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Abstract—Blockchain auction plays an important role in the
price discovery of digital assets (e.g. NFTs). However, despite
their importance, implementing auctions directly on blockchains
such as Ethereum incurs scalability issues. In particular, the
on-chain transactions scale poorly with the number of bidders,
leading to network congestion, increased transaction fees, and
slower transaction confirmation time. This lack of scalability
significantly hampers the ability of the system to handle large-
scale, high-speed auctions that are common in today’s economy.

In this work, we build a protocol where an auctioneer can con-
duct sealed bid auctions that run entirely off-chain when parties
behave honestly, and in the event that & bidders deviate (e.g., do
not open their sealed bid) from an n-party auction protocol, then
the on-chain complexity is only O(k). This improves over existing
solutions that require O(n) on-chain complexity, even if a single
bidder deviates from the protocol. In the event of a malicious
auctioneer, our protocol still guarantees that the auction will
successfully terminate. We implement our protocol and show that
it offers significant efficiency improvements compared to existing
on-chain solutions. Our use of zkSnark to achieve scalability also
ensures that the on-chain contract and other participants do not
learn anything about the bidders’ identities and their respective
bids, except for the winner and the winning bid amount.

I. INTRODUCTION

In an online auction, sellers advertise the sale of arbitrary
assets and buyers can place bids as the price they are willing
to pay for such assets. Online auctions are widely used in the
current world economy, moving billions of dollars in exchange
for goods and services [[1]], [2]]. However, online auctions rely
on the trustworthiness of the auctioneer to correctly run the
auction. Blockchains with smart contract capabilities (e.g.,
Ethereum) have lately been leveraged to add transparency to
the process: The auction’s logic can be implemented as a smart
contract that, when deployed on the blockchain, is in charge
of (i) receiving the asset from the seller; (ii) receiving bids
while the bidding interval is open; (iii) after the bid interval
is closed, selecting the winning bid according to the type of
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auction (e.g., highest bid in first price sealed bid auctions);
and (iv) transferring the winning bid to the seller whereas the
corresponding bidder obtains the auctioned asset.

Although blockchain-based auctions are a promising al-
ternative to online auctions, there are several obstacles to
ensuring the security and privacy of the participants. Apart
from correctness (i.e., seller gets highest bid while corre-
sponding bidder gets the auctioned good), a bidder should not
know other bids before committing to its own (bid privacy).
Moreover, from the security point of view, bidders should
not be able to change their committed bids (bid binding)
whereas the auctioneer should not be able to give undue
advantage to malicious bidders (non-malleability). The auction
should terminate even in the presence of malicious participants
(liveness), that must get penalized if they deviate from the
protocol (financial fairness). Finally, for practicality, bidders
should not need to interact with each other (non-interactivity)
and the overall on-chain cos should not depend on the
number of bidders, in the optimistic case (efficiency).

Simultaneously achieving the aforementioned properties is
challenging. For instance, correctness requires comparison
across all bids to determine the winning one, while privacy
mandates that the actual bid values remain hidden from
bidders and blockchain observers. An off-the-shelf multi-party
protocol among bidders to compute the auction functionality
while preserving the required privacy guarantees would violate
the non-interactivity requirement.

In addition to security and privacy, scalability is an effi-
ciency requirement of utmost importance. Transaction pro-
cessing in decentralized blockchains is highly limited to few
transactions per second, and doing intensive cryptographic
operations on-chain (such as commit and reveal for sealed
bid auctions) are likely to be very expensive and impractical.
Ideally, one would want the entire auction to be conducted
off-chain (excluding the asset transfer from seller to winning
bidder). However, doing so would sacrifice transparency since

'We distinguish between on-chain costs (gas fees for blockchain transac-
tions, bounded by block limits) and off-chain costs (computation/communi-
cation outside blockchain, essentially cheap). The bottleneck is on-chain cost
due to limited block space and high fees.



a malicious auctioneer can violate, for e.g., auction correct-
ness, and get away with it.

QOur System in a Nutshell. We designed a robust system
where an auctioneer coordinates the communication between
bidders and the smart contract. The auctioneer is considered
fully malicious for security properties: it cannot steal users’
funds or abort the auction without being punished financially.
Moreover, our protocol offers bid privacy, that is, bids are
hidden even from the auctioneer during the bidding phase.
Finally, in the optimistic case, where the auctioneer does
not deviate, our protocol also offers post-auction privacy.
This property is an improvement over existing online bidding
protocols, such as eBay [3] or OpenSea [4], which have
no privacy since bid information (e.g., bid amounts, bidder
addresses, and the bid history) is always publicly visible.

In the presence of such an auctioneer, our system is designed
in stages as follows. First, at the creation stage, the seller
agrees on the auction parameters and the auction good (e.g.,
an NFT) with the auctioneer. The auctioneer establishes the
auction by deploying a smart contract in the blockchain with
the mentioned auction setup information. This information
includes the collateral amount the auctioneer commits to pay if
the auction fails. Second, during the bidding stage, each bidder
commits the fully sealed (even to the eyes of the auctioneer)
bid to the auctioneer. During this stage, both parties agree
on a collateral amount that will be forfeited if either party
misbehaves. At the end of this stage, each bidder gets a bid’s
inclusion confirmation from the auctioneer, who in turn pushes
the list of bids to the contract in an accumulated form for
efficiency. Fixing the set of fully sealed bids at this point helps
to achieve bid binding and bid privacy. After the bid interval is
finished, the opening stage permits two actions from bidders:
Either a bidder opens their sealed bid to the auctioneer if it
was included in the contract in the previous step; or a bidder
challenges the auctioneer about the lack of their sealed bid in
the contract. In the former case, the auction enters the settle
stage, which we overview later. In the latter case, the contract’s
logic is such that it can deterministically decide the cheating
party and financially punish them. This functionality helps to
achieve financial fairness.

During the final stage, called settle stage, the auctioneer
interacts with the smart contract to indicate the winning bid
along with a (zero-knowledge) proof attesting the veracity of
the winning conditions (e.g., the winning bid indeed is the one
with the highest value in a first price sealed bid auction). The
auction ends with the bid being transferred to the winning
bidder, who in turns gets the auctioned asset, whereas the
rest of the bidders get refunded. The system ensures auction
correctness and maintains non-interactivity among bidders.
Our Contributions. In this work, we propose the first scalable
system capable of handling sealed-bid auctions with over
1,000 bidders. We build a protocol where an auctioneer can
conduct sealed bid auctions that run entirely off-chain when
parties behave honestly, and in the event that k bidders deviate
(e.g., do not open their sealed bid) from an n-party auction
protocol, then the on-chain complexity is only O(k). This

improves over existing solutions that require O(n) on-chain
complexity even if a single bidder deviates from the protocol
(see Section [II).

Our implementation, deployed on a private EVM chain
using Hyperledger Besu, demonstrates strong scalability. We
evaluated our protocol against three baseline approaches: (i)
naive on-chain auctions, (ii) off-chain auctions without zk-
SNARKS, and (iii) Riggs-TC (CCS’23), the current state-of-
the-art in on-chain auctions [5]. Our protocol is the only
solution that successfully scales beyond 1,024 bidders on
Ethereum, while Riggs-TC reaches the block gas limit with
just 20 bidders. Moreover, the use of zkSnark ensures that the
on-chain contract and other participants do not acquire any
information about the bidders’ identities and their respective
bids, except for the winner and the winning bid amount. Fi-
nally, we analyze our protocol in the Universal Composability
framework. We provide an ideal functionality modeling of
the auction and show that, under the right assumptions, our
protocol achieves UC security. Also, we use game-theoretic
analysis to demonstrate that our protocol is robust against
rational participants.

II. RELATED WORK

On-chain Auction. Sealed bid auctions can be imple-
mented directly on Layer-1 as in [6]-[19]. The auction
contract will accept sealed bids until a certain deadline,
registrationDeadline. Following this, and until an-
other deadline, auct ionDeadline, the contract accepts the
opening of the sealed bids. After the auctionDeadline has
passed, anyone can invoke the auction contract to perform an
atomic swap of the NFT asset (to the winning bidder) and the
amount corresponding to the highest bid (to the seller).

Note that bidders will be required to post collateral to the
auction contract. The reason for this is two-fold. First, it en-
sures that the bidder has enough money to cover the purchase
of the NFT in case it wins the auctions. Second, this collateral
can also be used to punish bidders who refuse to open their
sealed bids. This is important since otherwise an adversary can
launch the following malleability attack without incurring any
penalty. A malicious user can impersonate multiple bidders
with bids ranging from 1 through maxPrice and then open
only the bid which is one more than the highest honest bid.
Alternatively, a malicious seller can similarly impersonate
multiple bidders and wait to see the highest bid and then decide
whether to open a higher bid or not.

We note that the main drawback of the above solution is
that its on-chain complexity is proportional to the number
of bidders (who have to submit their sealed bids and the
corresponding openings), even if all parties are honest.
Using State Channels. To minimize on-chain complexity, one
could use state channels [20]—[25] to implement the auction
off-chain. Parties off-chain decide on the contract source code
of the auction contract and the salt that they are going to use to
deploy the auction contract via the CREATE?2 opcodeE] Note

Zhttps://legacy.ethgasstation.info/blog/what-is-create2/
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TABLE I: On-chain complexity comparison with other works. Here n denotes the number of bidders.

Auction Protocol

\ All participants are honest \ k bidders deviate \ Malicious Auctioneer \ Privacy

On-chain Auction O(n)
State Channels O(1)
Auction on (zk)-rollup O(n)
Ours O(1)

O(n) n/a No
O(n) n/a No
O(n) n/a No
O(k) O(n) Yes

that the contract is not deployed yet, but when deployed, it
will be created at a deterministic address thanks to CREATE2.
Now, parties exchange transactions to the auction contract and
attain consensus off-chain on these. If all parties behave hon-
estly, then the only on-chain footprint of the auction execution
is the exchange of the NFT to the winning bidder. However, if
some party misbehaves, then the auction contract is deployed
on-chain, and all the transactions that were exchanged off-
chain are then played back on-chain. There are many subtle
details that we omit here, but the key takeaway is that even if
one bidder misbehaves, the entire auction needs to be carried
out on-chain. Thus, the worst case on-chain complexity in this
case is O(n), where n denotes the number of bidders.

Using Rollups. A natural Layer-2 solution would be to “roll
up” the straw man solution (either in an optimistic rollup
or a ZK rollup) [26]-[28]. However, in such solutions, a
malicious sequencer can deny an honest bidder from open-
ing its commitment. This would result in the honest bidder
losing its collateral. The only way to avoid honest bidders
from losing money would be to continue the execution (i.e.,
dispute resolution) on Layer-1, however, this would result in a
worst-case O(n) on-chain complexity. Note that in optimistic
and ZK rollups, rolling up the solution still results in on-
chain complexity O(n) even in the optimistic case, since the
transaction data is dependent on n.

Existing Off-chain Solutions May Still Require O(n) On-
chain Cost. While existing off-chain approaches like state
channels and rollups reduce computational overhead, they
fundamentally fail to achieve true scalability due to their
dispute resolution mechanisms. State channels require posting
all channel states on-chain during disputes, for a 1,000-
bidder auction, even a single malicious participant forces
all 1,000 bidder interactions on-chain. Rollups must post
complete transaction data on-chain for verification, resulting in
O(n) data availability costs regardless of dispute scenarios. In
contrast, our protocol achieves O(k) on-chain complexity by
isolating only the £ misbehaving bidders’ actions on-chain,
while honest bidders remain entirely off-chain. This design
difference enables practical auctions with 1,000+ participants
where existing solutions reach prohibitive gas costs.
Non-sealed Bid Auctions. Typical NFT sales, e.g., via
OpenSea [4], are conducted through non-sealed bid English
auctions directly on Layer-1. This has the advantage that the
seller does not need to set a max bid price, and the NFT could
be sold potentially for a large sum of money. On the other
hand, not conducting a sealed bid auction opens up various
attack vectors, such as insider trading. Since bidders can
submit bids multiple times, this also increases the total amount

of on-chain activity during auction time, thereby increasing the
gas price for regular users (not participating in the auction).
Other Blockchain Auctions. Ethereum Name Service
(ENS) [29]], which allows users to register human-readable
domain names that can be used to interact with Ethereum
contracts, uses auctions to auction off newly released domain
names to the highest bidder. Typical DeFi protocols often use
auctions to determine the price of assets or to distribute tokens
to users. For example, in a liquidity auction, users can bid on
the price of an asset, and the protocol will use the bids to
determine the asset’s price. In a token distribution auction,
users can bid on tokens, and the protocol will distribute the
tokens to the highest bidders.

Our work: Using a Programmable Payment Channel.
Our approach relies on a new notion called programmable
payment channel (PPC) [30], which can facilitate any off-chain
computations between two participants sharing a channel. In
this work, we assume there is an untrusted hub that has a PPC
with each participant. In the scenarios when all participants
act honestly, our design can achieve an O(1) on-chain cost,
similar to the efficiency of state channels. However, diverg-
ing from multiparty state channels, our protocol leverages
pairwise state channels (implemented via PPC) to decrease
on-chain disputes, making such interventions primarily nec-
essary only when dealing with malicious parties. Moreover,
our construction embeds sealed bids within a Merkle tree
to optimize on-chain storage costs. However, this approach
has a drawback. Should bidders diverge from the expected
behavior, removing their bids comes at a computational cost.
Specifically, if &k bidders deviate, the system requires O(k)
operations to exclude these participants. Nevertheless, this is
still more efficient compared to other existing alternatives.
As our system does depend on an untrusted auctioneer, a
malicious auctioneer could induce O(n) on-chain complexity
if they decline to collaborate. However, there is an asymmetry
concerning on-chain tasks that deters such actions. This is
because the auctioneer would be compelled to engage in a
challenge-response mechanism with n other bidders.
Comparison with Rigg [S]. Tyagi et al. [5] proposed an
on-chain auction protocol, Rigg, designed to finalize auctions
even when up to n — 1 bidders collude. This is enabled by
timed commitments for sealed bids, allowing honest users to
open bids if dishonest ones refuse to. Although the protocol
is theoretically sound, practical implementation on platforms
like Ethereum faces significant challenges in terms of gas cost
and fairness. Firstly, the gas costs associated with the Rigg
protocol are deemed prohibitive. Rigg requires extensive non-
interactive zero-knowledge verification throughout all stages



(bid collection, bid forced opening), resulting in gas costs
ranging from 1.9m to 4m per user (c.f. Section [VI). This
cost is substantially higher than that of simpler on-chain
auctions. Secondly, the effectiveness of the forced opening
mechanism on blockchain systems is questionable. This con-
cept relies on honest users solving timed commitments to
open dishonest users’ bids and earn collateral that is locked.
However, these users face the risk of being front-run during
transaction submission, potentially leading to the theft of their
rewards by others who did not solve the required puzzles.
Additionally, similar to optimistic rollups, Rigg encounters an
inherent incentive challenge. Honest users may find themselves
performing computations without compensation if bidders
decide to open their bids. In contrast, our approach utilizes an
untrusted hub for conducting auctions, necessitating minimal
on-chain dispute resolution, primarily when confronting ma-
licious parties. Consequently, our construction eliminates the
need for costly on-chain NIZK verifications at various auction
stages as well as costly off-chain proof generations for all
parties.

III. PRELIMINARIES
A. Cryptographic Building Blocks

Notation. We denote by 1* the security parameter and by
negl()\) a negligible function in A. We express a pair of
public and private keys by (pk, sk). We use Zx,, to denote the
set of integers that are greater or equal to a, {a,a + 1,...}.
We let PPT denote probabilistic polynomial time. We use [k]
to denote the set, {1,...,k} We use a shaded area i, j, k to
denote the private inputs in the relation st : {(a, b, c;i,7, k) :
fla,b,c,i,j,k) = “True”}. We use stla,b,c...] to denote
those fixed and public values of an instance of the relation st.
Collision-Resistant Hash Functions. A family H of hash
functions is collision-resistant, iff for all PPT A given h i H,
the probability that A finds z,z’, such that h(x) = h(z')
is negligible. We refer to the cryptographic hash function h
as a fixed function, h : {0,1}* — {0,1}*. For the formal
definitions of the cryptographic hash function family, we refer
the reader to [31].

Digital Signature. A cryptographic digital signature allows
the verification of the authenticity and integrity of a digital
message or transaction.

Definition 1 (Digital Signature). A digital signature scheme,
33, with a message space M and a signature space, S consists
of three algorithms:

o (sk,vk) < KeyGen(1*): The probabilistic generation algo-
rithm takes as input the security parameter and outputs a
pair (sk,vk) of secret key and verification key.

e 0 < Sign(m,sk) for any m € M: takes as input a private
key sk and a message m from the message space M and
outputs a signature ¢ in the signature space S.

e 0/1 < SigVerify(o,m,vk) takes as input a public key vk,
a message m, and a signature o, and outputs the validity of
the signature, b € {0,1}.

We require the signature scheme ¥ to satisfy the correct-

ness and the existential unforgeability properties of a digital
signature scheme.
Commitment Scheme. A commitment scheme allows an
entity to commit to a value while keeping it hidden, with the
option of later revealing the value. A commitment scheme
contains two rounds: committing and revealing. During the
committing round, a client commits to selected values while
concealing them from others. During the revealing round, the
client can choose to reveal the committed value.

Definition 2 (Commitment Scheme). A commitment scheme
consists of two algorithms:

e €M < P.on(m, r) takes a message m and a secret random-
ness r as inputs and returns the commitment cm.

e 0/1 < Veon(m, 7, cm) accepts a message m, a commitment
cm and a decommitment value r as inputs, and returns 1 if
the commitment is opened correctly and 0 otherwise.

A commitment scheme should satisfy the properties of
hiding, binding, non-malleable, and non-interactive. For the
formal definitions of these properties, we refer readers to [32].
zkSnark. A zero-knowledge Succinct Non-interactive ARgu-
ment of Knowledge (zkSnark) is a “succinct” non-interactive
zero-knowledge proofs (NIZK) for arithmetic circuit satis-
fiability. For a field F, an arithmetic circuit C' takes as
inputs elements in F and outputs elements in F. We adopt a
similar definition from Zerocash [33| to define the arithmetic
circuit satisfiability problem. An arithmetic circuit satisfiability
problem of a circuit C' : F* x F" — F! is captured by the
relation stc : {(z,wit) € F* x F" : C(x,wit) = 0'}, with the
language Lo = {z € F" | 3 wit € F! 5.t C(x,wit) = 0'}.

Definition 3 (zkSnark [33[]). A zero-knowledge Succinct
Non-interactive ARgument of Knowledge for arithmetic (zk-
Snark) circuit satisfiability is a triple of efficient algorithms
(Setup, Prove, Verify):

o (ek,vk) < Setup(1*, C) takes as input the security param-
eter and the arithmetic circuit C, outputs an evaluation key
ek, and a verification key vk.

e m « Prove(ek,x,wit) takes as input the evaluation key
ek and (x,wit) € R¢, outputs a proof 7 for the statement
x € Lo

e 0/1 + Verify(vk,z, ) takes as input the verification key
vk, the public input z, the proof, 7, outputs 1 if = is valid
proof for x € L¢.

A zkSnark requires Correctness, Soundness,
knowledge, and Simulation Extractability properties.
Merkle Tree. In this work, we are interested in the Merkle
tree as an authenticated data structure for set membership.

Definition 4 (Merkle Tree [34]). A Merkle tree is an authenti-
cated data structure using a collision-resistant hash function h.
A Merkle tree consists of four algorithms that work as follows:

Zero-

e root < Init(1*, X) takes the security parameter and a list
X = (x1,...,x,) as inputs and outputs a root, root.
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Fig. 1: An overview of creating and executing promises in
PPC. Step (2a) indicates the optimistic path, while step (2b)
indicates a pessimistic path where an on-chain resolution is
needed.

e path; < Prove(i,z, X) takes an element z € {0,1}*,1 <
i <nand X = (z1,...,2,) as inputs, and outputs the
proof path;, a list of internal nodes inside the tree, that can
be used to recompute the root.

e 0/1 < Verify(i,x;,root, path;) takes an element, z; €
{0,1}*, an index 1 < i < n,root € {0,1}* and a proof
path as inputs. The algorithm outputs 1 if path is correctly
verified and 0 otherwise. The verification time is logarithmic
in the size of the list X.

e root’ < Update(i,z, X) takes an element x € {0,1}*,1 <
i <mn and X as inputs, and outputs root’ = Init(1*, X')
where X' is X but x; € X is replaced by z.

A Merkle tree should satisfy the properties of correctness
and security. For the formal definitions of these properties,
we refer to the cryptography introduction book of Boneh and
Shoup [34].

Efficient Replace. The update algorithm described previously

needs the entire set X to be able to recalculate the root. Nev-

ertheless, it is feasible to update the root without knowing the

entire set. Specifically, we can update the root in O(log(] X))

operations using only the information about the membership

of the node that one wants to replace and the current root. This
update will allow an efficient on-chain update of the Merkle
tree.

e root’/ L < Replace(i,x, root, path;, 2’): takes as input the
index ¢, the old element z and its membership proof path;,,
and the new element, 2’ that we want to put in the i-th
position. The algorithm verifies the membership of both
x in the old root using path,, abort otherwise. Once the
verification returns 1, it recomputes the root root’ using z’
and path,.

In our protocol, this allows us to maintain the auction
protocol’s continuity, even if certain bidders decline to disclose
their bids. Furthermore, since the depth, d, of the Merkle tree
sets the maximum number of bidders that can participate (i.e.,

24 ) we can fix this number before the auction begins and
treat the cost of replacement as O(1).

B. Programmable Payment Channel (PPC) and State Channel

Programmable Payment Channel (PPC). A PPC [30] is
a payment channel between Alice and Bob where either
user (e.g., Alice) can authorize a promise for a one-way
payment to the counterparty (e.g., Bob) conditioned on the
logic of a program (code). In the case that Alice issues the
promise, Bob can redeem such promise either optimistically
or pessimistically. In the optimistic path, the contract logic is
correctly executed off-chain and in the end, Alice provides
Bob with a receipt that credits Bob’s balance by the promised
amount. In the pessimistic path (e.g., Alice is unresponsive),
Bob can unilaterally execute the promise’s program on-chain
and claim the promise’s balance. Several promises can be
created and executed (off-chain) during the lifetime of the PPC
for one-way payments from Alice to Bob and vice versa.
2-Party State Channel from PPC. In order to execute
an arbitrary two-party smart contract off-chain (i.e., sharing
a state channel), PPC must enable both parties to issue
two interlocked promises that together encompass the smart
contract’s logic. The concept of interlocked promises means
that the state and logic of Alice’s promise can depend on
the state and logic of another promise from Bob, and vice
versa. Interlocked promises enable any party to claim the
payment amount associated to both promises if the other
party misbehaves. This mechanism thereby encourages both
parties to adhere to the rules and minimizes the potential
for disputes. In summary, PPC can be used to fully realize
off-chain state channels as shown in [30]], allowing any two
parties to execute arbitrary smart contracts off-chain. Next we
abstract the concept of interlocked promises, called covenant,
and illustrate it in Fig. |1 We refer to [30] for an explanation
of how to compile any two-party covenant contract into two
interlocked promises. For completeness, we refer the detailed
construction of PPC supporting covenants to the full version
of this paper [35].

IV. BUILDING OFF-CHAIN AUCTION FROM PPC: AN
OVERVIEW

A. An Overview of Our Solution: Auction protocol from PPC

System Model. The system consists of an untrusted hub, hub,
a set R of registered users and a blockchain £ supporting
smart contracts. We assume that a PPC exists between hub and
each u € R, thereby following the hub-and-spoke model. In
our system, any registered user can register as a bidder or as a
seller in any auction. The hub acts as the auctioneer. We denote
the set of bidders to be B = {biddery, ..., bidder,} C R, and
define the seller to be seller € R.

Threat Model. We separate our assumptions into crypto-
graphic and economic categories: (i) Cryptographic Assump-
tions: We assume that the cryptographic primitives (cf[II)
are secure. Adversaries are computationally bounded. (ii)
Economic Assumptions: Participants are rational actors who
seek to maximize their utility and will not perform actions that
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actions. The dispute settlement between Seller and Hub is identical to the dispute settlement between seller and bidder.

result in net financial loss. The collateral amounts (maxBid)
are sufficiently large to disincentivize malicious behavior, and
gas costs for dispute resolution are non-negligible but much
smaller than collateral penalties. We assume the blockchain
operates as a secure bulletin board that ensures transaction
ordering and finality.

Auction Contract Overview. Our auction contract con-
sists of four primary functions: Start, SubmitSealedBids,
RevealWinner, DeclareFailed. The auction contract it-
self advances through various stages: Bidding, Opening, Re-
buttal, Settle, and Completed. The purposes of these func-
tions are relatively self-explanatory. The Start function can
only be invoked by the hub to initiate the auction. The
SubmitSealedBids function can only be triggered by the
hub to submit a succinct Merkle root value representing all
submitted sealed bids. The RevealWinner takes as input the
winning bid and the zkSnark proof from the hub, proving that
the submitted amount is indeed the highest bid. Additionally,
the RevealWinner function removes all unopened bids before
verifying the zkSnark proof. If the auction fails due to the
hub’s failure to invoke any of the previously described func-
tions, the seller retains the option to call the DeclareFailed
function to reclaim the auctioned item, such as an NFT.

Seller and Hub: Create the Auction. The seller and hub agree
on the parameters (e.g., maximum bid amount and item) of
the auction and ensure that the seller will receive a payment
or get the NFT back. After reaching an agreement, the hub
deploys the auction contract (C,yction) containing all agreed-
upon parameters. Once the auction contract is deployed, hub
and seller have to agree on the details of the covenant contract
CHscovenant- The Chscovenant €nforces two possible outcomes
of the auction for the seller: (i) If the auction fails, hub will

pay the maximum bid amount to the selleﬂ; (ii) If there is a
winner, hub will send the seller the amount specified in the
sealed bid previously submitted by the winning bidder. Once
both the seller and hub agree on this contract (CHscovenant)s
they will agree on a covenant based on such a contract. Once a
valid covenant is obtained, the hub starts the auction via an on-
chain call that triggers the transfer of the NFT to the auction
contract address, effectively placing the NFT in custody for
the auction’s duration. This action marks the completion of
the creation stage.

Bidders and Hub: Bidding, Opening and Rebuttal. The
Bidding stage is divided into two phases: (1) bidders submit
their sealed bids to the hub; and (2) the hub accumulates
all the bids and submits them to the auction contract. To do
this, hub and bidders have to agree on the covenant contract,
CHBCovenant, Whose logic enforces the different parties to
follow the protocol: (i) The hub must include the sealed bid
in the accumulated bids and provide an inclusion proof for it;
(ii) If a bidder does not open their sealed bid, they will be
penalized with an amount agreed in the promise; (iii) If the
bidder is the winner, she will pay the amount committed in
the sealed bid.

Once both parties agree on the covenant contract, they
obtain the agreed covenant by both signing on the contract
detail and its parameters. During the Opening stage, either Hub
or Bidder can challenge the other party, if they misbehave (i.e.,
do not provide an inclusion proof or do not open a sealed bid).
When challenged, either party can respond to the challenge
during the Rebuttal stage via on-chain function calls.
Bidders, Seller, Hub: Settling the Auction. At the end of the
auction, after the hub announces the winner, the auction winner

3In addition, the seller will get back its auctioned item via the auction
contract (see Fig. [7_(] for details).



will pay the hub the amount that she previously committed in
the sealed bid during the Bidding stage. The rest of bidders
get their bids back. Finally, the seller will either receive a
payment from the winning bidder via the hub or a penalty
from the hub and reclaim the NFT if the auction fails. This
can be done either off-chain during the settle stage or on-chain
during the completed stage.
Fig. 2] gives a high-level overview of our protocol.

B. Desired Properties and Threat Model

Desired Properties. The proposed system should provide the

following properties:

o (P1) Auction Correctness: Our protocol must ensure cor-
rectness by unequivocally designating the highest bidder as
the winner, guaranteeing a seller payout based on the highest
bid amount.

e (P2) Privacy: Our protocol should maintain bid-privacy,
concealing bid amounts of participants until the opening
phase. In an optimistic scenario without on-chain challenges,
only the winning bid should be disclosed, ensuring post-
auction privacy.

« (P3) Efficiency: For an honest execution of the protocol,
the cost should be lower than alternative solutions outlined
in Section[[I} Specifically, in an optimistic case, our auction
should demand no interactions among bidders (i.e., non-
interactivity). Moreover, we require the on-chain cost to be
independent of the number of bidders.

o (P4) Liveness: Our protocol achieves liveness if it remains
operational even when a fraction of bidders abort the process
or deviate from it.

e (P5) Security: Our auction is secure if it satisfies the
following two properties. Firstly, it must be non-malleable,
preventing a malicious hub from colluding with other
bidders to place bids that depend on the bids of honest
bidders (e.g., hub cannot generate cm’ = Peon(m + 1,7)
from Pcon(m, 7). Secondly, the auction should ensure bid
binding, preventing bidders from altering their bids after
submitting their sealed bids.

« (P6) Financial Fairness: If any participant deviates, they
will be penalized, and honest parties will be refunded.

Threat Model. We assume that the cryptographic primitives
(cf. Section are secure. We consider adversaries to be
computationally bounded. Moreover, we assume the correct
execution of the smart contract on the blockchain. Users are
presumed to have continuous access to read the blockchain
state and write to the blockchain. Furthermore, we assume
that the adversary can always read all transactions issued to
the contract, while the transactions are propagating on the P2P
network, and afterward when they are permanently recorded
on the blockchain.

V. OFF-CHAIN PPC AUCTION CONSTRUCTION

A. Protocol Setup

Prior to initiating the auction protocol, a one-time trusted
setup is necessary to securely generate all the public pa-
rameters required for the cryptographic building blocks. In

Section |VII] we discuss how one can mitigate this trusted
setup. Specifically, the cryptographic building blocks are as
follows.

Cryptographic Parameters. The setup algorithm samples
hash functions hg, : F x F — F from collision-resistant
hash families. ho, will be used to initialize the Merkle
tree used in our auction contract. The hub decides on the
commitment scheme T' = (Pcon, Veon) for the auction protocol.
In our auction, the sealed bid amount will be computed as
bid = Pon(amt;r). In the beginning, the auction contract
stores the root of a Merkle tree, rooty; 4s, initialized from a
list of empty leaves and the collision-resistant hash function,
hap. When a bidder makes a bid, the corresponding leaf of
this Merkle tree will be computed as leaf = hoy,(bidder, bid).
Finally, one needs to define the statement for zkSnark. In
our auction protocol, to reveal the winner, the hub needs to
prove the following claims (i) the revealed winner (winner)
participated in the auction during the bidding stage, (ii) the
amount committed by the winner is the highest amount among
all bids. Once the setup (cf. Fig. 3) is finished, Hub can start
sharing the cryptographic parameters, params., ..., with all
participants.

B. Auction Protocol

Auction Creation (Hub < Seller). Before the auction begins,
the Hub and Seller jointly establish the auction’s parameters
and cryptographic specifications. Once agreed, the Hub de-
ploys the auction contract, Cyyction, ON-chain incorporating
these predefined parameters (cf. Fig. [). Subsequently, a
covenant, as defined in Fig. [5] is established to ensure either a
payout to the seller or reimbursement in the event of an auction
failure. With the covenant in place, the Seller authorizes the
auction contract to facilitate the transfer of the auction item,
allowing the Hub to start the auction. This action signals
the start of the bidding and associated stages, as visually
represented in Fig. [6]

Once the hub starts the auction, bidders can obtain
params.,,... and params,, ..., from Cyyuction and initiate a
protocol with the hub to place bids. This protocol progresses

AuctionSetup(1*)

1: Sample hap : F X F = F

2 : Choose d € Z~o

3: LetX ={x1,...,250} where z; = 0 forall z; € X
4: Let T be a Merkle tree instance parameterized with ha, :

— Run rootyp;gs = T.Init(l*, X),

Let I' = (Pcom, Veom) be @ commitment scheme.

w

6 : Construct Cyinner for the statement described in Eq. E])
7 : Let IT be a zkSnark instance :

— Run (ekyinner, VKuinner) 4= IL.Setup(1®, Cyinner)
8 : Return paramsc,, ., = (F, hop, T, T, 11,

eKyinner VKyinner, 00ty as)

Fig. 3: Auction’s cryptographic parameters setup



Start() /*Hub starts the auction*/

SubmitSealedBids(numBids, rooty;qgs) /#Bidding Stage*/

1: Require msg.sender = hub
2 : Invoke nftAddress.TransferFrom(seller, address(this), tokenlD)
3: Set Tstart < block.time

RevealWinner(amtyinner, winner, 7, UnopenedBids)

1 : Require msg.sender = hub

2 : Require GetStage() = “Bidding” A accSubmitted = “False”
/ if there is 0 bids, require root,;4s to be equal default root

3: if numBids = 0 : Require rooty;qs = rootp:iqs

4: Set (numBids, root,;4s) < (numBids, rooty: g5 )

5: Set accSubmitted < “True”

DeclareFailed() /*Auction Failed*/

1 : Require msg.sender = hub 1: Require GetStage() = “Completed”

2 : if numBids = 0 : Set resultSubmitted <— “True” 2 : if accSubmitted = “False” V resultSubmitted = “False” :

3: else : 3: auctionFailed < “True”

4: Require GetStage() = “Settle” A resultSubmitted = “False” 4 : if auctionFailed V numBids = 0 :

5: Invoke UpdateRoot(UnopenedBids) / Remove unopened bids 5 Invoke nftAddress.TransferFrom(address(this), seller, tokenID)
6: Require:

7: I1.Verify(vKyinner, [FOOtyids, Winner, amtyinner, numBids], ) = 1

8: Set (aMtyinner, winner) <— (amt,inner, winner)

9: Invoke nftAddress.TransferFrom(address(this), winner, tokenlD)

10 : Set resultSubmitted < “True”
GetStage() UpdateRoot(UnopenedBids) /*Remove Unopened Bids*/

1 / Durations = [Thidding, Topening, T rebuttal, T settle]*/ 1: Require msg.sender = hub

2: if Tgar = 0 : return “NotStarted” 2: [(i5, bidder;, bid;, pathj, CHBCovenant -addr, O'j)]jeB/ < UnopenedBids
3 : if block.time < (Tstart + Thidding) : return “Bidding” 3: Foreach j € [k] : / Replace unopened bids with a default value.

4 if block.time < (Tstart + Tbidding + Topening) : return “Opening” / Covenant is authorized

5: if block.time < (Tstart + Thidding + Topening + Trebuttal) : - Require SigVerify(bidder;, Chpcovenant-addr, ;) =1

6 return “Rebuttal” / Hub challenged previously

7 : if block.time < Tstart + > Durations A resultSubmitted = “False” : - Require CHpcovenant-openingChallenged = “True”

8 return “Settle” / Bidder did not open

9: return “Completed” - Require CHpcovenant-openingResolved = “False”

- Compute leaf; ; = hap (bidder;, bid;)
/ remove unopened bid
- rootyiqs «— T.Replace(ij, leaf;, rooty;qs, path;, 0)

- numBids <— numBids — 1

Fig. 4: Auction Contract, C,ct i on initialized with params = (paramscrypto, params
generated during the setup phase (cf. Section [V-A) and params_, . ;on

includes mutually agreed-upon parameters between hub and se
the auction contract.

Resolve() /*Update seller’s balance according to Auction’s outcome*/

1 : Require Auction.GetStage() = “Completed”

2 : if Auction.auctionFailed = “True” : return maxBid
3: return Auction.amtyinner;
Fig. 5: A covenant contract, CHscovenant> between

Hub and Seller, initialized with paramsyscovenant
(maxBid, Cayct ion-addr, salt).

through different stages. In the following, we describe in detail
the interaction between the hub and bidders in each stage.

Bidding (Hub < Bidders). In the first step, the bidder and
the hub define parameters for the Chpcovenant CONtract, with
the bidder registering their sealed bid within these parameters.
Specifically, the bidder selects a bid amount, commits to this
amount. This contract ensures both parties follow the auction

auct ion) Where params_ .  is parameters
(seller, hub, tokenlD, nftAddress, Durations, maxBid)
ller. In the code above, address(this) refers to the address of

Blockchain, £

Seller, S, (skseller) |

‘ NFT Contract I

Creation

(1) Agree on auction parameters
> I
(2) Deploy Auction Contract

Auction Contract

Hub (sknup) | :

(3) Puscovenant ¢ CreateCovenant(Chiscovenant; Params, -)‘

(4) Invoke Approve(Auction, TokenID)
(5) Invoke Start() to start the auction
TransferFrom(Seller, Auction, TokenID)
| — 7

Fig. 6: PPC Auction: Subprotocol between seller and hub.

protocol. Once the hub verifies the logic and parameters and
confirms their validity, they proceed. Then, both the hub and
the bidder produce a covenant from the CHgcovenant CONtract
as defined in Fig. |7} ensuring that the hub will include the
bidder’s bid and provide the inclusion proof, while the bidder



commits to revealing their bid by a specified stage or facing
penalties.

/*Bidder challenges inclusion proof and hub responds*/

ChallengeInclusion()

1: Require:

2 : - inclusionResolved = “True”

3: - msg.sender = bidder;

4: - Auction.GetStage() = “Opening”
5: Set inclusionChallenged < “True”;

RespondInclusion(¢, path;)

Compute leaf; = hap (bidder;, bid;)

Require:

- msg.sender = hub

- Auction.GetStage() € {“Opening”, “Rebuttal”}
- T.Verify(i, leaf;, Auction.rooty; 5, path;) = 1
-4 < numBids

Set inclusionResolved <+ “True”;
/* Huh challenges opening, and bidder responds™*/

\IO\LI\#WN'—

ChallengeOpening(i, path;)

Compute leaf; = hap (bidder;, bid;)

Require:

- msg.sender = hub

- Auction.GetStage() = “Opening”

- T.Verify(i, leaf;, Auction.rooty; 5, path;) = 1

AN U B W N =

Set openingChallenged < “True”
7 :  Set inclusionResolved +— “True”;

RespondOpening(amt;,r;)

Require:

- msg.sender = bidder;

- Auction.GetStage() € {“Opening”, “Rebuttal”}
- Veon(amt,, 7, bid;) =

Set openingResolved +— “True”

L I S A

/*Update bidder’s or hub’s balances*/

Resolve()

1: Require Auction.GetStage() = “Completed”
// punish hub if auction fails

2 : if Auction.auctionFailed = “True” : return (2 - maxBid, 0)
// punish if the hub misbehaves

3 : if inclusionChallenged = “True” A inclusionResolved = “False”

4: return (2 - maxBid, 0)
// punish if the bidder misbehaves

5: if openingChallenged = “True” A openingResolved = “False”

6: return (0, 2 - maxBid)
// update balance if the bidder is the winner

7 . if Auction.winner = bidder :

8: return (maxBid — Auction.amt;nner, maxBid + Auction.amtyinner )
// refund both parties if auction fails

9: return (maxBid, maxBid)

Fig. 7: A covenant contract, CHpcCovenant» between
Hub and Bidder, initialized with paramsygcovenant =
(maxBid, bidder;, hub, C.ycti0n.2ddr, bid;, salt, 0;). Here

Auction = Cyyction-addr.

Opening (Hub < Bidders). After the bidding phase, the
protocol advances to the opening stage. During this phase,

Blockchain, £ ]
‘ PPC |‘0HBCovenan(|

‘ bidder;, (sKpidder,) | ‘ Hub (skhub)l

Auction Contract ||

Bidding Stage --------------------------

(1) Agree on Chpcovenant; ParamSsygcovenant
«— HBCovenanty P TTPH!

‘ Wait for other bidders to bid ‘

‘(2) Piipcovenant < CreateCovenant (Chpcovenant: - - ‘

‘(3) 100ty qe = T.Init (1%, (leafy, ... )‘

(3) Invoke SubmitSealedBids(numBids. ooty as)

--------------------------- —{ Opening Stage |------============--ccuzz"

‘ (4a) Send inclusion proof, (i, path;)

(4b) Challenge (Hub does not send inclusion proot))

Register Phpcovenant ;
i Deploy Chpcovenant
i Bty
Invoke ChallengelInclusion()

Invoke RespondInclusion(i, path,)
pinliehiit ey~

(5a) Send amt;, 7; S.t. Veon(amt;, 77, bid;) = 1 ‘
Sl B YemEhiliptnl]

(5b) Challenge (Bidder does not open))

Register Phpcovenant i

| Deploy Chigcovenant

i — 9

Invoke ChallengeOpening(i, path;)
A G Nl

Invoke RespondOpening(amt;, ;)

--------------------------- —{ Rebuttal R eSS bl

(6) Responds to existing challenges) i

Invoke RespondInclusion(path;)
Invoke RespondOpening(amt;, 7;)

\Sener, s, <skseue,>| \Hub (skhu.,)| i \

Setting  f---m-mmmmmmm e I
‘ (6a) Update channel’s balance ‘
—_— {

----------------------------- Completed  f========mmmmmm )

(6b) Pessimistic Path (Hub does not send recenpt))

Register Pyscovenant

I — N

Invoke Withdraw()

Deploy Chiscovenant |
Invoke Chiscovenant-Resolve()

_—
Updale seller’s balance based on Clyceion
Pl ————

Fig. 9: PPC Auction: Protocols between seller and hub.
Settling stage: step (6a) indicates the optimistic path where
Hub is honest and sends the receipt and step (6b) is when the
hub does not send the receipt

the hub’s responsibility is to provide the inclusion proof to
the bidder, confirming the presence of the bidder’s sealed
bid within the Merkle root. If the hub fails to provide this
proof, the bidder can initiate an on-chain challenge using the
covenant contract (see Fig. [7). Assuming all goes smoothly,
the bidder proceeds to reveal their bid to the hub. However, if
the bidder fails or refuses to disclose their bid, the hub can also
employ the covenant to initiate an on-chain challenge against



the bidder.

Rebuttal (Hub <« Bidders). In the rebuttal stage, both parties
are granted additional time to tackle any challenges that may
have arisen during the opening phase. This phase essentially
functions as a buffer, affording either the hub or the bidder
the opportunity to respond adequately to challenges related to
inclusion proof and bid openings.

Settling (Hub): Announcing Winner. After the rebuttal
stage concludes, the hub must reveal the winner through the
RevealWinner() call of the auction contract. This step is
straightforward if all bidders open their bids. However, if
some bidders refuse to open their bids, the hub will be unable
to generate a zkSnark proof on the existing rooty;ys, as the
zkSnark defined in Eq. (I) requires all bids to be opened. To
ensure the continuity of our protocol, the hub needs to perform
the following operations:

(i) Removing Unopened Bids. The hub must reveal the set of
unopened bids, UnopenedBids, on-chain to update the Merkle
root accordingly. Crucially, to prevent a malicious hub from
actively excluding certain bidders, the hub must provide the
address of the covenant (i.e., Cpcovenant) deployed on-chain
for each unopened bid, along with the bidder’s signature to
prove prior authorization of the covenant address. Once the
auction contract verifies the signature, it checks that the hub
had previously challenged the bidder and received no response
(i.e., openingChallenged = “True” and openingResolved =
“False”). It then updates the Merkle tree root by replacing
the unopened bid with 0.

(ii) Revealing Winner via zkSnark Proof. With all unopened
bids removed, the hub can compute the updated root, rooty; 45,
containing only opened bids, and issue a valid zero-knowledge
proof, m, for the statement described in Eq. . Once the
proof is verified by Cyct10n, Only the winner and the winning
amount will be accepted, and the NFT will be transferred to
the winner. In the event of tied highest bids, our circuit can be
configured to output either the first or the last highest bidder.

Settling (Seller <~ Hub, Hub < Bidders): Updating Chan-
nel Balances Off-chain. During this stage, each pair (hub and
seller, hub and bidder) can honestly update the PPC’s balances
according to the outcome of the auction (in PPC [30]], this
update is done through a signed message named a receipt).
However, if any party refuses to settle off-chain, the other
party can resolve this on-chain in the completed stage.

Settling (Seller <+ Hub, Hub < Bidders): Updating Chan-
nel Balances On-chain. Ideally, the protocol should have
finished after the settled stage, and there should not be any on-
chain action after settlement. However, malicious parties may
refuse to update the channel balances. Hence, the honest party
needs to resolve this during the completed stage by registering
the previously agreed covenant with the PPC contract. Then,
he can settle through the Resolve() function call.

Finally, the protocol’s high-level flow is described in Fig.
and Fig. [0 with detailed description available in Section [A]
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C. Security Analysis

UC Security Analysis. We analyze our protocol in the UC
framework with formal cost-complexity trade-offs. Our formal
theorem is stated in terms of a hybrid world involving hybrid
ideal functionalities Fiedger (modeling the ledger) and Fsc
(modeling a 2-party state channels functionality) and we refer
the reader to [30]] for definitions of these. Recall that [30]
shows how the (pairwise) state channel functionality Fsc can
be emulated via PPC channels. All the formalization and
proofs can be found in the full version of the paper [35]].

Theorem 1. Assume that H is a collision-resistant hash
function, > is a UC-secure digital signature scheme, com
is a UC-secure commitment scheme, and Il is UC-secure
zkSnark. Then, our auction protocol UC-realizes F,yction in the
(Fsc, Fiedger)-hybrid world with the following explicit cost-
adversary trade-offs:

e Honest Hub, Honest Bidders: 4 on-chain calls (Auction
Deployment, Start, SubmitSealedBids, RevealWinner),
with total gas complexity O(1).

e Honest Hub, k Malicious Bidders: 4 + O(k) on-chain
calls (base operations plus k£ covenant deployments, < k
challenge resolutions or potentially < %k bid removals,
and k resolve transactions).

o Malicious Hub: < 4 + O(k) on-chain calls where k
represents censored or excluded bidders, each requiring
covenant deployment and potential dispute resolution.

The O(k) bound includes all mandatory protocol calls and
scales only with misbehaving participants, not total auction
size n.

Game Theoretic Analysis. We analyze our protocol us-
ing established game-theoretic frameworks, specifically ex-
tensive form games with perfect information [36], [37] and
the subgame perfect Nash equilibrium (SPNE) solution con-
cept [36]. This approach follows recent blockchain protocol
analyses [38[], [39]. Our analysis focuses primarily on the
Hub-Bidder interactions, as these encompass the core auction
mechanics, including bidding, inclusion proofs, bid openings,
and associated challenge-response mechanisms, which present
the most significant strategic complexity. While the Hub-Seller
interaction is crucial for the auction setup and final settlement,
its outcomes are directly governed by the pre-established
CHSCovenant, Offering a comparatively simpler strategic space
focused on end states rather than multi-stage auction dynamics
between hub and bidder. We apply backward induction to de-
rive the unique SPNE, demonstrating incentive compatibility.
Due to space constraints, we defer the formal analysis to the
full version of this paper [35].

Theorem 2. Consider the Hub-Bidder auction game derived
from the protocol execution flow in Fig. [[3] modeled as an
extensive form game with perfect information. Let players
be expected utility maximizers with risk-neutral preferences.
Define the following economic parameters:

« maxBid > 0: collateral locked by each participant

o amt € (0, maxBid]: bidder’s true bid amount



o y > 0: aggregate cost of on-chain dispute resolution (gas
fees, opportunity costs)
» Economic rationality condition: maxBid > max(amt, y)

Let ¥* = (0}, 07%) be the strategy profile where:

e Hub strategy o7: Submit sealed bids on-chain
(SubmitSealedBids), provide inclusion  proofs,
reveal winner with valid zkSNARK (RevealWinner)

o Bidder strategy o7 Submit sealed bid, open bid, accept
settlement

Under the economic rationality condition, »* constitutes
the unique Subgame Perfect Nash Equilibrium (SPNE) of the
auction game. Furthermore, this strategy achieves (i) Incentive
Compatibility: Deviations result in collateral loss (maxBid)
plus dispute costs (y), making honest behavior strictly dom-
inant. (ii) Efficiency: The equilibrium path involves zero on-
chain dispute costs (iii) Robustness: The equilibrium is strict
and persists under small perturbations in cost parameters

VI. EVALUATION
A. Parameters and PPC Implementation

Choices of cryptographic primitives. We use Groth’s zk-
Snark [40] due to its efficiency in terms of proofs’ size
and the verifier’s cost. For cryptographic hash functions, we
use Poseidon hash function [41]] for hg,. Arithmetic circuits
using Poseidon hash yield a lower number of constraints and
operations when compared to arithmetic circuits relying on
other hash functions (i.e. SHA-256, Keccak). Moreover, We
use ECDSA for our signature scheme. Finally, the commitment
scheme and the Merkle tree can be directly instantiated using
Poseidon hash functions.

Software. For the arithmetic circuit construction, we use the
Circom library [42] to construct the circuit, Cyinner, described
in Equation (). We use Groth’s zkSnark proof system imple-
mented by the snarkjs library [43]] to perform the trusted
setup for obtaining the proving and evaluation keys during the
auction setup (cf. Fig.[3) and to generate the prover and verifier
programs, as well as to compute the witness. We deploy our
auction protocol to a private PoW EVM chain running on
Hyperledger Besu v23.1.0. Our auction smart contracts consist
of 1156 lines of Solidity code. We also have a Java application
and Python client for the off-chain protocol, which have 8461
and 1528 lines of code, respectively.

Hardware. We conducted our experiments on a MacBook Pro
equipped with a 2.6GHz 6-Core Intel Core i7 and 16 GB of
memory.

Implementation of Programmable Payment Channel
(PPC). We have implemented a Programmable Payment Chan-
nel (PPC) as outlined in Section[[V] This auction process takes
place off-chain and is secured by collateral held in PPC es-
tablished between the hub and participating parties. The initial
cost of deploying and establishing a PPC between the hub and
each participating party is 3,243,988 gas. This represents a
one-time cost that not only covers multiple auctions (up to
the available channel funds) but also facilitates other off-chain
applications. In an optimistic scenario where no disputes arise
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in any auctions or other applications, the closure of the channel
will consume 146,908 gas, spreading the cost across all off-
chain transactions.

B. Performance

Off-chain costs: zkSnark setup and proving cost. We
focused solely on zk-SNARK proving time, as it remains the
auctioneer’s most significant overhead. Additional operations,
such as Merkle tree generation and bid verification, require
approximately 51 ms for 1,024 bidders. We evaluated our
auction protocol at various tree depths. Note that greater tree
depths allow for accommodating a larger number of bidders.
Table [T] presents the zkSnark setup cost for the statement in
Eq. . Note that these costs are off-chain, while the on-chain
costs remain constant regardless of the tree depth.
On-chain costs: Hub, sellers, and bidders. Table shows
all on-chain costs for the hub, seller, and bidders in both op-
timistic and pessimistic cases. In this optimistic case, bidders
do not have to issue any on-chain transactions; therefore, we
do not include it in the table. For the pessimistic case, we
consider the cost of registering a covenant on the PPC contract
for participants.
Comparison With Other Auction Protocols. To validate
our theoretical claims, we compared our protocol against five
alternative approaches. We implemented and evaluated the
following protocols: (1) Our off-chain auction protocol with
zkSNARK-based winner opening. (2) Off-chain auction with-
out zkSNARKs: A variant of our construction where the hub
reveals the winner without leveraging zero-knowledge proofs.
(3) Naive on-chain auction: A straightforward implementation
where bidders submit and open their bids entirely on-chain. (4)
Rigg-RP [5|]: An on-chain commit-reveal protocol that uses
customized NIZKs to prove facts about committed values.
(5) Rigg-TC [5|]: We extrapolated the reported gas costs to
estimate total system costs for varying numbers of bidders.
(6) On-chain auction with general-purpose zkSNARKs: A
naive on-chain implementation that uses general-purpose zero-
knowledge proofs for proving facts about committed bids.
Figure [I0] presents a detailed comparison of gas costs across
all these protocols.
Performance with Malicious Bidders. To assess the ro-
bustness and cost-efficiency of our protocol under adversarial
conditions, we evaluated its performance in the presence of
malicious bidders. Figure [T] illustrates the total on-chain gas
cost for an auction with 1024 participants as the percentage

TABLE II: Off-chain Costs: zkSnark Setup and Proving. For
a tree of a depth d, it can support up to 2¢ bidders.

Tree  #Constraints  One-time Kev Sizes Proving

depth (Clinner) Setup y Time
4 14,444 33.213s 7.9MB 3.071s
6 54,626 55.983s 30.0MB 6.142s
8 213,896 268.5s 118MB 17.493s
10 849,518 1001.3s 468MB 61.347s




TABLE III: On-chain gas costs for participants in our protocol.

Operations On-chain Cost Invoking Party Case
Deploying cryptographic libraries 4,507,969 hub One-time Setup
Deploying Clayction 1,449,003 hub Optimistic
approve NFT Transfer 49,233 seller Optimistic
Start Auction 92,612 hub Optimistic
SubmitSealedBids 87,138 hub Optimistic
RevealWinner 763,444 hub Optimistic
Registering CHscovenant 459, 140 hub or seller Pessimistic
Registering CHBCovenant 3,029,708 hub or bidder Pessimistic

of malicious bidders increases. In the optimistic case with
zero malicious bidders, the gas cost is minimal, as nearly
all operations are conducted off-chain. As bidders deviate
from the protocol (e.g., by refusing to open their bids), they
trigger on-chain dispute resolutions, causing the total gas cost
to rise. Majority of the gas usage is due to the registration
of Chpcovenant for each malicious bidder (see Table [III).
The figure demonstrates that this increase is linear, directly
corresponding to the O(k) on-chain complexity, where k is
the number of deviators.

Crucially, our protocol demonstrates a significant perfor-
mance advantage over previous solutions across a wide range
of realistic adversarial conditions. When only a small fraction
of bidders are malicious (k < n), our protocol maintains near-
optimal O(1) performance, providing orders of magnitude
gas savings compared to existing O(n) solutions. As the
comparison against the Riggs [5]] protocol benchmark shows,
our system is more gas-efficient even when a substantial
majority of bidders are malicious. The total gas cost does
eventually surpass the Riggs benchmark at an extremely high
percentage of deviators, as seen in the 80% scenario, as the
cumulative cost of resolving each of the k disputes exceeds
the cost of a single, larger on-chain process. This demonstrates
that for all but the most severe failure cases, our protocol
provides superior economic and scalability advantages, estab-
lishing it as a highly practical solution for real-world auctions.
Furthermore, this cost analysis directly extends to a scenario
where the Hub performs a DoS attack on different percentages
of bidders, as the primary recovery cost for each affected
bidder is the on-chain deployment of the Clgcovenant-

VII. DISCUSSION

Setting a maxBid for Collateral. In sealed-bid auction sys-
tems (e.g., Rigg [5]]) that do not use a fixed maxBid for
collateral, a critical vulnerability emerges: the collateral each
bidder locks directly reveals their maximum possible bid.

%
=10
CRII S | | - - S
S
P 128 256 512 1024
&1 Number of bidders

****** Gas limit per block BN Rigg-RP

EE  Our Auction N Rige-CT

B Offchain Auction without zkSnark [ Naive Onchain Auction with zkSnark

[ Naive Onchain Auction

Fig. 10: Total gas costs for different approaches in log scale.
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This fundamentally breaks bid-privacy, as any observer can
determine the exact upper bound of each bidder’s potential
bid simply by viewing their collateral amount. As shown
in Fig.[I24] this approach leaves bidders vulnerable to strategic
exploitation. Competitors can confidently outbid them based
solely on the collateral they’ve committed. In our example, B5
sets its bid one unit higher than By to ensure it outbids it.

To mitigate this issue, we implement a uniform maxBid, as
shown in Fig. @ Here, all bidders lock the same amount
of collateral in their covenants, ensuring no individual bidder
leaks information about their maximum bid. This uniformity
preserves bid-privacy by preventing other participants from
inferring any details about competing bids. However, this
solution introduces a tradeoff: some bidders may need to lock
more collateral than they would prefer (or able to), temporarily
restricting their funds’ availability for other purposes.

For clarity, throughout this paper we present hub’s collateral
with each bidder as maxBid. The hub’s collateral with bidders
can be adjusted to any reasonable value that ensures that the
rational hub does not deviate from the protocol. However,
bidders’ collaterals must fully cover their committed bids, and
likewise, the hub’s collateral with the seller must fully cover
the winning amount to ensure financial fairness.

Trusted Setup in zkSnark. Our protocol is designed to be
compatible with any zkSnark scheme, providing flexibility in
addressing the trusted setup requirement. The use of Groth16’s
zkSnark requires a trusted setup to generate the evaluation
and proving keys for the circuit. We chose Grothl6 for its
superior on-chain verification efficiency, which is critical for
minimizing gas costs in our auction protocol. While our
construction requires only one setup for all auctions, relying
on a trusted third party for this setup is undesirable because
if a malicious third party can generate the keys, she can forge
arbitrary valid proofs without knowing the witness. There are
two possible ways to deal with this limitation. One possible
solution is to employ a multi-party computation (MPC) setup,
where multiple users contribute shares to the trusted setup.
Several works [44]]-[46] have proposed protocols for such
trusted setups, demonstrating that as long as at least one
participant is honest, the zkSnark instance remains secure.
MPC ceremonies are a well-established solution deployed
in production systems including Zcash [47], Filecoin, and
Tornado Cash. Importantly, this is a one-time overhead that
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Fig. 11: Total gas costs for different percentages of malicious
bidders. Total number of bidders is set to 1024 bidders.
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Fig. 12: Comparison of bid-privacy with and without a set
maxBid. The white rectangles are the collateral locked by the
bidders and the gray rectangles represent the actual bid.

amortizes across all future auctions, making it orthogonal to
our core contribution of scalable off-chain auctions. For a
detailed discussion of the concrete costs involved in MPC
setups, we refer the reader to the recent systematization of
knowledge by [48]]. A second approach is to use universal
setup zkSnark constructions [49]—-[52] that can accommodate
any circuits within a bounded size from a pre-generated com-
mon reference string. These constructions offer the advantage
of a universal setup that can be easily integrated into our
system in the future. While transparent SNARKSs eliminate
the trusted setup requirement entirely, they typically incur
significantly higher verification costs on-chain. Universal setup
schemes like PLONK offer a middle ground with moderate
verification overhead compared to Grothl6, which may be
acceptable for applications prioritizing setup flexibility over
gas optimization.

Attack Vectors and Provided Mitigation Strategies. Our
sealed-bid auction protocol is designed to resist several po-
tential attack vectors that plague traditional auction systems:
(i) Insider Trading Prevention: Unlike public auction formats,
our protocol ensures bid privacy throughout the bidding phase,
preventing all parties (including the hub) from learning bid
amounts during bidding. This eliminates front-running and bid
manipulation opportunities that exist in transparent auction
systems. (ii) Hub Censorship Resistance: Malicious hubs
attempting to selectively exclude bids are prevented through
our covenant mechanism. If the hub censors bids, honest
bidders can unilaterally trigger on-chain dispute resolution via
their Cppcovenant contracts, forcing the hub to face financial
penalties. (iii) Collusion Mitigation: The financial penalties
through maxBid collateral requirements and our commit-then-
reveal structure make coordinated collusion attacks economi-
cally irrational. Each participating bidder must lock significant
collateral, making large-scale collusion prohibitively expen-
sive. (iv) Bid Binding Enforcement: Once bidders commit
to their sealed bids during the bidding phase, they cannot
modify or withdraw them, preventing bid manipulation based
on partial auction information. (v) Hub Bid Manipulation
Prevention: The hub cannot selectively modify or exclude bids
after observing bid openings because it must commit to the
Merkle root of all collected bids during the bidding phase,
before any bidder reveals their bid values. This commitment

mechanism ensures the hub cannot adaptively manipulate the
auction outcome based on revealed bid information.

Practical Significance of Large-Scale Auction Capacity.
Current blockchain auction protocols face scaling limitations
due to gas costs, with existing solutions reaching practical
limits with tens of bidders due to transaction overhead. This
technical constraint creates a participation ceiling that may not
reflect natural auction demand.

Our protocol’s 1,000+ bidder capacity addresses this limi-

tation by reducing on-chain overhead. For context, blockchain
platforms like OpenSea [4]] rarely observe auctions exceeding
1,000 bidders, suggesting our capacity covers the practical
range of auction participation. Our protocol also allows scaling
beyond 1,000 bidders through Merkle tree depth adjustment
if required.
Duration Lengths. In Section we discuss the different
stages of the auction protocol: bidding, opening, rebuttal,
and settling. However, specific timings for these stages were
not provided due to their dependence on factors such as the
number of bidders, blockchain block creation rate, and the
communication delay between the bidders and the hub. Here,
we provide insights into these factors.

For timer management, our protocol uses the GetStage()
function with block.time for phase enforcement, which is
secure despite minor timestamp manipulation potential due
to: (1) consensus constraints preventing arbitrary timestamps,
and (2) coarse granularity where stage durations span many
blocks, making small timestamp variations negligible. Alterna-
tively, block.number could provide even stronger guarantees
through strictly monotonic block counting. The bidding and
settling stages involve a single on-chain transaction each,
while the opening and rebuttal stages do not require any
on-chain transaction in the optimistic case (i.e., no party
deviates from the protocol) and can have up to n (number
of bidders) on-chain transactionf] in the worst-case scenario.
Thus, the duration of all stages will rely on the time taken
for transaction finality. Additionally, the bidding and opening
stages involve multiple off-chain interactions between bidders
and hub. During the bidding stage, there are four message
exchanges for each bidder, and in the opening stage, there
is one message exchangeﬂ Thus, the timing of these stages
will be dependent on the network delay between the hub and
bidders for message exchange. Furthermore, the preprocessing
time to create transactions for the auction contract needs to be
taken into account. Specifically, in the bidding stage, the hub
accumulates sealed bids and provides inclusion proof for each
bid. In our experiments, we were able to process 10,000 bids
in less than a second. However, while the off-chain generation
of zkSnark proofs in the settling stage does not affect the
on-chain cost, it heavily depends on the number of bidders
impacting the overall timing.

4These on-chain transactions for the opening and rebuttal stage can be
submitted simultaneously.
SHub can process the messages of different bidders concurrently.
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APPENDIX

APPENDIX A
DETAILED PROTOCOL

In this section, we detail all the missing protocols. In
particular, the protocol setup, subprotocol between hub, and
subprotocol between seller and between hub and bidders.

A. Protocol Setup

Prior to initiating the auction protocol, a one-time trusted
setup is to securely generate all public parameters for the
cryptographic components used in our protocol. Specifically,
the cryptographic components include the following.
Proving Statement. In our auction protocol, to reveal the
winner, the hub needs to prove the following claims (i) the
revealed winner (winner) participated in the auction during
the bidding stage, (if) the amount committed by the winner is
the highest amount among all bids.

Styinner : {roOtpigs, Winner, amtyinner, NUuMBIds;
w, {], leaf, pathj, bidder;, amt;, Tj}je[numBids]} :
// leaves are computed correctly
bid; = Pcon(amt;,7;)
A leaf j = hap(bidder;, bid;) for j € [numBids] A

// bids are included in the computation of rootyiqss previously
T‘Verify(j, Ieafj, rootyigs, pathj) =1A
/I winner has the highest amount
winner = bidder,,
A amtyinner = amty = max({amtj }je[numBids])}
(€3]

In the case of equal highest bid amounts, we can design the
circuit for this statement to output the first or last bidder with
the highest bid amount.
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B. Subprotocol between Hub and Seller

The protocol between hub and seller work as follows.

(1) Auction parameters agreement. Before starting the
auction, Hub and Seller agree on the details of the auction
contract, Cycrion (cf. Fig. [), the cryptographic parameters
(paramscrypto), the auction parameters, params,_, .. ;o> CON-
sisting of the seller’s address, seller, the hub’s address, hub,
the address of the item, tokenlD, the address of the NFT
contract, nftAddress, the durations of different bidding stages,
Durations = (Tbidding7TopeningyTrebuttala Tsettle), and the max
bid amount, maxBid. At the end of this step, both parties
know the contract, Cyucrion and the parameters, params
(paramscryptoa paramsauction)

(2) Hub deploys the auction contract initialized with
agreed parameters. Once both parties agree to the pa-
rameters, the Hub deploys the auction contract on-chain
and initializes it with the agreed-upon parameters (i.e.,
params. ..o, params_ . i;ion)-

(3) Create a covenant from the contract, Cyscovenant. Once
the auction contract is deployed, both hub and seller run
CreateCovenant protocol on the contract code Chscovenant
(cf. Fig.[5) and parameters for the contract paramsyscovenant =
(maxBid, Cayct ion-addr, salt) to obtain the Pyscovenant Which
serves as an authorization from both parties on the code
and the parameters for the contract. The covenant Pyscovenant
guarantees either a payout for the seller if there is a winner,
or a reimbursement for the seller with the amount maxBid by
the hub if the auction fails.

(4) Seller approves NFT transfer. Once the covenant is
created between the seller and the hub, the seller can approve
the auction contract to transfer the token, tokenlD, to itself to
start the auction.

(5) Hub starts the auction. Upon receiving approval from
the seller, the hub can start the auction anytime by invoking
Start(). Upon the Start() event, nftAddress will transfer the
ownership of tokenlD to the auction contract, and the auction
moves to the subprotocol between the hub and the bidders
(i.e., Bidding, Opening, and Rebuttal stages).

Steps (1)-(5) capture the creation stage in our protocol.
Figure [6] gives a pictorial illustration of how these steps work.
(6) Settlement between Seller and Hub. Once the auction
is finished, hub updates the channel balance according to
the auction’s outcome. As we described in Section and
Fig. |1} in PPC, this step can have two possible paths:

« (6a: Optimistic Path) Hub follows the protocol. It can either
pay the seller the same amount as the highest bidder’s bid
if there is one, or pay the amount maxBid if the auction
fails. Note that this channel update can be done efficiently
by issuing a signature on the channel state (i.e., receipt).
Upon receiving this receipt, the seller can always register
this receipt with the PPC contract to update the channel
state.

(6b: Pessimistic Path) Hub refuses to follow the protocol
by providing wrong receipt or seller ignores the receipt. If
the hub refuses to send the receipt, the seller can choose
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Fig. 13: The game between Hub and Bidder. The green path traces the ideal execution (optimistic path) where no deviations
occur. For improved readability, colored dotted boxes represent collapsed summaries of the detailed interactions shown in the
solid boxes of the same color. ¥ denotes the aggregate cost associated with initiating or responding to on-chain challenges via
the covenant contract (including gas fees and opportunity costs) is non-negative (y > 0).

to register the covenant Pyscovenant With the PPC contract
and request payment directly on-chain according to the
outcome of the auction (i.e., Caycrion). This happens when
the auction is in the completed stage.
We provide a detailed protocol on how hub and seller agree on
on the creation of the auction in Fig. and Fig. [9] outlines
how this settlement step works.

C. Subprotocol between Hub and Bidders

Bidding Stage. This stage is for bidders to place bids with
the hub and mutually agree on the parameters for the covenant
contract with the hub.

(1) Parameters agreement (e.g., sealed bid) for the bidder-
hub contract, Cygcovenant- This step allows each bidder to
agree with the hub on the parameters for the Chgcovenant
(cf. Fig. []), and register the sealed bid as one of these
parameters. Chpcovenant Makes sure both parties follow all
subsequent steps of the protocol.

The bidder chooses an amount amt; from [0, ..., maxBid],
samples a nonce, 7;, and computes bid; = Pon(amt;, ;).
The bidder specifies the logic of Cppcovenant initial-
ized with the following parameters, paramsygcovenant
(maxBid, bidder;, hub, Cayction.addr, bid,,salt,o;) where
maxBidand C,,ction-addr are from C,uction, 0; 1S a valid
signature on the address of Chgcovenant- This address can be

computed using the CREATE2 opcode. Finally, the bidder
sends (ChBcCovenant; PAaramsygcovenant) t0 the hub. Once the
hub verifies the logic of ChHpcovenant and paramsygcovenants
the hub and bidder move to the next step.

(2) Create a covenant from the contract Chgcovenant- Both
hub and bidder will run CreateCovenant() on CHgcCovenant
initialized with paramsygcovenant 0 Obtain Phgcovenant. This
covenant ensures two things: (i) hub will agree to include the
bidder’s bid and provide the inclusion proof or get punished
otherwise, and (ii) the bidder will open the sealed bid even-
tually before the end of the rebuttal stage or get punished
otherwise.

(3) Hub accumulates sealed bids and update the auction
contract. Before the bidding stage finishes, hub will accumu-
late all submitted sealed bids into a Merkle tree where the
leaf is leaf; = hop,(bidder;, bid;) and submit the rooty;qs to
the auction contract (cf. function SubmitSealedBids()). This
step minimizes the data to be included on-chain.

Remark.It should be noted that our protocol requires that the
collateral must be equivalent to the maxBid, an important
element of the covenant’s parameters. This requirement is
to impose a financial penalty on the bidder in case of any
deviation from the established protocol.

Opening Stage. Once the bidding stage is over, the protocol
advances to the opening stage. During this stage, the hub has



Create Auction Protocol

Preliminaries. seller wishes to auction its NFT tokenID in contract nftAddress, with the following parameters: maxBidprice for
the maximum bid and Durations that identifies the different stages of our protocol.
Let £ be the blockchain that both seller and hub use to post transactions, CHscovenant t0 be the agreed covenant that hub and seller
agree on (see Fig. , Cauction be the publicly available contract Fig. A params_, ., be the public cryptographic parameters
used the Auction contract shown in Fig.|3| CreateCovenant() be an idealized protocol that allows both hub and seller to agree
on the covenant. CreateCovenant() can be instantiated using two interlocked promises in PPC.
Protocol.

1) seller begins by performing the following steps:

a) params,,..;., < (hub,seller, nftAddress, tokenID, maxBid, Durations);
b) Send [CreateAuction, (params,,,.. ; ., Params.. .. ,)] to hub.

2) Upon receiving [CreateAuction, (params, .. ;.,, params )] from a seller, hub performs the following steps:

crypto
a) Verify all parameters in params_ . ;.
b) params < (params_, ., params_. . .);
¢) L.DeployContract(Cayction, Params);

and params, ... .

d) Upon C,yucrion is deployed at Clicion.addr, Hub samples salt & {0,1}* and sets paramsyscovenant
(maxBid, Cauction-addr, salt);
e) Participate in CreateCovenant(CHscovenant; ParamSyscovenants -) With seller;
f) Once CreateCovenant() outputs a valid covenant Pyscovenant = (CHSCovenant-COd€, PAramsyiscovenants Thubs Tseller )s
Hub waits for the seller to approve the transfer. Abort otherwise.
3) Upon receiving valid [ P4scovenant] from CreateCovenant() protocol, seller performs the following steps:
a) Invoke nftAddress.Approve(tokenID, Auction);

4) When nftAddress.getApproved(tokenlD) = Auction, hub invokes Auction.Start();

Fig. 14: Detailed subprotocol between seller and hub

to provide the inclusion proof to the bidder to prove that her the protocol. In this case, the hub can register Pypcovenant
bid has been included in the Merkle root, and once the bidder with the PPC contract. Upon receiving a valid covenant, the
receives this proof, she has to open her bid to the hub. In PPC contract will deploy CHgcovenant-code on-chain. Once
particular, this stage works as follows. CHBCovenant 18 on-chain, the hub can challenge the bidder,

(4) Hub sends bidder the inclusion proof. In this step, the bidder;, on the opening of bid; (cf. ChallengeOpening|()),
hub must prove the bidder that her bid has been included. In and the bidder will have to respond to the challenge on-chain
this step, there can be two possible scenarios: (via RespondOpening()).

o (4a: Optimistic Path) Both Hub and Bidder follow the pro- Rebuttal Stage. We note that upon receiving any chal-
tocol. Hub sends back the Merkle path, path;, proving that lenge during the opening stage, both parties can either re-
leaf; = hgy(bidder;, bid;) is included in the computation of ~spond immediately or respond during the rebutial stage.
rooty; qs. Once the bidder receives the proof and verifies the Hence, the goal of this rebuttal stage is to give both parties
validity of the proof, she advances to the next step. enough time to reply to any existing on-chain challenges (cf.

o (4b: Pessimistic Path) Either one of them does not follow the ~ChallengeInclusion or ChallengeOpening).
protocol. In this case, bidder can register Prpcovenant With ~ (6) Rebuttal to any existing on-chain challenges. During
the PPC contract. Upon receiving a valid covenant, the PPC  the rebuttal stage, either hub or bidder can respond to any
contract will deploy Chigcovenant On-chain, and at this point, —existing on-chain challenges (cf. RespondInclusion() and
bidder; can directly challenge (cf. ChallengeInclusion()) RespondOpening()) from the other party.
the hub to provide the inclusion proof on-chain (via Step (1)-(6) captures three stages of our protocol, namely,
RespondInclusion()). the bidding, opening and rebuttal stage. Figure [§] illustrates

(5) Bidder sends hub the opening of the sealed bid. In this the protocol between the hub and bidders.

step, the bidder has to open her previous sealed bid by sending Remark.To safeguard against auction failure due to zero
the hub the opening (i.e., amt, 7). There can be two possible participants, one can require that the seller initiates the auction
scenarios: ’ by placing a sealed bid as the first bidder. This approach also

allows the seller to set a minimum price for the item up for
trade. Without loss of generality, we define seller = bidderg.

Finally, in Figure [I5] we described in detail the protocol
between Bidders and Hub.

o (5a: Optimistic Path) Both parties follow the protocol. In
particular, if the bidder sends a valid opening (amt;, 7;) (i.e.
Veon(amt;, 7;, bid;) = 1), hub advances to the next step.

o (5b: Pessimistic Path) If one of them decides not to follow
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Subprotocol between Hub and Bidders

Preliminaries. After creating the Auction, bidders and hub begin the Bidding protocol. Without loss of generality, here we focus
on the interactions of a single bidder, bidder; and hub, hub. Let £ be the chain that both parties seller and hub use to post
transactions, Cpcovenant t0 be the condition/logic of the covenant that hub and bidder want to agree on, known by both parties
(see Fig. , Cppe be the contract of the PPC channel between hub and bidder, C .t 10, be the publicly available contract Fig. E],
params = (params,,..;.,, Params_,. . ,) to be the public parameters known by both hub and bidder after the deployment
Cluct ion, maxBid to be the value that both hub and bidder have previously agreed to be paid to bidder in case of an auction failure,
CreateCovenant() be an idealized protocol that allows both hub and bidder to agree on the covenant. CreateCovenant() can
be instantiated using two interlocked promises in PPC.

Protocol.
1) bidder waits till C,ycti0n.GetStage() = “Bidding” and begins by performing the following steps:
a) Sample salt, r; < {0,1}*
b) Compute: Chpcovenant-addr = H (0xFF, Cppc.addr, salt, Chcovenant-code)
c) Sign: 0; < Sign(CHBCovenant-addr7Skbidderi)
d) Chose amt; € [0, maxBid], bid; = Pcon(amt;, r;)
e) Set: paramsygcovenant = (MaxBid, bidder;, hub, Cayction-addr, bid;, salt, o;)
f) Participate in CreateCovenant(Chpcovenants PAraMSHECovenant, *) With the hub;
g) Once CreateCovenant() outputs a valid covenant Puygcovenant, bidder waits for hub to return the inclusion proof. Abort,
otherwise.
2) Upon receiving all [Pygcovenant,i] from the CreateCovenant() protocol with bidder, bidder;, hub performs the following
steps:
a) (maxBid, bidder;, hub, Cayction-addr, bid;, salt, 0;) <— paramsygcovenants
b) Compute leaf; = hay,(bidder;, bid;);
¢) Compute rooty;qs = T.Init(1*, X = (leafy,...,0,...)) where | X| = numBids
d) Invoke SubmitSealedBids(numBids, rooty; s );
e) Compute path, for bidder;, send [InclusionProof, (i, path,)] to bidder;.
3) Upon receiving [InclusionProof, (i, path,)] from a hub, bidder; performs the following steps:
a) Retrieve rooty,; g from ClLuction;
b) Compute leaf; = hq,(bidder;, bid;)
¢) If T.Verify(i,leaf;, root,;4s) = “False”: challenge hub by registering Prcovenant With the PPC contract, then invoke
ChallengeInclusion() on CHgcCovenant;
d) Upon receiving a valid opening, send [Opening, (amt;, 7;)] to the hub.
4) Upon receiving [Opening, (amt;, r;)] from a bidder;, hub performs the following steps:
a) If Veon(amt;, 14, bid;) = “False”: challenge the bidder by registering Prgcovenant With the PPC contract, then invoke
ChallengeOpening() on Chgcovenant;
b) Upon receiving a valid opening, hub stores m;, r;, and wait for the rebuttal period to be over.

Fig. 15: Bidder and Hub bidding protocol
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