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Abstract—Federated learning enables decentralized model
training without exposing raw data, making it a promising
paradigm for privacy-preserving machine learning. However, it
remains vulnerable to membership inference attacks (MIAs),
where adversaries infer whether a specific data point is in-
cluded in the training set, posing serious privacy risks and
compromising data locality. Existing defenses against MIAs suffer
from significant limitations: some incur substantial performance
degradation, while others fail to provide protection against both
passive and active attack vectors. To address these challenges,
in this paper, we propose a unified defense framework that
simultaneously mitigates both passive and active MIAs in fed-
erated learning, while preserving the utility of the target model.
First, we incorporate a modified entropy regularization during
teacher model training to enhance uncertainty on member data,
offering stronger resistance to inference attacks than standard
regularization. Second, we utilize a Conditional Variational
Autoencoder (CVAE) to generate class-conditional synthetic data
for supervised student training, which avoids direct exposure
of sensitive data and provides better utility than unlabeled
alternatives. Finally, we design a contribution-aware aggregation
strategy that adjusts the influence of local models based on their
utility, mitigating the impact of malicious clients during model
aggregation. Experimental results on four benchmark datasets
show that the proposed method significantly reduces the success
rate of various membership inference attacks, outperforming
existing state-of-the-art defenses. Moreover, it consistently main-
tains high model accuracy, demonstrating its practicality for real-
world federated learning deployments '.

I. INTRODUCTION

Federated Learning (FL) is a prominent distributed ma-
chine learning framework that has been widely adopted in
various domains, such as personalized recommendation on
smartphones [16], [41], healthcare analytics [40], [32], and
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financial fraud detection [23], [4], [39]. Its core advantage
lies in enabling decentralized model training by sharing only
model updates, thereby avoiding direct access to user data
and enhancing privacy protection [21]. However, despite its
privacy-preserving design, FL is still susceptible to privacy
threats. In particular, the model parameters exchanged during
training may inadvertently leak sensitive information, expos-
ing the system to membership inference attacks (MIAs). In
such attacks, adversaries attempt to infer whether a specific
data sample is included in the training set by analyzing the
model’s outputs or internal parameters, thereby compromising
participant privacy. This threatens the foundational principle
of FL that data remains decentralized and never shared. As
FL becomes increasingly deployed in real-world applications,
developing robust defenses against MIAs has become a critical
and urgent research challenge.

MIAs exploit the differences in how a model handles
training data versus unseen data [11]. The key to these attacks
lies in the fact that training data typically results in higher
confidence or more accurate predictions, whereas predictions
on unseen data are often associated with greater uncertainty.
MIAs can be broadly categorized into passive [35], [27],
[42] and active attacks [46], [38], [6] , depending on the
adversary’s level of interaction with the training process.
Passive attacks rely solely on analyzing observable behaviors
of the target model, without intervening in the training process.
Although limited in access, these attacks still pose a serious
threat, especially as model complexity and training data scale
increase. In contrast, active attacks manipulate the training
process by injecting poisoned data or altering local model up-
dates. These interventions amplify the leakage of membership
information by inducing distinguishable behaviors between
member and non-member data. As a result, active attacks are
often more damaging, compromising not only privacy but also
the integrity of the training pipeline.

Many studies have explored defense mechanisms against
passive MIAs, proposing various techniques such as differ-
ential privacy [1], regularization [28], [44], model masking
[17], [7], and knowledge distillation [34], [37]. Differential



privacy offers formal privacy guarantees by adding calibrated
noise to model outputs or gradients to obscure the contribution
of individual training samples. However, it often leads to a
substantial degradation in model utility. Regularization-based
methods aim to reduce model overfitting, thereby lowering the
success rate of membership inference. Yet, their effectiveness
diminishes when facing strong or adaptive adversaries. Model
masking attempts to obfuscate the model’s output probability
distribution to mislead attackers, but it is generally ineffective
against white-box threats in which the attacker has access to
internal model parameters. Shejwalkar et al. [34] introduce
knowledge distillation as a means to mitigate privacy leakage
by training student models using unlabeled data, thereby
avoiding direct exposure of sensitive training samples. How-
ever, the absence of label supervision often leads to significant
performance degradation in the resulting student model.

In FL, the decentralized nature of training introduces new
vulnerabilities, making it easier for adversaries to conduct
active MIAs by manipulating the training process. To address
this, prior work [25] proposes client-side defense strategies
that detect and filter suspicious data based on local anomaly
detection. This method assumes that clients have full control
over their local datasets and can identify potentially poisoned
samples before they influence the global model. However,
when the attacker is a malicious client who actively injects
poisoned data during local training, such self-supervised de-
tection schemes become ineffective. Other research [19] fo-
cuses on server-side defenses during the aggregation phase by
calculating a set of statistical metrics to identify and exclude
potentially poisoned local models. While these approaches can
mitigate the effects of some active attacks, they often rely on
complex computations and clustering procedures, making it
difficult to scale to large federated learning deployments.

Existing defense methods primarily focus on addressing
either passive or active attacks. However, attackers can initiate
attacks at various stages of federated learning using different
strategies, while defense mechanisms must provide protection
across all stages. In this paper, we propose a unified defense
framework for federated learning that integrates knowledge
distillation and contribution-aware aggregation to jointly mit-
igate both passive and active membership inference attacks.
Our framework consists of three core components: teacher
model training with improved entropy, student model training
with CVAE distillation and contribution-aware aggregation.
Our proposed defense method provides a joint protection from
multiple perspectives.

First, we incorporate an entropy-based regularization into
the teacher model’s training loss to enhance prediction uncer-
tainty and mitigate overfitting, thereby reducing membership
leakage. We observe that member samples typically produce
lower entropy predictions, which makes them more vulnerable
to inference attacks. However, conventional regularization fails
to differentiate between confidently correct and confidently
incorrect predictions, limiting its ability to effectively reflect
true uncertainty. To address this, we add a modified predictive
entropy term to the loss function, encouraging the teacher

model to produce more uncertain outputs for training data and
improving its resistance to membership inference.

Second, we employ a Conditional Variational Autoencoder
(CVAE) to generate class-conditional synthetic data that ap-
proximates the distribution of private data. Compared to unla-
beled or randomly sampled approaches, our method captures
richer semantics and produces more representative samples
aligned with specific labels, enabling supervised student train-
ing without exposing private data. Since the synthetic samples
do not correspond to real member data, the risk of membership
inference is significantly reduced. Moreover, the use of labeled
synthetic data preserves the benefits of supervised learning, al-
lowing the student model to maintain strong task performance
through effective knowledge transfer from the teacher.

Finally, we implement a contribution-aware aggregation
strategy that dynamically adjusts the weights of local model
updates based on their estimated contribution to global perfor-
mance. By down-weighting or excluding low-quality or adver-
sarial updates, this mechanism effectively mitigates the impact
of active attacks. In addition to enhancing the robustness of
the global model, it also promotes fairness and consistency
across heterogeneous clients. Through these coordinated de-
fense steps, we effectively protect against both passive and
active attacks, thereby safeguarding participant privacy while
maintaining the accuracy of the global model.

The contributions of this paper are as follows:

o We propose a novel privacy-preserving training frame-
work for federated learning that jointly mitigates passive
and active membership inference attacks. Our approach
provides end-to-end protection across different stages of
federated learning, while maintaining high model utility.

o We utilize a distillation strategy to mitigate passive at-
tacks by combining entropy-regularized teacher training
with CVAE-generated labeled synthetic data, enabling
supervised student training that reduces overfitting and
prevents raw data exposure.

o We introduce a contribution-aware aggregation mecha-
nism against active attacks that dynamically adjusts local
update weights based on their estimated utility to the
global model, effectively suppressing malicious updates
from adversarial participants.

e We conduct comprehensive evaluations on four bench-
mark datasets, demonstrating that our method effectively
mitigates a wide range of state-of-the-art membership
inference attacks. Compared with existing defenses, our
framework achieves stronger protection while preserv-
ing the target model’s utility with minimal performance
degradation.

II. RELATED WORK
A. Membership Inference Attacks

Membership inference attacks (MIAs) have emerged as a
key focus in model privacy research. We categorize MIAs into
two main types: passive and active attacks.

Passive Membership Inference Attacks. Shokri et al.
[35] first introduce membership inference attacks by training



shadow models to replicate the target model’s behavior and
using a binary classifier for membership prediction. Salem
et al. [33] simplify this approach by using a single shadow
model. Yeom et al. [42] theoretically analyze the link between
overfitting and privacy leakage, and propose effective MIA
methods. Additionally, some studies use threshold-based meth-
ods to distinguish members from non-members. Song et al.
[36] enhance cross-entropy-based attacks by setting per-class
thresholds for membership inference. Hui et al. [14] determine
membership by assessing the distance between members and
non-members. Carlini et al. [5] propose LiRA, a likelihood
ratio-based membership inference attack that achieves stronger
performance under low false positive rates. Liu et al. [22]
reveal that robustness differences, when exploited through ex-
plainability techniques, can also lead to membership leakage,
highlighting the evolving diversity of MIAs.

Federated learning is also susceptible to membership infer-
ence attacks. Melis et al. [27] show that updates from partici-
pants in federated learning can inadvertently leak information
about their local data. Nasr et al. [29] propose a membership
inference attack for federated learning that uses intermediate
model outputs and model parameters to determine whether an
individual sample is used in training the model. Zhang et al.
[45] indicate that when the attacker is an insider, variations
in bias during the federated learning process can effectively
distinguish between members and non-members. Zhu et al.
[47] reveal that shared gradients may enable reconstruction of
training data, leading to membership leakage.

Active Membership Inference Attacks. Active MIAs aim
to amplify the behavioral differences between member and
non-member data by subtly modifying local training dynamics,
thereby enabling accurate membership inference without no-
ticeably degrading model utility. In many cases, these attacks
exploit variations in prediction confidence or gradient sen-
sitivity, rather than inducing misclassification, to distinguish
members from non-members. Florian et al. [38] design a log-
likelihood-based test using shadow models, where poisoned
data is introduced into half of the models to amplify mem-
bership signals. Chen et al. [6] propose dirty-label and clean-
label poisoning attacks to increase leakage in both centralized
and transfer learning settings, though the clean-label method
degrades when feature extractor parameters are unfixed. Zhang
et al. [46] propose a poisoning membership inference attack
against adversarial Byzantine robust aggregation in federated
learning. They directly modify the local updates and design
a gradient masking method to make malicious updates appear
benign, thereby evading robust aggregation.

B. Defenses Against Membership Inference Attacks

Defenses Against Passive Attacks. Common defense
mechanisms against membership inference attacks include dif-
ferential privacy [1], [13], regularization [28], [44], and model
masking [17], [7]. Differential privacy offers formal guarantees
for individual data protection. Methods like DP-SGD [1] and
PATE [30] leverage it to ensure strong privacy, but often
at the cost of model performance. Regularization methods

mitigate membership inference risk by reducing overfitting.
Nasr et al. [28] introduce adversarial regularization, a min-max
training scheme that minimizes both prediction loss and attack
success. Mixup+MMD [44] reduces leakage by penalizing
output differences between members and non-members. Li
et al. [20] propose MIST, a subspace learning-based defense
that avoids overfitting on vulnerable instances while preserving
accuracy. Generally, regularization alone offers limited pri-
vacy protection and often requires complementary techniques.
Model masking perturbs the target model’s outputs to resist
inference. Jia et al. [17] propose MemGuard, which adds
calibrated noise to confidence scores to mislead attackers.
Chen et al. [7] present HAMP, using high-entropy soft labels
and entropy regularization to reduce overconfidence and attack
success. Hu et al. [12] introduce Membership Cleanser, a
query preprocessing defense that removes membership signals
without altering model training or inference. While effective
against black-box attacks, these methods are generally ineffec-
tive against white-box attacks that exploit internal parameters.

Furthermore, knowledge distillation has emerged as a
promising defense strategy for mitigating membership in-
ference risks, as it trains substitute models without directly
exposing raw data. Shejwalkar et al. [34] propose DMP, which
distills knowledge into student models using unlabeled data to
protect membership privacy. Tang et al. [37] enhance privacy
through self-distillation across multiple data partitions. While
existing approaches mitigate membership inference risks, they
often suffer from reduced accuracy due to unsupervised train-
ing and high overhead from multi-model training. Moreover,
without explicit control over information transfer, student
models may inherit the overconfidence of teacher models
and thus retain membership signals, resulting in residual pri-
vacy leakage. In our method, we combine entropy-regularized
teacher training with CVAE-based synthetic data generation.
The former reduces overfitting and increases prediction uncer-
tainty on members, while the latter supports supervised student
training without exposing raw data. Together, these strategies
mitigate MIAs while preserving strong utility and scalability.

Defenses Against Active Attacks. Existing defenses
against active membership inference attacks primarily focus
on improving robustness during the aggregation phase in
federated learning. LoDen [25] detects and removes suspi-
cious samples at the client side to prevent poisoning-based
membership inference, while MESAS [19] employs multiple
statistical metrics to identify and filter adversarial updates.
However, these methods either fail to generalize to adaptive
adversaries or incur high computational overhead due to
extensive metric calculations and clustering. In contrast, our
framework addresses these limitations during the aggregation
phase by dynamically allocating aggregation weights based on
each participant’s contribution to the global model, thereby
reducing the impact of suspicious local models and ensuring
the accuracy of the global model.



III. PRELIMINARIES
A. Federated Learning

Federated learning addresses privacy concerns by decentral-
izing model training to local devices, thus avoiding centralized
access to raw data [2]. The federated learning process involves
global initialization, local training, and model aggregation.
During local training, participant ¢ updates the model pa-
rameters 0'"' using private data by solving the following
optimization problem:

oIt = arg;nin L£(6), (1)
where L is the loss function. In the model aggregation stage,
participants upload their updated local model parameters to
a central aggregator, which computes the global model by
averaging all local parameters:

| X
global = N Zef“, (2)
1=1

where N is the total number of participants, 6;,,,, denotes
the aggregated global model parameters.

B. Membership Inference Attacks

Membership inference attacks aim to determine whether a
given instance z is part of the training data by observing
model outputs or other information [35]. The attack can be
formulated as:

A(f,2) = {0,1}, 3)

where A is the attacker’s inference function, with “1” indicat-
ing a member and “0” indicating a non-member. Membership
inference attacks can be classified as either passive attacks,
where the attacker observes model outputs without any inter-
vention [5], or active attacks, where the attacker manipulates
data or model parameters to infer membership [46]. Our work
focuses on simultaneously defending against both attacks to
enhance the privacy and robustness of federated learning.

C. Knowledge Distillation

Knowledge distillation transfers knowledge from a complex
teacher model to a simpler student model [9] . In this process,
the larger teacher model generates outputs through supervised
learning, and these outputs are used as target labels to train
the smaller student model. The student model learns by
minimizing the difference between its own predictions and the
predictions of the teacher model. Specifically, the knowledge
distillation objective is to train the student model by solving
the following optimization problem:

Lxpls)=v-Lcels)+(1—7) Lrxr(0s,07), @)

where Lo is the cross-entropy loss, Lx is the Kullback-
Leibler divergence, which measures the difference between the
outputs of the student model and the teacher model, and ~ is
a balancing factor. 67 and g represent the parameters of the
teacher model and the student model. Through this process,
the student model can achieve performance close to that of

the teacher model. In our approach, knowledge distillation is
primarily utilized to protect private data and defend against
MIAs. We choose a consistent architecture for both the student
and teacher models to effectively extract useful information
from the teacher model while ensuring data privacy.

D. Threat Model

Adversary. The objective of the attacker is to infer whether
a specific data point belongs to the training dataset, thereby
compromising the privacy of other participants. By analyzing
the model’s outputs or training process, the attacker seeks
to identify training data points and carry out a membership
inference attack. Based on the knowledge and capabilities of
the attacker, we consider two broad categories of attackers in
our threat model: passive attackers and active attackers.

« Passive Attackers. Passive attackers do not interfere with
the training process but attempt to infer membership
information by observing the model’s outputs or training
progress. We further distinguish between two types of
passive attackers:

— External Passive Attackers [36], [5]: External at-
tackers have access only to the outputs generated by
querying the global model and are unable to access
the model’s structure, parameters, or local data. They
also lack visibility into the training process of other
clients. We assume that these attackers possess both
a set of training data and test data and are allowed
unlimited queries to the global model.

— Internal Passive Attackers [45]: These attackers are
honest-but-curious clients participating in the feder-
ated learning process. They have full access to the
global model’s parameters and the training process.
In addition to observing the global model’s outputs,
they can also access changes in the global model’s
parameters. We assume that internal attackers can ob-
tain the latest state of the global model at each train-
ing epoch and leverage this information to launch
their attacks.

o Active Attackers. Active attackers [46], [6] are malicious
clients who have full control over their local data and
can modify the parameters of their local models during
training. These attackers can conduct data poisoning
attacks by injecting malicious samples into their local
datasets, as well as perform model poisoning attacks by
manipulating updates to their local models. We assume
that these attackers can access the global model at each
epoch and initiate poisoning attacks at any time.

Defender. The defender’s objective is to safeguard the
privacy of participants in the federated learning system, pre-
venting attackers from exploiting MIAs to access sensitive
data, while maintaining the accuracy and robustness of the
global model. We define the defender as a training con-
figuration under an honest federated setting, rather than a
specific entity with absolute control over the learning process
or client behaviors. The defender coordinates the training
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Fig. 1: The architecture of our proposed defense framework against both passive and active membership inference attacks in
federated learning. The framework consists of three sequential components: (1) Teacher model training with improved entropy,
where an entropy-regularized loss is applied to reduce overfitting and obscure membership signals; (2) Student model training
with CVAE distillation, where conditional variational autoencoders generate synthetic labeled data to train student models
without exposing private data; and (3) Contribution-aware aggregation, which computes each client’s contribution to global
accuracy and dynamically adjusts aggregation weights to suppress poisoned updates.

behavior of both honest clients and the server, specifying
defense procedures through protocol rules, without directly
accessing or controlling clients’ local data, models, or training
processes, thus strictly adhering to privacy-preserving prin-
ciples. It should be noted that active attackers may choose
not to follow this setting and can launch attacks by injecting
malicious data or tampering with local models.

IV. METHOD

In this section, we first introduce the overall framework of
the defense method we propose, and then provide a detailed
description of the specific implementation of these three steps.

A. Overview of the Defense

Our proposed defense method aims to protect the privacy of
participants in the federated learning system, prevent member-
ship inference attacks, and ensure the accuracy and robustness
of the global model. The overall defense framework is shown
in Fig. 1, which consists of three key steps: teacher model
training with improved entropy, student model training with
CVAE distillation and contribution-aware aggregation strategy.

First, we introduce an entropy-based regularization term
into the loss function during the training of the local teacher

model. We observe that member samples often produce overly
confident predictions, leading to significantly lower prediction
entropy compared to non-member samples. This overconfi-
dence increases their susceptibility to membership inference
attacks. To address this, we incorporate the regularization to
increase the predictive uncertainty on training data, thereby
reducing the model’s tendency to overfit and narrowing the
distinguishability between member and non-member instances.

Second, we train a CVAE to generate labeled synthetic data
that approximates the class-conditional distribution of private
data. These samples are used to train student models in a fully
supervised manner. This design is motivated by two critical
observations: (1) directly exposing private data during the
distillation process increases the risk of membership inference,
and (2) existing distillation approaches based on unlabeled
data often suffer from noticeable performance degradation
due to the lack of supervision [34], [31]. By leveraging
CVAE-generated labeled data, our method enables accurate
knowledge transfer from the teacher model while eliminating
the need for raw data, enhancing both privacy and utility.

Finally, we implement a contribution-aware aggregation
strategy to dynamically adjust the weights of local model
updates based on their individual contributions to the global



model. This design is motivated by the vulnerability of feder-
ated learning to active attacks, where adversarial clients may
degrade global performance by submitting harmful updates.
Unlike traditional aggregation schemes such as FedAvg [26]
and Krum [3], which treat all client updates equally or rely
solely on distance metrics, our method evaluates each client’s
contribution and assigns higher weights to those with positive
utility. This enables the system to disregard unreliable updates,
enhancing the robustness of the global model against adver-
sarial behaviors without compromising overall performance.

In our framework, each client maintains both a teacher
model and a student model, which share the same architecture
with the global model to ensure compatibility during aggrega-
tion. The teacher model is solely involved in local training to
produce soft labels, which guide the student model in learning
from both the synthetic data and the teacher’s output. Only the
student model is uploaded to the server for aggregation, and
the global model is updated based on the aggregated student
models. This design enables local privacy-preserving training
through teacher-student distillation while ensuring seamless
integration with the standard federated aggregation process.
In the following sections, we provide a detailed description of
the implementation of each step.

B. Teacher Model Training with Improved Entropy

In our defense approach, the training of the teacher model
is the first step in the distillation process. Its primary objective
is to enhance the model’s predictive uncertainty over the
training data, thus increasing the difficulty for attackers in
inferring the membership of data points. By optimizing the
teacher model’s training in this manner, we aim to reduce
the model’s overfitting to the training data. This helps prevent
the model from becoming overly confident in its predictions
for member data, making it challenging for an attacker to
determine whether a particular data point belongs to the
training set based on the model’s outputs.

In traditional knowledge distillation methods, teacher mod-
els are typically trained by minimizing the standard cross-
entropy loss, aimed at aligning the model’s predictions as
closely as possible with the true labels. However, this approach
has a limitation: it may still allow the teacher model to transfer
its high confidence in member data to the student model,
leading to potential privacy leaks of membership information
[15]. Specifically, teacher models tend to predict member
samples with higher confidence, resulting in lower entropy,
while predictions for non-member samples are more uncertain,
exhibiting higher entropy.

To address this issue, we incorporate prediction entropy
into the teacher model’s training objective by designing a
loss function that combines the standard task loss with an
entropy-based regularization term, which encourages higher
uncertainty on member data. Specifically, the total new loss
function can be expressed as:

Llotal = Ltask + A Lemra (5)

where Ly is the cross-entropy loss for the primary task,
measuring the model’s predictive accuracy on the training data.
Lenr represents the average modified predictive entropy over
the training samples, which encourages the model to maintain
higher uncertainty and prevents overfitting to member data.
The coefficient A is a hyperparameter that balances the trade-
off between task performance and privacy regularization.

While incorporating entropy helps mitigate overfitting, the
standard entropy calculation has notable limitations. For in-
stance, a correctly classified sample with a confidence of 1
yields zero entropy, as does an incorrectly classified sample
with the same level of confidence. As a result, standard entropy
measures fail to reliably capture the predictive uncertainty
that differentiates member from non-member samples. To
overcome this limitation, we adopt an improved predictive
entropy formulation proposed by Song et al. [36], which
modifies the entropy computation to better reflect differences
between training and testing data. Given an input (z, y), where
x denotes the input feature and y the ground-truth label, and let
F(x) be the output probability vector produced by the model,
the improved predictive entropy is computed as:

Mene(F(2),y) = — (1 = F(x)y) - log(F(x)y)

=Y _F() log(1 ~ F()), (6)
k#y
where F'(x), denotes the predicted probability for the true
class y, and F'(x); denotes the predicted probability for class
k # y. This formulation penalizes both overconfident correct
predictions and misclassifications by amplifying uncertainty
across the full output distribution.

To regularize the model, we compute the mean modified
entropy over the local training set. Let D; be the set of
the private training samples of participant ¢. The entropy
regularization term is defined as:

1
:@( >

Yk )ED;

Lentr Menlr(F(xk)a yk)- (7)

This term is then incorporated into the overall training objec-
tive to increase the predictive uncertainty on member samples,
thereby mitigating the risk of membership inference.

C. Student Model Training with CVAE Distillation

The training of the student model constitutes the second step
of the distillation process and aims to capture the predictive
patterns of the teacher model while minimizing direct reliance
on private data, thereby enhancing participant privacy. Prior
studies [34] often employ synthetic unlabeled data for unsuper-
vised training, but such approaches typically lead to substantial
degradation in student model performance compared to the
teacher model. To overcome this limitation, we introduce
a Conditional Variational Autoencoder (CVAE) to generate
labeled synthetic data similar to the distribution of the private
data for supervised student model training. Specifically, the
class label is incorporated into both the encoder and decoder,
guiding the generation process to ensure that the synthetic
samples are semantically aligned with the desired category.



To achieve this, the CVAE is designed to learn the joint dis-
tribution p(z | y) of the input data and its corresponding labels.
The training process is achieved by minimizing the evidence
lower bound loss [18], which consists of two components: a
reconstruction loss that measures the similarity between the
generated and original data, and a Kullback-Leibler (KL)
divergence term that regularizes the latent space towards a
standard normal distribution. The loss can be expressed as:

Levat = Eq(efey) [ log p(a | 2 9)]+ D (4= | 2,9) || p(2))

®)
where ¢(z | x,y) is the approximate posterior learned by the
encoder, p(z | z,y) is the decoder output, and Dy, is the
KL divergence measuring the difference between the learned
latent distribution and a standard normal distribution in CVAE.
After training, the CVAE can generate synthetic samples for
any given label. The generation process involves first sampling
from a standard normal distribution z ~ AN(0,7) and then
passing the sampled latent vector along with a label embedding
y into the decoder to generate a synthetic sample:

& =plz|zy) €))

The inclusion of the class label ensures that the generated
samples remain consistent with the target category, while
the randomness introduced by the latent variable enables the
generation of diverse samples even within the same class. As
a result, the synthetic data captures the statistical properties of
the original dataset without revealing specific private instances,
thereby mitigating privacy risks.

During the student model training phase, we use the labeled
synthetic data generated by the CVAE for supervised learning,
effectively replacing the original private data to reduce the risk
of privacy leakage. For each participant, the CVAE generates
synthetic samples 2 along with corresponding labels y;, for
every data class. Subsequently, the student model is trained
using the standard cross-entropy loss function as part of the
distillation loss. This loss function is defined as:

M
Ltudent = — Z Yk IOg fo, (‘%k%
k=1

(10)

where fg, () denotes the output probability distribution of the
participant ¢ student model, and M represents the number of
synthetic training samples.

To further enhance the learning effectiveness of the student
model and to retain as much of the useful knowledge from
the teacher model as possible, we incorporate a knowledge
distillation loss based on soft labels. During the training pro-
cess, the student model leverages both the ground-truth labels
from the synthetic data generated by the CVAE and the soft
labels provided by the teacher model. The distillation process
utilizes the teacher model’s softened probability distribution
f1, (&, ), which is adjusted by the temperature parameter 7

to balance the influence of synthetic and soft labels. The final
distillation loss is formulated as:

M

Ldisti]] == ’YLstudent‘F(l_’Y)TQ Z DKL (fT, (j?ka T) || fsi (:Eka T))
k=1

(11

where -y is a balancing coefficient between the true labels and
the soft labels, 7 is the temperature parameter that smooths the
teacher model’s predictions, and Dy;, measures the divergence
between the teacher and student model predictions in the
distillation phase.

By leveraging this design, the labeled synthetic data gen-
erated by the CVAE is utilized for supervised training of
the student model, effectively eliminating the need for direct
access to raw private data. Simultaneously, the incorporation
of knowledge distillation loss facilitates the efficient transfer
of predictive behavior from the teacher model to the student
model. This dual mechanism substantially mitigates the risk
of privacy leakage associated with membership inference
attacks. Furthermore, since the synthetic data are generated to
closely approximate the underlying distribution of the original
private data, the performance degradation of the student model
remains minimal. Overall, this approach achieves a favorable
trade-off between privacy preservation and model utility, en-
suring both effective defense and high task performance.

D. Contribution-Aware Aggregation Strategy

In federated learning systems, malicious clients can inten-
tionally manipulate their local data or model updates to launch
active attacks that amplify membership inference risks. By
injecting carefully crafted poisoning updates into the training
process, these adversaries can steer the global model towards
behaviors that increase the distinguishability between member
and non-member data, thereby exacerbating privacy leakage.
To address this threat, we propose a contribution-aware ag-
gregation strategy designed to reduce the negative impact of
malicious clients and enhance target model robustness.

Our approach evaluates the quality of each client’s update
on the server side before global aggregation. At each commu-
nication round ¢, the server retains the global model parameters
from the previous round, denoted as 9;1;;&1, and estimates the
contribution of each participant’s update to the overall model
performance. Specifically, for each participant 7, the server
temporarily applies the local update to the global model and
evaluates the resulting accuracy on a held-out validation set.
The contribution ¢; of participant ¢ is computed as:

t—1

c; = Accl — Accf !, 12)

where Accf is the accuracy of the global model after incor-
porating participant ¢’s update, and Acc,tm_si is the baseline
accuracy of the global model from the previous epoch ¢ — 1.
Based on the contribution of each participant, we assign
weighted importance to their gradients and incorporate them
into the global model aggregation process.

In the aggregation step, we consider three possible scenar-

ios. The first scenario occurs when all participants contribute

)



positively, meaning their local updates have a positive impact
on the global model. In this case, we perform weighted aggre-
gation based on each participant’s contribution. The weighted
aggregation of the global gradient is given by:

oélobal 9;]0;(11 + Z Ae,tslv (13)
Jj= 1
where Afy = 0 — 9;10&&1 denotes the local update of

participant ¢, and ¢; is the estimated contribution of participant
i to the global model. This weighted update ensures that each
participant’s influence on the global model reflects their actual
contribution.

The second scenario occurs when some participants have
positive contributions while others have negative contributions.
In this case, we discard the negative contributions and ag-
gregate only the gradients from the participants with positive
contributions. This approach prevents harmful updates from
malicious clients from negatively impacting the global model.
The aggregation rule is given by:

2.

1
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where the summation is taken over the subset of IV participants
with strictly positive estimated contributions. This selective
aggregation strategy effectively filters out potentially malicious
or unhelpful updates, preserving the global model integrity.
The third scenario arises when all participants exhibit neg-
ative contributions, indicating that their local updates col-
lectively degrade the global model. To prevent performance
deterioration, we exclude the top-n participants with the lowest
contributions and perform aggregation over the remaining
participants. The global model update is defined as:

eélnlial + Z E
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where IC denotes the index set of the top-n participants with
the smallest contributions. By removing the least helpful up-
dates, this strategy enhances the robustness of the aggregation
process even in fully adversarial or degraded training rounds.
The complete federated training workflow of our proposed
defense is summarized in Algorithm 1.

V. EXPERIMENTAL SETUP
A. Datasets and Models

We conduct experiments on four datasets: Location302,
Purchase100?, Texas100%, and Cifar10 [32]. Following prior
works [7], [25], [35], we adopt a neural network with fully
connected layers of 512, 128, and 30 units for Location30.
For Purchase100 and Texas100, we adopt networks with layer
sizes [600, 1024, 256, 100] and [6169, 1024, 512, 256,
100], respectively, all using ReLU activations. For CifarlO0,
we employ ResNet-20. Each client maintains both a teacher

Zhttps://sites.google.com/site/yangdingqi/home/foursquare-dataset
3https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
“https://www.dshs.texas.gov/thcic/hospitals/Inpatientpudf.shtm

Algorithm 1 Federated Training Workflow of the Proposed
Defense Framework

1: Input: Number of rounds F/, number of clients N, private
data {D;}¥,
Output: Final global model 6%
Initialize global model 63,
for each round t = 1,2,..., FE do
Broadcast 0;1_0&21] to all clients
for each Client i = 1,2,..., N in parallel do
Train teacher model 67, with joint loss on D;
Train CVAE on D; to learn distribution p(z|y)
Generate labeled synthetic data (2, y) using CVAE
Train student model % using (i,y) with soft
labels from teacher model 6%,

global

R A A i

_
=4

11: Upload local student model 9 . to Server
12: end for
13: Server evaluate c; of 9 on held-out validation set

14: Aggregate updates with A&S x ¢; to obtain 6!
15: end for
16: return 6%

global

global

model and a student model, sharing the same architecture as
the global model for compatibility in aggregation. The CVAE
consists of an encoder and a decoder, each with one hidden
layer of 512 units. The latent dimension is set to 20 for
Location30, Purchase100 and Cifarl0, and 50 for Texas100.

B. Attacks

To comprehensively evaluate the effectiveness of our pro-
posed defense framework, we consider a range of membership
inference attacks from both passive and active perspectives.
Specifically, we include four representative passive attacks:
Prediction [35], Bias [45], Entropy [36], and LiRA [5], as well
as two active attacks: AgrEvader [46] and AMP [6]. Detailed
descriptions of these attacks are provided in Appendix E.
We assume that attackers have access to various parameters
from the model training process, can obtain labeled data that
follows the same distribution as the training dataset, and face
no query restrictions. Notably, attackers are not required to
construct shadow models to mimic the target model’s behavior,
thus relaxing the constraints on the attacker to simulate more
realistic and complex attack scenarios.

C. Defense Settings

We consider a horizontal federated learning scenario where
multiple clients collaborate with a server to complete the train-
ing task. We consider 10 participants (see Section VI-K for
larger-scale settings with up to 500 participants), each owning
independently and identically distributed (IID) data, with all
participants being selected for training in each round. The
batch size is set to 64, the optimizer is Adam, and the learning
rate is 0.001. The model is trained for 50 epochs. During the
training of the teacher model, the entropy loss parameter is set
to 0.20. In the training of the student model, each participant
generates synthetic data with the same number and distribution



TABLE I: Attack accuracy and model accuracy before (w/o) and after (w) applying our defense.

ACCq

ACCp,
Datasets Prediction [35] Bias [45] Entropy [36] LiRA [5] AgrEvader [6] AMP [46] AACCm
w/o w w/o w w/o w w/o w w/o W w/o w w/o w
Location30  84.58%  50.02% 82.38% 5023% 87.83% 49.66% 8827%  50.54%  80.66%  50.09%  84.86% S0.32% 64.49% 64.04%  -0.45%
Purchasel00 77.26% 49.78%  68.15%  49.98% 81.25% 49.92%  7849%  49.99%  79.47%  50.13% 75.70% 50.05% 80.32%  79.78%  -0.54%
Texasl00  78.67% 49.84% 85.77% 50.10% 6223% S51.08% 79.58%  50.08% 75.58% S0.66% 83.87% 49.53%  58.69% 60.50%  +1.81%
Cifar10 68.96% 50.13% 8327% 49.88%  70.80% 5029%  70.03%  S50.02% 67.54% 49.66% 82.33% 49.72%  80.20% 79.46%  -0.74%

as their private data for local training. The distillation process
is performed 25 times with the distillation coefficient set to
0.03. During the global model aggregation phase, when the
contributions of all local participants are negative, the three
clients with the smallest contributions (k = 3) are discarded
to mitigate the negative impact of malicious clients on the
global model. Additionally, we evaluate the performance of
the defense method under various parameter settings to verify
its effectiveness and robustness across different configurations.

D. Evaluation Metrics

We evaluate the effectiveness of the proposed defense using
two primary metrics: attack accuracy and model accuracy.
The attack accuracy, denoted as ACC,,, measures the success
rate of membership inference attacks. The model accuracy,
denoted as ACC,,, reflects the classification performance of
the target model on the test dataset. To assess the trade-off
between privacy protection and model utility, we additionally
report the change in model accuracy before and after defense,
denoted as AACC,,.

VI. EXPERIMENTAL ANALYSIS
A. Analysis of the Proposed Defense

To comprehensively evaluate the effectiveness of the pro-
posed defense framework, we conduct extensive experiments
on four benchmark datasets against six representative mem-
bership inference attacks, including Prediction [35], Bias [45],
Entropy [36], LiRA [5], AgrEvader [6], and AMP [46]. The
results are summarized in Table I. As shown, our method
significantly reduces the effectiveness of all attack types. After
applying our defense, the attack accuracy drops close to 50%
across all settings, which approximates random guessing. This
indicates that the attacker can no longer effectively distinguish
between member and non-member data, demonstrating the
strong privacy-preserving capability of our approach.

For passive attacks, our defense framework consistently
suppresses all attack accuracies to around 50%, demonstrating
its strong effectiveness against inference strategies that rely
on the model parameters. This success is largely attributed to
the distillation process based on entropy-regularized teacher
training and CVAE-generated synthetic data, which jointly
mitigate the overfitting to member samples. By increasing pre-
dictive uncertainty and decoupling the student model from raw
training data, our method effectively weakens the distinguisha-
bility between member and non-member instances, thereby
neutralizing the advantages exploited by passive attackers.

For active attacks such as AgrEvader [6] and AMP [46],
which leverage data poisoning or malicious model updates

TABLE II: Comparison of SOTA defenses on attack accuracy,
model utility, runtime, and resource usage on Purchase100.

ACC,
Prediction Bias Entropy LiRA AgrEvader AMP

Memguard [17] 60.39% 76.82%  68.00% 74.73%
DP-SGD [1] 52.54% 63.30% 66.36% 57.46%
DMP [34] 53.15% 58.66% 63.63% 68.50%
HAMP [7] 71.25% 72.60%  78.92% 66.34%
MIST [20] 55.82% 67.33% 70.31% 75.54%
LoDen [25] 65.83% 61.09% 64.55% 79.34%
Mesas [19] 65.40% 62.18%  65.40% 79.16%
Ours 49.78% 50.13%  50.05% 79.78%

Time/

ACCm AACCy, Epoch

Defense Memory

96.80s 2325MB
7.53s  1475MB
7.73s  1520MB
4.41s  1350MB
7.35s 1413MB
5.12s  1632MB
230.03s 2728MB
491s 1396MB

66.78% 67.34% 67.65%
58.69% 58.32% 60.13%
57.78% 57.717% 59.25%
70.89% 70.16% 71.52%
58.89% 55.20% 59.55%
72.09% 74.07% 65.57%
70.40% 70.30% 65.81%
49.98% 49.92% 49.99%

-5.99%
-23.26%
-12.22%
-14.38%

-4.78%

-1.38%

-1.56%

-0.54%

to amplify membership leakage, our contribution-aware ag-
gregation mechanism effectively mitigates their impact. As a
result, the attack accuracy under these settings remains close
to 50%, indicating that our defense can reliably identify and
down-weight poisoned contributions, thereby maintaining both
privacy and model utility during aggregation.

More importantly, our method preserves the performance of
the target model while enhancing privacy protection. Across
all evaluated datasets, the reduction in model accuracy remains
within an acceptable range, and in certain cases, the accu-
racy even improves. For example, on the Texas100 dataset,
the model accuracy increases by 1.81%, indicating that our
defense strategy not only mitigates privacy leakage but also
improves model generalization by reducing overfitting. This
improvement is attributed to the use of entropy-regularized
teacher training and synthetic data distillation, which jointly
reduce the model’s tendency to memorize specific samples and
encourage the learning of more generalizable patterns. We
further report the defense overhead in Appendix A and the
runtime and memory efficiency in Appendix B.

B. Comparison with State-of-the-Art Defenses

We compare seven existing defense methods against mem-
bership inference attacks, including five designed to mitigate
passive attacks: Memguard [17], DP-SGD [1], DMP [34],
HAMP [7], and MIST [20], and two tailored for defending
against active attacks, LoDen [25] and Mesas [19], as sum-
marized in Table II. Overall, our proposed method consistently
achieves the strongest defense across all attacks while main-
taining minimal degradation in model accuracy.

For passive attack defense, existing methods show varied
effectiveness. While DP-SGD [1] reduces the accuracy of
Prediction [35] to 52.54%, it significantly degrades in model
utility, with accuracy falling to 57.46%. HAMP [7] exhibits
relatively poor defense performance, with limited reduction
in attack success rates. MIST [20] demonstrates competitive
defense performance against certain passive attacks by leverag-
ing membership-invariant subspace learning but shows limited



TABLE III: Ablation study on the effectiveness of different

components of our defense on Purchasel00.

ACC,

Comp ACCy AACCH,
Prediction Bias Entropy LiRA AgrEvader AMP
1 69.31% 71.718% 51.06% 56.47%  72.00%  72.87% 80.09% -0.23%
2 50.16% 51.25% 51.60% 56.05%  62.00%  59.09% 80.18% -0.14%
3 72.59% 74.85% 65.83% 65.45% 67.33%  65.06% 78.14% -2.18%
1+2 50.37% 50.86% 51.12% 52.12% 61.33%  61.36% 79.63% -0.69%
1+3 71.90%  72.30% 50.98% 52.64% 62.00%  63.66% 71.96% -2.36%
2+3 50.50% 51.16% 51.01% 53.47%  63.30% 53.63% 79.51% -0.81%

1+243 49.78%  49.98% 49.92% 49.99%  50.13%  50.05% 79.78%  -0.54%

* Component 1, 2, and 3 denote teacher model training with improved entropy, student model
training with CVAE distillation, and contribution-aware aggregation, respectively.

effectiveness against active attacks. Generally, these methods
perform better against passive attacks than active ones, likely
because they focus on obfuscating model outputs rather than
mitigating malicious updates introduced by adversarial clients.
For active attack defense, LoDen [25] and Mesas [19] mod-
erately reduce attack accuracy for AgrEvader [6] and AMP
[46] to around 60%. However, their protection against passive
attacks is noticeably weaker, with accuracy often exceeding
65%, revealing limitations in their defensive scope.

Our method addresses both types of threats comprehen-
sively. It reduces the accuracy of all attacks to around 50%,
close to random guessing, while preserving 79.78% main task
accuracy with only a 0.54% degradation, which is the smallest
among all compared methods. In summary, most existing de-
fenses are designed to address either passive or active attacks
and often incur significant utility loss. In contrast, our joint
defense delivers robust protection against diverse membership
inference attacks while preserving model performance.

In addition to defense effectiveness, we compare the actual
computational overhead (seconds) and memory consumption
of each baseline method. Our method requires only 4.91s per
training round and 1396MB of memory, demonstrating supe-
rior efficiency and resource usage. In contrast, Memguard [17]
incurs substantial overhead, with a per-round training time
of 96.80s, while Mesas [19] reaches as high as 230.03s and
consumes 2728MB of memory. Although HAMP [7] features
fast training and low memory usage, its defense performance is
notably weaker than ours. In comparison, our method strikes a
favorable balance among defense effectiveness, computational
efficiency, and resource consumption, making it suitable for
real-world federated learning scenarios.

C. Ablation Study of Core Defense Components

To assess the effectiveness and contribution of each compo-
nent, we conduct an ablation study by selectively enabling the
three core modules, as shown in Table III. Overall, the results
demonstrate that each module contributes uniquely to the
defense, and their combination yields the most comprehensive
protection against both passive and active attacks.

We begin by analyzing the individual effect of each de-
fense component. When using the teacher model with entropy
regularization alone (Component 1), the defense is partic-
ularly effective against entropy-based attacks, reducing the
Entropy [36] attack accuracy to 51.06%. However, it provides
limited resistance to active attacks such as AgrEvader [6] and

AMP [46], which remain above 70%. In contrast, using CVAE-
based distillation alone (Component 2) provides broader pro-
tection across attack types. For example, it significantly re-
duces the attack accuracy of LiRA [5] while maintaining
high model utility, indicating that training on synthetic labeled
data effectively masks membership status without sacrificing
performance. On the other hand, contribution-aware aggrega-
tion (Component 3) is highly effective against active attacks,
suppressing AgrEvader [6] and AMP [46], but less effective
against passive inference, while incurring a 2.18% utility
loss due to partial exclusion of local updates. These results
indicate that each component targets different threat types and
introduces specific trade-offs between privacy and utility.

Combining modules enhances their individual strengths.
Most notably, when all three modules are used together, the
accuracy of all attack types falls below 50.20%, effectively ap-
proaching the level of random guessing. At the same time, the
target model achieves a classification accuracy of 79.78%, with
only a 0.54% reduction compared to the undefended model.
This result demonstrates that the three components provide
complementary protection by addressing privacy vulnerabili-
ties at different stages of federated learning. By reinforcing
each other, these components collectively establish a unified
defense mechanism that delivers strong and comprehensive re-
sistance against both passive and active membership inference
attacks while simultaneously preserving the performance of
the global model on the primary task.

D. Impact of the Entropy Regularization Coefficient \

To investigate the effect of entropy regularization on mem-
bership privacy, we first examine the modified entropy distri-
butions of member and non-member samples before and after
applying the entropy loss during teacher model training. As
shown in Fig. 2, models trained without entropy regularization
exhibit a clear separation between member and non-member
samples, where members tend to have significantly lower
predictive entropy. This distributional gap serves as a strong
signal for membership inference attacks. In contrast, after
incorporating entropy regularization, the entropy distributions
of member and non-member data become considerably more
overlapped across all datasets. This indicates that the model
becomes less confident in its predictions on member data,
thereby increasing uncertainty and obfuscating the decision
boundary used by attackers. These observations confirm the
effectiveness of entropy regularization in weakening the distin-
guishability between members and non-members, and hence,
mitigating the risk of privacy leakage.

We further evaluate the quantitative impact of the entropy
regularization coefficient A. As illustrated in Fig. 3, increasing
A consistently reduces the attack success rates across various
MIAs. Notably, when A = 0.2, all attack accuracies drop to
near-random levels, indicating optimal defense performance.
In addition, we observe that for relatively small values of A,
such as 0.05 and 0.1, the main task accuracy not only re-
mains stable but even improves, reaching 79.32% and 80.02%,
respectively. This improvement suggests that mild entropy

10



Member
Non-Member

Member
175

150
5125
21.00

w/o
entropy

So7s
050

025

Non-Member

loss

0.00

4 6 4 6
Modified Entropy Modified Entropy

(a) Location30 (b) Cifarl0

Member
Non-Member

w/
entropy

Member
Non-Member

loss

10 2

4 6 4 6
Modified Entropy Modified Entropy

(e) Location30 (f) Cifar10

16
Member 0175

Non-Member

Member
14 0150 Non-Member
12
025
»10 >
2 20100
Zos 2

&
06 Soo07s

o4 0.050

02 0.025

00

0.000

2 16 18 20 22 24

Modified Entropy

a 6 2% 28 30
Modified Entropy

(c) Purchase100 (d) Texas100

ccccccc
Member

Non-Member

o6
0.14
012

Zo1o

Zoo
006
0.04
0.02
000

6 18 20 22 24
Modified Entropy

T " ) s 2% 28 30

fied Entropy.

(g) Purchase100 (h) Texas100

Fig. 2: Comparison of entropy distributions across datasets. The top row shows models trained without entropy regularization,
while the bottom row shows models trained with entropy regularization.
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Fig. 3: Model performance (right y-axis) and attack accuracy
(left y-axis) under different A values on Purchasel00.

regularization can effectively reduce overfitting and enhance
generalization. However, when A\ exceeds 0.5, the model
accuracy deteriorates rapidly, reflecting the adverse effects of
overly strong regularization. These results suggest that setting
A around 0.2 offers the best trade-off, enabling robust defense
against MIAs while preserving the utility of the global model.

E. Effect of Distillation Loss Weight ~v

We investigate the impact of the distillation loss weight
~ on both defense performance and model accuracy. The
results are illustrated in Fig. 4. When v = 0, the student
model is trained exclusively using soft labels from the teacher
model, without relying on synthetic data labels. Under this
setting, the model achieves relatively high accuracy, high-
lighting the effectiveness of soft supervision in guiding the
learning process. As -y increases, the influence of hard labels
from CVAE-generated data becomes stronger, and the reliance
on the teacher model’s soft labels weakens. In the range
between v = 0.05 and ~ = 0.1, the model accuracy exhibits
a steady upward trend, reaching a peak of 79.93%. This
suggests that appropriately blending soft and hard supervision
allows the student model to better capture both class-level
structure and sample-specific information. However, when ~
continues to increase, the model accuracy begins to decline,
indicating that excessive reliance on synthetic data labels leads
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Fig. 4: Impact of distillation loss weight v on model accuracy
and defense performance on Purchasel00.

to performance degradation, likely due to distributional shifts
and reduced knowledge transfer from the teacher model.
From the perspective of defense effectiveness, the attack
accuracy for all methods remains close to 50% across a broad
range of  values. This suggests strong robustness against
membership inference attacks. The use of CVAE-generated
data ensures that the model does not overfit to real member
samples, thereby weakening the attacker’s ability to infer
membership information. In summary, an appropriately chosen
distillation weight - enables the student model to achieve both
high task performance and strong resistance to membership
inference attacks. This demonstrates the effectiveness of our
method in balancing privacy protection and model utility.

FE. Impact of the Number of Distillation Iterations

We examine the effect of distillation iterations, as shown in
Table IV. With fewer iterations, such as using only one itera-
tion, the student model fails to sufficiently capture the output
behavior of the teacher model, resulting in a relatively low
classification accuracy of 68.23%. This observation suggests
that at an early stage of distillation, the student model remains
under-trained and lacks a thorough understanding of the soft
labels provided by the teacher, thereby limiting its ability to
form stable and generalizable prediction patterns.



TABLE IV: Effect of distillation iterations on attack accuracy
and model performance.

TABLE VI: Comparison of attack and model accuracy using
real data and synthetic fake data as validation sets.

Iters ACCa ACChp, Validation ACCa ACChy,
Prediction Bias Entropy LiRA AgrEvader AMP Prediction Bias Entropy LiRA AgrEvader AMP
1 49.65%  49.66% 49.34% 52.89%  51.90%  54.28% 68.23% 1% 51.15% 52.08% 50.92% 5136%  5241%  52.28% 79.63%
2 50.16% 50.01% 49.81% 51.24%  50.60%  52.80% 76.56% £ 2%  5148% 5145% 50.63% S172% 52.05%  51.97% 80.04%
3 5074%  50.32% 50.05% 50.61%  5025%  52.20% 76.37% s 5% 51.41% 5136% 51.20% 51.55% 51.68% 51.68% 78.47%
35 51.82%  50.61% 5022% 50.25% 50.01% 50.67% 79.43% E 20% 50.97%  50.83% 50.76% 51.04%  51.15%  51.15% 79.19%
10 51.99% 50.72% 50.62% 50.52% 50.13% 50.42% 79.12% &  50% 5043% 50.35% 50.22% 50.47% 50.55% 50.49% 80.05%
15 51.54% 5036% 50.68% 50.29% 50.18% 5027% 79.65% 100% 49.78%  49.98% 49.92% 49.99% 50.13% 50.05% 79.78%
20 50.16%  50.03% 50.22% 50.18%  50.11%  50.08% 79.43% 1% 50.12%  50.05% 49.88% 5021%  5039%  5033% 78.97%
25 4978%  49.98% 49.92% 49.99%  50.13%  50.05% 79.78% 8 2%  5020% 50.12% 49.95% 50.42%  50.38%  50.21% 79.59%
30 50.31% 50.01% 50.43% 50.27% 50.22% 50.12%  79.34% ] 5% 49.12% 49.58% 48.76% 48.86%  49.94%  49.85% 79.50%
40 51.76%  50.20% 50.28% 50.11%  50.33%  50.25% 78.70% £ 20%  4995% 50.03% 49.72% 49.89%  49.86%  49.72% 79.92%
50  51.80% 50.28% 50.12% 50.25%  50.45% = 50.37% 79.24% £ 50%  49.88% 50.01% 49.79% 49.90% 49.71%  49.57% 80.02%
N 100%  49.62% 49.53% 4931% 49.49%  4947%  49.41% 79.42%
TABLE V: Effect of synthetic data volume on model perfor-
mance and defense effectiveness. TABLE VII: Comparison of different aggregation strategies
under consistent configurations.
Ratio ACCa ACCr,
Prediction  Bias  Entropy LiRA  AgrEvader AMP AGR ACCq ACCm
10%  4921%  4985% 50.03% 50.30%  5150%  52.00% 71.29% Prediction  Bias Entropy LiRA AgrEvader AMP
20% 50.59%  50.10%  50.11%  50.50%  50.75%  50.30%  79.26% Fang [8] 5207%  52.12% 56.18% 57.90%  61.33%  61.36% 79.35%
50% 52.09%  50.95%  50.09% = 50.66% 50.43% 50.20%  79.20% Median [43]  52.03%  52.38% 57.06% 60.12%  62.66%  59.09% 78.79%
75%  51.19%  50.50% 50.55% 5021%  50.33%  50.12% 79.12% Krum [3] 51.98%  52.10% 56.68% 57.87%  61.89%  60.45% 78.91%
100%  49.78%  49.98% 49.92% 49.99%  50.13%  50.05% 79.78% TM [24] 5237%  50.86% 53.12% 5545%  61.53%  6136% 74.53%
200%  49.85%  50.10% 51.45% 50.08%  50.66%  50.40% 79.83% Ours 49.78%  49.98% 49.92% 49.99%  50.13%  50.05% 79.78%
500%  50.24%  50.33% 51.84% 50.83%  50.78% = 50.53% 79.32%
e . . . ditional accuracy gains. In some cases, excessive synthetic
As the number of distillation iterations increases, the ye ’ y

model’s performance improves rapidly, with five or more
iterations yielding stable main task accuracy around 79%
and attack accuracies converging to approximately 50%. This
demonstrates that multi-round distillation enables the stu-
dent model to effectively absorb class-level structure and
confidence information from the teacher while reducing the
risk of overfitting to real member data through the use of
synthetic samples. In the range of 15 to 30, both utility and
defense performance remain stable, indicating convergence of
the training process, whereas further increases beyond this
point provide negligible gains and may even slightly degrade
performance due to overfitting. Overall, a moderate number
of iterations achieves effective knowledge transfer, ensuring
strong defense capabilities and high main task accuracy.

G. Impact of Synthetic-to-Real Data Ratio

We evaluate the impact of synthetic-to-private data ratio in
Table V, and visualize the distribution of generated data in Ap-
pendix D. When the synthetic data volume is low, such as 10%,
the main task accuracy drops to 71.29%, suggesting that the
student model cannot adequately learn from the teacher model.
As the ratio increases, the accuracy rises quickly and surpasses
79% when the ratio reaches 20. Notably, when the ratio
reaches 100%, the model achieves near-maximum accuracy
and the lowest attack success rates, indicating optimal defense
performance. At this point, all attack accuracies converge
toward 50%, demonstrating strong resistance to membership
inference. This suggests that sufficient synthetic data enables
the student model to absorb the structural knowledge of the
teacher while preserving generalization and privacy.

Further increasing the volume of synthetic data beyond
200% yields diminishing returns and does not lead to ad-
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samples may introduce redundancy or distributional noise,
slightly increasing the attack success rate. Overall, a moderate
amount of synthetic data improves both utility and robustness.
Across all settings, our method maintains attack accuracy
near the random guess level, highlighting its stability and
effectiveness under varying synthetic data scales.

H. Ablation Study on Central Validation Set

To evaluate the impact of the central validation set, we
conduct an ablation study with real and synthetic validation
sets of varying sizes, as summarized in Table VI. The results
show that as the proportion of the real validation set increases,
attack accuracy gradually decreases towards the random guess-
ing level, indicating enhanced defense effectiveness. When the
validation set is small, such as 1% or 2%, the main task model
accuracy exhibits slight fluctuations. Once the validation set
reaches 50% or higher, the model accuracy stabilizes around
80%, while further improvements in defense effectiveness
become marginal. These findings suggest that a moderately
sized validation set is sufficient to meet defense requirements,
and excessively large validation sets may result in unnecessary
resource consumption without meaningful benefit.

The experiments with synthetic validation data show that
even without any real validation set, our defense effectively
suppresses all attacks, with attack accuracies maintained close
to random guess. The target model also maintains performance
comparable to that with real validation sets, with the largest
observed accuracy drop being no more than 0.8%. In summary,
this ablation study demonstrates that our method has low de-
pendence on a central validation set. Even in scenarios where
no real validation data is available, using synthetic validation
data alone achieves effective defense without significantly



TABLE VIII: Defense effectiveness under different Dirichlet «v settings on Purchasel00.

ACCq

ACCh,
Non-IID Prediction Bias Entropy LiRA AgrEvader AMP AACCm
w/o w w/o w w/o w w/o \ w/o w w/o A w/o \
0.1 59.57%  52.86% 61.21% 51.28% 61.51% 48.64% 63.87%  50.56%  60.40% 50.73%  62.10% 50.36% 46.71%  50.74% +4.03%
0.3 63.75%  50.81% 67.90% 51.12%  70.55%  50.43% 6723%  5028%  72.88% 50.18%  69.50% 50.21% 59.08%  64.55% +5.47%
0.5 79.41%  51.19% 81.00% 50.68% 85.96% 50.85%  82.50% 50.35% 84.70% 50.33%  81.60% 50.12%  65.18%  70.78% +5.60%
0.7 7872%  50.78%  80.63%  50.52%  84.32%  50.05% 80.31%  50.10%  83.20% 50.01% 79.41% 50.09%  67.55%  72.13% +4.58%
1.0 64.72%  50.88% 67.35% 51.10% 7043% 51.50% 69.88%  5037%  79.57% 50.12% 78.60% 50.13%  69.70%  72.21% +2.51%

affecting model performance, highlighting the practicality and
deployment flexibility of the proposed approach.

1. Comparison of Different Aggregation Strategies

To evaluate our aggregation strategy against MIAs, we fix
the distillation process and vary only the aggregation method,
as shown in Table VII. Conventional strategies such as Fang
[8], Median [43], Krum [3], and T-M [24] show limited
effectiveness. For instance, under the Fang [8] strategy, the
attack accuracy for AgrEvader [6] and AMP [46] remains
as high as 61.33% and 61.36%, respectively, with similar
levels observed for other methods. These findings indicate that
traditional aggregations struggle to effectively neutralize the
influence of malicious updates from compromised clients.

In contrast, our contribution-aware aggregation strategy
consistently reduces the attack accuracy for all methods to
near 50%, effectively suppressing both passive and active
membership inference attacks to the level of random guessing.
Notably, it also achieves the highest main task accuracy
at 79.78%, outperforming all other baselines. This shows
that by dynamically weighting each client’s contribution to
model performance, our approach improves robustness against
poisoned updates while preserving task utility. In summary,
the proposed aggregation strategy offers a superior balance
between privacy protection and model utility, particularly in
federated learning scenarios involving adversarial participants.

J. Evaluation under Non-IID Data Distribution

We simulate non-IID conditions using a Dirichlet distri-
bution [10], where smaller « values indicate higher data
heterogeneity. As shown in Table VIII, without defense, all
attack accuracies increase notably as the data distribution
becomes more heterogeneous. For instance, when a = 0.5,
the attack accuracy for Entropy [36] reaches as high as
85.96%, significantly compromising privacy. Simultaneously,
the model performance deteriorates under high heterogeneity;
for example, at « = 0.1, the model accuracy drops to 46.71%.
This is because the training process struggles to generalize
well when local data distributions diverge significantly.

After applying the proposed defense, the accuracy of all
attacks drops to nearly 50%, effectively neutralizing the in-
ference advantage of attackers. Moreover, the global model
accuracy improves in every case, with gains ranging from
+2.51% to +5.60%. This suggests that our method not only
mitigates privacy leakage but also enhances training stability
and generalization in heterogeneous environments. The ob-
served improvements highlight the applicability and robust-
ness of our approach in realistic federated learning settings.

TABLE IX: Impact of the number of participants on attack
accuracy and model performance.

Parts ACCa ACCy  AACCH,
Prediction Bias Entropy LiRA AgrEvader AMP

2 50.94%  50.12% 50.21% 50.67%  51.00% 51.28% 80.29%  -0.33%
5 50.68%  49.98% 4991% 50.10%  50.23%  50.56% 80.12%  -0.52%
10 49.78%  49.98% 49.92% 49.99%  50.13%  50.05% 79.78% = -0.54%
20 50.20%  50.19% 49.88% 50.12%  50.33% 50.18% 79.38%  -0.40%
30 50.10%  49.98% 49.74% 49.95%  50.00%  49.78% 79.88%  -0.48%
50 50.10%  49.73% 49.80% 49.89%  49.90%  49.88% 79.78%  -0.59%
100 49.78%  49.61% 49.78% 49.92%  49.58%  49.50% 79.20%  -0.54%
250 49.53%  49.60% 49.88% 49.78%  49.57%  49.63% 78.68%  -0.49%
500 49.39%  49.52% 49.22% 49.45%  49.41%  49.55% 75.67%  -0.59%

To further assess convergence under non-IID conditions, we
compare our aggregation strategy with several alternatives in
Appendix C, confirming its effectiveness and stability.

K. Impact of the Number of Participants

We evaluate the impact of the number of participants on
Purchasel100 in Table IX. From the perspective of defense
performance, we observe that as the number of participants
increases, the attack accuracy remains consistently close to
50% across all evaluated attacks, indicating strong and stable
resistance to membership inference. For instance, the attack
accuracy of the Entropy [36] method is 50.21% with 2 partic-
ipants, and gradually decreases to 49.92% and 49.74% when
the number increases to 10 and 30, respectively. Similar trends
are observed for AgrEvader [6], whose accuracy drops from
51.00% with 2 participants to 49.41% with 500 participants.
These results confirm that our defense mechanism effectively
mitigates inference risks, and its performance remains stable
even as the number of participants increases to 500. On
the contrary, greater diversity in model updates appears to
increase robustness by reducing the consistency of potential
membership signals exploited by attackers.

In terms of the main task performance, the global model
maintains consistently high accuracy across various participant
configurations, demonstrating the stability of our defense
mechanism. Even as the number of participants increases to
500, the model maintains a high accuracy of 75.67%, with only
a 0.59% drop compared to the undefended setting, indicating
minimal impact from the defense. These results demonstrate
that our aggregation strategy effectively integrates diverse local
updates without compromising utility. Furthermore, the pro-
posed defense consistently preserves predictive performance,
even when scaling up to large-scale federated participation.

VII. CONCLUSION

This paper proposes a unified defense framework for fed-
erated learning that effectively mitigates both passive and
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active membership inference attacks. The approach combines
entropy-regularized teacher training that improves prediction
uncertainty and reduces overfitting, a CVAE-based distillation
mechanism that generates labeled synthetic data for student
training without exposing raw data, and a contribution-aware
aggregation strategy that suppresses malicious updates by
adjusting aggregation weights based on client utility. Extensive
experiments demonstrate that the method substantially lowers
attack success rates to near-random levels while maintaining
or improving target model accuracy. In future work, we aim to
explore more efficient data generation and aggregation tech-
niques to further enhance the scalability and trustworthiness
of federated learning systems.
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APPENDIX
A. Overhead of the Proposed Defense

To evaluate the computational overhead of our defense
framework, we analyze its three core stages. First, in teacher
model training, each sample requires an additional forward
pass and entropy-based loss computation, yielding a complex-
ity of O(MC), where M is the number of local training
samples, C' denotes the per-sample computational cost of the
model; as the teacher, student, and global models share the
same architecture, their computational complexity is equiva-
lent. This introduces only a limited increase in computational
cost compared to standard training. Second, in the student
model training phase, we first train a CVAE to approximate
the distribution of private data. This process has a complexity
of O(MHCcyag), where H denotes the number of CVAE
training epochs, Ccvag denotes the per-sample cost of the
CVAE model. Afterward, the student model is trained using the

TABLE X: Breakdown of per-round runtime (in seconds) and
memory usage across datasets.

Time/
Epoch

Dataset CVAE

Train VAE Generate Data Train Teacher Train Student
0.0144 0.0284 0.0032 0.0448
0.5528 0.0243 0.1678 0.0726

0.1943 0.0277 0.0678 0.3684
0.5607 0.0255 0.1842 0.2382

Distillation

Aggregation Memory

0.0759
0.2171
0.8520
1.8408

1.0092  638MB
4.9093  1396MB
10.6004 4234MB
6.5945 1628MB

Location30
Purchase100
Texas100
Cifar10

generated synthetic data over multiple distillation iterations.
We assume the number of generated synthetic samples matches
the local private data size, i.e., also M. Let R denote the
number of distillation rounds; each round involves a for-
ward pass and loss computation, resulting in a complexity
of O(MRC). This process is performed locally and can
be parallelized across participants. Moreover, the synthetic
data can be generated offline, further improving efficiency.
Finally, during aggregation, the server evaluates each client’s
contribution by testing on a held-out validation set of size V,
resulting in a total cost of O(NV (), where N is the number
of clients.

In terms of communication, our method does not introduce
any additional overhead beyond standard FL frameworks such
as FedAvg. Each client only uploads model parameters with
the same architecture and optionally a scalar contribution
score, while all synthetic data generation and training are per-
formed locally without any data sharing. In summary, the total
overhead grows linearly with data size and participant count,
making the framework scalable and practical for federated
learning with enhanced privacy guarantees.

B. Runtime and Memory Efficiency across Datasets

To evaluate the practicality of our method across different
application scenarios, we report a detailed breakdown of per-
round runtime and memory consumption on four representa-
tive datasets, as shown in Table X. The results reveal that
our method maintains low overhead and stable memory usage
across datasets of varying sizes and modalities.

For the Location30 dataset, each training round takes ap-
proximately 1.0s with memory usage below 650MB, demon-
strating strong adaptability to edge devices. On higher-
dimensional tabular datasets such as Purchasel00 and
Texas100, although the runtime increases, the overall overhead
remains within an acceptable range, with peak memory usage
kept under 4.5GB. This confirms the scalability and resource
efficiency of our method on complex data.

In terms of runtime breakdown, the training of the CVAE
can be performed independently from the federated training
process. Once the local data distribution is fixed, the CVAE
only needs to be trained once and does not require retraining
in each round. Thus, its computational overhead is one-time
and does not impose recurring costs. Furthermore, the CVAE-
related stages consume minimal time and offer high flexibility.

Overall, this experiment validates that our method achieves
a favorable balance between defense effectiveness and com-
putational efficiency, making it feasible for wide deployment
in real-world federated learning scenarios.
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Fig. 5: Convergence performance of different aggregation strategies under varying data heterogeneity.
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Fig. 6: t-SNE visualization of real and CVAE-generated samples across different datasets. For each dataset, faint circular points
represent real data, while opaque cross markers denote representative fake samples generated by the CVAE model.

C. Convergence Analysis under Non-IID Settings

We further evaluate the convergence performance of our
proposed method under non-independent and identically dis-
tributed (non-1ID) data settings, and compare it with several
representative aggregation strategies, including Fang [8], Me-
dian [43], Krum [3], and T-M [24]. As shown in Fig. 5, we
present the training loss and test accuracy across epochs under
the IID condition and different levels of non-iidness controlled
by Dirichlet distribution parameters o = 0.1,0.3,0.5.

Under the IID scenario, all methods demonstrate good
convergence behavior, with accuracy eventually stabilizing.
However, under non-IID conditions, the performance gaps
become more pronounced. With smaller values of «, which
correspond to greater data heterogeneity, most methods exhibit
more unstable training curves, slower convergence, or even
stagnation. For instance, when o = 0.1, Median [43] and
Krum [3] struggle to exceed 50% test accuracy, while T-M [24]
maintains stability but suffers from lower overall accuracy.

In contrast, our method consistently achieves effective ag-
gregation and maintains higher accuracy across all non-IID set-
tings. The training process exhibits smoother loss curves and
more stable accuracy trends, demonstrating strong robustness
under heterogeneous data distributions. This advantage is at-
tributed to our contribution-aware aggregation strategy, which
increases the impact of high-quality local updates and reduces
the influence of inconsistent or low-quality ones. While the
method may show slight accuracy fluctuations in the early
training stages, particularly when the data distribution is highly
skewed such as under o = 0.1, these fluctuations diminish
quickly as training proceeds. Overall, our approach maintains
a favorable convergence trend and achieves effective and stable
aggregation in challenging federated learning scenarios.
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D. t-SNE Visualization of CVAE-Generated Samples

To further validate the effectiveness of the synthetic data
generated by the CVAE in our framework, we visualize both
real and generated samples across different datasets using t-
SNE, as shown in Fig. 6. In each subfigure, circular points
represent real samples, while cross markers denote synthetic
samples produced by the CVAE.

The visualization clearly shows that the CVAE-generated
data can effectively cover the distribution of each class and ex-
hibit strong intra-class clustering. This indicates that our class-
conditional CVAE successfully captures the semantic structure
of each class during training and is capable of generating
synthetic data that closely mimics the real distribution.

Moreover, compared to the more dispersed distribution of
real samples, the generated data tends to be more concentrated
and closer to the cluster centers of their corresponding classes
in the embedding space. This concentration effect arises from
two factors. First, the CVAE maximizes the conditional like-
lihood during training, encouraging the generation of highly
representative and confident prototypical samples. Second, the
class-conditioning mechanism provides strong guidance in the
latent space, reducing inter-class overlap and noise.

Overall, these results demonstrate that the CVAE in our
defense framework not only provides strong data generation
capability but also yields structured, controllable samples
that serve as a reliable foundation for subsequent knowledge
distillation and privacy protection.

E. Details of Attack Methods

To comprehensively assess the robustness of our defense
framework, we consider a diverse set of membership inference
attacks, covering both passive and active threat models. We



provide brief descriptions of the six representative attack
methods used in our evaluation.

Prediction (Shokri et al. [35]): A neural network-based
passive attack where shadow models are trained to dis-
tinguish member from non-member data based on the
confidence of the model’s predictions.

Bias (Zhang et al. [45]): A passive insider attack that
exploits temporal variations in model bias during the fed-
erated training process to infer membership information.
Entropy (Song et al. [36]): A passive threshold-based
attack that leverages the difference in modified predictive
entropy between training and testing samples to deter-
mine membership status.

LiRA (Carlini et al. [5]): A passive attack that infers
membership by comparing the model’s output likelihood
on the target sample against that on reference non-
member samples.

AgrEvader (Zhang et al. [46]): An active attack based
on model poisoning, where adversaries deliberately ma-
nipulate their local model updates to interfere with global
aggregation and intensify privacy leakage.

AMP (Chen et al. [6]): An active attack that injects
poisoned samples into the training dataset to manipulate
the model’s output distribution and enhance membership
inference success.
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