What Do They Fix? LLM-Aided Categorization of
Security Patches for Critical Memory Bugs

Xingyu Li*, Juefei Pu*, Yifan Wu*, Xiaochen Zou*, Shitong Zhu*, Qiushi Wud, Zheng Zhang*, Joshua Hsu*,
Yue Dong*, Zhiyun Qian*, Kangjie Lu’, Trent Jaeger*, Michael De Lucia*, Srikanth V. Krishnamurthy*
*UC Riverside " University of Minnesota ¥ IBM * U.S. Army Research Laboratory

*{xli399,jpu007,fshal003,xzou017,szhu014,zzhan173,jhsu094,yued, trentj, zhiyun.qgian, krish} @ucr.edu
T kjlu@umn.edu ¥ Qiushi. Wu@ibm.com * michael j.delucia2.civ@army.mil

Abstract—Open-source software projects are foundational to
modern software ecosystems, with the Linux kernel standing
out as a critical exemplar due to its ubiquity and complexity.
Although security patches are continuously integrated into the
Linux mainline kernel, downstream maintainers often delay their
adoption, creating windows of vulnerability. A key reason for
this lag is the difficulty in identifying security-critical patches,
particularly those addressing exploitable vulnerabilities such as
out-of-bounds (OOB) accesses and use-after-free (UAF) bugs.
This challenge is exacerbated by intentionally silent bug fixes,
incomplete or missing CVE assignments, delays in CVE issuance,
and recent changes to the CVE assignment criteria for the Linux
kernel.

Prior efforts such as GraphSPD, have proposed binary classi-
fiers to distinguish security versus non-security patches. However,
these approaches do not provide fine-grained categorization of
vulnerability types, which is essential for prioritizing fixes for
high-impact bugs like OOB and UAF. Our work aims to take
such coarsely labeled security patches and classify them into
fine-grained categories, i.e., OOB, UAF, or non-OOB-UAF types.

While fine-grained patch classification approaches exist, they
exhibit limitations in both coverage and accuracy. In this work,
we identify previously unexplored opportunities to significantly
improve fine-grained patch classification. Specifically, by leverag-
ing cues from commit titles/messages and diffs alongside appro-
priate code context, we develop DUALLM, a dual-method pipeline
that integrates two approaches based on a Large Language
Model (LLM) and a fine-tuned small language model. DUALLM
achieves 87.4% accuracy and an F1-score of 0.875, significantly
outperforming prior solutions. Notably, DUALLM successfully
identified 111 of 5,140 recent Linux kernel patches as addressing
OOB or UAF vulnerabilities, with 90 true positives confirmed
by manual verification (many do not have clear indications in
patch descriptions). Moreover, we constructed proof-of-concepts
for two identified bugs (one UAF and one OOB), including one
developed to conduct a previously unknown control-flow hijack
as further evidence of the correctness of the classification.

I. INTRODUCTION

Open-source software projects have emerged as corner-
stones of modern software development ecosystems. However,
incorporating such projects leads to significant security risks.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230328
www.ndss-symposium.org

Memory safety vulnerabilities are particularly notable due to
their prevalence and severity. However, memory safety vulner-
abilities vary significantly in severity. Among them, out-of-
bounds (OOB) access and use-after-free (UAF) vulnerabilities
(including double-free and invalid-free) are especially perilous,
as malicious actors consistently exploit them to achieve privi-
lege escalation and compromise system integrity [19], [6], [3],
[1]. In fact, our analysis of publicly available exploits [14]
since 2020 showed that almost 90% of them exploit OOB or
UAF vulnerabilities.

Taking the Linux kernel as an example, it has been shown
that even when patches addressing such vulnerabilities are
promptly integrated into the upstream mainline kernel, down-
stream kernel maintainers (e.g., Ubuntu) may delay their
adoption for weeks or even months [44], [78]. This extended
lag creates a substantial window of vulnerability in which
attackers may exploit bugs to attack unpatched downstreams.
Moreover, studies have demonstrated the feasibility of auto-
mated exploit generation targeting OOB and UAF bugs [27],
[71], [66], [73], further underscoring the urgent need for timely
patch porting.

Prior work (e.g., [78]) has documented this issue exten-
sively, which identifies a major cause of this delay: down-
stream maintainers often lack clear, timely, and fine-grained in-
formation about which patches are security-critical, i.e., OOB
or UAF bugs [78], [85]. The volume of daily commits makes it
infeasible to manually audit every patch. Furthermore, CVE-
based indicators are insufficient: (1) many security patches
are fixed silently without any indications (i.e., perhaps no
one understood the security impact); (2) CVE assignments
often lag behind the availability of patches by weeks or even
months [41]; (3) CVEs are incomplete — many exploitable
security vulnerabilities are not assigned CVE numbers [28],
[85], [45], [84].

While several tools have been proposed to detect security-
related patches (e.g., VulFixMiner [81], GraphSPD [62]), they
generally offer only binary classification (security vs. non-
security), which is insufficient for practical prioritization, as
not all vulnerabilities are equally impactful and urgent to
be ported. To enable downstream maintainers to triage and
prioritize critical patches earlier, a more useful analysis in-
volves a fine-grained classification that distinguishes between
vulnerability types, particularly to tease out those with high

exploitability such as UAF and OOB. Although several ap-
proaches have previously been proposed, all exhibit significant
limitations in both coverage and accuracy.

Limitations of Prior Art. Specifically, state-of-the-art so-
lutions SID [70], TreeVul [49] and CoLeFunDa [80] offer
fine-grained patch classifications. SID [70] relies on human-
defined, hard-coded patterns, but the complexity and variety
of patterns in the real world make them difficult to define
and accurately capture. Specifically, it supports only a single
hard-coded patch pattern for each UAF and OOB vulnerability
type, resulting in low coverage, and fails to identify 57%
of the relevant patches. TreeVul [49] and CoLeFunda [80]
eliminate the need for hard-coded patterns by feeding the code
diffs (e.g., added and removed lines of code) to a machine-
learning model. Unfortunately, TreeVul does not use any code
context beyond the diff itself, limiting the model’s ability to
appropriately learn patch patterns. While ColeFunda does use
code context, its use of the standard slicing technique can
introduce bloated code blocks and noise. Furthermore, both
approaches suffer from a common limitation: they do not
leverage commit messages, missing valuable semantic cues in
natural language that can aid classification.! Our evaluations
show that (see §VI), TreeVul achieves an accuracy of 65.6 %
and an Fl-score of 0.653, in identifying patches that fix UAF
and OOB bugs, indicating ample room for improvement. These
limitations motivate the need for a more effective solution that
advances the state of the art in vulnerability type classification.

Our solution. To tackle the challenge of handling diverse
patch patterns, we propose a novel machine-learning-based
solution guided by two key insights: First, beyond code diffs
in a patch, the commit titles and messages often provide
valuable insights into the nature of the bug being fixed (e.g.,
directly mentioning a “use-after-free” bug being fixed). The
advancements in LLMs make them very suitable for extracting
such indicators from commit descriptions. Different from
CoLeFunDa [80] and TreeVul [49], our approach leverages
Large Language Models (LLMs) to effectively extract and
utilize these valuable indicators from commit descriptions.
While an LLM-only pipeline already outperforms recent ap-
proaches such as SID and TreeVul, its accuracy still falls short
of our expectations. Second, critical clues are often found in
the code context that extends beyond the modified lines in a
patch that can help identify the type of bug. We develop a
custom slicing method that concisely captures the impact of
the patch to drive a fine-tuned small language model (since
our slices are custom and specialized). Finally, we develop a
dual-method pipeline, namely DUALLM, that runs end-to-end
automatically to classify patches into UAF, OOB, and other
non-UAF-OOB patches, leveraging both types of information
in an informed way. We note that our approach differs from
prior approaches relying on a single machine learning model,
including CoLeFunDa [80] and TreeVul [49]. In contrast, our
method adopts a hybrid design that strategically integrates a

ICoLeFunDa has three downstream tasks, what we refer for it in the paper
is its CWE classification task. Also, CoLeFunDa is not open-sourced.

large language model (LLM) with a small fine-tuned language
model, effectively harnessing the strengths of both to achieve
significantly higher classification performance.

We evaluated DUALLM primarily on Linux kernel patches,
achieving an 87.4% accuracy and a 0.875 Fl-score on quality-
controlled CVE patches, outperforming SID and TreeVul
by 23.6% and 21.2% in accuracy, and 0.329 and 0.216
in Fl-score. Most importantly, out of 5,140 recent patches,
DUALLM identified 111 as fixing OOB or UAF bugs, with
manual verification confirming 90 of these identifications as
true positives. This highlights the significant coverage of
DUALLM in teasing out critical security patches. Notably,
we construct proof-of-concepts for two such bugs (one UAF
and one OOB), as further evidence of the correctness of the
classification. We even successfully exploited one such bug
to realize a control-flow hijack attack that was not publicly
known.

Scope and assumptions. To show the generality of
DUALLM, we also tested our method against other types
of bugs (e.g., NULL pointer dereference, memory leak, and
use-before-initialization) and additional open-source projects,
yielding similarly robust results. Consistent with TreeVul and
CoLeFunDa, we assume the patches fed to our fine-grained
classifier are already security patches (e.g., CVE patches). If
they are not already labeled as such, we envision a full pipeline
to run existing coarse-grained classifiers that differentiate
security and non-security patches, e.g., VulFixMiner [81] and
GraphSPD [62]. This is different from SID which does not
require the input to be security patches.

Contributions. A summary of our contributions is as fol-
lows:

e We develop DUALLM, a system that strategically leverages
the strengths of an LLM and a specialized small language
model to effectively classify security patches addressing
critical memory corruption bugs, specifically targeting OOB
and UAF vulnerabilities.

e Our solution is driven by missed opportunities and limita-
tions in state-of-the-art solutions, as well as recent advances
in large language models, including leveraging an LLM to
enhance vulnerability context extraction during slicing.

e We show that DUALLM achieves an 87.4% accuracy
and a 0.875 Fl-score on quality-controlled CVE patches,
markedly outperforming state-of-the-art methods [70], [49],
and identifies 90 OOB and UAF patches from 5,140 recent
patches. From these, we further develop two PoCs and one
exploit to achieve control flow hijacking.

e We will open source the code, data, and model produced
as part of the research to facilitate the reproduction of the
results and further research.

II. BACKGROUND AND RELATED WORK

A. Memory Corruption Vulnerabilities

Memory corruption vulnerabilities remain among the most
critical security threats in modern software systems, as they
can enable attackers to achieve arbitrary code execution and

escalate privileges. These vulnerabilities can arise at any stage
of a memory object’s lifecycle—from allocation and initial-
ization to usage and eventual deallocation—creating multiple
opportunities for exploitation.

Among memory corruption vulnerabilities, out-of-bounds
access and use-after-free are particularly critical due to their
high exploit potential for arbitrary code execution and privilege
escalation [71], [27], [66], [73]. Our analysis of 69 publicly
available exploits [14] targeting Linux/Android systems since
2020 reveals that 38 were UAF vulnerabilities and 24 were
OOB vulnerabilities, with only 7 being non-UAF-OOB bugs.

Security vulnerabilities are typically documented using the
Common Vulnerabilities and Exposures (CVEs) [4] system.
Each CVE is typically categorized using the Common Weak-
ness Enumeration (CWE), a standardized taxonomy that classi-
fies different types of software weaknesses and vulnerabilities.
For example, CWE-787 represents the category of out-of-
bounds write vulnerabilities where programs write beyond the
bounds of allocated memory regions, while CWE-416 repre-
sents use-after-free vulnerabilities where programs attempt to
use memory after it has been freed.

B. Mining Patches

Several studies [38], [69], [58] have used machine learning
to assess whether a commit in the Linux mainline is a patch
or a functional change, useful for patch porting decisions
for stable/LTS branches. Once bug-fixing patches have been
identified, the next challenge is to determine if such patches
are security related. Many studies [82], [83], [86], [63], [65],
[34], [54], [37], [81], [47], [57] have used machine learning to
analyze patches to determine whether they are security related.
For example, VulFixMiner [81] employs a transformer-based
model and GraphSPD [62] leverages a graph neural network
to perform coarse-grained patch classification (e.g., security
vs. non-security). However, neither approach identifies the
specific bug type, which is often critical for effective patch
triaging [70], [80].

Some works (e.g., VFCFinder [30]) focus on mapping
vulnerabilities to their corresponding patch commits. However,
this assumes the availability of vulnerability disclosures or
CVEs, which is not always the case—especially for silent
fixes. Our goal is fundamentally different: we aim to proac-
tively classify all patches into fine-grained vulnerability types,
even in the absence of prior CVE assignment.

Generally, patches addressing different categories of vulner-
abilities exhibit distinct characteristics in their code modifica-
tions. Patches fixing memory corruption vulnerabilities typi-
cally involve memory management operations, such as adding
bounds checks before memory accesses, nullifying pointers, or
ensuring proper object lifetime management through careful
allocation and deallocation.

Based on such observations, SID [70] is among the first
to identify such patch patterns for OOB, UAF, and two other
bug types, using pre-defined rules. The key idea is to leverage
under-constrained symbolic execution to analyze the security
impact before and after the patch. While the solution is highly

precise—rarely producing false positives—its performance is
greatly limited by its reliance on a highly restricted set of hard-
coded patterns (e.g., only one for each bug type). Even from
among supported cases, it misses 53% of relevant patches due
to the rigidity of its matching logic. Worse, patches that do
not conform to any predefined pattern go undetected, leading
to very high numbers of false negatives.

Besides SID, there are several machine-learning-based so-
lutions proposed to classify patches in recent years [49], [80].
They both attempt to classify patches into CWE labels, which
include OOB and UAF bugs. TreeVul [49] leverages a pre-
trained CodeBert [32] model and further fine-tunes the same
for this task. Its input is the code diff in the patch, i.e., the
added lines and removed lines, without any code context. In
comparison, CoLeFunDa [80] leverages contrastive learning
and pre-trains a Bert model from scratch and fine-tunes it. Its
input consists of program slices from the patched function.
Neither solution leverages the patch descriptions, i.e., commit
titles and messages, for classification. Both solutions also have
only modest success. TreeVul’s performance on Linux kernel
patches is modest, with only a 66.98% accuracy and an F1-
score of 0.670. Similarly, CoLeFunDa achieved a precision of
0.52 an Fl-score of 0.50, as reported in their paper.

Our work addresses this gap by introducing DUALLM
—a novel pipeline that combines large and small language
models to achieve fine-grained vulnerability classification with
significantly improved accuracy, even for patches without
assigned CVEs or clear descriptions.

C. Machine Learning for Code Analysis

Transformer-based architectures have been successful in
NLP [60], [52], [53], [25], [29], [40] and code understand-
ing [32], [36], [21]. Recent work has applied these models to a
range of security applications. For example, VulExplainer [33]
attempts to classify a given vulnerable function into associated
CWEs (vulnerability types). Sun et al. [56] proposed an
encoder-decoder framework that aims to detect and explain
security patches (not explicitly focusing on classification). Yu
et al. [77] proposed hybrid models to perform binary code
similarity detection.

The recent popularity of large language models [25], [26],
[10], [48], [11], [15], [16], [17] has motivated researchers
to investigate the use of LLMs for code related tasks. They
include, but are not limited to, patch generation [72], [50],
[22], [23], fuzz testing [39], [76], [75], vulnerability detec-
tion [59], [61], [55], bug reproduction [31], and assisting
static analysis [42], [43]. While these studies demonstrate
LLMs’ potential across various code-related tasks, the specific
challenge of identifying fine-grained vulnerability types such
as OOB and UAF bugs from patches, remains unexplored.

III. MOTIVATION AND OVERVIEW

A. Motivation

Our approach is motivated by two crucial observations from
preliminary studies of security patch classification. Before

ksmbd: fix use-after-free bug in smb2_tree_disconect
smb2_tree_disconnect() freed the struct ksmbd_tree_connect,but it
left the dangling pointer. It can be accessed again under compound
requests.

Fig. 1: Commit title and message of a Linux kernel patch with an
explicit indication of the type of bug fixed

ipv6: raw: Deduct extension header length in rawv6_push_-
pending_frames

The total cork length created by ip6_append_data includes exten-
sion headers, so we must exclude them when comparing them
against the IPV6_CHECKSUM offset which does not include
extension headers.

Fig. 2: Commit title and message of a second Linux kernel patch
with an implicit hint of the type of bug fixed

detailing our complete methodology, we first discuss these crit-
ical observations, as they form the foundation of our technical
approach and showcase the novelty of our contribution. These
observations not only reveal significant limitations in existing
approaches but also guide our novel solution design.

Observation 1: Untapped potential exists in commit
descriptions. While it is known that the natural language
descriptions in patches can reveal the nature of issues being
fixed, they have been leveraged thus far for only coarse-
grained patch classification (in the pre-LLM era), i.e., into
security vs. non-security patches, like PatchRNN [65] and
other works [83], [86], [82], [54]. State-of-the-art methods,
like CoLeFunDa [80],TreeVul [49] and SID [70], for fine-
grained patch classification, e.g., OOB vs. UAF bugs, however,
completely overlook such valuable indicators.

We observe that patch commit descriptions can sometimes
directly reveal the exact bug type with explicit indicators (e.g.,
“use-after-free”) as shown in Figure 1. In other cases, the bug
type is not directly mentioned, but can be inferred from the
description (from a human perspective). Figure 2 illustrates
such an example where a miscalculation of a length variable
occurs. Although the bug type is not explicitly specified,
the length variable adjustment is indicative of a potential
out-of-bounds access vulnerability. Surprisingly, our analysis
of SID’s dataset reveals the prevalence of such indicators:
among the 227 security bugs that SID ultimately identified,
our experiment shows that a remarkable 90.75% contain direct
or indirect indicators of the vulnerability type in their commit
titles or messages, suggesting the utility of patch descriptions.

Observation 2: Code diff patterns cannot effectively

Don’t feed anything but regular iovec’s to blk_rq_map_user_-
iov

In theory we could map other things, but there’s a reason that
function is called “user_iov”. Using anything else (like splice can
do) just confuses it.

Fig. 3: Commit title and message of one Linux kernel patch without
hints of the type of bug fixed

identify bug types in prior research. In the cases where
no clear indicators are available in the patch description, e.g.,
Figure 3 and Figure 8, code diff becomes a necessary signal
for patch classification. For example, an out-of-bounds (OOB)
vulnerability is often patched by adding a bounds check (see
Figure 4a), or by recalculating the size of critical memory
areas (see Figure 4b).

However, some patches do not follow common patch pat-
terns and thus require additional code context beyond immedi-
ate code changes (an example is shown in Figure 8 discussed
in detail later). This reveals a fundamental challenge in patch
classification: the true nature of a vulnerability fixed by a
patch — its root cause, impact, and security implications —
is often intertwined in intricate code relationships that extend
far beyond the immediate patch vicinity. Consequently, cor-
rectly classifying such patches to their bugs requires precisely
extracting the full bug-logic-relevant code context.

Previous approaches [70], [49], [80] unfortunately have not
developed an informed solution. SID [70] relies on symbolic
rules (which are analyzed using symbolic execution) and
support only a single patch pattern for each UAF and OOB
vulnerability type. TreeVul [49] uses only the added lines
and removed lines as the input to a machine learning model,
without any additional code context — insufficient to identify
bug types for some cases. Colefunda [80] does feed additional
lines of code to a machine learning model via intra-procedural
slicing. However, the standard slicing technique will capture
irrelevant code context due to control dependence and lack of
vulnerability context that may span function boundaries. We
discuss these limitations in more detail in §IV-B.

Summary: The above observations reveal new opportunities
to improve the classification of security patches, which directly
motivate the design of our solution outlined in the next section.

B. Solution Overview

In this section, we present an overview of the key compo-
nents of DUALLM and highlight three core design strategies.
Design strategy 1: Classifying patches with an LLM. We
argue that LLMs offer a superior solution for classifying
patches compared to prior approaches. Recent advancements
have demonstrated the exceptional ability of LLMs to handle
both natural language and code-related tasks [79], [48], [51],
[72]. This makes them particularly well-suited for (1) analyz-
ing patch descriptions, which often contain textual clues about
bug types, (2) simultaneously processing the textual and code
components of patches — something static analysis struggles
with, and (3) new patch patterns can be relatively easily incor-
porated using the LLM’s few-shot learning capabilities [25],
in contrast to rigid symbolic rules.

Design strategy 2: Classifying patches using a local model.
While LLMs are very good at classifying patches with clear
indicators, our preliminary experiments find that the effec-
tiveness decreases significantly when patches do not have
sufficient hints. This motivates the collection of additional
code context beyond the original code diffs in the patch.
To this end, we developed a custom program slicing method

1

@@ -316,6 +316,11 @@ int
st2lnfca_connectivity_event_received(struct nfc_hci_dev =
hdev, u8 host,

return -ENOMEM;

transaction->aid_len skb->datal[l];

memcpy (transaction->aid, &skb->datal2],
transaction->aid_len);

(a) A patch for an out-of-bounds access vulnerability

Bowo

5
6
7
8

9
10

11
12

@@ -567,12 +567,11 @@ static void nfsd_init_dirlist_pages(
struct svc_rgst *rgstp,
struct xdr_stream xxdr = &resp->xdr;

count = clamp (count, (u32) (XDR_UNIT * 2),
svc_max_payload(rgstp)) ;

memset (buf, 0, sizeof (xbuf));
/* Reserve room for the NULL ptr & eof flag (-2 words) */
buf->buflen = count - XDR_UNIT * 2;
+ f->pbufl = clamp (nt, (u32) (XDR \

A S E);
e S ;

+ ouf->bufle —= XD NIT

buf->pages = rgstp->rg_next_page;

(b) A second patch for an out-of-bounds access vulnerability

Fig. 4: Examples of two common patch patterns for out-of-bounds access

Yes: LLM

UAF/O0B/Other
Security patch
N~ "
No SliceLM UAF/O0B/Other

Fig. 5: The high level pipeline of DUALLM

LLM to check if
patches contains
clear hints?

that concisely captures the lines of code that constitute the
bug, while minimizing the irrelevant lines (compared to the
traditional slicing method). Unfortunately, since our custom
slices are in a new, specialized data format, we find that the
LLM cannot effectively utilize these slices even when we
attempt to teach them via in-context learning (as shown later
in § VI-A4). Thus, (given the unique nature of the data), we
train a small language model, called SLICELM that can ingest
such custom slices and infer the associated bug types.

Design strategy 3: A dual-method pipeline. Given the
above, we categorize patches into two classes: those that
contain clear vulnerability indicators (patches with hints) and
those that require more code-level analysis (patches without
hints). This fundamental distinction motivates the design of
DUALLM, a dual-method pipeline that strategically handles
each category with specialized techniques, as illustrated in
Figure 5. Specifically, we design our pipeline to first differenti-
ate the two categories of patches leveraging an LLM. Patches
with hints are processed using methods that can effectively
leverage their indicators, while patches without hints are
analyzed by our dedicated model that focuses on careful ex-
amination of code modifications and the vulnerability context.
In summary, as discussed below, an LLM excels at leveraging
hints, but a dedicated model designed to understanding code
context beyond code diffs is essential when such hints are
absent. This dual-method architecture stands in contrast to
prior approaches like CoLeFunDa [80] and TreeVul [49],
which rely on a single model throughout; by strategically
integrating two models, DUALLM more effectively leverages
both high-level semantic cues and deep code context

1V. DUALLM DESIGN

In this section, we describe the two main components of
DUALLM: LLM-based patch classification and SLICELM (our
own custom model). For the former, we focus on the design
of prompt strategies that guide the LLM. For the latter, we
focus on our custom slicing technique and how it is used to
train our model.

Our approach assumes that each patch corresponds to a sin-
gle vulnerability — an assumption shared by prior work [49],
[70], [80]. This is further supported by the official Linux
documentation [20], which advises: “Solve only one problem
per patch.”, and is consistent with our empirical observations.

A. LLM-based patch classification

We have two high-level goals when we leverage the LLM
for our task. First, we aim to exploit an LLM to extract hints
from patches that have them (Design strategy 1). Specifically,
we look for hints in (1) the natural language description of
commit titles and messages and (2) common patch patterns
observed in commit diffs for bug types of interest, such as use-
after-free (UAF) and out-of-bounds (OOB) access. Second, we
seek to differentiate patches with and without hints, so that we
can feed them to the corresponding methods in our pipeline
(Design strategy 3).

In our design, we focus on guiding an LLM to effectively
identify vulnerability indicators through both commit descrip-
tions and common patch patterns. If successful, the bug type
will also be reported and extracted subsequently. Otherwise,
they are fed to our dedicated model. LLMs are known to
be extremely effective at processing natural language; with
respect to patch patterns, in contrast to SID [70] which
uses precise but rigid symbolic rules to identify them, we
hypothesize that LLMs can identify patch patterns in a more
flexible way, e.g., recognizing small variations of the same
underlying pattern. To this end, we encode common patch
patterns in the form of examples for few-shot learning [25].

Patch pattern encoding (in-context learning). The downside
of not relying on precise symbolic rules is that it also cre-
ates room for misclassification, especially when ambiguities
arise. To overcome this challenge, we present both UAF/OOB

examples and non-UAF-OOB examples as guidance for the
LLM in the form of few-shot prompts [25]. Specifically,
our selected non-UAF-OOB examples cover various memory
corruption bug types that involve changes to critical memory
operations (e.g., initialization, free, and use). Since UAF and
OOB are both related to vulnerable memory operations, these
chosen patches share more similarities with UAF and OOB
compared to patches that do not involve vulnerable memory
operations. The overlaps of repair characteristics in terms
of vulnerable memory operations can cause confusion in a
classification task. For example, patches addressing both UAF
and memory leak bugs often involve memory deallocation
operations, such as free (). A memory leak bug is typically
fixed by adding a free () somewhere. A UAF bug may be
patched by deferring a free () [12] — both may exhibit a
line with added free (). These examples are not enforced
as hard-coded decision rules (e.g., as in SID [70]). Instead,
the LLM uses these examples inductively to generalize across
diverse real-world patches. This enables greater flexibility
and adaptability, especially when handling variations in patch
style, naming, or structure. Thus, while DUALLM incorporates
human-defined examples, it avoids fixed symbolic rule logic,
and relies instead on the LLM’s ability to reason and adapt.
By feeding explicit example patch patterns for these mem-
ory corruption bug types, we seek to help the LLM differ-
entiate them better. Specifically, the patterns we encode for
different memory corruption bug types are as follows:

e out-of-bounds access: add boundary check; recalculate
memory area sizes.

o use-after-free: nullify pointers after freeing.
o null pointer dereference: add null pointer validation checks.
e use before initialization: add proper variable initialization.

e memory leak: insert memory free function calls along an
execution path.

For the above patch patterns, our prompts follow the
chain-of-thought strategy [67] by providing both representative
patches and detailed explanations of how to interpret them and
identify key indicators — see the last two boxes in Figure 6
which illustrates our prompt template. This approach guides
an LLM through the intermediate reasoning steps needed to
analyze patches, helping it decompose complex patch anal-
ysis tasks into manageable steps and ultimately improve its
classification accuracy.

Note that our approach can be easily extended with more
patch patterns by few-shot learning to provide examples in
prompts. To demonstrate this, we expand the patch patterns
for OOB vulnerabilities beyond what was supported by SID.
Specifically, while SID only accounts for the pattern of
“adding bounds checks”, our approach in addition incorporates
“recalculating memory area sizes” as a supported pattern.
Extending the patterns and vulnerability types beyond what
we have currently remains a direction for future work we can
explore.

Prompt template. In Figure 6, we present the structured

I want you to act as a Linux kernel security patch expert, who is great at
analyzing Linux security patches.

... I need your help to tell me if its commit title, message and diffs can
contain reliable hints to tell us its type of the bug fixed by the patch. I will
give you commit title, commit message, commit diff and three lines
around diff as context. | hope that you can first look at commit title and
commit message, since those descriptions can contain explicit or
implicit hints about the bug type; and then commit diff and its context,
which can fall into some common patch patterns(listed below). There are
three bug types that | care about: use-after-free, memory out-of-bounds,
and non-uaf-oob(including null pointer dereference, use before
initialization, memory leak, and others).

Below are examples that help you learn this:

One of six patch ex: les, others not shown for b

evity?
Commit title: NFSD: Protect against send buffer overflow in NFSv2
READDIR
Commit message: Restore the previous limit on the @count argument to
prevent a buffer overflow attack.
Commit diff:
@@ -567,12 +567,11 @@ static void nfsd_init_dirlist_pages(struct
sve_rgst *rgstp,
struct xdr_buf *buf = &resp->dirlist;
struct xdr_stream *xdr = &resp->xdr;
- count = clamp(count,(u32)(XDR_UNIT * 2),svc_max_payload(rgstp));
memset(buf, 0, sizeof(*buf));
- buf->buflen = count - XDR_UNIT * 2;
+ buf->buflen = clamp(count, (U32)(XDR_UNIT * 2), (uU32)PAGE_SIZE);
+ buf->buflen -= XDR_UNIT * 2;
buf->pages = rgstp->rq_next_page;
rgstp->rq_next_page++;

Analysis:

(1) Commit title says it fixes a buffer overflow

(2) The patch diff changes the calculation of buf-buflen, which is the
length of the buffer. It matches the memory size resetting patch pattern
for memory-out-of-bounds.

Contains reliable hints about the bug type: yes;the bug type is memory
out-of-bounds access.

..Be careful: if you are not 100% sure about if there are reliable hints
about the bug type, you should say no; if there are conflicts between
commit descriptions(commit title and message) and commit diff, please
prioritize commit diff, and if commit diff can not provide certain hints,
you should say no.

Please analyse it step by step according to the above methods.

Here is the commit that | would like you to analyze:

Fig. 6: Structured prompt template for patch classification; the blue
boxes delineate, in order, five key components: (1) role specification,
(2) task description, (3) example, (4) analytical methodology, and (5)
extra guidelines.

prompt template for LLM-based patch classification. As one
can see, we structure the prompts into five parts. First, we
establish the role specification, defining an LLM as a Linux
kernel security patch expert. Second, we provide a detailed
task description that outlines the analysis requirements, includ-
ing the input format and the goal of the task. Third, we include
an example (one of six patch patterns we support, others
omitted for brevity) to demonstrate the expected analytical
approach. Fourth, we present the analytical methodology,
showing step-by-step reasoning that covers both natural lan-
guage descriptions and code diff pattern interpretation. Finally,
we emphasize the importance of certainty in classification.

It is worth noting that towards the end of the prompt, we
explicitly ask the LLM to “give up” on the classification if
there are no reliable hints about the bug type. This is important

. LLM-aid
Patches without .
. dependence slice —
hints)
generation

SliceLM finetuned
for binary
classification

Non-memory-
related patches

for fine-grained
Classification

SliceLM finetuned
UAF/O0OB/Other

Fig. 7: SLICELM’s pipeline to classify patches without hints

because we do not want to force the LLM to make an inference
unconditionally; otherwise, the results may be inaccurate.

B. SLICELM-based patch classification

SLICELM is designed to classify patches without hints,
i.e., patches that are classified by an LLM as such. As
discussed in §III-B (design strategy 2), proper code context is
critical to identify the type of bug being fixed in a patch and
the context needs to be carefully extracted to capture the true
nature and critical elements of the vulnerability. Specifically,
the context must be designed to capture the lines of code
most semantically related. Accomplishing this is no easy
task. Relying on the default context of three lines around
code diffs risks overlooking critical patch-relevant details,
while using entire patched functions or traditional program
dependence slices can confuse the model with irrelevant lines
of code.

To solve this, we developed a custom slicing method. Given
our slices are specialized, we choose to pre-train a BERT-based
language model from scratch (details will be presented in §V),
to grasp dependence-based relationships between slices and
patch diffs. This is different from prior work [49] relying on
the already pre-trained CodeBert model [32]. Then we fine-
tune the model for two tasks: (1) the binary classification
of memory corruption patches and other non-memory-related
patches; and (2) the fine-grained classification of memory
corruption patches into UAF, OOB and others. The workflow
of SliceLM is presented in Figure 7.

1) Custom slicing: Slicing is an appropriate solution to
extracting the code context (§III-B). Ideally, slicing should
include all relevant code — but only the relevant code —
to capture the critical operations tied to the bug’s behavior.
For example, we would like to find the lines of code that
indicate a freed object being used subsequently, for a UAF
bug. However, it is hard to determine how far away such
operations are from the changed code lines in the code diff.
If we arbitrarily increase the scope of a slice, e.g., making it
inter-procedural, we would encounter significant noise from
irrelevant code inclusion and face scalability challenges. To
address this challenge, we develop three novel strategies: (/)
a selective slicing heuristic to prioritize data dependence
over control dependence, (2) an LLM-aided function renaming
method to enhance the vulnerability context while avoiding
inter-procedural analysis; (3) an LLM-aided strategy to prune
redundant code changes. We detail the design of the three
strategies next.

Selective slicing rule (avoiding bloating). We take the
removed and added code of a patch as the slicing criterion,
i.e., the starting point of slicing [68], because the variables
changed in these lines are relevant to the bug. We observe that
traditional program slicing often produces excessively large
slices by including all data and control dependencies—even
those unrelated to the bug, such as variables and operations
that do not impact its presence or absence.

In particular, control dependence can lead to bloated slices.
To illustrate, consider the example patch in Figure 8. The
patch has introduced two additional lines of code that would
return early if a specific condition is met. If we apply the
standard forward control dependence slicing on the conditional
statement, the slice would include all the lines after line
10. This is because whether these subsequent lines will be
executed is control-dependent on the conditional statement,
i.e., lines after 10 will not be executed if the new condition
on line 9 is true. However, we know that the majority of the
subsequent lines of code are not relevant to the bug. Instead,
only the key operations directly involving the variable being
checked (in this example addr) should be retained in the slice.

To mitigate such control-dependence-induced bloating, we
redefine the handling of control dependence by introducing
a focused, variable-driven slicing rule that balances precision
and relevance. Instead of including all control-dependent state-
ments, our approach selectively incorporates statements based
on their direct interaction with the slicing criterion: (1) forward
control dependence slices include only statements that use
variables involved in the criterion (e.g., conditional checks),
and (2) backward control dependence slices include only
conditional statements that use variables in the criterion. This
hybrid approach blends aspects of control dependence and
data dependence slicing, prioritizing patch-relevant impact
while minimizing irrelevant code. The intuition is to limit
the inclusion of code due to control dependence to those that
are more likely to contribute to understanding the impact of
patches, e.g., checking a length variable or the validity of a
pointer.

To illustrate our approach, let us look at the slices we obtain
if we use line 9 of Figure 8 as the slicing criterion (since line
9 is an added line). Backward slicing yields lines 6 and 8 due
to data dependence for variable addr. Traditional forward
slicing will include all of the code after line 10 (more than 40
lines), since their execution will be controlled by the if-return
check in lines 9 and 10. However, as discussed previously,
our selective slicing will include only the lines which use

1 KVM: PIT: control word is write-only

i PIT control word (address 0x43) is write-only, reads are undefined.

: @@_-467,6 +467,9 @@ static int pit_ioport_read(struct kvm_io_device *

6 FQ;EC int pit_ioport_read(struct kvm_io_device *this, gpa_t addr,
int len, void *data)

s [addr &= KVM_PIT_CHANNEL_MASK; |
9 1t (addr

10 return 0;

1 ...(omitted 24 lines)

12 } else {

13 switch (s->read_state) {

14 ...(omitted 14 lines)

15 case RW_STATE_WORD1 :

16 count = pit_get_count(pit, addr);l
17 ret = (count >> 8) & Oxff;

18 s->read_state = RW_STATE_ H
19 break;

20

21 }

22 1if (Ien > sizeof(ret))

23 len = sizeof(ret);

24 memcpy (data, (char *)&ret, len);

Fig. 8: A simplified patch for memory out-of-bounds vulnerability
(Blue boxes indicate the extracted backward slices and red boxes
indicate the extracted forward slices using our method)

the variable checked in the if condition; therefore, line 16
is included in the forward slice (which is directly related to
patch semantics); line 17 is included since it uses the variable
count defined in line 16; line 20, 21 and 22 are also included
due to the use of variable ret defined in line 17. In other
words, our forward slicing yields lines 16, 17, 22, 23, and 24,
which captures all operations relevant to the OOB vulnerability
and avoids significant noise compared to the 40+ lines present
in the forward slice of the traditional method. Using the slice,
we can see that the patch adds a check on a variable addr.
This variable addr is an index that is used to retrieve an
address ret and the size of source data to be copied. Without
imposing constraints on addr (line 9-10), it is possible that
the size of the source data is bigger than that of the destination
data during memcpy (), causing a memory out-of-bounds
access in line 24. These lines are necessary and sufficient for
the ML model to make an inference that an OOB vulnerability
is being fixed by the patch. If the traditional program slicing
method is used, we observe that our model will misclassify
this case.

LLM-aided slicing (function renaming). As shown in the
example in Figure 8, obtaining complete vulnerability context
often requires tracking operations that are distant from the
code diff, e.g., memcpy (). In fact, it can even require
tracking across function boundaries through inter-procedural
analysis. However, performing inter-procedural slicing can be
prohibitively expensive and may introduce substantial amounts
of irrelevant code, potentially degrading the performance of the
model we aim to train. Therefore, we opt for intra-procedural
slicing, though this inevitably excludes relevant context from
other functions.

To address this limitation, we leverage a key observation
that function semantics are often revealed in function names:
they typically provide clear indicators of their behaviors [46].
For example, the function drm_mm_remove_node () sug-

gests its purpose of node removal. Since function names are
included in the code diffs and slices, they should in principle
already contain semantics that can benefit patch classification.
However, the sheer diversity of functions and their names can
be a hurdle in training our local model: many projects define
wrappers or custom-named functions for memory operations
like allocation, freeing, reference counting, or copy operations,
using names that are not standardized or intuitive.

We leverage an LLM to interpret and analyze the function-
ality of open-source functions (e.g., in the Linux kernel) and
convert them into more standardized function names to aid
the training and classification process. This capability stems
from LLMs being pre-trained on extensive datasets (including
Linux source code and documentation), a finding also con-
firmed by prior work [43]. Specifically, we rename functions
according to their relevant memory operations because these
behaviors are closely tied to memory corruption vulnerabili-
ties. Our approach asks an LLM to identify and rename func-
tions based on key memory operations including allocate,
free, read, write, map, copy, and reference count increase/de-
crease. When an LLM identifies that a function’s primary
functionality is one of these operations, it renames the function
accordingly; otherwise, the original name is preserved. For in-
stance, 12cap_chan_hold_unless_zero () is renamed
to increase_reference_count_if not_zero() to
explicitly reflect its reference count operation. Finally, we
replace original function names in custom slices and code diffs
with their semantically renamed counterparts. As more patches
are analyzed, we accumulate these mappings and cache them
to minimize inference overhead. This enables the downstream
model to reason about what a function does, rather than what
it is called.

Standardizing function names semantically creates a uni-
fied vocabulary for memory operations, enabling our model
to more effectively identify and correlate similar memory
behaviors across different code segments. Considering the
example in Figure 9, the UAF issue arises because put_—
cred (creds) is executed even if the variable ret is ‘1’
(which is a valid return value), causing an unwanted refer-
ence count decrement and potentially triggering an unwanted
free. Our function renaming approach assigned the name
decrease_credential reference_count () to the
function put_cred (), emphasizing its connection to the
reference counter decrement. Without this renaming, we found
that our model would misclassify the case as OOB instead.

LLM-aided slicing (pruning redundant code changes). The
above method is sufficient when we consider relatively small
patches. However, large patches in the real world can contain
numerous code changes spread across multiple functions and
even files; yet, not all changes target fixing
the vulnerability. Unfortunately, we cannot directly
ask an LLM to pinpoint the bug-logic-relevant changes. This
is because the patches we process at this stage are already
considered “without hints”, and pinpointing the bug-logic-
relevant changes would require clues about the bug type.

WO -

w

io_uring: fix xa_alloc_cycle() error return value check

We currently check for ret != 0 to indicate error, but '1l'
is a valid return and just indicates that the allocation
succeeded with a wrap. Correct the check to be for < 0,
it was before the xarray conversion.

like

@@ -9843,10 +9843,11 Q@ static int io_register_personality (
struct io_ring_ctx xctx)

ret = xa_alloc_cyclic(&ctx->personalities, &id, (void x*)
creds,
XA_LIMIT (0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL
)i
- 1f (!ret)

- return id;
- put_cred(creds);
- return ret;
if (ret < 0) {
put
etu

Fig. 9: An example where function renaming helps

That said, there are still opportunities to prune clearly
redundant code changes in a bug-agnostic way. Specifically,
we propose to leverage an LLM to identify two patterns of
redundant code changes: (1) redundant changes (same code
changes that appear in multiple places due to the change of
function call parameters), and (2) code refactoring without
changing the actual code behaviors.

@@ btrfs ioctl resize:

2| —device = btrfs_find_device(fs_info->fs_devices, devid, NULL
, NULL);

3| +device = btrfs_find_device(fs_info->fs_devices, devid, NULL
, NULL, true);

v

Q@ btrfs_scrub_dev:

6/ —dev = btrfs_find_device (fs_info->fs_devices, devid, NULL,
NULL) ;

7| +dev = btrfs_find_device (fs_info->fs_devices, devid, NULL,
NULL, true);

9 (11 other instances of changes similar to the above)

11 @@ device_list_add:

12| —device = find_device (fs_devices,
.uuid);

13| +device =
dev_item.uuid,

devid, disk_super->dev_item

btrfs_find_device (fs_devices, devid,disk_super->
NULL, false);

15| -find_device() // function is totally removed

ind_device() // add a bool
1ding operation for it

17| +tbtrfs argument and

correspo

Fig. 10: A simplified patch for redundant changes example; Blue
boxes are semantically equivalent, red boxes are critical lines

Figure 10 illustrates an example with many change sites
that are basically redundant. The patch is composed of 17
change sites (for brevity, we only show 6). However, the first
13 change sites are semantically equivalent, since all of them
are adding a true argument when calling btrfs_find_-
device (), as shown in the first two change sites highlighted
in the two blue boxes in Figure 10. We find that the critical
lines for the patch are unrelated to any of repeated instances,
e.g., the code within blue boxes in Figure 10 that is repeated.
Including all these “similar” changes and their corresponding
dependence-based context would not only obscure the core
vulnerability-fixing modifications (the meaningful change is

1| //implement a new function called xfs_iget_check_free_state() mainly
composed of if checks

2| //for brevity, we only show one 'if check' below

3|+ S

4| + if (ip—>i_d.di_nblocks != 0) {

5| + xfs_warn(ip->i_mount,

6| +"Corruption detected! Free inode 0x%11x has blocks allocated!",
7 ip->i_ino);

8 return -EFSCORRUPTED;

+ + + +

}

2/ @@ xfs_iget_cache_hit:
13| +call xfs_iget_check_free_state() and check return value

15 @@ xfs_iget_cache_miss

16 // remove 'if checks' that are added to xfs_iget_check_free_state()
now

17, // for brevity, we only show one 'if check' below

18 8-

198

20 -

if (ip->i_d.di_nblocks != @) {
xfs_warn(mp,

21 §-"Corruption detected! Free inode 0x%llx has blocks allocated!",
2 - ino);

23 - error = -EFSCORRUPTED;

24 - goto out_destroy;

25 - }

26 -

27 §+call xfs_iget_check_free_state() and check return value

Fig. 11: A simplified patch for code refactoring example

highlighted in the red box) but also consume valuable space
in our model’s limited input length (1,024 tokens). The LLM
provides us with an effective means of identifying such cases
and preserving only a single representative instance of multiple
equivalent code modifications.

Figure 11 depicts a simplified example where the changes
highlighted in the blue box represent a modification that
does not alter the underlying semantics of the code — it
merely relocates “if” checks into a new function call. For
such refactoring, we ask an LLM to identify and remove such
added and deleted code segments. After pruning, it is clear
that the patch in Figure 11 mainly added additional checks for
xfs_iget_cache_hit (), as shown in the second change
site. This selective preservation produces a concise input
for our model (SLICELM) by retaining only essential code
modifications and discarding irrelevant or redundant ones.

2) Two-stage classification for patches without hints: We
fine-tune the pre-trained model for two downstream tasks,
which are two classifiers, as shown in Figure 7. The first
classifier is a binary one, classifying the patches into memory
corruption vs non-memory-related. As noted in §IV-A, the
memory-related bug types we consider include: use-after-free,
memory out-of-bounds access, use-before-initialization, null
pointer dereference, and memory leak. This is motivated by
the observation that memory corruption patches inherently
exhibit distinct characteristics from other types — they tend to
involve memory operations such as free () and memcpy ().
Successfully ruling out non-memory-related patches can help
improve the accuracy of the subsequent classifier (as will be
shown in § VI-A4). The second classifier then distinguishes
the patches into UAF, OOB, and other memory-corruption
patches.

V. IMPLEMENTATION & EXPERIMENT SETUP
A. Implementation Details

LLM usage. Our experiments were conducted primarily using
OpenAl GPT-4-turbo [9]. In addition, we perform experiments
using the Llama 3.1 405B [16] and OpenAI-O1 [17].

Custom slicing. We implemented our custom slicing at the
source code level, using Joern [74], [13]. The slice is computed
for each change site, which includes the added lines and/or
removed lines (with the plus and minus signs preserved) as
well as the forward and backward slices.

Additional information besides slices. In addition to the
custom slices, we also feed a single-sentence summary of the
patch description to our model. The summary is generated by
leveraging LLM’s summarization capabilities to distill verbose
commit messages into a concise sentence. The reasoning is
that commit messages often contain useful information, e.g.,
about how a variable is used. Even if it does not directly hint at
the bug type, it can potentially provide additional information
when combined with slices. Nevertheless, feeding long commit
messages to our local language model consumes significant
token space, making summarization necessary.

B. Experiment Setup

The pre-training of the model typically took approximately
six days. On average, the classification of a test case was
achieved within 30 seconds (via the entire pipeline). Further
details about model training (e.g., model architecture, opti-
mization settings) are provided in Appendix A.

Pre-training dataset. SLICELM is pre-trained on a com-
prehensive dataset of all available historical commits since
the inception of the Linux kernel repository up to kernel
v6.0, encompassing 1.1M commits. This process enhances the
model’s capability to grasp dependence-based relationships
between slices and patch diffs, thereby capturing semantic
features within the source code. We subsequently perform
two separate fine-tuning processes on the pre-trained model:
one for binary classification and the other for multi-class
classification.

Fine-tuning dataset. We prepare two datasets, one for each
of the two fine-tuned tasks. For the multi-class classification,
we select patches with standardized phrases in commit titles
that indicate the type of the fixed bug to collect ground
truth. For example, phrases like “Fix use-after-free” or “Fix
out-of-bounds” suggest the type of the fixed vulnerabilities.
We compiled a list of common key phrases (show in
Appendix B) used in the Linux kernel community and mapped
them to the three bug types. This key-phrase-based labeling
strategy generated a dataset of 10,540 samples.

To create the memory corruption and non-memory-related
datasets, we used the above samples as positive samples (re-
lated to vulnerable memory operations) and commits labeled
as “non-security” in PatchDB [64] as negative samples. It is
worth noting that finding non-memory-related security patches
is challenging, as there are many types of vulnerabilities which
are difficult to enumerate. We believe the non-security patches

10

in PatchDB provide a reasonable approximation of non-
memory-related security patches, since non-security patches
are also technically free of any vulnerable memory operations.

Evaluation dataset #1: CVE patches. Our first evaluation is
on a quality-controlled dataset of Linux kernel CVE patches.
Since CVE patches are, by definition, confirmed security
patches, we do not need to apply a binary classifier to distin-
guish between security and non-security patches. Instead, we
can directly evaluate fine-grained security patch classification
methods, e.g., such as DUALLM and TreeVul. This allows
a fair comparison, as all evaluated methods operate on the
same set of established security patches. Please note that this
is akin to taking the output of an “ideal binary classifier”
and feeding the same as the input to a fine-grained classifier
(the latter being the focus of our effort). If a non-ideal binary
classifier is used (wherein it does not yield a 100% accuracy
in classification results either due to improper training sets,
overfitting or otherwise), the results will negatively influence
the performance of the overall pipeline but is not directly
attributable to the performance of the fine-grained classifier.
This collected CVE dataset consists of 946 patches manually
assigned CWE labels, from 2015 to May 2024. They include
78 CVEs published in 2024, which is after the knowledge
cutoff date of the LLM we used in the evaluation. This can
help us understand the potential data leakage problem where
an LLM might gain an advantage because it might already
have learned the details about the older CVEs in training
data. Note that if evaluated cases occur in the fine-tuning
dataset, they are excluded from the dataset during training to
prevent overlap. According to CWE labels, we mapped these
CVE patches to OOB, UAF, and non-UAF-OOB, by manually
verifying the labels. More details of the data cleaning can be
found in Appendix C). Since this dataset is quality-controlled
and complete on the labels, the goal of the evaluation is
the comprehensive evaluation of classification performance,
enabling both a systematic comparison with state-of-the-art
approaches and detailed ablation studies. We present the results
of this evaluation in in § VI-A.

Evaluation dataset #2: Unlabeled Patches. Second (and
perhaps more critically), we challenged DualLM with 5,140
Linux kernel patches to assess its ability to discover previously
unknown UAF and OOB bugs — a test that mirrors the actual
deployment scenarios where automated patch classification can
prevent potential security breaches. Note that DUALLM is
designed to operate on security patches as input (same with
TreeVul). Therefore, to evaluate its performance in a realistic
end-to-end setting—where the security relevance of a patch
may not be known in advance—we combined it with various
upstream binary classifiers (security vs. non-security). This
enables an assessment of how well the full pipeline performs
in practice, from initial security identification to fine-grained
classification. Differently, SID does not require the input to
be security patches. These patches were selected randomly
from a total of 12K patches on the Linux kernel Long-Term
Support (LTS) version 6.6 branch, as long as their patch date

was in 2024 (after the knowledge cutoff date of the LLM we
used). We choose these patches regardless of whether they
are assigned CVE labels. The results of this evaluation are
presented in § VI-B.

Comparison setup. We choose TreeVul [49] and SID [70]
as comparison targets since they are the state-of-the-art open-
source solutions that share similar goals with our work. For
TreeVul, since it classifies patches into CWE labels (including
types beyond OOB and UAF), we mapped these labels to
our three target categories: OOB, UAF, and non-UAF-OOB,
consistent with our classification scheme. Furthermore, to
ensure fairness and avoid data leakage, we excluded the CVE
patches present in TreeVul’s original training dataset from our
CVE-based evaluation dataset. Note that we do not directly
compare with CoLeFunDa [80], because we are unable to
obtain its source code.

For SID, which employs a rule-based matching method to
specifically identify use-after-free, out-of-bounds, null pointer
dereference, and use-before-initialization bugs, there is no
explicit category corresponding directly to our non-UAF-OOB
classification. To align SID’s outputs with our categories, we
adopted the following approach: 1) patches matched by SID
are classified into their corresponding bug types (UAF or
OOB), and 2) unmatched patches, as well as patches matched
as null pointer dereference or use-before-initialization, are
grouped into non-UAF-OOB. Since SID uses rule-based
matching rather than machine learning, it does not require
training data; therefore, our evaluation dataset for SID includes
the entire CVE dataset without exclusions.

Manual verification. To support the evaluation of our 5,140
real-world patches in terms of ground-truth validation, we
perform targeted manual verification, as described below.
Labeling all 5,140 patches is an extremely time-consuming and
labor-intensive task, making full manual annotation infeasible.
To balance rigor and scalability, we adopt a tiered verification
strategy: (A) We manually verify all UAF and OOB cases
identified by our pipeline using a structured multi-step process
grounded in kernel security expertise (described below and
illustrated in Figure 12); (B) For patches classified as non-
UAF-OOB, we sample 50 cases for manual review to estimate
the false negative rate; (C) We select representative cases to
develop proof-of-concepts (PoCs) and real exploits to further
validate classification correctness. With respect to (A), our
multi-step process is as follows: 1) Commit Message Inspec-
tion: We first check whether the commit title/message contains
explicit or implicit hints. Phrases like “fix use-after-free” are
considered reliable indicators, as kernel developers generally
document key issues therein. 2) Locate Vulnerable Variable:
We examine code changes. With respect to OOB, we look
for signals such as bounds checks, size clamping, array index
corrections, in order to locate the possible vulnerable variable.
Next, we manually trace across function boundaries whether
the modified variables are involved in memory accesses, such
as indexing or memcpy () operations. With respect to UAF,
we identify signals such as pointer nullifications after free, ref-

11

erence count adjustments, introduction of locks, or reordering
of deallocation logic, to locate the possible vulnerable variable.
We also review whether a function indirectly performs a free
(via wrappers), and whether the code adds or delays such a
free. 3) Reconstruct the Vulnerability Logic: For complex
or ambiguous cases, we reconstruct the calling context based
on clues in the commit message or associated stack traces (if
available). We trace data flows and call chains across functions
to identify the vulnerable logic path and verify whether the bug
could lead to memory corruption. 4) Conservative Labeling:
We assign labels only when confident. Uncertain cases are
categorized as non-UAF-OOB to ensure dataset integrity. Five
analysts with security expertise independently follow this
procedure. In cases of disagreement, the analysts discuss the
patch collectively and reach a consensus through majority
agreement. On average, the manual analysis of a single case
by one analyst takes approximately 20 minutes, highlighting
the depth of inspection involved.

F

Fig. 12: The manual verification process for real world patches

Direct/Implict
indicators of UAF
or 00B

Analyze Patch Code
Diff: Look for
vulnerable variable

Trace Variable
Use & Call Paths

Commit message
contains hints?

/" Assign O\
E—

Labels

Metrics. For most experiments, we report accuracy, precision,
F1-score, false positive rate, and false negative rate. For multi-
class classification evaluations, metrics such as precision can
be more challenging to interpret, as multiple types of errors
(e.g., predicting class A when it is actually class B, C, or
D) must be accounted for. Therefore, we use the commonly
adopted weighted averaging method [24], to assess the overall
model quality in performing multi-class classification tasks.
The method essentially calculates metrics like precision, and
Fl-score individually for each class, and subsequently aggre-
gates a weighted average by assigning weights to all classes
according to their frequencies.

VI. EXPERIMENTAL RESULTS
A. Evaluation on Quality-Controlled CVEs

1) Main Results: Table I demonstrates DUALLM’s effec-
tiveness, with an overall 87.4% accuracy, 87.7% precision,
and a 0.875 Fl-score, while maintaining a low false positive
rate of 5.4% and a relatively low false negative rate of 10.0%.
Since our solution is a dual-method pipeline, we also break
the results down by method. We find that 77% of the evaluated
patches are classified as patches with hints and 23% are
classified as patches without hints. For patches considered
with hints or indicators, DUALLM achieves a 90.3% accuracy
with a 90.7% precision and a low false positive rate of 4.0%.
Even for those without indicators, our two-stage classification
approach maintains high effectiveness, achieving an overall
77.9% accuracy. Note that although the binary classification
and fine-grained classification achieved 84.8% accuracy and
81.8% accuracy respectively, their combined accuracy is lower
because errors from the two stages compound when the
results are composed. In summary, we believe these results are

significant given the challenging nature of patch classification,
especially when compared against the state-of-the-art, which
we describe next.

2) Comparative study: To further validate DUALLM’s ef-
fectiveness, we compare its performance against that of two
open-source, state-of-the-art solutions, viz., TreeVul [49] and
SID [70]. The comparison setups are described in §V-B.

In Table II, we show the comparison with TreeVul and see a
substantial performance gap: TreeVul achieved only a 65.6%
accuracy with an Fl-score of 0.653, while DUALLM achieved
significantly better performance with a 86.8% accuracy and
an Fl1-score of 0.869. Upon examining some specific cases, we
identify two major reasons for the performance discrepancy:
(1) misclassified cases by TreeVul actually have indicators in
the commit titles and/or messages, which allows DUALLM
to correctly classify them; (2) misclassified cases by TreeVul
needs the proper context to infer the correct type. TreeVul only
takes code diffs as input, ignoring the commit title/message
and code context.

Figure 9 illustrates an interesting example where TreeVul
failed to identify the bug type. As discussed in § IV-B1, our
function renaming, which gave the new name decrease_-
credential_reference_count () for put_cred(),
plays an important role in the correct identification of the asso-
ciated UAF bug. However, TreeVul does not appear to capture
the knowledge about what put_cred () does (perhaps due to
limited training data). In addition, we suspect that TreeVul’s
automatic alignment mechanism actually makes it pay less
attention to put_cred (creds) because the function is
present in both the pre-patch and post-patch version.

Table III shows the comparison with SID, and the results
demonstrate a similar performance gap: SID achieves an
accuracy of 63.8% and an Fl-score of 0.546, compared to
DUALLM’s 87.4% and 0.875, respectively. Importantly, SID’s
false negative rate is alarmingly high at 67.8%, meaning that
it misses more than half of the vulnerabilities. In contrast,
DUALLM achieves a much lower false negative rate of 10.0%
while also reducing the false positive rate to 5.4% (compared
to SID’s 21.2%).?

One might question whether DUALLM ’s use of multiple
few-shot examples, including those outside the scope of SID
(e.g., “memory area size recalculations”), gives it an unfair
advantage. To address this, we repeated the evaluation with a
constrained version of DUALLM using only one OOB patch
example that matches the patch pattern used by SID (i.e.,
boundary check additions). The result only degraded slightly
and remains strong: DUALLM achieves an accuracy of 86.9%
and an F1-score of 0.8609, still significantly outperforming SID.

Our analysis shows that SID’s effectiveness is limited by
its reliance on symbolic pattern matching rules, which sup-

2SID’s performance on our evaluation dataset appears significantly lower
than what was reported in the original paper. We consulted the SID authors
when we ran SID against the evaluation dataset to ensure that we ran it
correctly. One possible reason is the difference between the two evaluation
datasets. The 97% precision reported in the SID paper is on a different
dataset than ours (we used the CVE dataset, including many patches that
were published after the SID paper was published).

12

port only one pattern per vulnerability type. For instance, in
detecting out-of-bounds vulnerabilities, SID looks exclusively
for boundary check additions, missing other common fixes
like memory area size adjustments or more nuanced protection
mechanisms (as illustrated in Figure 8).

3) Generalization to other bug types and beyond Linux:
Although we have focused on the most severe types of bugs,
i.e., UAF and OOB, we have also evaluated DUALLM’s gen-
eralizability by training/testing it to classify other bug types.
For this expanded experiment, the binary classification step
(‘memory corruption vs. non-memory’) requires no retraining.
However, the fine-grained classification step does require re-
training. Specifically, we reuse the same pretrained model and
apply the same labeling method described in § V-B to assign
fine-grained labels (e.g., use-before-initialization, null pointer
dereference) beyond the original OOB and UAF labels to the
same train set of 10,540 patches. When expanding to a broader
set of vulnerability types, including memory out-of-bounds
access, use-after-free, null pointer dereference, use-before-
initialization, memory leak and non-memory-related bugs,
DUALLM maintains robust performance with an 80.35%
accuracy and an Fl-score of 0.801. This demonstrates our
method’s ability to handle diverse vulnerability types while
maintaining high classification accuracy.

In addition, even though we focused on the Linux kernel
due to its vast scale and complexity, we also tested two
other open-source projects: FFmpeg [7] and OpenSSL [18].
Specifically, we followed the same data collection and labeling
methodology described in § V-B: we collected CVE patches
for these projects by retrieving entries from the corresponding
CVE database, automatically mapping their associated CWE
labels into our bug type taxonomy, and then applied the same
verification process to correct any mislabeled or ambiguous
cases. The results are equally compelling, with DUALLM
achieving Fl-scores of 0.832 and 0.834 respectively, demon-
strating its generalizability across software.

4) Ablation Study: The effectiveness of DUALLM stems

from several key design strategies. Through an ablation study,
we now demonstrate how these design choices contribute to
the overall performance.
Dual-method design. Our first experiment targets under-
standing whether the LLM-based method or SLICELM alone
can achieve good results by themselves (similar to that of
DUALLM). To test the LLM-only solution, we adapt the
original LLM-based classification to always force an answer,
instead of allowing the LLM to defer the answer when it
deems that there are insufficient indicators in the patch. To
test the SLICELM-only solution, we simply feed all the
patches to SLICELM without any modifications to the model.
Table IV shows the results. Interestingly, both the LLM-only
and SLICELM-only solutions yield promising results, with
similar performance across metrics such as accuracy, precision,
etc. Notably both already outperform SID and TreeVul, but are
inferior to DUALLM.

Combining the two methods yield improved results across
the board, e.g., an 11% improvement in overall accuracy.

Task Accuracy | Precision | Fl-score | FP Rate | FN Rate
Overall pipeline 87.4% 87.7% 0.875 5.4% 10.0%
— Classification on patches with hints 90.3% 90.7% 0.904 4.0% 6.6%
— Classification on patches without hints 77.9 % 78.4% 0.776 13.4% 24.1%
Binary classification 84.8% 85.8% 0.847 13.9% 16.5%
Fine-grained classification 81.8% 83.5% 0.821 8.8% 18.8%

TABLE I: The performance of DUALLM

Method | Accuracy | Precision | Fl-score | FP rate | FN rate
TreeVul | 65.6% 72.5% 0.653 21.6% 23.0%
DUALLM | 86.8% 87.5% 0.869 5.1% 9.3%

TABLE II: Comparison between TreeVul and DUALLM.To ensure
a fair comparison and prevent data leakage, we excluded the CVE
patches used in TreeVul’s original training dataset

Method | Accuracy | Precision | Fl-score | FP rate | FN rate
SID | 63.8% 77.7% 0.546 212% | 67.8%
DUALLM | 87.4% 87.7% 0.875 5.4% 10.0%

TABLE III: Comparison between SID and DUALLM

These results demonstrate the complementary nature of the
two methods. Particularly noteworthy is DUALLM’s improve-
ment on false positives and false negatives simultaneously. It
reduces the false positive rate to 5.4% (compared to 12.6% for
LLM-only and 10.1% for SliceLM-only) and the false negative
rate to 10.0% (versus 19.0% and 16.4% respectively).

Context options. Code context is particularly crucial for the
classification of use-after-free, memory out-of-bounds access
and other memory corruption patches since their differences
are subtle, as discussed previously. Thus, our ablation study
on context options is done for this challenging fine-grained
classification task (the second stage of our two-stage classifi-
cation). Table V depicts the results. The three lines before and
after patch diffs as code context (the conventional and default
way [8]) proves inadequate, achieving only 54.5% accuracy.
Traditional program dependence based slices show a moderate
improvement to yield an accuracy of 58.1%, but still fall short
of capturing crucial vulnerability patterns.

Our custom slicing consists of three components: selective
slicing, function renaming, and pruning of redundant code
changes. Here, we seek to understand their individual and cu-
mulative contributions. Selective slicing alone significantly im-
proves performance over traditional program slicing, achieving

Method Accuracy | Precision | Fl1-score | FP rate | FN rate
LLM-only 76.7% 81.1% 0.776 12.6% | 19.0%
SliceLM-only | 76.0% 80.0% 0.769 10.1% | 16.4%
DUALLM 87.4% 87.7% 0.875 5.4% 10.0%

TABLE 1V: Comparison between LLM-only, SliceLM-only and
DuALLM

Method Accuracy | Precision | Fl-score | FP rate | FN rate
3-line contexts 54.5% 60.1% 0.531 21.5% |39.3%
Standard slices 58.1% 72.1% 0.635 29.1% |56.0%
Selective slices 67.0% 70.5% 0.680 16.5% |34.1%
peective Slicest |7 0 |81.5% 0789 | 10.5% | 22.5%
unction renaming

SliceLM slices 81.8% 83.5% 0.821 8.8% |18.8%

TABLE V: The performance of SLICELM with different context
options

67.0% accuracy compared to 58.1%, thanks to improved
dependency selection and noise reduction. Adding function
renaming to selective slicing further improves performance to
78.0% accuracy and an Fl-score of 0.789. This confirms that
normalizing semantically equivalent memory-related functions
improves the model’s ability to generalize across diverse
patches. Finally, our full slicing pipeline—which includes
selective slicing, function renaming, and pruning of redundant
code changes—achieves 81.8% accuracy with an Fl-score of
0.821. Notably, the complete pipeline reduces the false positive
rate from 16.5% (with selective slicing) to 8.8%, and the false
negative rate from 34.1% to 18.8%. These results demonstrate
that each component meaningfully enhances the effectiveness
of code context analysis and collectively enables the model
to better distinguish subtle variations in memory corruption
patches. Note that these results correspond to the performance
of SLICELM and not the entire DUALLM pipeline.

Pass better context to the LLM. Now that we have demon-
strated the importance of the right code context, a natural
question arises: Can the LLM achieve performance similar
to DUALLM if given access to our custom slices? To test
this, we provide the LLM with carefully crafted prompts and
examples demonstrating how to leverage the slice information.
Interestingly, it achieves only a 62.6% accuracy, with an F1-
score of 0.664. This stands in stark contrast to SLICELM’s
superior performance of 81.8% accuracy and 0.821 F1-score.
We conjecture that this is due to the LLM not being familiar
with our custom slice format, which does not always conform
to well-formed programs. This is in contrast to SLICELM,
which is pre-trained and fine-tuned on our specialized slices.

To circumvent this issue, we perform another experiment
wherein we feed the entire function as code context to the
LLM. In theory, the LLM should automatically extract the
needed information from the whole function. The results were
better, but with only a 73.1% accuracy and an Fl-score of
0.732. Thus, there is still a gap compared to SLICELM’s
81.8% accuracy and 0.821 Fl-score. We suspect that this is
because the markedly larger code context (whole functions)
introduces noises and disrupts the LLM’s understanding of a
patch.

Two-stage classification for patches without hints. To
validate the effectiveness of the two-stage classification of
patches without hints, we compare the approach with a single-
stage classification where we directly classify patches into
OOB, UAF, and others, without first classifying them into
memory corruption vs. non-memory ones. While direct one-
stage classification achieves a 71.4% accuracy with a 77.2%
precision and a 0.738 Fl-score, our two-stage approach sig-

nificantly improves performance to 77.9% accuracy, 78.4%
precision, and a 0.776 F1-score. These results demonstrate that
decomposing the classification task into smaller sub-problems
improves accuracy.

Using other LLLMs. To demonstrate that our approach is not
dependent on a specific LLM, we also evaluated DUALLM
by using the popular open source Llama 3.1 405B. Overall,
on the same testing dataset, we find that the overall pipeline
still maintains strong performance, achieving 85.0% accuracy,
85.0% precision with an Fl-score of 0.849. It shows only a
modest decrease from DUALLM with GPT-4-turbo. A detailed
analysis reveals interesting differences between the models.
Notably, when using identical prompts, Llama classifies fewer
patches into the category with hints—65% versus 77% with
GPT-4-turbo. Yet, its accuracy on such patches is only 88.0%
compared to 90.3% in GPT-4-turbo. This indicates that Llama
is more conservative in identifying patches with clear indica-
tors. Interestingly, Llama defers more patches without hints to
SLICELM, but SLICELM can still achieve 79.4% accuracy in
these cases, which is higher than the result when GPT-4-turbo
is employed (77.9%). We also evaluated DUALLM using the
OpenAI-O1 model still using identical prompts. However, due
to its high API cost, we only test 100 cases. In these cases, the
overall performance is a 89.0% accuracy, a 89.3% precision
with a 0.890 F1-score. As with GPT-4-turbo, 23% of the cases
are classified as patches without hints, and SLICELM achieves
a 87% accuracy. 77% of the cases are classified as patches with
hints; OpenAI-O1 has an 89.6% accuracy with respect to these.
Overall, these results show that while the model choice affects
specific performance metrics, our approach remains effective
across other LLMs, validating its robustness and generality.
5) Robustness of Function Renaming: A potential concern
is that function renaming based on key memory semantics may
suffer from ’semantic drift’ across different kernel versions;
for example, a function may increase a reference counter in
one version but not in another. To assess this, we manually
analyzed 100 randomly selected functions from the Linux
kernel, comparing their key memory semantics in two versions
spanning five years: v4.19 (October 2018) and v6.6 (October
2023). We found that only 3% of the functions exhibited sub-
stantial semantic changes affecting memory-related behavior
(e.g., transitioning from not freeing memory to including a
kfree () operation). In contrast, 37% showed no memory-
related changes, 26% involved only minor modifications (such
as temporary variable refactoring) that do not affect semantic
labeling, and 34% were absent in one version due to removal
or major API changes. These findings suggest that semantic
drift poses minimal risk to our renaming strategy in practice.
6) Analysis of the misclassified cases: It is inherently chal-
lenging to precisely interpret the failures of machine learning
models. However, we make some observations on the cases
in which DUALLM fails, in an attempt to contemplate how
our solution can be further improved. For patches with hints
(analyzed by the LLM component), nearly all misclassifica-
tions arise from inaccuracies in determining whether patches
contain reliable hints. This can be attributed to hallucination

14

phenomena in LLMs, where the model either incorrectly per-
ceives or overlooks critical indicators. Specifically, two distinct
error patterns emerge: (1) patches lack clear signals about
the bug type and necessitate deeper code context analysis,
yet the LLM mistakenly perceives that sufficient hints are
present, leading to incorrect inference; (2) patches explicitly or
implicitly contain hints about the bug type, but the LLM fails
to accurately extract or interpret these signals. For patches
without hints (analyzed by the SliceLM component), more
than 50% of the misclassified cases exhibit complex structures
in the patches. Some patches involve extensive modifications,
such as removing a specific feature with hundreds of lines of
code (sometimes spanning multiple files), and the vulnerable
code is mixed in and removed at the same time. In other
cases, the key logic that helps us understand the vulnerability
type and the actual patch location are separated by multiple
function calls in the program’s call graph, requiring a far
larger analysis scope than what we can capture (even with the
help of function renaming). Interestingly, about 10% of the
misclassified patches occur in cases where, from a human an-
alyst’s perspective, the patch diffs and slices contain sufficient
information to determine the vulnerability type; yet, the model
fails to make the correct classification. These cases highlight
the gap between human and machine comprehension of patch
features. The remaining failures stem from various other
factors that we are unable to fully identify or systematically
categorize.

7) Data leakage concerns with LLM: To address potential
concerns about LLM performance being influenced by expo-
sure to CVE patches during pre-training, we compared the
results on patches before and after the LLM’s training cutoff
date (2024). On pre-2024 patches, DUALLM achieves 87.9%
accuracy, and a 0.880 Fl-score. For patches from 2024, it
achieves 82.1% accuracy, and a 0.820 Fl1-score. While there
is a moderate drop in performance, DUALLM still maintains
reasonably strong performance, suggesting its effectiveness
stems from its fundamental design rather than memorization
of training examples. The system can generalize to unseen
patches while maintaining robust performance.

B. Evaluation on Unlabeled Recent Kernel Patches

1) Comparative study: Besides the CVE patches, we also
evaluated 5,140 recent patches collected from the Linux
kernel 6.6 LTS branch in 2024 (details in §V-B). These
patches include both security and non-security ones. Because
DUALLM requires security patches as input, we evaluated
it in combination with different upstream binary classifiers.
Specifically, we used GraphSPD [62] and VulFixMiner [81]
to identify security patches from 5,140 recent patches. As for
PatchRNN, we found it unsuitable for this task. It labeled
nearly 97% of test cases as “security.” We manually verified
50 cases and found that from these predicted “security” related
patches only 22% were true positives, demonstrating low
precision and thus, limiting its practicality for downstream
fine-grained classification.

GraphSPD identified 403 security patches, of which
DUALLM classified 142 as UAF/OOB. Manual verification
confirmed that 90 of these are true UAF/OOB patches, yielding
an overall precision of 63.4%. If 31 false positives were
excluded due to incorrect GraphSPD classifications (that is,
these were not actually security-related as verified manually),
we would retain 111 candidates, resulting in a filtered precision
(excluding GraphSPD errors) of 81.1%. Using VulFixMiner
as the binary classifier, 110 security patches were identified,
and DUALLM reported 39 UAF/OOB cases. Among them, 20
were true positives and 16 were non-security patches, resulting
in an overall precision of 51.3%, and a filtered precision of
86.9%.

We also evaluated TreeVul with the same settings for
comparison. GraphSPD + TreeVul yielded 104 UAF/OOB
predictions, with only 25 true positives and 51 non-security
cases, resulting in 24.0% overall precision and 47.2% filtered
precision. With VulFixMiner + TreeVul, 51 patches were
classified as UAF/OOB, of which 20 were correct and 18 were
non-security, yielding a 39.2% overall precision and a 60.6%
filtered precision.

Lastly, we include SID for comparison, which does not
require a separate binary classifier. SID correctly identified
42 UAF / OOB patches with a precision of 78%, but missed
the majority due to its limited coverage of the rules.

[GraphSPD+DuallLM
[GraphSPD+TreeVul
= SID

Fig. 13: The Venn diagram for GraphSPD+DuallLM, Graph-
SPD+TreeVul and SID

3 VulFixMiner+DualLM I

[VulFixMiner+TreeVul
=3 sID

Fig. 14: The Venn diagram for VulFixMiner+DualLM, Vul-

FixMiner+TreeVul and SID
2) True positive study: To better understand the overlap

between true positives identified by different pipelines, we
constructed Venn diagrams (Figure 13 and Figure 14) based
on combinations of binary classifiers (GraphSPD or Vul-
FixMiner) and fine-grained vulnerability classifiers (DUALLM
or TreeVul), with SID included for reference. For ease of
visual exposition, we split the comparisons by binary classifier.

15

In Figure 13, we show results for GraphSPD-based pipelines
and SID. DUALLM identifies 90 true UAF/OOB positives,
TreeVul identifies 25, and SID identifies 42. Notably, 64% (20
out of 25) of TreeVul’s true positives overlap with DUALLM,
showing that most of the true positives identified by TreeVul
can also be identified by DUALLM. Manual inspection of
TreeVul-only positives reveals that these cases can be re-
liably classified using only the patch diffs—TreeVul’s sole
input—while additional contextual information (e.g., slicing)
may introduce noise. The limited overlap with SID stems
largely from the limited agreement between SID and Graph-
SPD (only 8 overlapping patches are identified by GraphSPD
as security).

Figure 14 presents a similar comparison using VulFixMiner
as the binary classifier. Here, DUALLM and TreeVul identify
20 true positives each, with 14 in common, and in this case,
SID contributes a fully disjoint set of 42 true positives. The
absence of any overlap between SID and VulFixMiner explains
the disconnect in the results. Specifically, the disparity arises
because VulFixMiner targets Java and Python projects, while
SID—Iike our work—focuses on C/C++ codebases such as
the Linux kernel. For the same reason, i.e., VulFixMiner’s
difficulty with C/C++ codebases, the subsequent results with
both DUALLM and TreeVul are more modest compared to
that with GraphSPD. In other words, as one might expect, the
quality of binary classifiers can significantly affect follow-up
results with a fine-grained classifier.

3) False negative study: While the Venn diagrams highlight
the coverage and overlap of different pipelines in identify-
ing true positives, it is equally important to understand the
limitations of our system—particularly its false negatives. To
this end, we further investigate the negative cases from the
GraphSPD + DUALLM pipeline to assess whether any true
UAF or OOB patches were missed. We randomly sample 100
patches (representing approximately 40% of the total patches
labeled as non-UAF-OOB) labeled as non-UAF-OOB and find
one false negative (possibly due to a hallucination of the
LLM), yielding a 1% false negative rate.

4) Case study: Interestingly, while 8 of the 90 UAF/OOB
patches identified by GraphSPD + DUALLM pipeline, fix bugs
that were reported by Syzbot [35] (a continuous fuzzing plat-
form that has reported thousands of Linux kernel bugs), these
bugs were not reported as use-after-free or memory out-of-
bounds vulnerabilities. Developing reproducers or exploits for
kernel vulnerabilities is challenging, particularly since many
cases involve race conditions or hardware-specific contexts
(such as Dell or NVIDIA devices). In spite of this, we picked
two of the syzbot bugs that are not reported as UAF or OOB,
and successfully modified the reproducers reported on syzbot
to get the PoCs confirming the UAF and OOB behaviors.
Most notably, we also developed one exploit against one UAF
bug (out of the two cases) which can successfully achieve a
control flow hijacking attack. This demonstrates the real-
world impact of our approach.

Next, we describe how we develop the control flow hi-
jacking attack to exploit the UAF bug. Figure 15 illustrates a

| netfilter: ipset: Missing gc cancellations fixed

5

3 The patch fdb8el2cc2cc ("netfilter: ipset: fix performance
regression in swap operation") missed to add the calls to gc
cancellations at the error path of create operations and at
module unload. Also, because the half of the destroy
operations now executed by a function registered by call_rcu
(), neither NFNL_SUBSYS_IPSET mutex or rcu read lock is held
and therefore the checking of them results false warnings.

set = ip_set (inst, 1i);
if (set) {
9 ip_set (inst, i) = NULL;
10 set—->variant—> 1cel_gc(set);
11 ip_set_destroy_set (set);
12 }

4
50 ...

6 @@ -2378,6 +2379,7 @@ ip_set_net_exit (struct net =net)
;

8

Fig. 15: A use-after-free patch identified by DUALLM

1| static int ip_set_create(struct sk_buff xskb, const struct
nfnl_info xinfo, ...) {

20 ...

3/ cleanup:

4 set variant ancel_gc (set);

5 set->variant->destroy (set);

6 ...

70}

8

9. // free “h”

10 static void mtype_destroy(struct ip_set =xset) {

11 struct htype xh = set->data;

13 kfree(h);

14 set->data = NULL;

15}

17 static void mtype_cancel_gc (struct ip_set =*set) {

18 struct htype xh = set->data;
19 if (SET_WITH_TIMEOUT (set))
20 cancel_delayed_work_sync (&h->gc.dwork) ;

21 }

23 static void expire_timers(struct timer_base xbase, struct
hlist_head xhead) {

25 struct timer_list xtimer;

26 void (xfn) (struct timer_list x);

27 // timer is a dangling pointer

28 timer = hlist_entry(head->first, struct timer_list,
entry);

29 fn = timer->function;

30 e

31 // Control flow hijacking

32 call_timer_fn(timer, fn, baseclk);

Fig. 16: Exploitable primitive

patch addressing a bug identified by DUALLM as a use-after-
free vulnerability. Note that the commit title/message and code
diffs do not directly reveal the bug type, and therefore it was
ultimately classified by SLICELM.

As shown in Figure 16, the function call to mtype_-
destroy () on line 5 ultimately frees the htype object
on line 13. Without cancel_gc () being invoked on line
4 —which calls mtype_cancel_gc () to terminate the
worker process —the worker process would eventually be
triggered after a timeout. Because the htype object has
already been freed, an attacker could exploit this UAF vul-
nerability by performing heap spraying to gain control of
the freed ht ype memory. Specifically, the timer pointer,
derived on line 28, points to the freed memory. By overwriting
timer->function, which is a function pointer, an attacker
can achieve a control flow hijack on line 32 when it is
de-referenced. We developed a working exploit that sprayed

user_key_payload objects (which are elastic) in kmalloc-
2k slabs, to achieve the overwrite and successfully achieved
the control flow hijack.

VII. CONCLUSION

In this paper, we presented DUALLM, a Dual-method
approach for identifying patches fixing critical memory
bugs(e.g., memory out-of-bounds access and use-after-free).
Based on our observation that patches can be naturally di-
vided into those with and without clear indicators, DUALLM
strategically combines an LLM’s capabilities to understand
natural language and recognize patch patterns, with a spe-
cialized model (SLICELM) trained on our custom slices.
Our comprehensive evaluations demonstrate DUALLM’s ef-
fectiveness. It achieves an 87.4% accuracy on a quality-
controlled CVE dataset, significantly outperforming exist-
ing approaches. Most importantly, in analyzing 5,140 recent
patches, DUALLM identified 90 memory out-of-bounds and
use-after-free patches, with two proof-of-concept programs
and one exploit achieving successful control flow hijacking,
confirming their severity. This underscores the practical impact
of our system in identifying crucial patches.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments and valuable suggestions. This work was sup-
ported by the National Science Foundation under Grants No.
2155213, the Army Research Office under grant 79845NCH,
the Air Force Research Laboratory project under con-
tract FA875025CB041, and the Defense Advanced Re-
search Projects Agency (DARPA) under Agreement No.
HRO00112590041.

REFERENCES

[1] A deep dive into CVE-2023-2163: How we found and fixed an
eBPF Linux Kernel Vulnerability. https://bughunters.google.com/blog/
6303226026131456/

[2] CVE-2016-5400. https://nvd.nist.gov/vuln/detail/cve-2016-5400.

[3] CVE-2020-27786 (Race Condition + Use-After-Free). https://ii4gsp.
github.io/cve-2020-27786/.

[4] CVEs and the NVD Process. https://nvd.nist.gov/general/cve-process#:
~:text=Founded%20in%201999%2C %20the %20CVE, Infrastructure %
20Security%20Agency%20(CISA).

[5] CWE-119. https://cwe.mitre.org/data/definitions/119.html.

[6] Driving forward in Android drivers. https://googleprojectzero.blogspot.
com/2024/06/driving-forward-in-android-drivers.html.

[71 FFmpeg. https://ffmpeg.org/.

[8] Git -diff-config Documentation. https://git-scm.com/docs/diff-config.

[9] GPT-4 Turbo in the OpenAl API. https://help.openai.com/en/articles/
8555510-gpt-4-turbo-in-the-openai-api/.

[10] Introducing ChatGPT. https://openai.com/blog/chatgpt.

[11] Introducing LLaMA: A foundational, 65-billion-parameter
large language model. https://ai.facebook.com/blog/
large-language- model-1lama-meta-ai/.

[12] io_uring/kbuf: defer release of mapped buffer rings. https:
//git kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=c392cbecd8ec.

[13] Joern Documentation. https://docs.joern.io/home.

[14] Linux Kernel Exploitation. https://github.com/xairy/
linux-kernel-exploitation.

[15] Llama 2. https://llama.meta.com/llama2.

[16] Llama 3.1. https://ai.meta.com/blog/meta-llama-3-1/.

[17] OpenAl Ol system card. https://cdn.openai.com/o1-system-card.pdf/.

16

https://bughunters.google.com/blog/6303226026131456/
https://bughunters.google.com/blog/6303226026131456/
https://nvd.nist.gov/vuln/detail/cve-2016-5400
https://ii4gsp.github.io/cve-2020-27786/
https://ii4gsp.github.io/cve-2020-27786/
https://nvd.nist.gov/general/cve-process#:~:text=Founded%20in%201999%2C%20the%20CVE,Infrastructure%20Security%20Agency%20(CISA).
https://nvd.nist.gov/general/cve-process#:~:text=Founded%20in%201999%2C%20the%20CVE,Infrastructure%20Security%20Agency%20(CISA).
https://nvd.nist.gov/general/cve-process#:~:text=Founded%20in%201999%2C%20the%20CVE,Infrastructure%20Security%20Agency%20(CISA).
https://cwe.mitre.org/data/definitions/119.html
https://googleprojectzero.blogspot.com/2024/06/driving-forward-in-android-drivers.html
https://googleprojectzero.blogspot.com/2024/06/driving-forward-in-android-drivers.html
https://ffmpeg.org/
https://git-scm.com/docs/diff-config
https://help.openai.com/en/articles/8555510-gpt-4-turbo-in-the-openai-api/
https://help.openai.com/en/articles/8555510-gpt-4-turbo-in-the-openai-api/
https://openai.com/blog/chatgpt
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c392cbecd8ec
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c392cbecd8ec
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c392cbecd8ec
https://docs.joern.io/home
https://github.com/xairy/linux-kernel-exploitation
https://github.com/xairy/linux-kernel-exploitation
https://llama.meta.com/llama2
https://ai.meta.com/blog/meta-llama-3-1/
https://cdn.openai.com/o1-system-card.pdf/

[18
[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]
[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

OpenSSL. https://www.openssl.org/.

SSD Advisory — Linux Kernel taprio OOB. https://ssd-disclosure.com/
ssd-advisory-linux-kernel-taprio-oob/.

Submitting patches: the essential guide to getting your code into the ker-
nel. https://www.kernel.org/doc/html/next/process/submitting-patches.
html.

W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang. Unified
pre-training for program understanding and generation. arXiv preprint
arXiv:2103.06333, 2021.

T. Ahmed and P. Devanbu. Better patching using llm prompting, via
self-consistency. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1742-1746. IEEE, 2023.
K. Alrashedy, A. Aljasser, P. Tambwekar, and M. Gombolay. Can llms
patch security issues?, 2024.

C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language
models are few-shot learners. Advances in neural information processing
systems, 33:1877-1901, 2020.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

W. Chen, X. Zou, G. Li, and Z. Qian. Koobe: Towards facilitating exploit
generation of kernel out-of-bounds write vulnerabilities. In Proceedings
of the 29th USENIX Conference on Security Symposium, pages 1093—
1110, 2020.

J. Corbet. What to do about CVE numbers. https://lwn.net/Articles/
801157/.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

T. Dunlap, E. Lin, W. Enck, and B. Reaves. Vfcfinder: Pairing security
advisories and patches. In Proceedings of the 19th ACM Asia Conference
on Computer and Communications Security, pages 1128-1142, 2024.
S. Feng and C. Chen. Prompting is all your need: Automated android
bug replay with large language models, 2023.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, et al. Codebert: A pre-trained model for programming
and natural languages. arXiv preprint arXiv:2002.08155, 2020.

M. Fu, V. Nguyen, C. K. Tantithamthavorn, T. Le, and D. Phung.
Vulexplainer: A transformer-based hierarchical distillation for explaining
vulnerability types. IEEE Transactions on Software Engineering, 2023.
T. Ganz, E. Imgrund, M. Hirterich, and K. Rieck. Pavudi: Patch-based
vulnerability discovery using machine learning. In Proceedings of the
39th Annual Computer Security Applications Conference, pages 704—
717, 2023.

Google. Syzbot. https://syzkaller.appspot.com/upstream/.

D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, et al. Graphcodebert: Pre-training code repre-
sentations with data flow. arXiv preprint arXiv:2009.08366, 2020.

X. He, S. Wang, P. Feng, X. Wang, S. Sun, Q. Li, and K. Sun. Bingo:
Identifying security patches in binary code with graph representation
learning, 2023.

T. Hoang, J. Lawall, R. J. Oentaryo, Y. Tian, and D. Lo. Patchnet: a
tool for deep patch classification. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pages 83-86. IEEE, 2019.

C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen. Codamosa: Escaping
coverage plateaus in test generation with pre-trained large language
models. In International conference on software engineering (ICSE),
2023.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and compre-
hension. arXiv preprint arXiv:1910.13461, 2019.

F. Li and V. Paxson. A large-scale empirical study of security patches.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2201-2215, 2017.

H. Li, Y. Hao, Y. Zhai, and Z. Qian. The hitchhiker’s guide to program
analysis: A journey with large language models, 2023.

H. Li, Y. Hao, Y. Zhai, and Z. Qian. Enhancing Static Analysis
For Practical Bug Detection: An LLM-Integrated Approach. In In

17

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

(53]

[54]
[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Proceedings of the ACM on Programming Languages (PACMPL), Issue
OOPSLA, 2024.

X. Li, Z. Zhang, Z. Qian, T. Jaeger, and C. Song. An investigation of
patch porting practices of the linux kernel ecosystem. arXiv preprint
arXiv:2402.05212, 2024.

Z. Lin, Y. Chen, Y. Wu, D. Mu, C. Yu, X. Xing, and K. Li. Grebe:
Unveiling exploitation potential for linux kernel bugs. In 2022 [EEE
Symposium on Security and Privacy (SP), 2022.

T. Linus. Linux Kernel Coding Style. https://slurm.schedmd.com/
coding_style.pdf.

T. G. Nguyen, T. Le-Cong, H. J. Kang, R. Widyasari, C. Yang, Z. Zhao,
B. Xu, J. Zhou, X. Xia, A. E. Hassan, X.-B. D. Le, and D. Lo. Multi-
granularity detector for vulnerability fixes, 2023.

OpenAl. Gpt-4 technical report, 2023.

S. Pan, L. Bao, X. Xia, D. Lo, and S. Li. Fine-grained commit-level
vulnerability type prediction by cwe tree structure. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), pages
957-969. IEEE, 2023.

H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt. Examining
zero-shot vulnerability repair with large language models. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 1-18. IEEE Computer
Society, 2022.

C. Qin, A. Zhang, Z. Zhang, J. Chen, M. Yasunaga, and D. Yang. Is
chatgpt a general-purpose natural language processing task solver? arXiv
preprint arXiv:2302.06476, 2023.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.
Language models are unsupervised multitask learners. OpenAl blog,
1(8):9, 2019.

A. D. Sawadogo, T. F. Bissyandé, N. Moha, K. Allix, J. Klein, L. Li,
and Y. L. Traon. Learning to catch security patches, 2020.

Z. Sheng, F. Wu, X. Zuo, C. Li, Y. Qiao, and L. Hang. Lprotector: An
IIm-driven vulnerability detection system, 2024.

J. Sun, Z. Xing, Q. Lu, X. Xu, L. Zhu, T. Hoang, and D. Zhao. Silent
vulnerable dependency alert prediction with vulnerability key aspect
explanation. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 970-982. IEEE, 2023.

X. Tang, Z. Chen, K. Kim, H. Tian, S. Ezzini, and J. Klein. Just-in-time
detection of silent security patches, 2024.

Y. Tian, J. Lawall, and D. Lo. Identifying linux bug fixing patches.
ICSE’12.

S. Ullah, M. Han, S. Pujar, H. Pearce, A. Coskun, and G. Stringhini.
Llms cannot reliably identify and reason about security vulnerabilities
(yet?): A comprehensive evaluation, framework, and benchmarks, 2024.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

J. Wang, Z. Huang, H. Liu, N. Yang, and Y. Xiao. Defecthunter: A
novel llm-driven boosted-conformer-based code vulnerability detection
mechanism, 2023.

S. Wang, X. Wang, K. Sun, S. Jajodia, H. Wang, and Q. Li. Graphspd:
Graph-based security patch detection with enriched code semantics. In
2023 IEEE Symposium on Security and Privacy (SP), pages 604-621.
IEEE Computer Society, 2022.

X. Wang, K. Sun, A. Batcheller, and S. Jajodia. Detecting” 0-day”
vulnerability: An empirical study of secret security patch in oss. In
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 485-492. 1IEEE, 2019.

X. Wang, S. Wang, P. Feng, K. Sun, and S. Jajodia. Patchdb: A
large-scale security patch dataset. In 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 149-160. IEEE, 2021.

X. Wang, S. Wang, P. Feng, K. Sun, S. Jajodia, S. Benchaaboun, and
F. Geck. Patchrnn: A deep learning-based system for security patch
identification. In MILCOM 2021-2021 IEEE Military Communications
Conference (MILCOM), pages 595-600. IEEE, 2021.

Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu,
K. Chen, and W. Zou. Revery: From proof-of-concept to exploitable.
In Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, pages 1914-1927, 2018.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou.
Chain of thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

https://www.openssl.org/
https://ssd-disclosure.com/ssd-advisory-linux-kernel-taprio-oob/
https://ssd-disclosure.com/ssd-advisory-linux-kernel-taprio-oob/
https://www.kernel.org/doc/html/next/process/submitting-patches.html
https://www.kernel.org/doc/html/next/process/submitting-patches.html
https://lwn.net/Articles/801157/
https://lwn.net/Articles/801157/
https://syzkaller.appspot.com/upstream/
https://slurm.schedmd.com/coding_style.pdf
https://slurm.schedmd.com/coding_style.pdf

[68] M. Weiser. Program slicing. IEEE Transactions on software engineering,
(4):352-357, 1984.

Y. Wen, J. Cao, and S. Cheng. Ptracer: A linux kernel patch trace bot. In
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 1210-1211. IEEE, 2019.

Q. Wu, Y. He, S. McCamant, and K. Lu. Precisely characterizing
security impact in a flood of patches via symbolic rule comparison.
In NDSS, 2020.

W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou. {FUZE}:
Towards facilitating exploit generation for kernel use-after-free vulner-
abilities. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 781-797, 2018.

C. S. Xia and L. Zhang. Keep the conversation going: Fixing 162 out of
337 bugs for $0.42 each using chatgpt. arXiv preprint arXiv:2304.00385,
2023.

D. Xu, K. Chen, M. Lin, C. Lin, and X. Wang. Autopwn: Artifact-
assisted heap exploit generation for ctf pwn competitions. [EEE
Transactions on Information Forensics and Security, 2023.

F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. ~Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE
Symposium on Security and Privacy, pages 590-604. IEEE, 2014.

C. Yang, Y. Deng, R. Lu, J. Yao, J. Liu, R. Jabbarvand, and
L. Zhang. White-box compiler fuzzing empowered by large language
models. corr, abs/2310.15991, 2023b. doi: 10.48550. arXiv preprint
ARXIV.2310.15991.

C. Yang, Z. Zhao, and L. Zhang. Kernelgpt: Enhanced kernel fuzzing
via large language models, 2024.

Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu. Order matters:
Semantic-aware neural networks for binary code similarity detection.
In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 1145-1152, 2020.

Z. Zhang, H. Zhang, Z. Qian, and B. Lau. An investigation of the
android kernel patch ecosystem. In 30th {USENIX} Security Symposium
({USENIX} Security 21), 2021.

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

J. Zhou, M. Pacheco, J. Chen, X. Hu, X. Xia, D. Lo, and A. E. Hassan.
Colefunda: Explainable silent vulnerability fix identification. In 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pages 2565-2577. IEEE, 2023.

J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang, and A. E. Hassan.
Finding a needle in a haystack: Automated mining of silent vulnerability
fixes. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 705-716. IEEE, 2021.

Y. Zhou and A. Sharma. Automated identification of security issues from
commit messages and bug reports. In Proceedings of the 2017 11th joint
meeting on foundations of software engineering, pages 914-919, 2017.
Y. Zhou, J. K. Siow, C. Wang, S. Liu, and Y. Liu. Spi: Automated
identification of security patches via commits. ACM Transactions on
Software Engineering and Methodology (TOSEM), 31(1):1-27, 2021.
X. Zou, Y. Hao, Z. Zhang, J. Pu, W. Chen, and Z. Qian. Syzbridge:
Bridging the gap in exploitability assessment of linux kernel bugs in the
linux ecosystem. In NDSS, 2024.

X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian. SyzScope: Revealing
High-Risk Security Impacts of Fuzzer-Exposed Bugs in Linux kernel.
In USENIX Security Symposium, 2022.

F. Zuo, X. Zhang, Y. Song, J. Rhee, and J. Fu. Commit message can
help: security patch detection in open source software via transformer. In
2023 IEEE/ACIS 21st International Conference on Software Engineering
Research, Management and Applications (SERA), pages 345-351. IEEE,
2023.

[69]
[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

(791

[80]

[81]

[82]
[83]
[84]
[85]

[86]

APPENDIX
A. Model and training details.

Our experiments were on a Ubuntu 20.04.5 LTS server with
AMD EPYC 7542 processors and 4 Nvidia GeForce RTX
3080 Ti GPUs. The SLICELM model consists of 140 million
parameters, including 6 encoder layers and 6 decoder layers,
with a model dimension of 768 and 12 heads. We used the
Adam optimizer with a linear learning rate decay schedule for

optimization, starting the training with a dropout rate of 0.1.
The maximum input sequence length is set to 1024 tokens. In
addition, we configured € as le-6 and 35 as 0.98 for the Adam
optimizer.

B. List of common key phrases

We compiled a list of common key phrases to prepare the
dataset for the step to classify memory corruption patches
into memory out-of-bounds access, use-after-free and other
memory-corruption patches. The commit titles are first con-
verted to lowercase format. The key phrases for memory out-
of-bounds access are “fix out of bounds”, “fix out-of-bound”,
“fix buffer overflow”, “fix stack overflow”; the key phrases
for use-after-free are “fix use after free”, “fix use-after-free”;
the key phrase for other memory-corruption patches are “fix
uninit-value”, “fix uninitialize”, “fix memory leak”, “fix null
pointer dereference”, “fix null dereference”, “fix null pointer
reference”, “fix null-ptr deref”, “fix null-ptr-deref”, “fix null
pointer access”, “fix null pointer bug”, “fix null deref”, “fix
null-deref”, “fix null-ptr-deref”.

C. Data Cleaning of CWE Labels

The bug type labels are mapped from the CWE labels.
However, the direct mapping can introduce errors. First,
because CWE labels follow a hierarchy, there are CVEs
that received CWEs labels at the intermediate level, which
does not allow us to identify its true bug type (this is also
observed in prior work [49]). For example, 5 CVEs are
labeled as CWE-20: Improper Input Validation,
but in fact, they are actually out-of-bounds bugs. Second,
original CWE labels themselves can be incorrect. For
example, CVE-2016-5400 [2] is labeled as CWE-119:
Improper Restriction of Operations within
the Bounds of a Memory Buffer—a category for
bugs that “reads from or writes to a memory location outside
the buffer’s intended boundary” [5]. This label suggests an
out-of-bounds bug. However, both its commit message and
CVE description explicitly indicate that the bug fixed by the
patch is memory leak, which is further confirmed by the
patch diff showing the addition of memory free operations
along an execution path. Overall, we identified and corrected
86 such cases where bug type labels directly mapped from
CWE labels were incorrect.

	Introduction
	Background and Related work
	Memory Corruption Vulnerabilities
	Mining Patches
	Machine Learning for Code Analysis

	Motivation and Overview
	Motivation
	Solution Overview

	DualLM Design
	LLM-based patch classification
	SliceLM-based patch classification
	Custom slicing
	Two-stage classification for patches without hints

	Implementation & Experiment setup
	Implementation Details
	Experiment Setup

	Experimental Results
	Evaluation on Quality-Controlled CVEs
	Main Results
	Comparative study
	Generalization to other bug types and beyond Linux
	Ablation Study
	Robustness of Function Renaming
	Analysis of the misclassified cases
	Data leakage concerns with LLM

	Evaluation on Unlabeled Recent Kernel Patches
	Comparative study
	True positive study
	False negative study
	Case study

	Conclusion
	References
	Appendix
	Model and training details.
	List of common key phrases
	Data Cleaning of CWE Labels

