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Abstract—We investigate the application of differential privacy
in hyper-parameter tuning, a process involving selecting the best
run from several candidates. Unlike many private learning algo-
rithms, including the prevalent DP-SGD, the privacy implications
of selecting the best are often overlooked. While recent works
propose a generic private selection solution for the tuning process,
an open question persists: is such privacy upper bound tight?

This paper provides both empirical and theoretical exami-
nations of this question. Initially, we provide studies affirming
the current privacy analysis for private selection is indeed tight
in general. However, when we specifically study the hyper-
parameter tuning problem in a white-box setting, such tightness
no longer holds. This is first demonstrated by applying privacy
audit on the tuning process. Our findings underscore a substantial
gap between the current theoretical privacy bound and the
empirical privacy leakage derived even under strong audit setups.

This gap motivates our subsequent theoretical investigations,
which provide improved privacy upper bound for private hyper-
parameter tuning due to its distinct properties. Our improved
bound leads to better utility. Our analysis also demonstrates
broader applicability compared to prior analyses, which are
limited to specific parameter configurations. Overall, we con-
tribute to a better understanding of how privacy degrades due
to selection.

I. INTRODUCTION

Differential Privacy (DP) [18]] stands as the prevailing stan-
dard for ensuring privacy in contemporary machine learning.
A ubiquitous technique employed to ensure DP across a
diverse array of machine learning tasks is differentially private
stochastic gradient descent (DP-SGD, a.k.a., noisy-SGD) [5],
(451, [2].

In addition to a single (private) training process, machine
learning systems always involve a hyper-parameter tuning
process that entails running a (private) base algorithm (e.g.,
DP-SGD) multiple times with different configurations and
selecting the best run. Regrettably, unlike the well-studied
DP-SGD, the reasoning for the privacy cost of such tuning
operations is inadequately studied and often totally ignored.
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Naively, one can bound the privacy loss for the tuning oper-
ation by the composition theorem. If we run the private base
algorithm £ times with different hyper-parameters, the total
privacy cost deteriorates at most linearly with & (or O(v/k) if
the base algorithm is approximate DP and we use advanced
composition theorem [20], which is nearly optimal [24]).
However, these bounds are still far from satisfactory as k is
usually large in practice. Perhaps due to this limitation, it still
remains common to exhaustively tune a private algorithm to
achieve strong performance but only consider the privacy cost
for a single run [14]], [S9l, [54], [43], [56], [S5].

For another approach, tuning hyper-parameter privately can
be framed as a private selection problem, for which several
well-explored mechanisms, such as the sparse vector technique
[19] and the exponential mechanism [32]], may potentially be
utilized. However, these mechanisms assume that the score
function (defining the “best” to be selected) has low sensitivity
(for DP analysis), which is a condition not always met.

Thanks to Liu and Talwar [30], hyper-parameter tuning now
enjoys significantly better privacy bound than naively applying
composition theorem. To briefly describe their findings, if
we run a private base algorithm a random number of times
(possibly with different hyper-parameters) and only output the
best single run, the privacy cost only deteriorates by a constant
multiplicative factor [30]]. For example, if the base algorithm
is (g, 0)-DP, then the whole tuning process is (3¢, 0)-DP if the
running number follows a geometric distribution [30]. This is
much better than the (ke, 0)-DP bound under fixed k times of
running.

Later, Papernot and Steinke [42] operate within Rényi DP
(RDP) framework [33]] and mandate the randomization of the
number of running times, presenting additional results for
varying degrees of randomness. A noteworthy aspect of both
methodologies [30]], [42] lies in their treatment of the base
algorithm as a black box; thus, such a generic approach applies
to a broader spectrum of private selection problems, provided
the base algorithm is differentially private on its own.
Motivations. Hyper-parameters can be tuned with formal
privacy guarantees. But it remains unclear whether the existing
privacy analyses [30], [42] are tight.

Some results suggest the cost of tuning is high. For example,
[30] shows the privacy budget can increase by a factor of
three in certain setups. Still, this seems counterintuitive. It
seems plausible that only revealing the best single run should



not consume that much privacy budget. This leads to our
core question: Does hyperparameter tuning actually consume
significantly more privacy than the base algorithm?

If the answer is positive, then further significant improve-
ments in the analysis is impossible. If negative, it is still
valuable to pursue tighter analysis, as tighter bounds would
allow more hyperparameter trials under the same budget,
directly improving utility in private model selection.

This work. We answer the posed question with both positive
and negative answers. In the affirmative, our constructed
example demonstrates that the current generic privacy bound
provided in [42] for private selection is indeed tight. Still,
the result only holds in the worst case. Conversely, in the
negative, we uncover a more favorable privacy bound given
the base algorithm is specific DP-SGD. We aim to understand
how selection leaks privacy, in contrast to the well-established
understanding of privacy deterioration due to composition. Our
contributions are as follows.

1) Validating tightness of generic privacy bound for private
selection (Section [III-B). We first provide a private selection
instance where we observe only a negligible gap between the
true privacy cost and the cost predicted by the current privacy
bound [42]]. Such results meaningfully show that significant
improvement in privacy upper bound is impossible in general.
However, when we study the private hyper-parameter tuning
problem, where the base algorithm is DP-SGD, we enjoy
better upper bounds. This finding is related to our other two
contributions.

2) Empirical investigation on how hyper-parameter tuning
(selection) leaks privacy (Section [IV). We first take empirical
approaches to investigate how much privacy is leaked when
performing hyper-parameter tuning. This is done via the
privacy audit technique [39], [24], [23]], an interactive protocol
used to empirically measure the privacy of some mechanisms.

In contrast, unlike all previous privacy auditing work, which
focuses on the privacy of the base algorithm (e.g., DP-SGD),
auditing the tuning procedure is a fresh problem that requires
new formulation and insight. Specifically, the score function
used to select the “best” is the new factor that must be settled.

We formulate various privacy threat models tailored for
hyper-parameter tuning, where the weakest one corresponds to
the most practical scenario and the strongest one corresponds
to the worst case. Results under the weakest provide evidence
that the tuning process hardly incurs additional privacy costs
beyond the base algorithm. Moreover, even the empirical
privacy bound (lower bound) derived from the strongest
adversary still exhibits a substantial gap from the generic
privacy bound (upper bound) proposed by [42]. In contrast,
previously, the gap (between privacy lower bound and upper
bound) is essentially closed in the audit on DP-SGD’s privacy
[59]. Why are different audit results seen in auditing hyper-
parameter tuning? This motivates our subsequent theoretical
investigations.

3) Improved theoretical privacy results (Sections
and [VI). Our subsequent study shows that tuning DP-
SGD does enjoy a better privacy result. The pivotal aspect

driving this improvement lies in representing the privacy of
the base algorithm with finer resolution, and DP-SGD does
have a distinctive characterization. This is done within the f-
DP framework [17], deviating from the well-known (g, ¢)-DP
[18]] or RDP [33].

Our improved result directly benefits differentially private
hyper-parameter tuning: it allows us to test substantially more
(in expectation) hyper-parameters without increasing privacy
budget, which translates to improved utility. Our results are
generalizable, contrasting to previous work [30], [42]], which
remains unknown how to adapt to general parameter setups.

Subsequent to our improved results is a further empirical
evaluation: comparing our improved theoretical privacy result
with the empirical privacy lower bound derived under an
idealized audit setup. Interestingly, there is still a gap in
between. This finding is examined in detail, revealing that
the score function, a new factor in auditing hyper-parameter
tuning, is a key determinant influencing audit performance.
Consequently, this also prompts an exciting and essential open
problem in the future: how to close such a gap.

II. BACKGROUND
A. Differential Privacy (DP)

Definition 1 (Differential Privacy [18l]). Given a data universe
X, two datasets X, X' C X are adjacent if they differ by
one data example. A randomized algorithm M satisfies (e, 0)-
differential privacy, or (g,0)-DP, if for all adjacent datasets
X, X' and for all events S in the output space of M, we have
Pr(M(X) e S) <ePr(M(X') € S) +4.

We introduce Rényi DP (RDP), a DP relaxation shown in
the following, often serves as a tight analytical tool to assess
the privacy cost under composition.

Definition 2 (Rényi DP [34]). The Rényi daivergence is defined
as Da(M||N) = —L-InE,oy [% with & > 1. A
randomized mechanism M : X — Y is said to be (a,7)-
Rényi DP, or (a,)-RDP, if Do(M(X)||IM(X')) < v holds
for any adjacent dataset X, X'.

Differentially private stochastic gradient descent (DP-
SGD) [5], [45], [2]. We use a machine learning model f,,,
typically a neural network with trainable parameters w. In our
classification setting, f,, maps inputs (e.g., images) to labels.
Parameters are updated using Stochastic Gradient Descent
(SGD) [28], where hyper-parameters like learning rate must
be tuned for good performance.

DP-SGD is the private version of SGD. It follows three
steps: 1) compute per-sample gradients; 2) clip each to have
bounded /5 norm; 3) add Gaussian noise.

The private gradient p; is then used to update w as:

pi= Y CLP¢(Vyl(wi—1;z,y)) + R;
(2.9)€B

w; <~ wi—1 —1Ir-p;

(D

Here, B is the sampled batch (with ratio 7), Ir is the
learning rate, and £ is the loss (e.g., cross-entropy). Clipping is



defined as CLP¢(u) = u-min(1, ﬁ), where C' is a clipping

threshold. Noise R; is sampled from N'(0, C2021%), where o
is the noise multiplier and d is the number of parameters.
Removing clipping and noise recovers (mini-batch) SGD.
Variants like DP-Adam [48] follow the same privacy analysis
by the post-processing property of DP.

B. Privacy Audit

Hypothesis testing interpretation of DP. For a randomized
mechanism M, let X, X’ be adjacent datasets, let y € ) be
the output of M taking input X or X', we form the null and
alternative hypotheses:

Hp : X was the input, H; : X’ was the input.  (2)

For any decision rule R : Y — {0,1} in such a hypothesis
testing problem, it has two notable types of errors: 1) type
I error or false positive rate FP = Pr(R(y) = 1|Hyp), i.e.,
the probability of rejecting Hg while Hy is true; 2) type II
error or false negative rate FN = Pr(R(y) = 0|/Hy), ie.,
the probability of rejecting H; while H; is true. DP can be
characterized by such two error rates as follows.

Theorem 1 (DP as Hypothesis Testing [24]). For any € > 0
and 0 € [0,1], a mechanism M is (g,0)-DP if and only if

FP+e FN>1—-0, FN+eFP>1-4 (3)

both hold for any adjacent dataset X, X' and any decision
rule R in a hypothesis testing problem as defined in Equation

@).

Theorem |1 has the following implications. With ¢ fixed at
some value, under the threat model that an adversary can only
operate at some FP and FN under some decision rule R for
a specific adjacent dataset pair X, X', a lower bound
1-6—FP 1-6—FN

FN ’ FP
can be computed, meaning that the algorithm cannot be
more Private than that, i.e., the true privacy parameter ep >
S(LX’X ’R), just as entailed by Theorem |1} Finding e requires
taking the maximum of lower bound value over all pairs
of X, X’ and R, which is clearly intractable in general. In
practice, people are satisfied by reporting an upper bound
eu > er, which is obtained by analytical approaches (privacy
accounting) [2f], [33l], [35].

X XIR) log ,0p 4)

= max{log

Algorithm 1 Game-based Privacy Audit G

Input: DP protocol P, adjacent pair X, X’
I: bpun < {0,1} > Trainer flips a fair coin
2 X ¢ X if byun = 0, X < X’ otherwise
3: Run P(X) > Trainer runs the private protocol
4: bguess < {0, 1} > Adversary makes a guess based on P(X)
OUtPUt: (blruth7 bguess)

Privacy audit. Privacy audit aims to find a lower bound of the
privacy cost for a private protocol P based on the hypothesis
testing interpretation of DP as shown above. This is usually

done via simulating the interactive game-based protocol de-
scribed in Algorithm [T} Such a simulation is typically repeated
many times, resulting in many pairs of (b, bguess). Then,
the FP and FN for adversary’s guessing are computed by
Clopper-Pearson method [10] with a confidence specification.
If the adversary can make very accurate guesses and derive a
lower bound higher than some claimed privacy parameter, it
suggests P is not private as claimed.

Audit only gives a lower bound ¢ of the true

privacy bO}md er, meaning that the algorithm is at least
not (ESLX’X ) 0). The lower bound due to privacy audit is
different from the upper bound given by theory. The limitation
of privacy audit is that the result it gives should not be used
as a formal privacy guarantee.
Related work on privacy audit. In privacy-preserving ma-
chine learning, privacy audit mainly serves a different goal
from that of certain earlier studies [52f, [16l], [7], [6] on
detecting privacy violation in general query-answering appli-
cations. Previous work on privacy audit in machine learning
mainly targets auditing the DP-SGD protocol to assess its
theoretical versus practical privacy [39]], [24], [23]. Additional
studies [47]], [37], [31], [60], [S7] concentrate on enhancing the
strength of audits on DP-SGD (yielding stronger/larger-value
lower bound) or improving the efficiency (incurring fewer sim-
ulation overheads). Drawing a parallel to the action of guessing
whether a data point was included or not, privacy audit may
also be linked to membership inference attack (MIA) [38]],
[44]. Still, privacy audit aims to give a privacy lower bound.
There are also recent works on auditing prediction [§] and
synthetic data generation [3l], which differ from our auditing
experiments.

(X, X"R)
L

C. Private Hyper-parameter Tuning

Problem Formulation. We formulate the private hyper-
parameter tuning problem aligning with [30], [42]. Let Q2 =
{My, Ma, -+ M} be a collection of DP-SGD algorithms
(m is chosen freely). These correspond to m possible hyper-
parameter configurations. We have M; : X — Y for i € [m],
and all of these algorithms satisfy the same privacy parameter,
e.g., they satisfy the same (g, 4)-DP guarantee.

Note that it requires that each M; to be differentially private
on its own [30], [42], meaning that indistinguishability exists
between distribution M,;(X) and M;(X’), for any X, X’
being adjacent and for any M;’s hyper-parameter.

Finally, it is to return an algorithm element (including its
execution) of 2 such that the output of such algorithm has
(approximately) the maximum score as specified by some
score function g : ) — R. The score function g usually
serves a utility purpose (e.g., g could evaluate the validation
loss on a held-out dataset). The selection must be performed in
a differentially private manner. The general private selection
problem corresponds to the cases where ) contains arbitrary
differentially private algorithms.

Related work on private hyper-parameter tuning. Well-
known algorithms like the sparse vector technique [19]] and
exponential mechanism [32] may potentially be leveraged to



the tuning problem; however, they assume a low sensitivity
in the metric defining the “best”, a condition not always
applicable. Some earlier work [9] also suffers from the same
issue. Papernot et al. [42] and Liu and Talwar [30] have
provided generic private selection approaches circumventing
such challenges. Mohapatra et al. [36] study privacy issues in
adaptive hyper-parameter tuning under DP, which is different
from the non-adaptive tuning problem considered in this work.
There is related work [25] that integrates the solution from
[42] to some larger algorithm; therefore, what we understand
about the generic approach in this study naturally propagates
to [25].

Focus of this paper. Towards understanding how selection
leaks privacy, our first focus is to formulate specific pri-
vacy audit to understand how privacy deteriorates due to
selection, diverging from all previous privacy audit work
on understanding privacy deteriorating due to composition.
Also motivated by our empirical findings, we further improve
privacy upper bound specifically for a white-box application:
the hyper-parameter tuning problem, pre-conditioned on the
base algorithm, is DP-SGD. There is another notable work on
private hyper-parameter tuning [15] by proposing a different
algorithm with different assumptions than [42] and [30] (in
[42] and [30], they only require the base algorithm to be DP;
in [15]], they must partition the training dataset to be disjoint).
Since the starting point of this work is [42] and [30], we will
only focus on the same line of [42] and [30].

III. CURRENT PRIVATE SELECTION PROTOCOL
A. Current Algorithm

We start with the state-of-the-art algorithm for private se-
lection [30], [42]], shown in Algorithm This generic method
applies when the base algorithm is already differentially pri-
vate. When each M; € ) is a DP-SGD instance, the task
becomes private hyperparameter tuning. If the base algorithm
M is (e,0)-DP and ¢ is geometric, then Algorithm[2]is (3¢, 0)-
DP [30]. [42] improves this for pure DP by using a Truncated
Negative Binomial (TNB) distribution for £ under specific
parameters (see Appendix [B). The improvement uses RDP-
based analysis.

Algorithm 2 Private Selection Protocol H [42], [30]

Input: Dataset X; algorithms (2; distribution £; score function g
1: Draw a sample: k < £

Y < Null, § ¢+ —

cfori=1,2,--- ,k do

Uniformly randomly fetch one element M, from 2

AR

Yi +— M;i(X) > Run M; on dataset X

If g(y;) > S: Y < v, S« g(yi) > Selecting the “best”
7: end for
Output: Y

B. Our General Tightness Proof

We show the current privacy upper bound due to [42] is
tight in a general sense.

Example 1 (Our Construction for Pure DP). Let M have a
finite output space Y = {A,B,C}. M only cares about the
number of data samples in its input. If the number is even,
its output follows the distribution shown as the left-hand side
of Equation ()); otherwise, its output distribution is the right-
hand side.

Pra=1-—bef —db Prar =1—b— dbe®
PI‘M PI‘B = be PI‘M/ PI‘BI =b
Prc =db Prer = dbe®

&)
where Pra denotes the probability of event A occurs condi-
tioned on even (similarly we also have Pra, with respect to
odd). With b = 1073,d = 102, & = 1, we can see M is clearly
(1,0)-DP for any pair of adjacent (w.rt. addition/removal)
dataset.

Let each element M fetched from ) in line [| of Algorithm
[ has the same output distribution as Equation (). Also let
a score function g give g(C) > g(B) > g(A). Let & be the
TNB distribution with parameter n = 1,v = 1073 (geometric
distribution). The probability for each event that Algorithm
outputs is computed by the following.

Claim 1. Let y be some event in Y, the probability of y occurs
as the output of the tuning process H (Algorithm [2)) is

Pr(y) = Z Pr(k) (Pr(E<,)® — Pr(E<,)¥),
k~§

where E<, = {z : g(z) < g(Y)} and E<y = {z : g(z) <
g(Y)}. See proof in Appendix @]

(6)

Let Pryy, Pryy denote the probabilities for each event con-
ditioned on H operates on adjacent dataset pair. For Pry we
have

Prajp = Spe Pr(k) Priy
Prgi = Zk~§ Pr(k)((Pra +Prg)* — Pr’;)
Propy = g Pr(k)(1 — (Pra + Prp)¥)

where Pryy, denotes the probability of event A occurs as
the output of H conditioned on the input dataset contains
even number of data points. Pry can be computed similarly.
Numerically, this gives the probabilities shown below

Pryjy = 8.66 x 1072 Pryjp = 2.66 x 1072
Prgjy = 2.60 x 107* Pry ¢ Prpjgy =1.34x 107°
Projy =9.91 x 107! Prejgy = 9.97 x 107!

(7
and it can be checked to satisfy (2.96,0)-DP. The theoretical
bound claims Algorithm 2| is (3,0)-DP, i.e., it is tight up to a
negligible gap.

PI"H

PTH

Our example shows non-asymptotic tightness—an exact
bound up to negligible error. This is more convincing than the
example in [42, Appendix D.3], which relies on assumptions
and first-order approximations. For approximate DP (§ > 0),
tightness also holds and is shown trivially in Appendix

This raises a new question: Does this worst-case tightness
still apply when tuning hyper-parameters using multiple DP-
SGD runs? We explore this in the following sections, focusing



on the case where each M; € Q is a DP-SGD instance with
the same privacy guarantee. To begin, we conduct privacy audit
experiments to examine how tight the previous bounds are in
practice for DP-SGD in the next section.

Notation ~ Meaning

The distinguishing game, Algorithm

A general protocol to be audited in

The private tuning protocol, Algorithm E]
The base algorithm (DP-SGD) of H
Datasets used, shown in Section
Number of iterations inside M

Clipping threshold in Equation

Model at i-th iteration in Equation (T}

The loss function in Equation @{

Running number distribution o

Score function evaluating M’s output
Differing data point, constructed by adversary
z’s gradient at ¢-th iteration in Equation

Di Private gradient in Equation (T}

=

BN@mE ini;ﬁﬁm
[%)

Zp Hypothetical z leading to Dirac gradient
Aa, Ab Two proxies constructed by the adversary

o Noise s.t.d. for R; in Equation

€B Base algorithm M’s privacy budget

€L Lower bound for H by audit

€U Generic upper bound for H, by [42]

TABLE I: Notations used in our empirical study.

IV. EMPIRICAL INVESTIGATION

In this section, we aim to find how much privacy is leaked
due to the tuning procedure H when the base algorithm is
specifically the DP-SGD protocol. Notations used are sum-
marised in Table [l

A. High-level Procedure

Simulate G. We instantiate Algorithm [I| for our experiments,
shown in Figure [I} Each execution of P in G is an execution
of our tuning protocol ’H,(X ,Q,€,g). Q contains many base
algorithms (DP-SGD instances with different hyper-parameter
setups) satisfying the same privacy parameter. ¢ is the TNB
distribution [42] shown in Appendix [B] g is the score function.
Conclude the lower bound. Our null and alternative hypoth-
esis are

Hy : X was used, H; : X' was used.

®)

After many simulations of G where each one gives an assertion
for the above hypothesis testing problem, the FP and FN
are computed by the Clopper-Pearson method [10] with a
95% confidence. We then leverage methods proposed in [37]
" : (x,x7,

to compute the empirical privacy lower bound &}

We provide the detailed procedure for deriving EE;X’X ) in
Appendix [C| We omit the notation (X, X’,R) under clear

context.

B. Audit Scenario Formulation

This section is to elucidate the four “arrows” originating
from the adversary shown in Figure

Fig. 1: Diagram of the distinguishing game G.

Forming X, X’. W.o.l.g., we assume X’ = X U {z}. Note
that the adversary can set X to be any available datasets. z,
known as “canaries” [37]], is instantiated as follows.

o Weaker version. The adversary can select z to be any real-
world data, and to have higher distinguishing performance,
z is set to be sampled from a distribution different from
those in X.

o Stonger version. The adversary can directly control the
gradient of z, a.k.a., gradient canary. Specifically, it is as-
sumed that adversary generates z = Zp such that its gra-
dient is a Dirac vector V/(w;Zp) = [C,0,0,---,0]"
[37], i.e., only the first coordinate is C.

Score function g. The best model is selected if it has
the highest score. This new factor distinguishes auditing H
from all previous auditing tasks. Formalizing this factor and
making corresponding assertions are our key contributions. We
formalize two types of adversaries that are only possible.

o Weaker version. g is not manipulated, e.g., g is a nor-
mal routine to evaluate the model’s accuracy/loss on an
untampered validation dataset.

o Stronger version. The adversary can arbitrarily control g,
e.g., g can be a routine to evaluate the model’s perfor-
mance on some malicious dataset. In practice, we believe
the score function is some pre-defined function (e.g., the
validation accuracy) and is not able to be manipulated.
We enforce this setup is to explore the worst-case privacy
leakage.

Adversary’s observation Y. Under the assumption of DP-
SGD protocol, the whole training trajectory {p;}Y is re-
leased. Equivalently, all the checkpoints {w;} Y ; of the neural
network are trivially derivable as each checkpoint is just post-
processing of the private gradient. Hence, we can denote
the observation as Y = {p1,p2, - pN, w1, -+ ,wn}. This
information corresponds to line [3] of Algorithm [T]or the output
of H. Note that including w;,7 € {1,2,--- , N} in Y may be
redundant; however, it is for notation convenience as we will
later refer to the w; information contained in Y.
Adversary’s assertion. Adversary’s assertion is exactly the
action shown in line [ in Algorithm [T} This requires the
adversary to transform observations Y into binary guesses.
The general procedure is as follows.

The adversary forms a real-number proxy based on obser-
vations and compares it to some threshold to make assertions.
Proxies are described as follows:

A base proxy A, will be formed following previous work
[39], [37] as follows. Compute z’s gradient at each iteration
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DEU me, by /\a DEU me, by /\a Dfu me, by /\a
q{Meg me, by A q{Meg me, by Ap 4{Meg me, by A
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eg=1 EB=2 eg=4 eg=1 &g = eg=1 €B=2 eg=4
() X = F,z = M[0], g = SF[1] (b) X = C,z = 5[0], g = SF[1] () X =S,z = C[0], g = SFI1]
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Cley Mg, by A, Cley  me, by A, Cley Mg, by A,
4{Meg g, by Ap 4{Meg g, by Ap 4{Meg  mg, by Ap
2 2 2
1 1 14

eg=1
(d) X =F,z = Zp, g = SF[1]

eg=2

eg=4 eg=1
() X =C,z="%2Zp,g = SF[1]
Fig. 2: NTNV setup. Rows differ in differing data z; columns differ in training datasets X. The vertical axis shows the values

for £y and audited ¢, based on different proxies. Notations are explained by Equation (TT).

before model update:

N

Z 5 (%, pi), ©)
where (a, b) is the inner product. By design, other data exam-
ples are independent of z. Hence, we expect p? is likely to be
(approximately) orthogonal to other data’s gradient. Moreover,
the adversary has access to the score function. Therefore, it
seems reasonable to leverage such additional information. To
this end, we will also form another proxy A, based on the
score function as follows.

Mo =Xq —g(Y)

Ap is our newly formed proxy and can be seen as the enhanced
version of A, in auditing hyper-parameter tuning because it
tries to include additional information from the score function
g.

Summary. We form the following scenarios with increasing
levels of threat.

(10)

o Normal training and normal validation (NTNV). The
training dataset is a natural, normal dataset, and the train-
ing model’s validation is also normal, i.e., score function
g is not manipulated.

o Normal training and controlled validation (NTCV). The
training dataset is the same as that of NTNV; however, the
validation for the trained model is controlled, i.e., score
function ¢ is manipulated.

o Empty training and controlled validation (ETCV). The
training dataset is empty (malicious), g is the same as
that of NTCV.

C. Evaluation Methods

Given the complexity of this subject, here we describe how
to evaluate our experimental result. The used dataset and our
code link are provided in Appendix For notation conve-
nience, we use abbreviations for the used datasets: F stands

eg=2

eg=4 eg=1

) X =S,z="2Zp,g = SF[1]

eg=2

Eg=4

for the FASHION dataset, M for MNIST, C for CIFAR10 and
S for SVHN. We use “[]” to fetch the information from some
data container. For instance, we use v[0] to denote fetching
the first coordinate of v if v is a vector. We also abuse the
notation and use Y[wy] to denote fetching the parameter wy
from output/observation Y.

Results indexing. Our main audit results are presented in
figures, and we index them in the following form:

which means that such a result corresponds to 1) setting X
to be the FASHION dataset; 2) setting the differing data z to
be the I-th data sample from MNIST dataset; 3) setting the
score function g to be the first candidate shown in Table
Note that X’ = X U {z} and we always shuffle the dataset
initially.

L g(Y) = =232 LY [wn]; Vi])
V is original validation dataset

2: g(Y) = —£(Y[wn]; 2)
3: 9(Y) = (Y[wo] — Ywn])[0]

TABLE II: Score functions are indexed by SF[a],a = 1,2, 3.

Not manipulated

Manipulated

Score function design consideration. As it will become
clearer in later sections, the rationale behind manipulating the
score function to be SF[2] is to expect the training to memorize
(having low loss) the different data z, and the best model is
selected based on this metric. Manipulating the score function
to be SF[3] builds on the fact that for Zp, it suffices only
to investigate the first coordinate of the model to recover any
trace of z = Zp.

Evaluation method. Our main focus is to compare the follow-
ing bounds; hence, understanding their intuitive interpretations
is beneficial.

« £, is the amount of information leakage the adversary can

extract based on the execution of H.



e £p is the maximal information leakage due to a single
run of the base algorithm, as guaranteed by theoretical
analysis [35], [2].

e ¢y is the maximal information leakage due to execution
of H, as guaranteed by theoretical analysis [30], [42]].

These bounds are all based on fixed o values. Specifically,
after o is fixed for the base algorithm M, we 1) compute 5
by previous privacy analysis for DP-SGD such as TensorFlow
privacy [1ll; 2) compute ey for H by current generic bound
for hyper-parameter tuning [42]]; 3) apply privacy audit to H,
obtaining €7, as shown in Section We know that eg <
ey 1is always true, and it is interesting to make the following
comparison.

e ¢, V.S. ey. This is the main focus. The question to
be answered in this comparison is: does hyper-parameter
tuning H practically leak sensitive information (¢r) as
predicted by the current generic bound [42] (e¢7)?

e £1, V.S. ep. This is another interesting comparison. The
question to be answered in this comparison is: How does
running a DP-SGD many times and then returning the
best (an execution of ) practically leak information (1)
compared to a single run of DP-SGD (ep)?

D. Experiments When g Not Manipulated

NTNYV. This scenario corresponds to the most practical setup
in our experiments. Experimental results are shown in Figure
[2l notated according to Section

Assertion intuition. The selection behaves normally, i.e., the
best model is selected if it has the highest score (lowest loss)
on the original validation dataset.

By design, higher value of A\, or )\, incentivizes the ad-
versary to accept Hy. The rationale behind these setups is to
expect the abnormally differing data (if X’ is used, or z was
included in the training) to have a detrimental impact on the
training so that the model has a higher loss (lower value of
g(Y")), making it more distinguishable if X’ is used (z was
included in the training).

Results. Experimental results are presented in Figure
where we present audited £, results corresponding to proxy
Aq or X\p. We also present the theoretical upper bound ey,
for comparison. An obvious phenomenon is that the audited
€r, < ep < ey across all setups shown in the first row of
Figure [2] The interesting phenomenon is that e, < ep and
the gaps between them are obvious.

In contrast, in Figure [2¢] and Figure 2f] when the base
algorithm’s privacy budget e = 1, we see that € is much
closer to ep. This confirms that the differing data z that
has Dirac gradient gains the adversary more distinguishing
power than some natural data. Another phenomenon is that
the audited €7, under eg = 1 in Figure 2d| is weaker than
that in Figure [2¢] and Figure [2f] this suggests that auditing
performance depends on X.

Short summary. The adversary cannot even extract more
sensitive information than the base algorithm’s (a single run
of DP-SGD) privacy budget allows, i.e., e, < ep < €y. This

shows the adversary’s power is heavily limited under the most
practical setting.

E. Experiments When g Manipulated

NTCV. This scenario corresponds to some middle-level ad-
versary’s power. Experimental results are shown in Figure
[l notated according to Section The score function is
manipulated, different from that in NTNV.

Assertion intuition. The proxy ), is identical to that in
Equation (@), however, A\, = A, + g(Y) is set in NTCV,
which is different from that in NTNV. This is because g is
manipulated. Under the same design considerations, a higher
value of A\, or )\, incentivizes the adversary to accept Hj.

Results. Experimental results are presented in Figure [3]
organized similarly to Figure 2] We observe a phenomenon
similar to NTNYV that ¢, sees a big gap to £g shown in the
first row of Figure E} In contrast, for the results seen in the
second row of Figure [3¢| and Figure [3f] when base algorithm’s
privacy budget e g = 1, we have €1, =~ £p. Again, this confirms
the Dirac gradient canary is more powerful.

Short summary. )\, and )\, have almost the same perfor-
mance, similar to NTNV where g is not manipulated.
ETCV. This scenario corresponds to the greatest adversary’s
power in our settings. The training dataset is set to be empty,
and the score function is manipulated.

Assertion intuition. By design, the rationale behind the
empty dataset setup is to eliminate the uncertainties due to
normal training data’s gradient so that audit performance is
maximized, as the adversary only cares about the causal effect
from z to the output [49]. \,, Ay are set identically to NTCV.
Again, higher value of A, or )\, incentivize the adversary to
accept Hj.

Results. Experimental results are shown in Figure 4] notated
according to Section In Figure we can see that
€1 > €p under almost all setups; we also notice that ¢, still
sees a gap to ey under some setups; however, €7, gets much
closer to ey compared with that in NTNV and NTCV. The
increased audit performance is due to X = (), which eliminates
unwanted disturbances for the adversary. In Figure when
z = zp is the Dirac gradient canary instead of some natural
data, we observe €7, > €p under all setups.

The above results suggest that, operationally, hyper-
parameter tuning does leak additional privacy beyond what’s
allowed to be disclosed by the base algorithm. This also
means that tuning hyper-parameters while only accounting the
privacy cost for a single run (i.e., naively taking ey = ep ) is
problematic in a rigorous manner. On the other hand, like the
results in the previous two setups, we also observe that 1) A,
and )\, have almost the same performance, and 2) there is a
big gap between €7, and ¢y;.

Short summary. Worst-case X setup does bring additional
help to the adversary (e =~ €p), but the privacy lower bound
derived by audit still sees a gap to the privacy upper bound
derived by previous work [42] (e < ep).



8 8

Cey me, by A, Cey me, by A,
q{Meg me, by A 4{Meg me, by A
24 24
1 1

eg=1 €B=2 eg=4 eg=1 EB=2 eg=4 eg=1 €B=2 eg=4
(a) X =F,z = M][0], g = SF[2] (b) X =C,z =S[0], g = SF[2] (¢) X =S,z =C[0],g = SF[2]

8
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Fig. 3: NTCV setup. Sub-figure arrangement is identical to Figure

eg=4 eg=1

DEU me, by/\a
4 {Meg me, by Ap
N [
1‘.
eg=1 &g —2 eg=4
(a) X =0,z =M]J0],g = SF[2]
8
ey ¥ by/\a
4<-EB I by/\
2<
1‘
Eg= Eg=2 eg=4

(b) X =0,z=Zp,g = SF[3]
Fig. 4: ETCV setup. €1, > ep is almost true.

F. Phenomenon Highlight

New finding. Our NTNV and NTCYV settings give a result that
er < €y, leading to the conclusion that weak audit leads to
weak lower bound. Although our audit problem differs from
the previous audit on DP-SGD’s privacy, a weak audit leading
to a weak lower bound is also observed previously. However,
for ETCV setting (strong audit setting), what we find is
starkly different from the previous audit on DP-SGD:

previous work [39] shows that maliciously chosen
dataset X leads to ep, ey (tight result) for
auditing DP-SGD’s privacy. In contrast, our audit
on hyper-parameter tuning shows that €y, still sees
a noticeable gap to €y even when X is adversarily
chosen.

~
~

This new finding in auditing private hyper-parameter tuning
motivates our theoretical study presented in the next section.
How does the score function (selection) leak privacy? This
is a key question. Unlike prior auditing works [39]], [23], [37],
it has not been studied. Table [lII] summarizes key audit results.

eg=2
() X =C,z="1Zp,g = SF[3]

eg=4 eg=1 eg=2 eg=4
f) X =S,z=2Zp,g = SF[3]
Proxy ep cevu | €L

NTNV @ X = NTCV @ X = ETCV @ X =

F C S F C S 0
Aa 1 186 0.54 0.84 0.83]0.52 0.99 1.06 1.17
b . 0.54 0.77 0.81|0.52 1.03 1.11 1.19
Ao 5 359 099 141 135|091 1.17 1.17 2.36
o ) 1.00 1.37 1.32 091 1.19 1.19 2.09
Aa 4 679 1.91 213 213|174 199 1.99 4.28
b : 1.91 213 213|174 198 1.98 4.68

TABLE III: Results summary for privacy audit result £, (aver-
aged over 5 runs) obtained under two different proxies when
the canary z = zp. We also highlight the base algorithm’s
upper bound e and upper bound for hyper-parameter tuning
using [42]]’s method.

First, A\, and )\, perform similarly across all settings. Second,
comparing NTNV and NTCV shows that manipulating the
score function offers no clear advantage to the adversary.

This may seem surprising. One might expect that tailoring
the metric to pick the best candidate would make distinguish-
ing easier. But our results show otherwise. This is because A,
already reflects the effect of the score function—it is computed
from the selected output. So \; adds no new information.

In fact, the score function output is post-processing of a

DP algorithm, and thus remains differentially private. Whether
or not z is included, the induced score distributions are
close—just as DP guarantees. So no “magic” advantage exists,
regardless of the score function, if it’s independent of sensitive
data.
Is it safe to tune hyper-parameter while only assuming a
single run’s privacy cost? Our weakest audit setup, which
mimics practical use, suggests yes. Tuning adds little to
no extra leakage beyond the base algorithm. This supports
the common—but non-rigorous—practice of ignoring tuning
overhead before private selection methods were formalized
1301, [421.

However, under our strongest audit, tuning does leak more
privacy. This confirms the importance of formally accounting
for the tuning step, justifying both the previous work and our



improved bound in Section [V]

Can we get a higher lower bound on any other datasets
than what we get in ETCV setting? The ETCV setup
already achieves dataset-independent lower bounds. Since the
adversary can inject arbitrary gradient canaries, any bound
achievable on real data is also achievable in this setting.

V. IMPROVED THEORETICAL RESULTS

In the previous empirical study, a conspicuous gap exists
between ;7 derived by [42] and e, this makes it interesting
to investigate the reason behind it. Our study in the remaining
sections shows that such a gap exists for two reasons.

1) Current generic privacy upper bound is not tight for DP-
SGD;

2) Adversary’s power is not strong enough because it is
hard for the adversary to instantiate the worst-case score
function g.

Regarding 1), we provide improved privacy results and elu-
cidate on the special property of DP-SGD leading to the im-
provement; Our analysis is generalizable beyond DP-SGD, i.e.,
as will be shown, our analysis works for any base algorithm
that can be expressed within the f-DP framework. For 2), we
present meaningful findings about the score function.
Problem modelling. Informally, the privacy problem for our
private tuning algorithm 7{ (Algorithm [2) can be compactly
described as the following optimization formulation.
minimize: ey

subject to: H satisfies (e3, d3;)-DP given d4; (12)

base algorithm’s privacy is 4

It is self-evident that the tightness of 4 depends on how
tight 4 is. The critical part is how we represent the privacy
guarantee 4. Under our optimization formulation, previous
work describes 4 as follows: 1) Liu et.al [30] represents the
base algorithm by (e, d)-DP; 2) Papernot et al. [42] does that
by («,~)-RDP, obtaining improved results over [30]. Can we
do better? As will be shown below, the answer is yes if we
represent the base algorithm’s privacy by f-DP.

A. Preliminaries: f-DP

f-DP [[17], a privacy formulation with a finer resolution,
reflects the nature of private mechanisms by a function [61]
rather than a single pair of parameters. Our improved results
are derived based on the f-DP framework. We introduce
the necessary definitions and technical preliminaries in the
following.

Definition 3 (Trade-off function [17]). For a hypothesis
testing problem over two distributions P, P’, define the trade-
off function as:

Tpp (FP) = i%f{FNR : FPr < FP}
where decision rule R takes input a sample from P or P’ and

decides which distribution produced that sample. The infimum
is taken over all decision rule R.

The trade-off function governs the best one can achieve
when distinguishing P from P’, i.e., by the optimal/smallest
type II error (FIN) at fixed type I error (FP). The optimal FN
is achieved via the likelihood ratio test, which is also known
as the fundamental Neyman—Pearson lemma [41] (please refer
to Appendix [A). We denote

9> fif g(@) > f(x), Yo € [0,1].

Definition 4 (f-DP [17]). Let f : [0,1] — [0, 1] be a trade-off
function. A mechanism M satisfies f-DP if

Tamxymxny 2 f
for all adjacent dataset pairs X, X'

M being f-DP means that any possible error pair (FP, FN)
resulting from distinguishing M(X) from M(X') is lower-
bounded by the curve specified by f. To see why (&, )-DP is
loose. We must express (&, d)-DP with the language of f-DP.
This is done via the following proposition.

Proposition 1 ((¢,5)-DP equals to f; s-DP [17], [53]). M
is (,9)-DP if and only if it is f.s-DP where the trade-off
function f, 5 is

fes(z) =max (0,1 -5 — ez, e (1 -0 —x))

f-DP implies (g, d)-DP and conversion from f-DP to (g,9)-
DP is via Algorithm [3] (restatement of Proposition 6 of [17]).

In plain words, f. 5-DP (or (g, §)-DP) for some mechanism
M is the two symmetric straight lines lower-bounding the
true/faithful trade-off function of M. This is drawn in Figure
[l For the Gaussian mechanism, which is probably the most
basic private mechanism, using (e,0)-DP to characterize its
privacy is not tight/faithful; in contrast, the following special
family of trade-off functions is tight.

Definition 5 (u-Gaussian DP (u-GDP) [17]). The trade-off
function of distinguishing N'(0,1) from N (u,1) is

Gu(@) =Trno N (@) = (@711 —2) — p),

where ® be the c.d.f. of standard normal distribution. A private
mechanism M satisfies u-GDP if it is G,,-DP

The analytical expression of u-GDP is due to the application
of Neyman—Pearson lemma on distinguishing A(0,1) from
N (u, 1) [17]. M satisfying u-GDP means that distinguishing
M(X) from M(X') is at least as hard as distinguishing
N(0,1) from N(u,1). Figure [5 explains why (e,d)-DP is
loose: (g,0)-DP is strictly more conservative than p-GDP
when characterizing the privacy of Gaussian mechanism.

Algorithm 3 f-DP to (g,0)-DP [17]

Input: f, trade-off function; 4, privacy parameter
1: If § <1 — f(0), return co
2: Compute ¢ = inf{a : f(z) > 1—46 —e*z,Vz € [0,1]} via
binary search
Output: max{0,¢c}
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Fig. 5: For the Gaussian mechanism M(X) = ¢(X) +
N (0, 0%1?) where the query function ¢(X) € R? has unit /-
sensitivity, it is exactly 1/0-GDP [17]. It is also some (g, d)-
DP; however, ;-GDP characterization saves the shaded area
in gray.

The following corollary gives a closed-form solution for
optimal/lossless conversion from p-GDP to f. 5-DP (or (e, 6)-
DP) in accordance with Algorithm [3]

Corollary 1 (Conversion from u-GDP to (e, d)-DP formula-
tion [L7l], [4]). A mechanism is pu-GDP if and only if it is
Jz,5(e)-DP (or (g,6(g))-DP) Ve > 0 where

€ W e W

0e)=0(——+ =) —eP(—— — =

@ =2~ +5) - cra(-2 - )

Remark 1. The purpose of introducing all previous technical
preliminaries (especially Figure [5) is not only to necessarily
introduce f-DP itself but also to understand why we can
obtain improvements under f-DP framework (see Example [2).

13)

DP-SGD is asymptotic ;-GDP. u-GDP is pivotal because
it asymptotically characterizes the privacy of any DP-SGD
instance having many compositions of Gaussian mechanisms
(170

Corollary 2 (GDP approximation [17] for DP-SGD). DP-
SGD is asymptotically -GDP with

1=2rVN - \/6‘772 <P (1.5071) + 3P (—-0.50"1) — 2

where ¢ = ¢'/C and o' is s.t.d. of the Gaussian noise; C
is the clipping threshold; T and N is the sampling ratio and
number of total iteration of DP-SGD.

B. Our Contribution: Improved Results

A critical fact about Corollary [2]is that computing the exact
trade-off function is #P-hard [17] (even harder than NP prob-
lems), which makes it necessary to resort to approximations if
one aims at tighter results within the f-DP framework. Specifi-
cally, the error (pointwise error between the asymptotical GDP
trade-off function and the true trade-off function) decays at a
rate of 1/ /N for DP-SGD, shown by [17]]. Therefore, using
Corollary 2| requires N to be large enough. Such a condition
holds for probably most DP-SGD applications, especially for

training large models (e.g., N > 10% in [2] and N > 10° in
1271, 151D).

Based on all of the above preparations, we are ready to
approach our privacy problem by filling in the missing part of
Equation based on Corollary

minimize: cy

subject to:  H satisfies (e3;, 57, )-DP given d3; (14)

base algorithm’s privacy is pu-GDP

In the following, we first revisit the central question of how
selection (the score function) leaks privacy.

In Section we showed that the adversary gains no

advantage even if the score function g is maliciously manip-
ulated. A natural question arises: is there any score function
that brings more advantage to the adversary?
One-to-one mapping ¢ is the worst-case necessarily. The
score function g is a function that maps the output of the
base algorithm to a real number, If some g happens to map
two distinct inputs to the same score (hence, a randomized tie-
breaking will be enforced), how does such g affect the privacy
of H compared to one-to-one mapping score functions?

Intuitively, such g will only make H more private as
new uncertainty is injected. We can gain more intuition by
considering the extreme case: if g only outputs a constant,
then H is just as private as the base algorithm. Our theorem
in the following formalizes such intuition.

Theorem 2 (Necessary worst-case g, proof in Appendix [E).
Let distribution P be over some finite alphabets ', and define
a distribution Fy, 4 as follows.

First, make k > 0 independent samples {x1, x5, -+ ,x1}
from P; second, output x; such that the score g(x;) computed
by a score function g : I' — R is the maximum over these
samples. Similarly, we define another distribution P’ over
the same alphabets T and derive a distribution F,; q as the
counterpart to Iy, 4.

For any score function g, which is not a one-to-one mapping
(hence a randomized tie-breaking is needed), there always
exists a one-to-one mapping g* satisfying

Do (Frgl|Ff. ) < DalFrge || F. g+)- (15)

Moreover, similar inequality also holds when k follows a
general distribution &.

The above result is derived under RDP (Definition 2)) and
it tells us crucial facts: A score function that induces a strict
total order for elements in I tends to be less private. Thus, a
one-to-one mapping is necessary to be the worst case for the
score function g.

Note that, in previous work [30], [42], the score function
g is assumed to be one-to-one mapping by default for sim-
plicity. We show that such treatment is valid due to privacy
considerations; to our knowledge, the above theorem is the
first rigorous proof validating such an assumption.

Theorem [2| also holds when I' is infinite because Rényi
divergence can be approximated arbitrarily well by finite

10



partition [S0, Theorem 10]. With ¢’s necessary condition
determined, we can introduce our improved privacy results.
Notation. Let 3,3’ € ) be the output of the base algorithm
(DP-SGD, a single run) corresponding to adjacent input dataset
X, X', respectively. Let P, P’ be the induced score distribution
after the score function ¢ takes input y,y’, respectively. With
some abuse of notation, we use P(z), F'(z) to denote the p.d.f.
and c.d.f. for distribution P (similarly, we have P’(z), F'(x)
w.r.t. X’). Based on the assumption that g is a one-to-one
mapping, the selection is essentially among samples from P
(or P’ if X’ is the input).

Let @ be the distribution of the score of the model outputted
by H. Let us for now consider the distribution ¢ in 7 is a point
mass on some k > 0, i.e., Pr(k) = 1. Then, the p.d.f. Q(x) is

Q) = kP(x)(F(x))*! (16)

as well-studied in order statistics [13]], i.e., it is the distribution
of the maximal sample among % independent draws.
When distribution £ is some general distribution, define the

function
we(z) = Z k- Pre(k) - a*~1
e

a7

and then () is a mixture distribution, i.e.,
Q(z) = Pre(k) - kP(x)(F(2))" " = P(z)we(F(x)).

k~§
(18)
Distribution @Q’’s p.d.f. corresponding to X’ being the input
is computed similarly. Now, we are ready to present our
improved privacy upper bound.

Theorem 3 (General form, proof in Appendix [F). Suppose
the base algorithm is f-DP, then H is (ey,01)-DP where
we(l —a)
we(b)
where b = f(a) and € is computed by Algorithm (3| whose
two input arguments are the trade-off function f and § =

Oy /we (1) (we is defined in Equation (17)).

We present our f-DP accountant for private selection in
Algorithm [ according to Theorem [3]

ey = € + max log

19)
a€l0,1]

Algorithm 4 f-DP Accountant for H

Input: trade-off function f s.t. the base algorithm is f-DP, &
distribution of H, dx
1: 6+ 57-[/0.)&(1)
2: € < input f and ¢ to Algorithm
3: ey < €+ maXaepo,1)log (we (1 — a)/we(f(a)))
Output: ey

> we is from Equation (T7)

Given that the base algorithm is some p-GDP, we immedi-
ately arrive at the improved result for hyper-parameter tuning
by plugging in its specific trade-off function.

Corollary 3 (Improved result for DP-SGD). If the base
algorithm if u-GDP (or G,-DP), then H is (e, 03 )-DP

where
we(l —a)
ey = € + max log

a€l0,1] we(Gp(a))

(20)
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with G,

a
(>4 g
(-5 —

) is in Definition 5 and 83 /we(1) = e(-=+5)—
£) determines .

Intuitive explanation of our results. The intuition is that
the selection (choosing the best of many independent runs)
results in a different output distribution than when running
the base algorithm only once. And it will deteriorate the
final privacy bound, this is shown in Equation there is
an increase (deteriorating) of the € parameter compared to
the base algorithm’s parameter. How the results deteriorate
depends on &.

Modeling the base algorithm with f-DP instead of (g, §)-DP
leads to tighter bounds. By the post-processing property [17],
the score output retains the same f-DP as the base algorithm.
In Equation (I9), a represents the false negative (FN), and
b= f(a) is the optimal false positive (FP) at that FN.

If the base algorithm satisfies u-GDP, then b = G ,(a). But
if modeled using (¢, 6)-DP, we only get b = f. s(a). Figure
shows that G, (a) > f.s(a). Since we is increasing, this
gives a tighter (smaller) £, when using GDP. The following
example illustrates the gain from using f-DP.

Example 2. Suppose the base algorithm (DP-SGD) satisfies
1-GDP and & is the TNB distribution with parameter n =
1,v = 1072 (in this case, & is geometric distribution, and we
recover the case studied by Liu et al. [30|]). Hence, it allows
us to make meaningful comparisons.

For 6 = 1075, the base algorithm is also (4.36,107°)-
DP or f43610-5-DP. If b = G1(a) in Equation (19), which
is how we represent the base algorithm’s privacy, we have
max,e(o,1) log % = 3.3; however, if b = f4.3610-5(a),
which equals to how the base algorithm is modeled by Liu et
al. [30], max,eo 1 log% = 16.5 > 3.3 is only

4.36,10
what we can derive. Thus, a huge improvement is obtained,
and this is due to the saved shaded area in gray shown in

Figure [3
C. Significance Statement

Our result is generalizable and tighter. We observe that
1) [30] only supports geometric &, and 2) [42] only supports
truncated negative binomial and Poisson . It is unclear how
to handle arbitrary &, and prior results require manual, case-
specific analysis. In contrast, our result works for any £ in
protocol H. Computing we is always numerically stable, as
we () is bounded on [0, 1].

As shown in Section our bound improves over prior
work. For example, if £ always outputs 1 (i.e., run the base
algorithm once), Equation gives ey = € and oy = 0,
matching the base guarantee. This shows our result is tight
for general &. In contrast, RDP-based analysis is loose due to
lossy conversion to (g,9)-DP [61].

Extension beyond DP-SGD. Our above example shows that
representing the privacy of the base algorithm with finer
resolution (from (g, )-DP to f-DP) leads to improvements in
the privacy upper bound. Similar conclusions also hold when
switching from RDP [42] to f-DP as RDP is also observed
to be lossy within the f-DP framework [61]], i.e., RDP shares



the same weakness as that of the (e,d)-DP. We select DP-
SGD as our base algorithm because of its popularity in the
literature, but our result is not limited to DP-SGD. In fact,
any private base algorithm analyzed by (e, d)-DP or RDP can
be represented by f-DP with finer resolution. And switching
to f-DP and using our privacy accountant can also bring
improvements. The reason is depicted in Figure [5} using f-DP
avoids the unnecessary region shaded in gray.

VI. FURTHER EVALUATION
A. Stronger Audit via Reduction

Motivation for final audit trial. In the presence of our im-
proved privacy upper bound, we immediately want to assess its
tightness by privacy audit for general £ such that Prg(1) < 1.
This requires we derive reasonably strong lower bounds to be
informative. We should avoid ad hoc audit setups for real-
world training tasks (Section [V). We need to form our audit
with theoretical-justified power.

This section is to serve such a purpose. A part of the design

considerations relies on our Theorem [2] in the last section.
1) Base algorithm reduction. Our threat model will be based
on the assumption made by DP, i.e., the adversary knows the
membership of all data used to update the model in each
iteration except for the differring data z (the strong adversary
assumption 12, [29]).

This means the adversary can always subtract the gradient
of other data from p; in each iteration. Hence, any adjacent
dataset pair X, X’ is equivalent to X = (), X’ = z from the
adversary’s view. This allows us to make two reduction steps
for the base algorithm (DP-SGD).

® First reduction (from Equation ZI) to Equation 23)).
Let o noise s.t.d. shown in Equation (I)). Now assume that the
sampling ratio 7 = 1, i.e., full-batch gradient descent. Given
X =0, X’ = z, then, at each iteration, for the adversary, the
private gradient p; is as follows.

pil X = Ry ~ N(0,C?5°1%)

21
pi| X' = (Vy+ R;) ~ N(V,, C?**1%), @D

where p;|X denotes the random variable conditioned on X
was chosen and V, = V,l(w;_1,z) with |[V,]]2 = C
(assume maximal f3-norm is reached). The adversary can
always construct a rotational matrix U, € R%*¢ such that
p; can be reduced as follows.

Uzpi|X NN(Ovczazﬂd)a Uzpi|X/ NN(UZVZ,OQJz]Id)
(22)
where U,V = [C,0,0,---]T. This is because Gaussian noise

with 21¢ covariance is rotational invariant, i.e.,
Cov(U,R;) = U,Cov(R;)UL = C?6°1? = Cov(R;)

where Cov(R;) is the covariance matrix of Gaussian random
vector R;. After the rotation, for the adversary, only the first
coordinate carries useful information about z.

Because a noise vector R; ~ N'(0,C?¢%1%) and its rotated
version U,R; ~ N(0,C?0%1%) possessing o2I¢ covariance
matrix are all coordinate-wise independent. To serve the
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distinguishing purpose: z was/was not used, it suffices to
characterize the private gradient p; by p; as a univariate
random variable (the first coordinate) for the distinguishing
purpose as follows.

Pi| X ~ N(0,C%0?), pi|X' ~ N(C,C?*5?). (23)

® Second reduction (from Equation to Equation (23)).
Base on previous reduction, the DP-SGD’s output ¥
{P1,P2, -+ ,Dn} is essentially an observation of N i.i.d.
samples from N (a, C%0?) where a is either 0 or C. Recall
the adversary’s goal is to distinguish X or X’ was used; this
is equivalent to determining a =0 or a = C.

As both distributions in Equation @I) are Gaussian, we can
use the sufficient statistics for estimating a [21], [11], which
is the mean: §y = % Zfil Di. Sufficient statistics do not lose
any information for estimating a. Finally, we can reduce the
privacy of the base algorithm to an equivalent game for the
adversary as

gl X ~ N(0,C%0*/N), g|X' ~N(C,C*¢*/N). (24)

For simplicity, applying a simple invertible/lossless re-scaling
gives us equivalent characterization:

JIX ~N(O,1), y|X' ~N(VN/o,1). (25

There is a slight difference in the reduction when 7 < 1.
Instead of arriving at Equation (23), we arrive at
pilX ~N(0,C%6%),  pi| X' ~ N(Cb;,C?c%),  (26)
where b;,Vi € {1,2,--- , N} is independent Bernoulli random
variables with probability 7. By doing the same transformation
as from Equation (23) to Equation (23), we arrive at

7 — / Z]ilbi
gIxX ~N(0,1), glX ~N(1T\/N/U,1). 27)

Equation (27) also covers Equation (23) when 7 = 1.

2) Instantiate the score function. Based on our above re-
duction, to serve the distinguishing purpose, a model obtained
by DP-SGD can be “treated” as a real number sampled from
univariate Gaussian or its shifted counterpart corresponding to
X or X’ was used. The order induced by the score function g
is now over R. To have stronger audit results in our idealized
attack, we need to instantiate the worst-case score function,
and our Theorem 2] tells us one-to-one mapping score function
g is the worst case necessarily.

However, Theorem [2] remains silent on the specific analyti-
cal form of ¢ in the worst case. There can be infinitely many
one-to-one mapping functions R — R; for implementation
purposes, we now fix a score function g(x) z, i.e., we
take g is strictly increasing and note that all strictly increasing
functions induces the same order over R regardless of its
analytical form. Finally, we present the distinguishing game of
our reduced case in Figure [6] which will be simulated many
times, allowing high-confident conclusions of the lower bound

following Section
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Fig. 6: The distinguishing game for H by reduction. P, P’
are two univariate Gaussians shown in Equation , corre-
sponding to adjacent dataset pair X, X’. The adversary then
makes binary assertions by comparing the best sample to some
threshold. The game G is simulated 107 times.

B. Privacy Results Comparison

Privacy results. We present the lower bound ¢, our improved
privacy results £, and previous privacy results =/, [42] in
Table TV] We can see that the audit is rather powerful: ¢,
> ¢p with a noticeable margin, once again confirming the very
action of selecting the best does leak additional privacy beyond
the base algorithm’s privacy budget. On the other hand, our
privacy result 5% is better than the previous result =/, under
all setups.
Implication. The improvement we obtain is much more sig-
nificant than the e% value shows cosmetically. For instance,
the results due to our improved upper bound e% under
(n = 1,v = 1073) are even consistently smaller than =,
of previous upper bound under (n = 1,v 1072). Thus,
our improved analysis can allow trying significantly more
hyper-parameter candidates while even consuming less privacy
budget. For private hyper-parameter tuning applications, this
translates to improved utility of the trained model for free.
To show the downstream gain using our method, we present
the privacy result comparison in Table [V] As can be seen
from Table under the same privacy constraint, we allow
more running (in expectation) hyper-parameter candidates, and
the final achievable testing accuracy is consistently better as
expected.

C. Lessons Learned and Open Problems

As shown in Section[V-C| our improved result is indeed tight
for general £ in terms of how much (g4, d3;)-DP H satisfies.
However, we still see a noticeable gap between our result 8%
and the lower bound ¢, derived by our idealized attack. why
does this happen?

Our answer is that g plays a critical role from the adversary’s
point of view, and such a factor distinguishes attacking private
hyper-parameter tuning from all previous privacy attack prob-
lems. We have shown that one-to-one mapping is necessary for
g being the worst case, but there are infinitely many g over
an infinite output domain and are up to |T'|! possible choices
if output domain I' is finite. We find that some of the score
functions leak more privacy than others. For example, when
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ep T | eplef el
n=0rv=1072|n=1Lr=10"2%| n=1,r=10"2 | n=2,r=10"3
Ee =21 Ec = 100 E¢ = 1000 E¢ = 2000
1| LA7IL5511.86 [ 1.1912.0612.65 | 1.2712.5413.09 | 1.2013.1813.99
1 05| 1.0911.5311.87 | 1.3012.0412.64| 1.3712.5113.15 | 1.4213.1514.05
0.1 | 1.0011.4911.86 | 11911.9812.56 | 1.4912.4313.24 | 1.4613.0514.09
121712921361 2.2113.8415.06 | 2.5314.6915.89 | 2.5715.8517.57
2 05(2.0512.8013.57 | 2.3413.8014.93 | 2.5014.6415.88 | 2.6315.7917.19
0.1|2.1612.9013.58 | 2.4013.8214.83 | 2.8714.6716.03 | 2.8615.8217.53
1 [3.9315.7016.80 | 4.3217.4019.30 | 4.5118.95110.83 | 4.70 111071 13.77
4 05|384156416.71 |4.2317.3219.03 | 4.8918.86110.74 [ 4.91110.96113.51
0.1 |3.7615.4816.58 | 4.1717.1218.64 | 5.0218.621 10.61 | 5.03110.67113.08
TABLE IV: Comparison of privacy bounds for H (Algo-

rithm . All values are in (g, 107°)-DP form. &7,
is the empirical lower bound obtained by simulating the
distinguishing game in Figure@ 5% is our improved analytical
upper bound. =/ is the upper bound from prior work [42].Each
row corresponds to a different sampling ratio 7, with total
iterations fixed at N = 10%. The parameters 1 and v define
the TNB distribution used to generate the number of runs in
‘H (details in Appendix , and E¢ is the expected number of

runs under this distribution.

Previous — Ours
MNIST FMNIST CIFARI10 SVHN
0.921 — 0.934 | 0.768 — 0.793 | 0.412 — 0.448 | 0.636 — 0.661

0.942 — 0.956 | 0.779 — 0.802 | 0.467 — 0.486 | 0.706 — 0.745
0.951 — 0.958 | 0.791 — 0.817 | 0.504 — 0.531 | 0.762 — 0.786

€B

1 1.83
2 343
4 6.69

TABLE V: Testing accuracy comparison under differentially
private hyper-parameter tuning. The TNB setup for our method
is(n=0,v=10"3%) (E¢ =~ 144). To achieve roughly the same
privacy result using previous method [42]], the setup should be
(n=0,v=10"2) (E¢ ~ 21). €% is our improved result for
private hyper-parameter tuning. For all experiments, § = 1075.

n=1,v=10"2 (INB ¢ recovers geometric distribution), if
we (arbitrarily) set the score function as

{

which is clearly a one-to-one mapping, we only derive £;, =
2.01 (average of 10 runs) at eg = 2,7 = 1, which is
smaller/weaker than the value 2.21 shown in Table [[V] (where
g(z) = ).

Choosing some g arbitrarily and performing the attack will
likely end up with sub-optimal attacks (smaller/weaker lower
bounds). This is probably the reason why we still see a gap
between 6% and ¢, even in our idealized attack. Reasoning on
such issues is non-trivial, and it poses the following questions
worthy of investigation:

xz, for z € [—00,0)J(1, 0]

1—z,for z €0,1] (28)

9()

1) which g should the adversary choose to elicit more
privacy leakage? 2) does the worst-case g depend on specific
&? 3) How to quantify the exact trade-off between privacy
leakage and ¢ which governs the utility? Answering the
above questions requires non-trivial efforts, which we hold
as meaningful future directions.



VII. CONCLUSION

We study how selection leaks privacy. Initially, we give
examples showing that the current generic bound for private
selection is indeed tight in general. Still, it is not tight for a
white-box setting, i.e., the hyper-parameter tuning problem.
Substantiating this assertion, we first audit the privacy of
hyper-parameter tuning under various settings; the derived
empirical privacy lower bound under the strongest adversary
still sees a noticeable gap from the generic upper bound.

We then provide an in-depth study of deriving better privacy
upper bound by modeling the base algorithm’s privacy with
finer resolution (f-DP). The improvement is due to the dis-
tinct properties of the base algorithm (DP-SGD). Our result
allows trying many more hyper-parameter candidates while
consuming less private budget. Our analysis also generalizes,
contrasting with previous work, which remains unknown how
to adapt to general parameter setups.

VIII. ETHICS CONSIDERATIONS

This paper is on refining the privacy bound for differentially
private protocols, not on privacy attacks. The privacy audit
experiments conducted are to conclude a privacy lower bound,
not to launch some real-world privacy attacks. All analyses and
experiments are conducted using publicly available datasets
to minimize privacy risks. Our study aims to strengthen
differential privacy protections in hyper-parameter tuning by
improving the analysis rather than exploiting any weaknesses.
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APPENDIX

A. Neyman—Pearson Lemma

Theorem 4 (Neyman—Pearson lemma [41]). Let P and Q
be probability distributions on ) with densities p and q,
respectively. Define L(x) 2z) - For hypothesis testing
problem

q(z)”

H()ZP7 HliQ

For a constant ¢ > 0, suppose that the likelihood ratio test
which rejects Ho when L(x) < ¢ has FP = a and FN = b,
then for any other test of Ho with FP < a, the achievable
FN is at least b.

Neyman—Pearson lemma says that the most powerful test
(optimal FN) at fixed FP is the likelihood ratio test. Apply-
ing Neyman—Pearson lemma to distinguishing A'(0,1) from
N (11, 1) gives us Definition [3] [17].

B. Privacy Results by Papernot et al.

Truncated negative binomial (TNB) distribution. For v €
(0,1) and n € (—1, 00), the distribution &, ,, on {1,2,3,---}
is as follows. When 7 # 0, then

Lk k=1

(1-v) l+n
P — _7” R
Vk € N, r[K = k] py——] 1 711
when n = 0, then
PriIK =kl= ———+—
Vk eN, Prf k] FTog(1/)

This particular distribution is obtained by differentiating the
probability generating function of some desired form [42].



The main relevant privacy results in [42] are provided in the
following. Note that they are all in RDP form.

Theorem 5 (RDP for TNB distribution [42]]). Let k in Algo-
rithm |I| follows TNB distribution &, ,. If the base algorithm
satisfies (a,7y)-RDP and (o/,~")-RDP, Algorithm || satisfies
(«,%)-RDP where

(1+n)-log(1/v) n

log Eﬁn,

v,

3) Optimization. In practice, practitioners often try various
assertion strategies on the same observed output by repeating
procedures 1) and 2) to find the optimal €.

D. Proof of Claim

Proof. when k > 0 is some fixed integer, we know that the
scores of all k runs are < g(Y'), which has the probability
Pr(E<,)*. As y occurs, we have probability Pr(E<,)* —

N 1 ’
Y=v+1+mn)- (1 i s
(0% —

Oé/

Tight example for approximate DP. A Tight example for
(€,0)-DP case can be obtained trivially based on Example
If an algorithm is (£,0)-DP, it is also (e, d)-DP. Hence, the
above tight example covers the (e,d)-DP case. Specifically,
it can be checked that the example shown in Equation (3) is
(1,1075)-DP and Equation (7) is (2.92,10~°)-DP. Compared
to the result predicted by [42], which is (3.11,107°)-DP, i.e.,
it is tight up to a negligible gap.

C. Used Datasets and Experimental Details

Our implementation is provided at an Github lin (or an
perminante link at “doi.org/10.5281/zenodo.17073774”). We
use four image datasets in our experiments. FASHION [38]],
MNIST [28], CIFAR10 [26] and SVHN [40]]. All of our exper-
iments are conducted under privacy parameter § = 10~°. The
number of repeating/simulation times in an audit experiment
is 2,000. The error bar results from taking the min., max., and
avg. for three trials. To efficiently audit the hyper-parameter
tuning and reduce the simulation burden, we only fetch 5,000
data examples from the original training datasets, and we set
the sampling rate to be 1, i.e., full gradient descent. We set the
TNB distribution [42] with parameter (n = 0, = 1072). We
use the ResNet [22] as the neural network in our experiments.
We use Adam as the default optimizer. The computational
burden is significant: our audit experiment consumes > 4000
GPU hours and is conducted over 20 GPUs in parallel.
Hyperparameter candidates setup. To run the audit exper-
iments, we need to set the candidates inside €2 in Algorithm
We hold the clipping threshold C, learning rate lr, and
the number of total iterations N as the hyperparameters to be
tuned. To form each candidate inside {2, we randomly sample
a value to determine C, Ir and N. All candidates have the
same privacy budget according to our problem formulation.
Detailed procedure of concluding the lower bound ¢;. The
following procedure is adopted to conclude a lower bound €.

1) Generating (beuth, bguess). Each pair corresponds to an
execution of G (Algorithm [I). The adversary needs to make
an assertion, i.e., output a bgyess € {0, 1}.

2) Compute . After getting many pairs of (byum, bguess),
the FP,FN can be summarised by Clopper-Pearson with
a confidence c. Specifically, the FP rate and FN rate are
modeled as the unknown success probabilities of two binomial
distributions. Then ¢, can be computed by Equation (@) or by
the methods used in [37].

Uhttps://github.com/zihangxiang/PrivateHyperparameterTuning.git
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Pr(E.,)" seeing y as the output of Algorithm [2 When k
follows some general distribution &, the resultant distribution
is a mixture, which is Claim [T} O
E. Proof of Theorem [2]
Proof. W.o.l.g., we define the alphabets of distribution P and
P’ as {a,b,c,d,e, f}, with some abuse of notation, we denote
P(a) :pa’P(b) = Db, 7P(f) = Df
P/(a) :p:zvp/(b) :Pé, 7Pl(f) :plf
as their probabilities. Suppose we have a non-one-to-one
mapping score evaluator g such that:

9(a) = g(c) = g(e) < g(b) = g(d) < g(f)-

We now assume a uniformly random selection among Alpha-
bets that share the same score. For clearer presentation, we
denote A% = (3,cqpi)” and A = (32,5 P;)". Then, the
distribution of Fy, 5 will be

1
Frg(a) = Fig(c) = Fig(e) = gA’Ea,c,e}

1
Fk:@(b) = Fk,.@(d) = §(A’{€a,c,e,b,d} - A]«Ea,&,e})
Fka@(f) =1- A]{Ca,c,e,b,d}

This is because
Fkag(i € {CL, G, 6}) = A?u,c,e}
Fk;@@ € {b7 d}) = A]Ea,c,e,b,d} - A]Ea,c,e}

and a uniformly random selection among {a,c,e} means
that the probability mass Fj ;(i € {a,c,e}) is distributed
uniformly to each. Similarly, the distribution of F,g 4 corre-
sponding to P’ has the same form (just replace A% by A%).
We now construct a one-to-one mapping score function g* as
follows.

g"(a) < g*(c) < g*(e) < g"(b) < g*(d) < g*(f)

The key point here is to enforce a strict total order for
alphabets that have the same score. Then, the distribution
of Fy g« 18

Fig-(a) = Afyy, Fig-(¢) = A7, oy — Afy
k k k k

Fk7g* (6) - A{a,c,e} - A{aaC}’ Fk:,g* (b) = A{a,c,e,b} - A{G,C,E}

Fk,g* (d) = A]{ca,c,e,b,d} - A’Ea,c,e,b}a Fk,g* (f) =1 A?a,c,e,b,d}

Similarly, the distribution of Fy g+ corresponding to P’ has

the same form (just replace A% by A%). We now compute the

RDP quantity Do (F ]| Fy, ;) and Do (F g+ [|Fy, ;- ). We aim
to show that the RDP value under non-one-to-one mapping ¢



is smaller than that under its one-to-one mapping counterpart.
We group the sub-terms of RDP calculation. Let

: Fk,gu))"‘ ;L
Tiacey = P | Frg(d)
{a.ce} Z_egie} (Fm(z) g

3 Fkh@(i))a ;o
Tpay = T Fy. 5(4)
b= 2 (Fk,g<z> "
- F NG f : /

We compute the T{a cel T{b e T{ ) counterparts in the same
fashion (just replace g by g*). And we will compare Ty, . ¢}

and T{a c,e} BY letting
=My 7' = Ay
_ k Ak
v =Moo~ My Y =Moo — Moy
= A]{ca,c,e} - A]Ea,c} 2= A]Ea,c,e} - A]{Ca,c}
then, it is easy to see that
Ak
~ {a,c,e} \q
T{a,c,e} (A]E o ) A{a ce}
THY+z 4
Gy )@y ) (29)
() () + ()

holds by Jensen’s inequality and the fact that function h(z) =

[

% is convex for o > 1, i.e.,
( T4y+z o < ()" + (7)Y + (5)%
x/+yl+zl - .T/+y +Z/

For the same reason, it can also be easily checked that T{b,d} <
T{*b’d} and T{f} < Tff} also hold. Because

Do (Fy 5| Fy ) =

)=

1 . ) .
—1 In(T(a,cey + Tiv,ay + Tiry)

Dal(

1 % * *
o1 2T acer T Ty + Ty,
we have

Da(Fk,QHFIQ,g) < Da(

L)

Note the first equality of Equation (29) always holds no matter
whether selection among alphabets sharing the same score is
uniform or weighted; the alphabet and the order we choose is
also arbitrary, which means that the result holds in general.

Remark. Following the same reasoning, when k is now a
random variable instead of a fixed number, we also have
the result, as shown in the above theorem. Because we can
modify each probability term to be the probability of the mix-
ture counterpart, and the proof follows trivially. Specifically,
for each probability p = f(k) shows up, modify it to be
p = > 0y Pr(i)f(i) where Pr(i),i = {1,2,--- ,00} is the
p-m.f. of distribution &. O

17

F. Proof of Theorem [3]

Proof. As we care about how much (g4, 09 )-DP H satisfies
given some dy, it is useful to introduce a technical lemma
related to such form of DP.

Lemma 1 ([46] Propostion 7). Define the privacy loss random
variable for a pair of adjacent dataset X, X' to a private
mechanism M as L1 = log % where 0 ~ M(X) M
is (¢,0)-DP or f. s-DP if and only if

/ et 7. PromM(X)[Ll > z]dz <4

holds for all adjacent X, X'

Our goal is clear, i.e.,
equation:

we need to meet the following

= en— Q(o)
"% . Pro~gllog > z]dz < 6y 30)
/E . qllog 7y > 4 (
Then H would be (g3, d% )-DP.
Let the left-hand side of Equation (30) to be t.,, and
note that 2 = Lwello) " gefine event E {0 :
(o) %2};((0)) P (o)we (F7(0))” z '
log 7p/(o)w§(F,(o)) > z} then
te,, = / /Q )dodz
€Y

<we(1) /

The inequality is due to we : [0, 1] — R is increasing.

Let us investigate the hypothesis testing problem P V.S.
P’, ie., deciding X or X’ was used based on the score of a
single run of the DP-SGD. The score is post-processing [[17,
Lemma 1]) of the trained model, so the (FP,FN) pair for
distinguishing P from P’ is governed by f.

For some real number o € R, define A = {u: u < o}, and
a decision rule R that accepts P when the score falls into A.
Then, FPr = 1—F(0) and FNz = F’(0). And we must have
F'(0) > f(1 — F(0)) as governed by the trade-off function.
This leads to an upper bound (note that we is increasing)

welF() _  well—a)

we(F'(0)) ~ ael0,1] we(f(a))
Now, let £, = {o: log P,((‘:)))
E, C EZ. Hence, we have

=M (32)

M > z}, it is easy to see that

ey SUJg(].)/ ee”_z-/P(o)dodz
EH o
E.
® e P(o)
=w (1)/ "% . Pr,pllog > z — log M]dz
R P'(0)
oo
P
Swg(l)/ "% . Pr,.p|log /( °) > z —log M]dz
en—log M P( )
o _ _ P(o)
=we(1 / efnTlog M=s . pp o > slds
é( ) en—log M P[ gP/(O) ]



Letting s = z — log M, we have the last equality. Note that
the score is differentially private, as it is post-processing of the
base algorithm. Hence, we can compute a (¢, —log M, §)-DP
guarantee for the score. Applying Lemma [I] we have

tsy S W§(1)5.

Setting 6y = we(1)d, we derive 6. By inputting trade-off
function f for the base algorithm and § to Algorithm [3] we
derive the value of €3, —log M, which give us Theorem [3| As
we assume nothing on the adjacent dataset X, X', Theorem
holds for all X, X’ pair.

O
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