STIP: Three-Party Privacy-Preserving and Lossless
Inference for Large Transformers in Production

Mu Yuan*, Lan Zhang?, Yihang Cheng!, Miao-Hui Song’, Guoliang Xing*, Xiang-Yang Lif
*The Chinese University of Hong Kong
TUniversity of Science and Technology of China
!Institute of Artificial Intelligence, Hefei Comprehensive National Science Center
Email: muyuan@cuhk.edu.hk, zhanglan @ustc.edu.cn, yihangcheng @mail.ustc.edu.cn,
songmiaohui @mail.ustc.edu.cn, xiangyangli@ustc.edu.cn, glxing@ie.cuhk.edu.hk

Abstract—The privacy of model parameters and user data
is crucial for Transformer-based cloud services, such as online
chatbots. While recent advances in secure multi-party computa-
tion and homomorphic encryption provide strong cryptographic
guarantees, their computational overhead makes them infeasible
for real-time inference with large-scale Transformer models.
In this work, we propose a practical alternative that balances
privacy and efficiency in real-world deployments. We introduce
a three-party threat model involving a model developer, a cloud
model server, and a data owner, capturing the trust assumptions
and deployment conditions of practical AI services. Within
this framework, we design a semi-symmetric permutation-based
protection mechanism and present STIP, the first three-party
privacy-preserving inference system for large Transformers de-
ployable on commodity hardware. STIP formally bounds privacy
leakage while preserving lossless inference accuracy. To further
safeguard model parameters, STIP integrates trusted execution
environments to resist model extraction and fine-tuning attacks.
We evaluate STIP on six representative Transformer model
families, including models with up to 70 billion parameters,
under three deployment settings. STIP’s efficiency is comparable
to unprotected full-cloud inference, for example, STIP achieves
31.7 ms latency on LLaMA2-7B model. STIP also shows effective
resistance to various attacks against user data and model param-
eters. STIP has been deployed in a production environment on
our proprietary 70B model. In a three-month online test, STIP
brings only 12% additional latency and no privacy incidents
were reported, demonstrating its practicality and robustness for
production-scale AI systems.

I. INTRODUCTION

Transformer [1] is a neural network architecture that cap-
tures relationships between sequential input elements (i.e.,
tokens) using the self-attention mechanism. This mechanism
is based entirely on global matrix multiplication that allows
parallel computation [2], making the Transformer architec-
ture computationally scalable. Scaling up Transformer model
parameters to billions brings emergent abilities [3], such
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as performing arithmetic tasks and zero-shot cross-domain
question answering. Large Transformer models, e.g., OpenAI’s
GPT [4], Google’s BERT [5], and Meta’s LLaMA [6], have
become the cornerstone of modern artificial intelligence, en-
abling next-generation applications such as long-context chat-
bot [7], [8], software copilot [9], and video generation [10].
Deploying these Transformer models for inference is a typ-
ical instance of Machine Learning as a Service (MLaaS) [11].
Take ChatGPT as an example, a model owner (OpenAl)
hosts its proprietary model (GPT-40), and a data owner
(user) sends input text to the model and receives outputs.
Large Transformer models are increasingly being deployed
in domains including healthcare, finance, and personalized
assistants, where privacy is critical. However, serious privacy
risks exist in the two typical deployment modes of MLaaS:

o Public-cloud deployment, where model parameters are
hosted on the model owner’s cloud servers. The user’s
private inputs and outputs are fully exposed to the model
owner. This mode may be completely unacceptable for
privacy-sensitive areas, e.g., Samsung banned all online
chatbots after a sensitive code leak [12].

¢ On-device deployment, where model parameters are hosted
on the user’s device. The model owner’s proprietary parame-
ters are directly exposed in the device’s plaintext storage and
memory. Potential parameter leakage risks (such as model
extraction attacks [13], [14], [15]) can cause billions of
losses to model owners.

Given the privacy issues of the above two deployments, a
trade-off solution of device-cloud collaborative inference is
proposed:

e Model splitting deployment [16], [17], [18] strategically
distributes neural network layers between the device and
the cloud. The device sends intermediate activations to the
cloud to continue inference. Model splitting inference only
deploys a small number of parameters on the device and
avoids uploading the raw input data to the cloud [19], [20],
which protects the privacy of both parties to a certain extent.

However, privacy concerns still arise as subsequent research
reveals the potential for reverse-engineering sensitive infor-
mation from intermediate activations [21], [22]. This results
in this deployment being rarely adopted in practice.



A line of research has turned to cryptographic approaches
for strong theoretical guarantees, especially for the Trans-
former architecture:

« HE+2PC protocols. By combining homomorphic encryp-
tion (HE) and secure two-party computation (2PC) tech-
niques, many protocols [23], [24], [25], [26], [27], [28], [29],
[30] have been proposed for Transformer models, which
provide theoretical security for both private user data and
model parameters.

However, when deploying generative models with billions of
parameters, there are still two key technical challenges:

Challenge-1: Balancing privacy with exact accuracy. In
the highly competitive market of large Transformer models,
even a slight degradation in accuracy can result in lagging
behind competing products [31]. Many privacy-preserving
inference methods adopt approximations (e.g., polynomial
activation functions, truncated precision) that introduce minor
yet non-negligible accuracy drops. While such approxima-
tions may be acceptable in non-critical applications, they
pose challenges in domains such as healthcare, finance, or
regulated services, where output consistency and auditability
are paramount. This raises the question: Can we achieve strong
privacy guarantees without compromising model accuracy?
Designing such a solution is challenging due to the inherently
non-linear and coupled operations within Transformer blocks,
which resist obfuscation through reversible transformations.

Challenge-2: high sensitivity to communication costs.
Communication costs are increasingly recognized as a signifi-
cant bottleneck in machine learning systems [34], particularly
in multi-party settings. Existing HE+2PC protocols [23], [24],
[25], [26], [27], [28], [29] incur prohibitive device-cloud
communication overheads. For example, CipherGPT [27] costs
a 25-minute processing time and 90 GiB traffic for generating
a single token with GPT2 while Puma [25] takes around
5 minutes and 2 GiB communication for LLaMA2-7b. This
communication cost and latency make these cryptographic
protocols commercially infeasible given the bandwidth lim-
itation of many user devices and basic quality of experience
requirements.

While ongoing efforts aim to optimize these protocols
(e.g., Rhombus (CCS’24) [35], NEXUS (NDSS’25) [30]), an
alternative line of work explores a more deployment-friendly
threat model involving three parties: model developer, model
server, and data owner. This setting decomposes the original
model owner into two distinct parties, model developer and
model server. Apple’s Private Cloud Compute (PCC) [33]
exemplifies this approach, which has been used for privacy-
preserving inference in production.

« Private-cloud deployment, where the model developer (e.g.,
Apple) hosts its proprietary parameters on the model server
(e.g., PCC), and the data owner sends inputs to the model
server and receives outputs.

PCC is claimed to guarantee that user data sent to PCC

isn’t accessible to anyone other than the user, not even to
Apple [33]. However, PCC is tied to custom Apple silicon

and a hardened operating system. Private-cloud deployment
is promising in terms of both data privacy and inference effi-
ciency, but it cannot support the massive commodity hardware
in existing public clouds.

Goal and uniqueness. In this work, we aim to bring PCC-
like privacy guarantees to commodity cloud infrastructure,
without relying on heavy cryptographic primitives. We adopt
the three-party setting and present STIP, a privacy-preserving
Transformer inference system that: achieves lossless accuracy,
imposes a theoretical bound on privacy leakage, and delivers
real-time efficiency on large models. Tab. I summarizes Trans-
former inference methods in both two-party and three-party
settings, highlighting the uniqueness of STIP.

STIP design. Since the inference computation is executed
on untrusted servers, both parameters and user data must be
transformed before uploading to the cloud to preserve privacy.
To achieve practical communication efficiency, we avoid the
use of heavy cryptographic primitives such as homomorphic
encryption (HE) and secure multiparty computation (MPC).
Instead, we propose a transformation scheme tailored to the
Transformer architecture, based on random permutation and
linear scaling. Specifically, for each weight matrix in the
Transformer, we generate a pair of random permutation ma-
trices to permute its rows and columns, respectively. These
matrices are generated by the model developer. Only one of
each pair (used in the first and last layers) needs to be shared
with the data owner to enable input/output transformation,
while the intermediate-layer matrices are kept private to the
model developer. This forms what we term a semi-symmetric
scheme, inspired by the sequential nature of neural networks,
where only the endpoints require shared transformation knowl-
edge. One advantage of STIP is that it preserves the full
computational semantics of the Transformer model. Unlike
cryptographic approaches based on HE or MPC that rely
on polynomial approximations of non-linear functions (e.g.,
ReLU, SoftMax, LayerNorm) [23], [32], our transformation
avoids modifying the model’s computational graph. We theo-
retically prove the computation equivalence of the transformed
network, ensuring that STIP produces outputs that are identical
to those of the original plaintext model.

We demonstrate the privacy-preserving capability of STIP
by deriving a strict upper bound on information leakage using
distance correlation [36], and by analyzing its resistance to
brute-force and known-plaintext attacks. To strengthen protec-
tion of model parameters during execution, STIP integrates a
lightweight Trusted Execution Environment (TEE)-enhanced
execution path, confining only four simple operations to the
enclave. This minimal TEE reliance ensures both practical effi-
ciency and robustness against model extraction and fine-tuning
attacks, with just a 9.38% latency increase even on a 70B
model. Overall, STIP achieves a unique Pareto-optimal point
in the privacy—efficiency—accuracy trade-off space: strong
privacy protection, real-time inference efficiency, and zero
degradation in model outputs.

Contributions of this work are summarized as follows:

* We developed STIP, the first three-party inference system for



TABLE I: Comparison of our proposed STIP and existing Transformer inference methods. In the “Msg. Complexity” column,
T denotes the number of generated tokens and L denotes the number of Transformer layers.

Method Privacy-Preserving ~ Lossless ~ Commodity Hardware =~ Msg. Complexity Tested Models
Two-Party: Model Owner, Data Owner
Public-Cloud, On-Device X v v o) All
Model Splitting [16] X v v Oo(T) All
Iron [28], THE-X [29], BOLT [23] v X v O(TL) BERT
CipherGPT [27] v X v O(TL) GPT-2
Bumblebee [26], Puma [25], SIGMA [32], NEXUS [30] v X v O(TL) GPT/LLaMA/BERT
Three-Party: Model Developer, Model Server, Data Owner
Private-Cloud [33] v v X o(1) All
GPT/LLaMA/
STIP v v v Oo(T) ViT/LLaVA/
BERT/Mixtral

large Transformer models using commodity hardware, with the
theoretical bound of privacy leakage, guarantee of no loss of
accuracy, and millisecond-level inference latency.

* We implemented STIP and conducted evaluations on six
representative series of Transformer models. Experiments
show the privacy protection of STIP against various attacks,
including model extraction and fine-tuning attacks. In terms of
efficiency, STIP achieves throughput and latency comparable
to the unprotected and private-cloud [33] deployments. Just for
reference (due to different settings), STIP achieves efficiency
levels orders of magnitude higher than cryptography-based
solutions [27], [28], [29], [25], [26], [23], [30].

» STIP has been deployed in a nationwide production environ-
ment on our proprietary 70B model, running on a major cloud
platform, bringing only 12% additional latency and no major
privacy incidents were reported in three-month traces. This
deployment demonstrates the real-world viability of STIP.

II. BACKGROUND

A. Transformer Architecture

We use the original Transformer architecture [1] to intro-
duce the inference computation, without loss of generality,
advanced Transformer variants (GPT[4], LLaMA [6], ViT [37]
and Mixtral [38]) will be discussed in Sec. V.

Input embedding. In Transformer models, the embedding
operation is the initial step that maps discrete inputs (such
as words or images) into continuous vectors [1]. This opera-
tion typically consists of tokenization, linear transformation,
and positional encoding [1]. For text inputs, words are first
tokenized into token IDs which are represented as one-hot
vectors (where each token is a vector with all zeros except for
a single one at the index corresponding to the token’s position
in the vocabulary). These one-hot vectors are multiplied by
a learned weight matrix, transforming them into continuous,
lower-dimensional vectors, known as token embeddings. Then
token embeddings are combined with positional embeddings
to convey the position of each token in the sequence.

Transformer layer forward pass. As shown in Fig. 1, the
Transformer model consists of L sequential Transformer layers

and a classifier. Let Fy denote the Transformer model with
trainable parameters . We define {f; : R"*? — R"¥4|j ¢
[L]} as Transformer layers, and f. : R"*% s R™X* as the
classifier, where n is the sequence length (e.g., the number
of tokens), d is the model feature dimension, and s is the
output dimension (e.g., vocabulary size). We use x; and y;
to denote the input and output of the i-th Transformer layer,
and all these intermediate activations share the same shape
R™*4, A forward pass of a Transformer layer, i.e., f(x) =y,
is computed as follows':

Self-attention sub-block:

Q=aW,, K=2zW, V=azW,,
QK™

u = SoftMax <\/E + M) VW,, M eR™" W,ec R

v = LayerNorm(u + x;7y1, 81),

W,, Wy, W, € R4,

1, 6 1€ Rda
Feedforward sub-block:

z = ReLU(vW7 )W,
y = LayerNorm(z + v; 2, f2),

Wy e Rdxm7W2 € Rmx{i,
72752 S Rd7

where k and m are constants that depend on the model
architecture hyperparameters, and M denotes the mask matrix.
SoftMax, LayerNorm, and ReLU are commonly used neural
network functions and their definitions are not necessary in
this work. Following the L-layer Transformers, a classifier
computes as follows:

o=yLWe, W. e R,

Use of causal masking. The mask matrix is a lower
triangular matrix, where the elements above the main diagonal
are set to negative infinity, and the elements on and below
the main diagonal are set to zero. In the original Transformer
work [1], two types of Transformer layers are proposed,
encoder and decoder. The mask is only applied to the self-
attention sub-block in the decoder to prevent positions after the
current position from being attended to. It ensures that during

IFor simplicity of expression, we use W instead of W7 which is used
for real-world implementation.
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Fig. 1: Inference workflow of original Transformer.

the generation of each token in the output sequence, the model
only attends to the tokens preceding it. Masking is not trivial,
as it results in the infeasibility of constructing equivalent
computations using sequence-level permutation (§ IV-A).

B. Auto-regressive Generation

After the classifier, the post-processing of output o depends
on the specific task. For visual classification, we just select the
class with the highest probability. In this paper, we are more
concerned with autoregressive generation.

Auto-regressive generation is a widely-used approach in
sequence modeling tasks, where the probability of a sequence
x = (x1,x2,...,27) is factorized using the chain rule
of probability as P(x) = [[,_, P(z; | @1, 29,..., 2 1).
During generation, tokens are sampled iteratively: at each
step t, the model predicts the conditional probability P(x; |
Z1,%9,...,%¢—1), and the process continues until an end-
of-sequence token (a predefined special token) is produced
or a maximum length is reached. Transformer-based auto-
regressive models, such as GPT, compute these conditional
probabilities using a decoder-only architecture with causal
masking to ensure that predictions at step ¢ depend only on
tokens up to ¢t — 1. This step-by-step approach enables flexible
and expressive sequence generation but requires sequential
decoding, which can be computationally intensive for long
outputs.

C. Secure Two-Party Inference

Homomorphic encryption (HE) is a cryptographic technique
that allows computations to be performed on encrypted data
without decrypting it, while multi-party computation (MPC)
allows multiple parties to jointly compute a function over
their inputs while keeping those inputs private. In the context
of model inference, two-party computation (2PC) is usually
considered, a special case of MPC where the model owner
and the data owner represent two parties respectively. Recent
research has demonstrated the ability to serve Transformer
inference using a combination of HE and 2PC [27], [28],
[29]. However, these approaches incur significant computa-
tional overheads and inevitable accuracy loss when processing
non-linear complex layers, such as LayerNorm and ReLU.
Additionally, there are high costs associated with device-
cloud communications, e.g., CipherGPT takes over 25 minutes
and 90 GiB traffic to generate a single token with GPT2
model [27].

D. Align with Real-World Applications: Three-Party Inference

The simplicity of the two-party setting, where one party
represents the device and the other the cloud, seamlessly
fits HE and 2PC theories. However, the efficiency challenges
also stem from the computational hardness inherent in HE
and MPC theories [39], which motivates us to think about
a question: Does the two-party setting truly align with the
demands of real-world applications?

Surprisingly but fortunately, the answer is no. This conclu-
sion comes from our experience of managing two real-world
services.

Service-1: campus chatbot. At USTC, we host a large
language model-based chabot for campus security. Our chatbot
uses the database of surveillance video analytics as the infor-
mation source. Users, including students and campus security
officers, can ask the chatbot questions like, “Did any abnormal
behavior occur during a certain period?” and get responses in
natural language.

Service-2: vehicle cabin assistant. Collaborating with NIO
automotive company, we deploy a multi-modal Transformer
model to enhance the functionality of the smart assistant in ve-
hicle cabins. The multi-modal Transformer takes the in-cabin
video frames as the input and generates scene descriptions
in natural language. Scene descriptions can help the in-car
assistant become more user-friendly, such as recommending
music based on facial expressions.

Common experience: the model developer is not the
model server. For both services, we developed the Trans-
former model by fine-tuning open-sourced parameters [6], [40]
with our collected data. The computing power of our on-
campus lab and company can afford offline model training,
but cannot support large-scale long-term services. The campus
chatbot has approximately a few hundred users, and the vehicle
assistants need to serve hundreds of thousands of users. We, as
model developers, need to resort to third-party cloud platforms
to serve our Transformer models. The public cloud is trusted
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and parameters are proprietary, there will be no collusion
between the model developer and the cloud, see Fig. 2.

PCC: a three-party solution. Apple’s Private Cloud Com-
pute (PCC) [33] is a sophisticated architecture designed to
enhance data privacy while enabling advanced inference func-
tionalities across its devices. PCC ensures that user data re-
mains inaccessible even to Apple administrators, theoretically,
it is equivalent to PCC and Apple being two non-colluding
parties. Therefore, PCC aligns with our three-party setting that
involves Apple as the model developer, PCC cluster as the
model server, and users as the data owner.

III. SYSTEM OVERVIEW

Scope. This work focuses on achieving privacy-preserving
and efficient inference for Transformer models, i.e., the end-
to-end forward pass, under the three-party setting. Inference
results can serve as input for downstream applications, e.g.,
Al agents that automatically call external APIs [41]. Potential
privacy risks and efficiency issues in downstream applications
are out of the scope of this work.

Design goals. Our system STIP has four main design goals:
(1) Data and parameter privacy. The foremost objective is to
ensure the privacy of user data and model parameters.

(2) No accuracy loss. The system is required to perform
accuracy-lossless inference, meaning there should be no ap-
proximation of any computations in Transformer models.

(3) Support production environments. The system must sup-
port inference frameworks used in production environments,
incorporating techniques such as kv-cache for efficiency opti-
mization [42], [43].

(4) Flexible extension to Transformer variants. Given the
continuous evolution of Transformer models with various
emerging variants [6], [4], [44], [38], [45], the system must
possess the ability for flexible extension to accommodate
Transformer variants. This ensures long-term availability with-
out necessitating case-by-case adaptation.

A. Threat Model

For serving Transformer models, we consider three parties:
* Model developer (P;) that trains and owns private Trans-
former model parameters.

* Model server (P») that has the computing hardware, e.g.,
high-end GPUs on Azure cloud platform.

* Data owner (F3) that own private input and inference output,
e.g., text prompts and responses.

Given that the developed models are proprietary, model de-
velopers must safeguard their model parameters against attacks
from untrusted public cloud [46]. We make the assumption that
P, does not engage in collusion with P». In principle, our
setting aligns with server-aided MPC [47] framework, which
allows parties to securely outsource their computation to a
third-party cloud provider.

We adopt the semi-honest setting where each party will
correctly follow the algorithm but attempt to infer additional
sensitive information from the observed messages. Semi-
honest security is a widely adopted assumption for privacy-
preserving inference [23], [27], [28], [48], [29].

The inference system should ensure that P, and P, are
unaware of Ps’s original input x; and inference output o.
And P;’s original model parameters 6 should be hidden
to both P, and Ps;. The parameter 6 consists of L-layer
attention weights ({W,, Wy, W,,, W, } 1), feedforward weights
({W1, W3} L), normalization weights ({, 8} 1), and classifier
weights (IW,). In the context of Transformer, Ps’s input can be
text prompt [6], images [40], and a combination of multiple
modalities [44] and the inference output is a probability vector
of the last classification head [49].

B. Sub-Use Cases

Since we only assume that P; and P, do not collude, in
addition to the above three-party scenario, STIP also subsumes
the following two-party cases:

(1) P, = Ps, ie., the model developer is also the data
owner. Possible applications include a university laboratory
that develops its own model and hopes to use a cloud platform
to host the model for internal use by students. In this case,
our system can prevent the cloud from obtaining the original
model parameters and data.

(2) P, = Ps, i.e., the data owner is also the model server.
This case fits a common scenario, e.g., a company develops a
personal assistant model and deploys it on the user’s mobile
phone to process the on-device data locally. In this case, our
system mainly protects private original parameters from being
accessed.

Justification and implications of non-collusion. STIP’s se-
curity relies only on the assumption that P; (model developer)
and P, (model server) do not collude. If the assumption of no
collusion between P; and P fails, i.e., the developer and cloud
server share their secrets, the privacy of Ps’s input may be
compromised. Such collusion reverts the system to a standard
two-party setting, where stronger cryptographic protocols may
be required. We acknowledge this limitation and view this as
future work.

STIP is positioned for scenarios where P, and P, are
distinct organizations with partially aligned incentives, a model
adopted in a production-scale cloud operated by a different
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entity. In such cases, our semi-honest assumption and non-
collusion model provide a pragmatic balance between privacy
and performance.

IV. DESIGN

This section first introduces how to perform equivalent in-
ference of Transformer models with feature space permutation
(§ IV-A). Next, we present the system workflow (§ IV-B), and
analyze the privacy-preserving capability (§ IV-C, IV-D). Then
we detail how to integrate TEE to further protect parameters
from extraction attacks (§ IV-E).

A. Feature Space Permutation

Transformation of data and parameters is key to protec-
tion. Existing systems that combine HE and 2PC techniques
have prohibitive computing and communication overheads. As
shown in Fig. 3, CipherGPT [27] takes over 25 minutes and
90 GiB traffic to perform a single forward pass of GPT2 [4]
with 123 million parameters.

The success of the Transformer model hinges on the uti-
lization of global matrix multiplication in its self-attention
and feedforward modules, making it highly parallelizable
compared to recursive architectures [S50]. The inductive bias
of the Transformer architecture is not only efficient at the
implementation level but also has some properties such as per-
mutation symmetries of hidden units [51] and the token-wise
permutation invariance [52]. Drawing attention to the prevalent
use of random permutation in addressing privacy concerns,
including secure communication [53], machine learning [54],
[48], [55], etc. In light of these observations, we present our
first insight:

> Insight 1: Efficient feature-space permutation for privacy-
preserving and lossless Transformer inference.

The permutation operation is defined by a permutation matrix
m, which is a square binary matrix that has exactly one entry
of 1 in each row and each column with all other entries of
0. For z € R"™4 7,z and 7y 4 performs sequence-level
and feature-level permutation respectively.

| Random Permutation Matrices Set

Transformer Layer ¢
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Fig. 4: Feature-space parameter transformation. Colors repre-
sent the use of different permutation matrices.

Mask makes sequence-level permutation not equivalent.
For the Transformer encoder (self-attention without masking),
the sequence-level permutation equivariance property, i.e.,
f(rx) = wf(x), has been studied [52], [56]. However, due
to the mask inside the decoder, attention computation on
sequence-level permuted data cannot return equivalent output.
A quick fix is to send a permuted M’ = 7 M7 to the cloud
computing platform. However, since the value structure of M
is known, the cloud platform can easily infer w, which will
result in a loss of protection.

Parameter transformation. Instead, we propose to trans-
form parameters in the feature space with a set of random
permutation matrices. First, we generate 7 € {0,1}%*¢ for
the input z. For the i-th Transformer layer, we transform
parameters with another three matrices m; 1, m; 2, 7; 3:

”r/ an ”r/ T”r ”r/ T”r

q = m q7i,1, k=T kT4,1, v =T vT4,25
/ T / T / T

W, = miogWom, Wy =7 Wimis, Wy =m;3War,

o

1 =mnm, By =06m, Yy =2, By = for.

For the classifier, we need to generate a permutation matrix
7 € {0,1}°*°. We transform the classifier parameters by

W! = 7" Wer..

Fig. 4 illustrates the parameter transformation procedure. The
transformation can be efficiently implemented with O(d)-
complexity movement of memory pointers, where d is the
feature dimension. As Fig. 3 shows, our system STIP achieves
orders of magnitude higher efficiency than CipherGPT, and the
latency is close to full-cloud deployment.



TABLE II: Comparison of different permutation-based
schemes in terms of number of possibilities and resistance
to attacks.

Protection Scheme | Data  Paras. | BFA KPA
Seq. Perm. n! 1 X X
Feat. Perm. with Single 7 d! d! v X
Feat. Perm. with {71, ..., 731} d! (dn3L v v

Computational equivalence. Let Fj denote the Trans-
former model with transformed parameters. We prove that
original inference results can be recovered equivalently:

Theorem 1. Fy (x7m)nl = Fy(x).

This guarantees exact equivalence between original and trans-
formed inference results. Due to page limitations, the proof is
placed in Appendix A.

B. System Workflow

Semi-symmetrical sharing of permutation matrices.
While random permutation-based schemes are efficient and
accuracy-lossless, endowing them with robust privacy protec-
tion poses non-trivial challenges. A sequence-level permuta-
tion scheme [52] leads to n! possible permutations, rendering
it inadequate for safeguarding data against brute-force attacks
(BFA) when the number of input tokens n is small. Opting
for permutation in the feature space can enhance protection,
yet using a single permutation matrix 7 remains vulnerable
to known-plaintext attacks (KPA). The reason is that once the
cloud gains a pair of known plaintexts of the original data and
the transformed data, it can easily recover the permutation
matrix, subsequently inverse-transforming all parameters and
exposing sensitive information.

> Insight 2: Semi-symmetrical set of permutation matrices
between the model developer and data owners.

This insight stems from the sequential structure of neural
networks. Our proposed feature-space permutation scheme
utilizes a set of matrices 71, ..., w3y, Where L represents the
number of layers. The data owner only needs to share identical
permutations in the first and last layers with the model
developer. Intermediate layer transformation information can
be exclusively retained by the model developer. Similar semi-
symmetric protection schemes have been explored in domains
such as image encryption [57] and online shopping [58]. Our
analysis shows the resistance to BFA and KPA (§ IV-C). Tab. II
summarizes the number of possible permutations for data and
parameters and resistance to BFA and KPA attacks.

STIP workflow. Based on our proposed permutation-based
transformation for Transformer models, we develop STIP sys-
tem. Fig. 5 shows the workflow of STIP. STIP has two
phases: initialization and inference. In the initialization phase,
the model developer P} randomly generates the permutation
matrices set II = {m, 7.} U {m1,m2,msli € [L]}. P
transforms its owned trained model Fy with II and obtain the
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Fig. 5: Workflow of STIP.

transformed version Fy.. Then P; sends the transformed model
Fy to the cloud platform and distributes the permutation
matrices for the input and output (7 and 7.) to its registered
users. Now the initialization phase finishes. For the inference
phase, once a user wants to use the inference service, it
runs the embedding on the device to obtain . Then the user
transforms the embedding using the received input permutation
matrix 7 by a super-lightweight operation 7 = z’. Then the
user sends z’ to the cloud. The workload on the cloud platform
has no change, compared with the normal Transformer model
serving. The cloud just performs the Fy (z') computations and
obtains the output o’ in the permuted feature space. Once
the user receives the returned o’ from the cloud, it simply
reverse-transform the output by o = o'7l, which involves
only memory movement operations and can be implemented
super efficiently. Till now, one round of inference finished.

Production environment support. Production-level Trans-
former inference frameworks, such as DeepSpeed [42] and
HuggingFace [59], incorporate many techniques to enhance
efficiency. For example, they use KV-cache mechanism to al-
leviate redundant computations by storing intermediate results
from previous attention calculations. Importantly, STIP only
transforms parameter values while keeping the underlying
Transformer architecture unchanged. From the cloud perspec-
tive, STIP involves switching to a distinct set of weights, with
no change in the inference code. As a result, STIP seamlessly
aligns with production-level frameworks, and we have imple-
mented STIP with the HuggingFace [59] library.

C. Attack Resistance

Now we demonstrate that STIP can protect model parame-
ters and user data from various attacks and quantify the bound
of privacy leakage risk using distance correlation measure.

Random permutation resists brute-force attacks. To
begin, let’s consider P; as the attacker attempting to access



user data x, o. Due to the inaccessible nature of x7 and o7, P;
is unable to recover x, o with possessing 7, m.. Next, consider
P; as the attacker targeting model parameters 6 and user data
x,0. Given that P, possesses permuted parameters and xm,
the probability of correctly guessing mgxq is 1/(d!), where
d is typically larger than 512 in practical applications such
as d = 4096 in LLaMAZ2-7b [6]. This renders the likelihood
of a successful attack negligible. Notably, permutation-based
protection schemes often exhibit a weakness in preserving the
set of elements (e.g., English vocabulary) [48]. Fortunately,
STIP avoids this vulnerability by applying permutation to
intermediate activations rather than the original data. Thirdly,
consider P; as the attacker against model parameters 6. Since
P53 lacks access to 6, it cannot recover 6 despite having
mw, .. As STIP requires deploying the embedding model on
the device, the weights of the embedding are exposed to
Ps. However, the embedding module alone cannot perform
valuable tasks and is therefore not sensitive (e.g., OpenAl has
released its embedding module [60]).

Semi-symmetrical scheme to resist known-plaintext at-
tack. A known-plaintext attack (KPA) is a cryptographic attack
where the adversary possesses both the ciphertext (encrypted
data) and the corresponding plaintext (unencrypted data). The
goal of KPA is to uncover the encryption key or algorithm
used to encrypt the data. In our context, if the plaintext of
the model developer’s parameters has been leaked, there is no
need to continue attacking the protection scheme. Therefore,
the focus of KPA consideration lies exclusively on user data.
Assuming P, knows both = and xm, it can recover 7 with d
times column matching, unless there are two or more exactly
identical columns. Consequently, if parameters on the cloud
rely solely on 7 for protection, all of them are at risk of being
leaked. This underscores the rationale behind our adoption of a
semi-symmetric protection scheme, wherein layer parameters
are permuted using two matrices. One is exclusively owned by
the model developer, while the other is shared with the user.
This design in STIP makes the model parameters resistant
to KPA. For a specific user, uncovering m would lead to all
subsequent embeddings being exposed to P». To address this
vulnerability, we implement a strategy of periodically chang-
ing the set of permutation matrices (in extreme cases, using
one-time transformation), a practice commonly employed to
resist KPA [61], [62].

Malicious model server attack. Setting aside our semi-
honest assumption, in a scenario where the cloud platform
deceitfully pretends as a user and acquires the embedding
model along with 7, 7., it can potentially uncover the data
of other users who share the same permutation matrices. To
counteract this risk, the model developer can deploy multiple
instances of the model, each employing distinct transforma-
tions. Users can then be randomly assigned to share a model
instance (in extreme cases, each user may have an exclusive
model instance), effectively mitigating the risk of data leakage
through this social engineering attack. It’s noteworthy that
parameters remain resistant to this attack for the same reasons
as the KPA we discussed above.

D. Privacy Leakage Upper Bound

Distance correlation bound. Above we analyzed that
STIP can ensure that data values cannot be uncovered. An
important aspect to investigate is the degree of correlation
between the original and permuted data. To quantify the pri-
vacy leakage, we employ distance correlation [36], a statistical
measure of dependency between two random vectors. The
distance correlation between u and v, is defined as

 (u—u)-(v—0)
[[(w = @)][2][(v = D)[|2

where 4 is the mean of the elements of u and x - y is the dot
product of z and y. Let Corr denote the distance correlation.
Based on existing theorem [48], it has been proven that:

1

E [Corr(z,zAT)] < E
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[Corr(x, xB)].

Interpretation of privacy guarantee. The above distance
correlation bound provides a quantitative measure of privacy:
it guarantees that the dependency between the original data
x and its permuted form zAw is capped at a small value. In
other words, an adversary cannot find much more statistical
correlation between xAxw and x than they would between x
and a random one-dimensional projection of x. This implies
that only minimal information about x can leak through
xAm. Practically, a distance correlation near zero means the
transformed data reveals almost no linear or non-linear rela-
tionship to the original data, making inference of the original
inputs infeasible in our threat model. We stress that this is
a worst-case upper bound: it ensures any potential leakage
is strictly limited. Such a guarantee is weaker than absolute
cryptographic secrecy, but it has been shown to yield strong
privacy in practice (a similar level of obfuscation is used in
prior work for privacy-preserving data releases [63], [64]).
In summary, our theoretical privacy guarantee indicates that
STIP significantly reduces information leakage, quantifiably
bounding an attacker’s ability to correlate transformed data
with the sensitive original inputs.

Model split considerations. By default, STIP only deploys
the embedding module on user devices, as shown in Fig. 1.
This decision is motivated by the fact that splitting the model
before the embedding poses privacy challenges. In such a sce-
nario, the device would be required to transmit tokenized one-
hot vectors (a matrix € Z™*%, where s denotes the vocabulary
size) to the cloud. While the matrix can be randomly permuted,
the inherent one-hot nature of the vectors makes it susceptible
to easy recovery of the permutation by the cloud. On the flip
side, distributing more layers onto the device is also not a
prudent choice. This is primarily because exposing additional
parameters to end devices compromises efficiency and does
not reduce theoretical privacy leakage.

E. TEE Integration for Enhanced Protection

Now we discuss how to use TEE in STIP to further resist
model extraction and finetuning-based attacks when the cloud
and the user degenerate into one party.
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Model functionality leakage. The above-mentioned
STIP scheme utilizes random permutation and semi-symmetric
mechanisms to prevent the cloud platform from obtaining the
values of the original parameters. However, once the cloud
obtains the capabilities of the user party (for example, by
social engineering attacks), the models deployed on the cloud
can still be used to perform inference computations. We refer
to this risk as model functionality leakage.

Leverage TEE for authorized inference. Trusted execu-
tion environment (TEE) [65], [66] are secure areas within
a processor that provide isolated environments for executing
code and protecting sensitive data from unauthorized access.
Due to the sequential nature of the Transformer’s feedforward
computation, authorization of inference can be implemented
by deploying part of the model (such as the embedding and
the classifier ) into the TEE. Recent work explored utiliz-
ing parameter permutation and TEE to perform authorized
Transformer inference [67]. However, our experiments (see
Sec. VI-F) show that attackers can still use authorized input-
output samples to perform model extraction [14] and fine-
tuning attacks [68] on the parameters protected by TEE.

Introducing one-time randomness. Existing work [69],
[70] has shown that model extraction attacks can be effectively
resisted by introducing randomness on the input or output.
Therefore, we design an approach based on left-multiplied
random diagonal matrices to enhance the privacy protection
of STIP against such attacks on model parameters. As shown
in Fig. 6, we deploy four functions using enclave. Let A
denote the input of the TEE functions controlled by the model
developer. First, given the user’s text prompt, we perform the
embedding and additionally transform the embedding x using
a one-time random diagonal matrix a: f(A) = oEmb(A)m.
Second, in the first Transformer layer on the cloud, we put the
masking and softmax operations into the TEE. Formally, we
deploy the function as follows:

-1

f(A) = aSoftMax( a

Third, in the last Transformer layer’s feedforward sub-block,

we put the LayerNorm operation into TEE for execution.
Specifically, we deploy the following function: f(A) =
LayerNorm(A|afBa7, ayom). Fourth, the user executes the
reverse transformation of the inference result in TEE: f(A) =
a’lAWCT. Let Fy g denote the Transformer model with
transformed parameters and TEE integration. We prove that
after integrating TEE, the equivalence still holds:

Theorem 2. ailFQ/,TEE(aZ‘TF)WZ = FQ(J‘)

Due to page limitations, the proof is placed in Appendix A.

Preventing parameter leakage via TEE. In STIP, the
embedding generation process, from raw input prompt to
token embeddings z, is executed inside the TEE enclave.
As a result, the user cannot access the plaintext x directly
and only sees the transformed embedding ' = axw. The
introduction of the one-time random diagonal matrix « serves
a specific purpose: it thwarts attacks that attempt to use known
prompts and their corresponding outputs to reconstruct the
embedding module or permutation matrix. Without «, an
attacker could provide a prompt p, observe the deterministic
transformed embedding z7, and collect sufficient (prompt,
output) pairs to approximate the embedding function or learn
« through regression. However, with per-query randomness «,
each prompt results in a randomly transformed embedding,
even if the prompt is repeated. Thus, the attacker can no
longer accumulate consistent training data, and the embedding
function remains unrecoverable.

This design ensures that even though permutation 7 and
scaling « transformations preserve some properties of embed-
dings (e.g., vector angle) between token vectors, the attacker
cannot exploit this, because the underlying embeddings x
are never exposed. The one-time randomness « effectively
breaks any structure the server could learn from observing the
transformed embedding, making surrogate model extraction
infeasible. In summary, STIP eliminates parameter leakage by
(1) isolating the embedding computation in the TEE, and (2)
applying per-query randomness that destroys repeatability and
structure across queries.

TEE Trust and Limitations. Our privacy guarantee of
model functionality relies on a trusted execution environment.
It is important to clarify the assumptions and limitations of
this reliance. First, we assume the TEE itself is secure, i.e., the
enclave’s code and data cannot be accessed or influenced by
the cloud server outside of the allowed interface. In practice,
however, TEEs are known to be vulnerable to certain side-
channel attacks (e.g., timing and memory access pattern leaks,
cache side-channels, speculative execution vulnerabilities). A
determined attacker with low-level access to the cloud server
could exploit such channels to attempt to infer enclave-
protected information. STIP design minimizes TEE usage to
reduce this attack surface, but it does not entirely remove the
risk. We thereby inherit the typical trust assumption of TEE:s,
including trusting the hardware manufacturer and the system’s
firmware to be free of known leaks. In a real deployment,
one should ensure the enclave is kept up-to-date against
vulnerabilities and consider side-channel defenses if needed.



We clarify that while the TEE integration boosts security
(resisting direct model extraction and fine-tuning attacks), it is
not a silver bullet: the approach provides a practical trade-off,
improving privacy under a semi-honest threat model but still
requiring trust in the TEE.

V. STIP FOR TRANSFORMER VARIANTS

This section discusses how STIP supports various Trans-
former variants, including language models (§ V-A), multi-
modal models (§ V-B), and mixture-of-experts models (§ V-C).
Following that, we establish generalized rules and claim the
application scope of STIP (§V-D).

Due to page limitations, all proofs are placed in Appendix. A.

A. Language Models

Pre-LayerNorm. The first version of GPT directly adopts
the original Transformer decoder. GPT-2 [4] introduces Pre-
LayerNorm, relocating layer normalization to the input of self-
attention and feedforward sub-blocks, formally:

v = Attn(LayerNorm(z)) + x,
y = ReLU(LayerNorm(v)W1)Ws + v,

where Attn denotes the self-attention sub-block. From the
proof of Theorem 1, we prove that this theorem still holds
for the Pre-LayerNorm structure, using the same parameter
transformation. For TEE integration, we need to additionally
put the ReL.U activation in the feedforward sub-block of the
last Transformer layer into the enclave. Formally, function
f(A) = aReLU(a 1 A) is deployed.

RMSNorm. LLaMA series [6] use RMSNorm [71] to re-
place LayerNorm. To support RMSNorm operator, STIP trans-
forms its weight v by ~m, then we can prove that

RMSNorm(z7; yr) = RMSNorm(z; ).

GeLU. GPT uses GeLU to replace ReL.U in feedforward
sub-blocks. Analogous to ReLU, GeLU involves element-
wise computation without learnable parameters, hence we have
GeLU(zm) = GeLU(z)7 and theorem 1 holds.

SwiGLU feedforward. LLaMA [6] uses SwiGLU [72]
instead of ReLU in feedforward layers. Let FFNgyigLu denote
the feedforward layers using SwiGLU, with the definition:

FFNswicLu(2) = (zW;Sigmoid(zW1)xW3) W,
Wi, Ws € R W, e R™*4.

We transform parameters as follows:
/ T / T / T
Wl =T Wl, W3 =T Wgﬂ-i’g, W2 = 71-74‘,31/1/27'[-7

where FFNg, iy denote the transformed feedforward sub-
block. And we prove that FENg, .o y(@7) =FFNgyicLu(z)7.

B. Multi-Modal Models

ViT [40] divides an image into non-overlapping patches,
and each patch is linearly embedded to create a sequence
of token embeddings. These token embeddings serve as the
input to the Transformer model. Since STIP does not rely
on the preprocessing of the original data, it can seamlessly
support ViT. LLaVA [44] takes both text and an image as
inputs. It employs a visual transformer to embed the image
and subsequently connects them with the embeddings of the
text input using a linear projection x,, W, where x,, denotes the
visual embedding. To integrate LLaVA with STIP , we only
need to transform the projection weight W by 72 W, where
m, and m; denote the permutation matrices used for visual and
textual transformer features, respectively.

C. Mixture-of-Experts Models

Mixtral [38] integrates mixture-of-experts (MoE) into Trans-
former by constructing multiple feedforward sub-blocks (re-
ferred to as experts) in parallel, complemented by a router (or
gating layer). The router determines the weights for the experts
through g(z) = zW,, where W, € R?*¢ and e represents the
number of experts. To support MoE, a simple transformation
of W, suffices, accomplished by 7TTWg.

D. Application Scope

For layers with learnable parameters, STIP requires them
only to involve global matrix multiplication (e.g., linear, self-
attention and feedforward) or token-wise aggregation (e.g.,
LayerNorm). To give some counterexamples, STIP cannot be
extended to convolutional and recurrent layers.

For layers without learnable parameters, STIP requires them
to meet f(xm) = f(x)m property, i.e., column-wise permuta-
tion equivariance. For example, ReL.U, GeLU, SoftMax, and
Sigmoid activation layers.

VI. EVALUATION
A. Implementation

We implemented STIP using PyTorch and Hugging-
Face [59] libraries, and open-sourced the code at https://github.
com/yuanmu97/secure-transformer-inference. In addition, our
collaborators provide a MindSpore-based implementation built
on Ascend (https://gitee.com/mindspore/mindarmour), demon-
strating that our design is framework-agnostic.

Modern deep learning frameworks, including PyTorch,
adopt a row-major memory layout. To align with the layout,
PyTorch performs matrix multiplication in the linear layer as
xWT instead of zWW. Consequently, we transpose the previ-
ously introduced parameter transformation for implementation.
For permutation operations, we generate a random permutation
vector m, instead of a matrix II,,. This vector is then used
to index rows or columns, e.g., W[:, m,], which achieves
the same effect as W1II,, but is more efficient than dense
matrix multiplication. See Appendix B for a code example
that transforms GPT-2 model parameters in a HuggingFace
implementation.



TABLE III: Summary of Testbeds and Transformer Models

Testbeds Modality Transformers
Campus Security

Chatbot (CHAT) Text GPT2/LLaMA2
Vehicle Cabin Scene .
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Fig. 7: Privacy leakage measurement: distance correlation.

B. Experimental Setup

Testbeds and Transformer models. We use three testbeds
and six representative Transformer models for evaluation,
see Tab. III. (1) Campus Security Chatbot (CHAT). We
select pretrained LLaMA2-7b [6] to host this service at
USTC. To scale the evaluation, we also deployed GPT2-
124m/355m/774m/1.5b [4] and LLaMA2-13b/70b models?.
(2) Vehicle Cabin Scene Understanding (CABIN). We use
LLaVA-13b [44] to implement the cabin scene understanding
function. LLaVA model takes in-cabin video frames and a
preset prompt as inputs to generate scene descriptions. We
also deployed ViT-86m/307m/632m models [40] for compre-
hensive experiments. (3) Chatbot. To further evaluate STIP on
BERT series [5] and Mixtral [38] models, we build a chatbot
testbed.

Baselines. For comparisons, we consider four approaches:
(1) Full-cloud. Transformer models with original parameters
are deployed on the cloud and the device sends raw data
(plaintext) to the cloud for inference. (2-4) Iron [28], THE-
X [29], and CipherGPT [27]. They propose secure two-party
protocols for serving BERT series and GPT-2 models. (5-7)
Bumblebee [26], Puma [25], and NEXUS [30]. They support
secure two-party inference for LLaMA series models.

Devices. For all cases, we use a server with 4 NVIDIA
A100 GPUs as the model server. In the CHAT testbed, we
use a PC with 8-core Intel Core i7 CPUs as the user device.
In the CABIN testbed, we use an NVIDIA Orin development
board as the user device. And for Chatbot, we use a MacBook
Pro laptop with 4-core Intel Core i5 CPUs as the user device.

C. Privacy and Accuracy

First, we evaluate the previously analyzed privacy protection
and computational equivalence through experiments.

2Note that the number after the connector - refers to the parameter amount.
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Bounded distance correlation. We employ distance cor-
relation [36] as the metric for assessing privacy leakage. As
a baseline, we utilize random element-wise scaling on both
parameters and embeddings, referred to as Random Scaling:

Tscaled =7 © 2, where 7 ~ U(0,1)%

In Fig. 7a, we present the distance correlation between the
original and transformed parameters of the GPT2-1.5b model.
Notably, STIP demonstrates a significantly lower distance
correlation compared to Random Scaling. On average, Ran-
dom Scaling yields a distance correlation of 0.76, while
STIP achieves a markedly lower value of 0.062. To evalu-
ate the privacy of on-device data, we apply transformations
to embeddings with various hidden sizes ranging from 128
to 8192. The resulting distance correlations are depicted in
Fig. 7b. In the case of Random Scaling, the transformed data
maintains a correlation higher than 0.6 on average. Conversely,
the distance correlation of STIP diminishes with increasing
hidden sizes, ranging from 0.14 to 0.017. This showcases the
effectiveness of STIP in reducing privacy leakage associated
with transformed data. Our experimental findings affirm the
low privacy leakage of permutation-based transformed data
and parameters, providing validation for our bound analysis
in Sec. IV-C.

No loss of accuracy. A key advantage of STIP lies in its
computational equivalence, ensuring that serving Transformer
models with STIP incurs no loss of accuracy. We assess this
by examining two metrics: the sum of absolute differences
in predictions and top-1 token classification accuracy. We
conducted tests on all six selected model series, ranging
from 4 million to 70 billion parameters, using 10000 samples
each. As depicted in Table IV, STIP consistently achieves
100% accuracy across all models. It’s worth noting that the
slight non-zero absolute difference is attributable to inherent
floating-point operation errors rather than any loss of accuracy
introduced by STIP .

D. Inference Efficiency

Next, we evaluate the inference efficiency of STIP . The
results are tested on the testbed devices associated with the
model, and we will not make additional explanations.

End-to-end throughput and scalability with parameter
size. We conducted tests to evaluate the end-to-end throughput
of serving Transformer models with STIP . The batch size was
set to 100, and the number of tokens per sample was set to
100. As illustrated in Fig. 8 (a), STIP demonstrates orders
of magnitude higher throughput compared to baselines [27],
[28], [29], [25], [26]. Additionally, we performed full-cloud
inference tests, but the results were close to STIP , causing
overlap of markers and, consequently, were omitted for clarity.
For GPT2-124m and LLaMAZ2-7b throughput, Puma reported
6.7e-2 and 3.3e-3 token/s, whereas STIP achieves 45,366 and
3738 token/s, showcasing an improvement of 0.67 and 1.1
million times. Fig. 8 (b) summarizes the throughput improve-
ments. On the other hand, our experiments with STIP have a



TABLE IV: STIP has the guarantee of lossless accuracy. Numerical differences arise from floating-point arithmetic errors.
Class accuracy = 100% means that the transformed and original model yield identical predictions.

Model GPT-2 LLaMA2 ViT BERT LLaVA  Mixtral
Num. of Parameters 124m/355m/774m/1.5b 7b/13b/70b 86m/307m/632m  4m/41m/110m/336m 13b 47b
Absolute Difference | 0.021/0.033/0.0478/0.051  0.009/0.012/0.012 3e-4/3e-4/3e-4 Se-3/8e-3/9e-3/9e-3 0.016 8e-3
Class Accuracy 100% 100% 100% 100% 100% 100%
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Fig. 8: Efficient serving Transformers with STIP .

parameter size of up to 70 billion, which, to the best of our
knowledge, is the largest in the literature.

Autoregressive generation. In addition to a single-round
feedforward pass, we conducted tests on autoregressive gen-
eration with STIP , considering both wired and wireless
network connections for STIP communication. The average
communication latency for wired connections is approximately
10ms, while for wireless connections, it is around 250ms.
With a batch size of 1 and 128 input prompts, Fig. 8 (c)
presents the results for the LLaMA2-7b model. The latency
for all serving approaches exhibits a linear increase with the
number of generated tokens. The slopes for the result lines of
Full-cloud, STIP wired, and STIP wireless are approximately
12, 30, and 510, respectively. As discussed in Sec. IV-B, the
communication cost per generated token is inevitable to ensure
output privacy protection. Considering the practical privacy
protection that STIP introduces compared to unprotected full-
cloud inference, the slightly higher latency (e.g., 2s more for
100 tokens) is deemed acceptable.

Latency breakdown. To gain deeper insights into the
overhead introduced by STIP , we conducted an analysis of
latency breakdown, comparing it against full-cloud inference.
Mlustrated in Fig. 8d, our evaluation reveals that STIP in-
troduces an additional 1.7ms latency on the device while
concurrently reducing on-cloud latency from 12ms to 11ms.
A crucial factor contributing to the slower performance of
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STIP compared to full-cloud is the communication phase.
This arises from the necessity of transmitting intermediate
embeddings, a BATCH x n x d tensor, which typically exceeds
the size of plaintext words transmitted in full-cloud serv-
ing. While prior efforts [73] have investigated techniques to
compress intermediate activations and enhance communication
efficiency in model-splitting scenarios, it is noteworthy that
our work imposes strict requirements for lossless accuracy,
rendering these compression techniques beyond the current
design scope.

E. Micro-Benchmarks

Device-cloud communication traffic. The communication
traffic induced by STIP is influenced by three factors: the num-
ber of input tokens, hidden size, and output vocabulary size.
To illustrate, considering the GPT2-124m model, a single-
round inference operation causes 5.8 MiB and 7.5 MiB of
traffic for input embedding and output activations, respectively.
As depicted in Fig. 3, the communication traffic incurred by
STIP is markedly lower compared to CipherGPT, 95,151 MiB.
This substantial reduction in traffic highlights STIP ’s ability
to achieve privacy protection at a modest cost.

On-device memory footprint. In light of the diverse
range of devices that may be employed for Transformer-
based services, we assess the on-device memory footprint. For
the tokenizer component, LLaMA2 and ViT models exhibit
memory footprints of 18 MiB and 3.1 MiB, respectively. In
the case of the embedding part, the memory allocation depends
on the hidden size parameter. LLaMA2-70b, utilizing a large
hidden size of 8192, incurs a memory cost of 903 MiB.
In contrast, the ViT models exhibit more modest memory
requirements, ranging from 3.9 MiB to 4.9 MiB. This implies
that the on-device memory demands of STIP , even for models
with substantial hidden sizes, remain feasible for contemporary
end devices.

Effect of model split. We vary the number of on-device
Transformer layers from O to 20 and analyze the correspond-
ing impact on inference latency. As depicted in Fig.9a, the
latency of end-to-end inference rises proportionally with an
increasing number of on-device layers. This latency increase
is attributed to the relatively lower computing power of devices
compared to the cloud. As discussed in Sec. IV-C, deploying
more layers on the device not only results in higher latency
but also exposes additional parameters to the user, thereby
introducing privacy risks. In light of these considerations, our
analysis indicates that deploying only the embedding module
on the device represents the optimal choice. This configuration
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Fig. 9: Inference latency with different model splits (a) and
resistance to model extraction attacks (b).

minimizes latency while mitigating the potential privacy risks
of exposing more layers to the user.

FE. TEE Integration

Now we evaluate our TEE integration designs. Specifically,
we test the resistance to model extraction and fine-tuning
attacks, and the inference latency.

Model extraction attack. We assume that the attacker uses
authorized inference to obtain the input and output samples of
the initial transformation executed in the TEE. We consider
that the attacker trains a linear model to learn a mapping
from the embedding x to three outputs: (1) XP: column-wise
permuted embedding; (2) Fixed-AXP: transformation with a
fixed diagonal matrix; (3) Rand-AXP: transformation with
random diagonal matrices, which is also the approach used by
STIP . We use the pre-trained GPT2-124m model’s embedding
and the WikiText-2 dataset [74] to train linear models. As
shown in Fig. 9b, using only permutation for protection is
easily compromised by a linear fitting. When we use a fixed
linear transformation, the loss also has a slow downward trend.
Our design introduces one-time randomness, therefore the loss
is in an oscillating state and has no downward trend, effectively
preventing model extraction attacks.

Fine-tuning attack. Another possible attack approach is to
use the obtained output tokens to fine-tune the transformed
model, aiming to restore the original model performance.
Specifically, we consider two attacks: (1) Train Transformed:
Fine-tune all parameters on the STIP -transformed model; (2)
Train Linear: Freeze transformed parameters, then add and
train a linear layer after embedding. For comparison, we con-
sider two baselines: (3) Finetune: Fine-tune all parameters on
the normal model; (4) Train from Scratch: Train all parameters
on a randomly initialized model; We use the GPT2 series
models and the WikiText-2 dataset [74] for experiments. As
shown in Tab. V, neither fine-tuning all parameters nor train-
ing additional linear layers can effectively restore the model
performance (worse than training a model from scratch).

Inference latency. We use NVIDIA A100 GPUs and Intel
Xeon 6330 CPUs for TEE execution. We compare three execu-
tion approaches: (1) w/o TEE: All calculations are performed
in the GPU. (2) w/ TEE (all): For every Transformer layer,
TEE is used. (3) w/ TEE (io): TEE is used only for the first
(input) and last (output) Transformer layers, which is also the
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TABLE V: Resistance to finetuning-based attacks using GPT2-
124m model. PPL denotes the perplexity metric. The values
before and after the / symbol represent the experiment results
using the original and the finetuned parameters, respectively.

Train Test
Approach Loss Loss  Acc. PPL
Original - 3.42 0.38 31
Finetune 3.13 3.05 0.43 21
Train from Scratch 6.59 6.29 0.18 538
Train Transformed 7.25 6.93 0.14 1028

/7.16 16.82  /0.15 /919
Train Linear 10.23 9.36 0.11 11640

/10.25 | /9.54 /0.11 /13963

TABLE VI: Inference latency with and without TEE in STIP .

\ 10x100 tokens inference latency (s)

Model ‘ w/o TEE  w/ TEE (all) w/ TEE (I0-only)
ViT-86m 0.76 1.15 0.78 (2.63%)
GPT2-124m 0.86 1.27 0.93 (|8.14%)
GPT2-1.5b 0.98 2.26 1.03 (45.10%)
LLaMA2-7b 1.81 3.38 1.96 (18.29%)
LLaMA2-70b 8.64 31.32 9.45 (19.38%)

default design used by STIP . Tab. VI shows the latency of six
Transformer models with parameters ranging from 86m to 70b.
Experimental results show that with our carefully designed
integration approach, using TEE only reduces the efficiency
by 2.6-9.4%. Considering the enhanced protection of model
parameters brought by integrating TEE, this efficiency loss is
completely acceptable.

G. Real-World Deployment

We have deployed STIP in a production environment to
serve real users through a commercial cloud platform. The
deployment leverages a proprietary 70B Transformer model,
integrated into a chatbot service system that supports private
document Q&A. In the production setting, STIP runs entirely
on commodity cloud hardware (A100 servers). To support
multi-request concurrency, we maintained 10 independent
model transformation contexts, each corresponding to a dis-
tinct permutation configuration. Over a three-month evaluation
period, STIP processed more than 100 million user tokens.
The average end-to-end latency per token was approximately
105 ms. Compared to the plaintext version of the service,
the deployment incurred only a 12% increase in latency, well
within acceptable bounds for interactive applications. The
system has been operating continuously for several months
without any reported privacy incidents, demonstrating STIP’s
robustness, scalability, and suitability for production-grade Al
workloads.

VII. RELATED WORK

Neural network split. The practice of splitting neural network
layers and distributing them between the device and server
has been explored as a means to protect raw on-device data
while preserving efficiency [26], [16], [17], [18], [19], [20].
Recent research [56] proposes using permutations to enhance



protection further. However, despite this split, the potential for
reverse-engineering sensitive information from intermediate
activations [21], such as text embeddings [22], remains a
concern. STIP builds upon the concept of model split and goes
a step further by incorporating random permutation, offering
theoretically enhanced privacy protection.

Secure Transformer inference. In the context of a two-party
setting, prior efforts [24], [26], [25], [27], [28], [29] have
explored the combination of homomorphic encryption and
multi-party computation techniques to devise secure protocols
for Transformer inference. In addition to HE techniques,
function secret sharing [32] can also be used for secure Trans-
former inference. These approaches customize and optimize
computation protocols for specific layers within Transformer
models, such as non-linear activation and layer normalization.
In contrast to these two-party systems, STIP adopts a three-
party threat model and employs a semi-symmetrical permuta-
tion scheme for protection instead of cryptographic primitives.
Confidential computing. Confidential computing has
emerged as a critical paradigm for ensuring the privacy
of model inference. Secure enclaves, such as Intel SGX
and ARM TrustZone, enable secure processing by isolating
sensitive computations from the rest of the system. Apple’s
private cloud compute [33] solution ensures that user data
remains inaccessible even to the cloud provider during model
execution. In these approaches, the calculation between
parameters and data is executed in TEE in plain text. Our
STIP is different from this, the computation happens on
transformed data and parameters, so no additional hardware
trust is required.

VIII. CONCLUSION

In this paper, we studied privacy concerns in Transformer in-
ference. We proposed a three-party threat model and presented
the design of STIP, a privacy-preserving transformer inference
system based on our semi-symmetrical permutation scheme.
Theoretical analysis and experiments in real-world production
environment evaluated STIP’s practical privacy protection,
accuracy lossless, scalability and computational efficiency.
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APPENDIX

Appendices are supporting material that has not been peer-
reviewed.

A. Proofs

Proof of Theorem 1:

Fy (xm)ml = Fp(x).

Proof. First, since the calculation of non-linear activa-
tion is element-wise, they are permutation equivalent, i.e.,
ReLU(x7)=ReLU(z)m and SoftMax (z7)=SoftMax (z)m.
Next, we prove that:

LayerNorm(z; ym, f7) =LayerNorm(z; v, 8) 7.
The LayerNorm function is defined for z € R"*¢ by

LayerNorm(z;~, 3) = v o T He B, v,B€RY
o

x
where o denotes the Hadamard (element-wise) product oper-
ator. Since u, and o, are computed by rows, p,. = p, and
O4xn = 0. Therefore,

LayerNorm(z; yr, 57) =t

T o + B

x

T — Mg
(o 2=t 14)
Ox

= LayerNorm(z;~, 8)7.

Then, since Vr, 7wl = I:

/ T
Q =axnr Wymi1 = aWymi1 = Qmiq,
/
K = :U7T7rTWk7ri,1 =aWymi1 = Kmy 1,
V' = annt Wymi o = 2Wymio = Vg,

Q/K/T
Vk

T 1T
Qﬂ—i,l'ﬁi,lK

Vi

KT
= SoftMax ( + M) VW, = um,
vk

u' = SoftMax ( + M) Vil oW

= SoftMax + M | Vram],Wor

v" = LayerNorm(u' + x7m; 71, 37)
= LayerNorm(um + am; y17, 517)
= LayerNorm((u + z)m; v17, Sim) = v,
z' = ReLU(v'W{)W3 = ReLU(UWWTW”riﬁ)WiTBWQW
= ReLU(vW; )War = zm,
y" = LayerNorm(2' + v'; %, 35)
= LayerNorm(z7 + vm; yorr, B27)
= LayerNorm((z + v)m; v, Bom) = ym,
o =y W = yrrt Wer, = ore.

T /T T

Therefore, Fy(xm)r. = o'n, = omem, = 0= Fyp(z). O

Proof of Theorem 2:

o Fy rpp(arT)rl = Fa(x).



Proof. First, we prove that LayerNorm eliminates the linear Proof. From the proof of Theorem.1, we can see the permu-

transformation caused by «: tation equivalence property holds for the self-attention sub-
block, i.e., Attn(zw) = Attn(x)m. So

LayerNorm(«x) = LayerNorm(x).

/

v" = Attn(LayerNorm'(z7)) + o7

Since « performs a linear transformation on each row, the = Attn(LayerNorm(z)m) + x7
mean and standard deviation calculated for each row also = Attn(LayerNorm(x))m + xm
retain the linear transformation, that is, po, = ap, and = (Attn(LayerNorm(z)) + )7 = v,

Oz = ao,. Therefore: y/ _ ReLU(LayerNorm'(v’)Wl/)Wé o

= ReLU(LayerNorm' (vr)7” Wy 3)m] s Wor + vmr

. _ T — Oy
LayerNorm(az; 7, f) = v o o, +8 = (ReLU(LayerNorm(v)W1)Ws + v)7 = ym,
T — g
= (7 - + 5) where LayerNorm’ denotes layer normalization with trans-

formed parameters.

Therefore, Fj(zm)ml = Fy(z) still holds.

For TEE integration, the feedforward sub-block takes av’
as the input. Therefore:

= LayerNorm(x;~, §).
Then, since aa~! = I,7x? = I, by reusing the notations
used in the proof of Theorem 1, the inference process of a

Transformer model with TEE integration is as follows: y" = aReLU(a *aLayerNorm' (a0’ )W )W} + av’

= a(ReLU(LayerNorm(v)W1)Wy 4+ v)m = aym,
QN = aIWqu‘,l = an, ( ( Y ( ) 1) 2 )

K" = azWym; 1 = aK’, Therefore, theorem 2 still holds. O

V" = oaxWym; o = aV’,

a—lQ//K//T(aT)—l
VE

Proof of RMSNorm.

u” = aSoftMax ( + M) o 'V n W

Proof. The RMSNorm function is defined for z € R"*? by

100" K'ToT (oT) 1
= aSoftMax (a aQ o (o) + M) a laVW,r T 4
vk RMSNorm(z;7y) =70 ——, v € R%,
K" SIS 2
= aSoftMax (Q\/E + M) VW w2 T
— oun where o denotes the Hadamard (element-wise) product oper-
v_p 7N " o ator. Since Y, x? is computed by rows, Y, (zm)? = >, 22
v"" = LayerNorm(u" + axm;~1, 81) Therefore,
= LayerNorm(aur + axm; 17, f17) -
= LayerNorm((u + x)m;y17, B17) RMSNorm(z7; ym) = ym o NIy
—un w 2ilam);
2" = ReLUW'W{)W4 = zm, x
= 0O —
" = LayerNorm(z" + v"; 5, 35) ! A a2 "
= LayerNorm(zm + vm; avyem, afSam) t

= RMSNorm(z; ).
= aLayerNorm((z + v)m; yomr, Bam)

= aym, O

o =y'W! = ayrr? Wer, = aon,. )
Proof of SwiGLU feedforward.

Therefore, .
Proof. By definition,
a1 Fy (axm)nl = a taor.wl =0 = Fy(x) / — 'Siomoi / /
' TEE c Te olT). FFNgyigLu (@) = (xn W1 Sigmoid(xn W1 )xnWs3)W,
That is. after i  TEE. the orisinal inf | = (zrn? W, Sigmoid(zrm? Wy )amr? Wam, 3)nl s War
at is, after integrating , the original inference results B L '
can still be restored equivalently. 0O = (zW1Sigmoid(z W1 )z Ws)War
= FFNsWiGLU(JU)TF.

Proof of Pre-LayerNorm. O
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B. Parameter Transformation Code Example

Below we give a parameter transformation code for the Hug-
gingFace implementation of the GPT2 model using PyTorch.

( )

import torch

import numpy as np

def permute_ gpt2(model p, p_out):
for name, para in model.transformer.
named. parameters()

t = name. spllt(" ")
if £[0] in ["wto "wpe"]:
contin

if t[0]. startsw1th("ln"):
para.data = para.datal[p]

. continue

if t[2]. startsw1th("ln"):

para.data = para.datalpl]
if t[3]=="c_ attn" and t[-1]=="weight":
para.data = para. data[p]
if t[2]=="attn" and t[3]=="c_proj":
if t[- l]——"welght"‘
para.data = para.datal:, p]
if ¢t l]=="b1as":
para.data = para.datalp]
if t[3]=="c_ fc" and t[ 1]*7"wel ht":
para.data = para. datal(p
f t[2]=="mlp" and t[3]=="c_proj"
1f t[-1]=="weight":
para.data = para.datal:, pl
if t[-1]1=="bias":

para.data = para.datalp]
for name, para in model.lm_head.
named_parameters () :
if name=="weight":
para.data = para.datal[p_out][:, p]
return model

if name__=="__main_ ":
“from transformers 1mport GPT2LMHeadModel
BMODEL = /0%
= JUZLO

p = np.random.permutation (DMODEL)

p_out = .random.permutation (DOUT)

model = GPT2LMHeadModel.from pretrained("gpt2/
x = torch.from_numpy (np.random.rand(l, 1,
DMODEL) ) . float()

X_new = X[

1%

with torch no rad()
y = model(lnputs embeds=x)
m_new = permute_gpt2(model, p, p_out)
y_new = m new(lnputs embeds X_new)
_pout = y[ :, p_out
abs_diff = np abs (y_new - y_pout).sum()
print ("abs_diff=", abs_dif¥)

. J

Our implementation does not need to perform matrix mul-
tiplication but only needs to perform re-index operations
to achieve the permutation operations, so it is very effi-
cient. Note that for code simplicity, we have omitted the
{mi1,mi2,m 3 |i € [L]} transformations and only kept the
transformations of 7 and 7.



