68 98.92 91.85 95.19 97.06 98.98 97.32 98.13 98.96 99.00 99.70 99.35

4x4 97.25 96.00 98.45 97.18 98.50 98.49 98.45 98.49 99.30 99.79 98.80 99.28

5x5 98.70 99.19 99.17 99.18 99.26 99.20 99.87 99.53 99.35 99.20 99.99 99.60

The increase in performance as the number of patches

increases can be attributed to the nature of the artifacts present

in these images. As shown in Fig. 10, images generated

by LoRA fine-tuned models (Fig. 10(a)) and FM fine-tuned

models (Fig. 10(b)) contain localized artifacts that are better
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captured with smaller patches. When we decrease the patch

size the spatial granularity of the graph increases, which allows

the model to better localize and represent these distortions.

Smaller patches also create more graph nodes, which enhances

the model’s sensitivity to subtle variations in localized regions,

further improving its ability to generalize.

TABLE X
AVERAGE PERFORMANCE ON THE 3 ADVERSRIALLY MANIPULATED

TESTING SETS OF THE STYLECLIP DATASET ACROSS DIFFERENT NUMBER

OF IMAGE PATCHES.

Patches Acc Prec Rec F1

3x3 99.30 99.20 99.40 99.30

4x4 97.76 96.33 99.18 97.71

5x5 86.56 98.56 74.13 83.23

We notice a different behavior, as seen in Table X, where the

performance on adversarially manipulated testing sets of the

StyleCLIP dataset exhibits the opposite trend, with larger patch

sizes yielding better results. This behavior is likely because

adversarial images (Fig. 10(c)) lack clear artifacts, and smaller

patches may fail to capture meaningful features. For these

images, the signal within individual patches is weaker, and

the increase in the number of graph nodes can dilute the

signal, which makes it harder for ViGText to distinguish

between real and fake content. Additionally, smaller patches

reduce the ability of the graph to capture global patterns, which

are crucial to detect adversarial manipulations designed for

evasion.

(b)

(c)

LoRA Finetuned FM Finetuned

Adversarial Fake (CLIP-ResNet)

(a)

Fig. 10. Log DCT frequency spectrum showing (a) artifacts for images
generated using LoRA fine-tuned models, (b) artifacts for ones generated
using FM fine-tuned models and (c) no artifacts in the adversarial generated
images. Red circles showcasing the artifacts.

The sensitivity of ViGText to patch size is closely tied

to the nature of the images being analyzed. For artifact-rich

images, smaller patches enhance performance by capturing

localized distortions, while for artifact-free adversarial images,

larger patches are more effective as they preserve global con-

text. This suggests that an adaptive patching strategy, which

dynamically adjusts patch size based on the characteristics of

the input image, could further enhance ViGText’s robustness

and generalization capabilities.

F. Cost Analysis

Finally, we address Q5: How costly is it to run ViGText?

We compare ViGText to UnivCLIP, which demonstrated the

second-best overall performance across the previous experi-

ments. The time cost is measured as the total time required

to preprocess the image, run the model inference, and, for

ViGText, includes graph construction. These results are

averaged over 2000 test samples.

On average, UnivCLIP takes 1.650 seconds per image

from preprocessing to inference, while ViGText takes only

slightly more at 1.755 seconds. This marginal increase in

time cost, just 0.105 seconds, highlights the efficiency of

ViGText. The results demonstrate that ViGText achieves

its superior detection performance with minimal additional

computational cost. The use of advances in VLLMs, such

as Qwen2 [71], significantly contributes to this efficiency.

Qwen2-VL-7B-Instruct is a compact yet powerful model that

provides a deep understanding of image content and generates

detailed textual explanations with low computational overhead.

Through these advances, ViGText is able to integrate high-

quality explanations into its graph-based framework while

maintaining a competitive runtime.

These findings showcase that ViGText not only excels in

detection accuracy and robustness but also remains practical

for real-world deployment, as it achieves state-of-the-art per-

formance with a near-negligible increase in time cost.

VI. RELATED WORK

Deepfake Detection. Recent deepfake detection approaches

can be broadly categorized based on the model architecture

into two main approaches: CNN-based approaches and tra-

ditional machine learning models-based approaches. CNN-

based approaches focus on utilizing deep learning architec-

tures to detect fake images. For instance, [15] explores the

characteristics of fake images that enable detection across

different generative models and datasets. This study introduces

a patch-based classifier with limited receptive fields, which

emphasizes local image artifacts rather than global structures.

[16] presents Gram-Net, a model that enhances fake face

detection by concentrating on global texture features, which

improves robustness and generalization across various GAN

models and image distortions. [17] also aims to improve

robustness and generalization but takes a different approach

by re-synthesizing images through tasks like super-resolution,

denoising, and colorization, instead of relying solely on fre-

quency artifacts. Additionally, [19] targets facial video forg-

eries using two lightweight CNN architectures that analyze

mesoscopic properties—features that lie between fine details

and high-level content.
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Traditional machine learning-based approaches have re-

cently shifted focus from complex deep learning architectures

to advanced feature extraction techniques to train simpler

models for deepfake detection. In [20], the authors discuss

using frequency domain features to detect diffusion model

deepfakes, and highlight how these features can reveal subtle

artifacts that are not easily visible in the spatial domain.

Similarly, [21] proposes to combine text prompt features with

generated image features as input to a simple classifier, which

allows it to learn associations between textual and visual con-

tent for accurate fake image detection. Lastly, [22] introduces

an approach to detect fake images generated by various mod-

els, which includes those unseen during training, by utilizing

a feature space not specifically trained for deepfake detec-

tion. The authors in [23] examine the previously mentioned

approaches, and highlight their vulnerabilities in the face of

new threats. These threats primarily involve easily accessible

user-customized generative models and adversarial deepfakes

created using foundation models. The study demonstrates

that these approaches struggle to generalize when faced with

images generated by user-customized variants. Furthermore,

there is a significant degradation in performance when trying

to detect images that have been adversarially generated to

evade detection with the use of large foundation models.

VII. DISCUSSION

Impact of the Study. The impact of this study lies in

its substantial advancement of deepfake detection technology.

By integrating visual and textual data through a graph-based

framework, this approach directly enhances the reliability

and robustness of detection methods against challenges posed

by evolving generative models. The methodology improves

the generalization capability to user-customized models and

enhances resilience against sophisticated adversarial attacks.

These advancements are particularly critical to safeguard me-

dia authenticity and trustworthiness, which are under increas-

ing threat from the spread of AI-generated synthetic content.

Beyond deepfake detection, the study’s methodology can

be adapted to applications which require the differentiation of

real from fake or harmful from beneficial phenomena. Process-

ing data alongside textual explanations enriches analysis by

providing contextual insights and enhancing interpretability.

For instance, in toxic chemical identification, explanations

can detail features associated with toxicity. In drug discovery,

combining biological imagery with textual descriptions can

uncover relationships between structures. Similarly, in content

moderation, document verification, and fake news detection,

textual explanations can complement visual data to enable

more comprehensive and reliable assessments.

Limitations. While the study achieves notable progress,

several limitations must be acknowledged. First, the current

threat model and evaluation focus on fully synthetic images,

including latent-space manipulations such as those produced

by StyleCLIP [23]. Although these can simulate localized

semantic edits, they do not represent real-world partial manip-

ulations such as face swaps, reenactments, or spliced content.

Second, the framework is currently limited to the visual modal-

ity and does not yet support audio or video inputs. Extending

to these modalities requires addressing new challenges such

as modeling temporal dynamics, aligning asynchronous mul-

timodal signals, and handling variability in recording quality

and noise. Finally, from a technical perspective, the use of

fixed-size patches in graph construction and word-to-patch

linking strategies may limit adaptability to image content

complexity and reduce contextual precision, pointing to clear

areas for future improvement.

Future Work. Future directions include enhancing the

alignment between image patches and textual explanations

through adaptive linking mechanisms that consider contextual

dependencies more effectively. Adaptive patching strategies,

where patch size and graph connectivity adjust dynamically

based on image content, may improve scalability and local-

ization precision. Incorporating heterogeneous graph neural

networks is another promising step, enabling more expressive

representations by modeling diverse node and edge types.

While this work focuses on images, extending the approach to

other modalities such as audio and video introduces substantial

challenges. Video-based deepfakes require temporal modeling

to track spatial and motion coherence across frames, while

audio-based detection involves extracting meaningful acoustic

features that align with visual or textual cues. Additionally,

multimodal fusion presents issues of synchronization, vary-

ing signal quality, and modality-specific adversarial attacks.

Addressing these complexities would require redesigning the

model architecture to process time-series data, support multi-

stream alignment, and remain robust to cross-modal incon-

sistencies. Lastly, building on frequency-domain robustness,

future work can explore the use of learned transformation

bases or multi-resolution representations to better generalize

across both synthetic and real-world manipulations and im-

prove resistance to adversarial perturbations.

VIII. CONCLUSION

In this work, we introduce ViGText, a framework for

deepfake detection that integrates explanations from VLLMs

with visual data in a dual-graph structure. This novel ap-

proach addresses critical limitations in existing methods, as

it demonstrates exceptional generalization to fine-tuned and

user-customized deepfakes, robust resistance to adversarial

manipulations, and adaptability to diverse testing scenarios.

Through the use of graph-based representations that combine

spatial and frequency domain features with detailed textual

explanations, ViGText achieves state-of-the-art detection

performance. ViGText distinguishes itself by seamlessly

bridging visual and textual modalities, which enables it to

detect subtle artifacts and inconsistencies that trouble tradi-

tional methods. Despite ViGText’s advanced capabilities,

it maintains computational efficiency, that ensures practical

feasibility for real-world deployment. This makes ViGText a

scalable solution capable of addressing the growing challenges

posed by the rapid evolution of generative models and adver-

sarial techniques. As synthetic media technologies continue to
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advance, the need for robust and adaptable detection systems

becomes increasingly urgent. ViGText not only addresses

the growing challenges of deepfake detection but also builds

a strong foundation for future advancements in the field. It

plays an important role in protecting the digital world from

deception and ensuring trust in online content.

ETHICS CONSIDERATIONS

This study does not use any sensitive data regarding privacy

and security. We use open-source datasets to conduct our

experiments. This research was conducted with a commitment

to upholding the highest ethical standards. The methodologies

employed were carefully designed to ensure that the research

respects the privacy and rights of individuals, avoids bias, and

minimizes potential harm. Data used in the study was sourced

and managed responsibly, adhering to ethical guidelines that

prioritize confidentiality and the ethical use of information.

The research aims to contribute positively to defending deep-

fakes towards Safe, Secure, and Trustworthy AI.

REFERENCES

[1] M. Westerlund, “The emergence of deepfake technology: A review,”
Technology innovation management review, vol. 9, no. 11, 2019.

[2] C. Vaccari and A. Chadwick, “Deepfakes and disinformation: Ex-
ploring the impact of synthetic political video on deception, uncer-
tainty, and trust in news,” Social media+ society, vol. 6, no. 1, p.
2056305120903408, 2020.

[3] thestreetjournal, https://thestreetjournal.org/
south-korea-faces-deepfake-porn-crisis/, [Accessed 28-08-2024].

[4] yahoo, “South Korea faces deepfake porn ‘emer-
gency’ — ca.news.yahoo.com,” https://ca.news.yahoo.com/
south-korea-faces-deepfake-porn-072159810.html, [Accessed 28-
08-2024].

[5] bbc, “South Korea faces deepfake porn ‘emergency’ — bbc.com,” https:
//www.bbc.com/news/articles/cg4yerrg451o, [Accessed 28-08-2024].

[6] J. J. Twomey, “Deepfakes in warfare: new concerns emerge from their
use around the Russian invasion of Ukraine — theconversation.com,”
[Accessed 01-09-2024].

[7] https://www.nytimes.com/by/edward wong, “Deepfake of U.S.
Official Appears After Shift on Ukraine Attacks in Russia —
nytimes.com,” https://www.nytimes.com/2024/05/31/us/politics/
deepfake-us-official-russia.html, [Accessed 01-09-2024].

[8] M. B. Kugler and C. Pace, “Deepfake privacy: Attitudes and regulation,”
Nw. UL Rev., vol. 116, p. 611, 2021.

[9] K. A. Pantserev, “The malicious use of ai-based deepfake technology as
the new threat to psychological security and political stability,” Cyber

defence in the age of AI, smart societies and augmented humanity, pp.
37–55, 2020.

[10] M. Pawelec, “Deepfakes and democracy (theory): How synthetic audio-
visual media for disinformation and hate speech threaten core democratic
functions,” Digital society, vol. 1, no. 2, p. 19, 2022.

[11] R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, and J. Ortega-
Garcia, “Deepfakes and beyond: A survey of face manipulation and fake
detection,” Information Fusion, vol. 64, pp. 131–148, 2020.

[12] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: A com-
pact facial video forgery detection network,” in 2018 IEEE International

Workshop on Information Forensics and Security (WIFS). IEEE, 2018,
pp. 1–7.

[13] T. T. Nguyen, C. M. Nguyen, D. T. Nguyen, D. T. Nguyen, and
S. Nahavandi, “Deep learning for deepfakes creation and detection: A
survey,” arXiv preprint arXiv:1909.11573, 2019. [Online]. Available:
https://arxiv.org/abs/1909.11573

[14] L. Verdoliva, “Media forensics and deepfakes: An overview,” IEEE

Journal of Selected Topics in Signal Processing, vol. 14, no. 5, pp.
910–932, 2020.

[15] L. Chai, D. Bau, S.-N. Lim, and P. Isola, “What makes fake images de-
tectable? understanding properties that generalize,” in Computer Vision–

ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,

2020, Proceedings, Part XXVI 16. Springer, 2020, pp. 103–120.

[16] Z. Liu, X. Qi, and P. H. Torr, “Global texture enhancement for fake face
detection in the wild,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2020, pp. 8060–8069.

[17] Y. He, N. Yu, M. Keuper, and M. Fritz, “Beyond the spectrum: Detecting
deepfakes via re-synthesis,” arXiv preprint arXiv:2105.14376, 2021.

[18] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “Cnn-
generated images are surprisingly easy to spot... for now,” in Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 8695–8704.

[19] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: a compact
facial video forgery detection network,” in 2018 IEEE international

workshop on information forensics and security (WIFS). IEEE, 2018,
pp. 1–7.

[20] J. Ricker, S. Damm, T. Holz, and A. Fischer, “Towards the detection of
diffusion model deepfakes,” arXiv preprint arXiv:2210.14571, 2022.

[21] Z. Sha, Z. Li, N. Yu, and Y. Zhang, “De-fake: Detection and attribution
of fake images generated by text-to-image generation models,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer and

Communications Security, 2023, pp. 3418–3432.

[22] U. Ojha, Y. Li, and Y. J. Lee, “Towards universal fake image detec-
tors that generalize across generative models,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 24 480–24 489.

[23] S. M. Abdullah, A. Cheruvu, S. Kanchi, T. Chung, P. Gao, M. Jadli-
wala, and B. Viswanath, “An analysis of recent advances in deep-
fake image detection in an evolving threat landscape,” arXiv preprint

arXiv:2404.16212, 2024.

[24] S. AI, “Introducing stable diffusion 3.5,” Nov 2024. [Online]. Available:
https://stability.ai/news/introducing-stable-diffusion-3-5

[25] I. Korshunova, W. Shi, J. Dambre, and L. Theis, “Fast face-swap using
convolutional neural networks,” in Proceedings of the IEEE international

conference on computer vision, 2017, pp. 3677–3685.

[26] Z. Zhang, L. Li, Y. Ding, and C. Fan, “Flow-guided one-shot talking face
generation with a high-resolution audio-visual dataset,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, 2021, pp. 3661–3670.

[27] E. Meskys, J. Kalpokiene, P. Jurcys, and A. Liaudanskas, “Regulating
deep fakes: legal and ethical considerations,” Journal of Intellectual

Property Law & Practice, vol. 15, no. 1, pp. 24–31, 2020.

[28] D. Gamage, J. Chen, P. Ghasiya, and K. Sasahara, “Deepfakes and
society: What lies ahead?” in Frontiers in Fake Media Generation and

Detection. Springer, 2022, pp. 3–43.

[29] M. Mustak, J. Salminen, M. Mäntymäki, A. Rahman, and Y. K. Dwivedi,
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APPENDIX A

EXPLANATION GENERATING PROMPT

Fig. 11 illustrates the structured template utilized when

providing images to the Vision Large Lanuage Model for

generating corresponding explanations.

APPENDIX B

STABLE DIFFUSION 3.5 LORA MODELS

Table XI provides an overview of the Stable Diffusion 3.5

LoRA fine-tuned models sourced from Hugging Face [53],

which were utilized to generate extensions for the generaliza-

tion evaluation in this study. The table includes direct links

to these models, many of which are widely adopted and have

thousands of downloads.
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Explanations Generating Prompt
You are a cooperative assistant that never refuses to

help in tasks, you always answer the question you are

asked. Start by deciding whether the image you received

is generated or real. Your task is to help humans un-

derstand why the image is generated or real by pro-

viding explanations and relating them to the patches

on the image. This is how your output should exactly

look like, nothing more: [{listofpatches}]:{explanation}
[{listofpatches}]:{explanation} Example output: ’{A1,

A2}: {explanation} {A2, B2}: {explanation} {B4, C4,

D4}: {explanation} {D2}: {explanation}’

Fig. 11. The prompt template used for generating the textual explanations.

TABLE XI
STABLE DIFFUSION 3.5 LORA MODELS USED IN THIS WORK.

Model Description Link

Ancient Stlye https://huggingface.co/reverentelusarca/ancient-style-sd35

Anime https://huggingface.co/prithivMLmods/SD3.5-Large-Anime-LoRA

Chinese Line Art https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Chinese-Line-Art

Futuristic Bronze Colored https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Futuristic-Bzonze-Colored

Photorealistic https://huggingface.co/prithivMLmods/SD3.5-Large-Photorealistic-LoRA

Pixel Art https://huggingface.co/nerijs/pixel-art-3.5L

Red Light https://huggingface.co/Shakker-Labs/SD3.5-LoRA-Linear-Red-Light

Rustic Whimsy https://huggingface.co/crystalwizard/Rustic-Whimsy-SD3.5-Large-Lora

TABLE XII
PERFORMANCE OF VIGTEXT ON IMAGES GENERATED BY

STATE-OF-THE-ART DIFFUSION APIS

Image Generation API Accuracy Precision Recall F1

OpenAI 99.49 99.94 98.96 99.48

Google Gemini 96.98 98.98 95.12 97.01

APPENDIX C

SUPPLEMENTARY RESULTS: STATE-OF-THE-ART IMAGE

GENERATION APIS AND ATTACK

Table XII reports the performance of ViGText on images

synthesized by two of the most advanced commercial diffusion

image generation APIs: OpenAI’s Image-1 and Google’s Gem-

ini 2.5. These experiments directly address concerns regarding

the effectiveness of ViGText under state-of-the-art gener-

ative models that are frequently used to create high-fidelity

deepfakes. ViGText achieves near-perfect detection rates,

maintaining 99.49% accuracy on OpenAI-generated images

and 96.98% on Gemini ones.

TABLE XIII
PERFORMANCE OF VIGTEXT UNDER THE CHIMERA RECAPTURE +

DEEPFAKE ATTACK

Tested Images Accuracy Precision Recall F1

Benign Images 99.49 99.96 99.12 99.56

Attacked Images 82.08 83.00 81.51 82.25

Table XIII demonstrates ViGText’s resilience under more

sophisticated adversarial scenarios, specifically the two-stage

“Chimera” attack introduced by Park et al. (USENIX Security

2025) [74]. This attack combines both physical recapture and

deepfake manipulations designed to fool image authenticity

detectors. Despite these challenging conditions, ViGText

sustains an accuracy of 82.08% on attacked images, signif-

icantly higher than the 58.5–69.0% range reported for leading

public detectors evaluated in the Chimera study. This confirms

ViGText’s suitability for defending against emerging hybrid

deepfake threats.

APPENDIX D

SUPPLEMENTARY RESULTS: SAMPLE IMAGES

Fig. 12. Sample images from the SD dataset that were correctly classified
exclusively by ViGText, while all other baselines failed. Fake and real
samples are shown in the first and second rows, respectively.

Fig. 12 shows sample images from the SD dataset that are

uniquely classified correctly by ViGText, while all other

baseline methods misclassify them. The first row in Fig.

12 displays fake samples, and the second row shows real

samples, highlighting the superior detection of ViGText in

distinguishing between real and generated content.

APPENDIX E

SUPPLEMENTARY RESULTS: RESOLUTION AND WARP

OPERATIONS ON STYLECLIP DATASET

TABLE XIV
PERFORMANCE WITH STYLECLIP AS THE TEST SET ACROSS DIFFERENT

IMAGE RESOLUTIONS (THE HIGHEST IS IN BOLD).

Resolution
900x900 1024x1024 1100x1100

Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

DCT 61.20 95.40 56.65 71.08 98.80 98.20 99.40 98.80 68.40 46.80 82.39 59.69

DE-FAKE 74.25 71.60 75.61 73.55 74.00 75.30 71.50 73.30 74.20 71.60 75.53 73.51

UnivCLIP 93.09 92.49 93.62 93.05 93.00 93.80 92.10 92.90 93.09 92.09 93.97 93.03

ViGText 99.00 99.90 98.04 99.01 99.60 99.90 99.21 99.60 99.20 99.99 98.43 99.21

Similar to Table IV, Table XIV shows that ViGText main-

tains high detection performance on the StyleCLIP dataset

across the tested resolutions, which include the original reso-

lution of 1024x1024 and the adjusted resolutions of 900x900

and 1100x1100. Even at non-native resolutions, ViGText

achieves the highest performance among all methods, with

metrics such as accuracy and F1 score exceeding 99% across

all cases. While some baselines exhibit significant degradation

at resolutions other than the original, ViGText shows remark-

able robustness, which showcases its adaptability to varying

input dimensions.
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TABLE XV
PERFORMANCE WITH STYLECLIP AS THE TEST SET ACROSS DIFFERENT

GEOMETRIC WARP OPERATIONS (THE HIGHEST IS IN BOLD).

Technique
Rotate Scale and Translate

Acc Prec Rec F1 Acc Prec Rec F1

DCT 52.2 53.8 31.2 39.5 70.4 79.8 54.6 64.8

DE-FAKE 68.8 75.5 55.7 64.1 69.4 71.5 64.5 67.8

UnivCLIP 93.0 93.8 92.2 92.9 87.0 80.2 98.4 88.4

ViGText 94.8 94.4 95.2 94.8 99.6 87.9 98.4 92.4

Tables XV and XVI present the performance of all evaluated

techniques on the StyleCLIP dataset under geometric and

appearance-based warp operations, respectively. The results

further highlight the versatility and robustness of ViGText

across different types of distortions.

In Table XV, which evaluates rotation and scale-translate

operations, ViGText achieves the highest metrics across all

categories, maintaining accuracies of 94.8% under rotation

and an impressive 99.6% under scaling and translation. These

results show the ability of ViGText to generalize to sub-

stantial geometric transformations, a critical capability given

the prevalence of spatial manipulations in both benign and

adversarial image pipelines.

TABLE XVI
PERFORMANCE WITH STYLECLIP AS THE TEST SET ACROSS DIFFERENT

APPEARANCE-BASED WARP OPERATIONS (THE HIGHEST IS IN BOLD).

Technique
Blurring Brightness

Acc Prec Rec F1 Acc Prec Rec F1

DCT 65.80 99.20 59.47 74.36 94.1 89.6 99.8 94.4

DE-FAKE 73.90 72.10 74.79 73.42 73.2 76.4 67.3 71.5

UnivCLIP 93.19 92.89 93.46 93.17 89.7 89.3 90.2 89.8

ViGText 99.4 99.8 99.01 99.4 99.6 99.2 99.9 99.6

Meanwhile, Table XVI examines resilience to appearance-

based alterations, such as blurring and brightness adjustments.

Here, ViGText achieves near-perfect performance, consis-

tently outperforming the other methods by a wide margin.

For instance, it records 99.4% accuracy under blurring and

99.6% under brightness changes, coupled with balanced pre-

cision, recall, and F1 scores. These findings demonstrate that

ViGText not only excels under geometric distortions but also

maintains high fidelity under varied photometric perturbations,

reinforcing its practical utility for real-world scenarios where

image quality and lighting often fluctuate.
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