Artifact
Evaluated

ANDss

Available

Consensus 1n the Known Participation Model [
with Byzantine Failures and Sleepy Replicas

Reproduced

Chenxu Wang*, Sisi Duan'¥=, Minghui Xu*=, Feng Li*, and Xiuzhen Cheng*
*Shandong University, TTsinghua University
IState Key Laboratory of Cryptography and Digital Economy Security
cxwang16117@gmail.com, duansisi@tsinghua.edu.cn, {mhxu,fli,xzcheng} @sdu.edu.cn
= Corresponding authors

Abstract—We study consensus in the known participation
model with both Byzantine failures and sleepy replicas, where
honest replicas may unpredictably fall asleep, and replicas know
the minimum number of awake honest replicas. Our main
contribution is providing a fine-grained t reatment o f consensus
in such a mixed failure model. First, we present a synchronous
atomic broadcast protocol with 5A + 2§ expected latency and
2A + 26 best-case latency, where A is the bound on network
delay and ¢ is the actual network delay. Second, in the partially
synchronous network (the value of A is unknown), we show
that one can make a conventional Byzantine fault-tolerant (BFT)
protocol tolerate sleepy replicas but has to make the stable
storage assumption (where replicas need to store intermediate
consensus parameters in stable storage). Finally, in the partially
synchronous network but not assuming stable storage, we show
several bounds on the relationship between the total number of
replicas n, the maximum number of Byzantine replicas f, and
the maximum number of simultaneous sleeping replicas s. Using
these bounds, we transform HotStuff (PODC’19) into a protocol
that tolerates sleepy replicas without sacrificing the performance.

I. INTRODUCTION

Byzantine fault-tolerant state machine replication (BFT) is
a fundamental tool in fault-tolerant distributed computing,
allowing a group of replicas to reach an agreement in the
presence of arbitrary failures [1]-[7]. Conventional BFT pro-
tocols assume that replicas know each other’s identities and
non-faulty replicas are expected to always stay online. With
the rise of Bitcoin [8], BFT (and blockchains) have been
characterized by new features. The sleepy model of consen-
sus [9] is an example. In sleepy consensus, besides Byzantine
replicas, honest replicas may unpredictably go offline (and
become asleep) and later come back online (and become
awake). So far, all the sleepy consensus protocols focus on the
unknown participation model [9]-{13], where replicas are not
aware of the minimum number of awake honest replicas h,,.
Sleepy consensus protocols can only be built in a synchronous
network [9]-{13], where there exists a known upper bound
for message processing and propagation. Pass and Shi [9]

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230448
www.ndss-symposium.org

have shown an impossibility result for partially synchronous
and asynchronous networks. Such protocols are also called
dynamically available protocols [14]-[17].

Another notable study is consensus with a mixed failure
model, i.e., the system consists of both Byzantine failures and
other types of failures. Such a study has a history of more
than a decade, and many prior works consider both Byzantine
and crash failures [18]-[21]. In fact, sleepy consensus can
also be viewed as one in the mixed failure model. For
example, Momose and Ren (MR) [[10] present a model where
sleepy replicas are embedded with a recovery module. Sleepy
model with recovery matches the crash-recovery model in
the distributed computing literature [22], where replicas keep
infinitely often crashing and recovering. MR provides a sleepy
consensus protocol under this model and describes the protocol
as one that “tolerates any number of crash-recovery faults plus
minority Byzantine faults |10, Sec. 3.1].”

Since sleepy consensus focuses on the unknown participa-
tion model, we make a clear distinction in this work. We
call replicas that may fall asleep and become awake sleepy
replicas. We use sleepy consensus to denote protocols that
tolerate both Byzantine failures and an unknown number of
sleepy replicas. In this work, we are interested in protocols in
the known participation model, where the minimum number of
awake honest replicas h,, is known. We call our protocols ones
that tolerate both Byzantine failures and sleepy replicas in the
known participation model and show that these protocols are
of independent interest.

We provide a comparison of both sleepy consensus and
consensus in the known participation model in Table [l As
summarized in the table, consensus in the known participation
model has not been well studied.

Motivation of the known participation model. Consensus
with both Byzantine failures and sleepy replicas in the known
participation model is useful and has been informally studied
in existing systems. One example is Ethereum [23]. In the
current production system, Ethereum assumes the partially
synchronous model and does not handle sleepy replicas by
design. It expects honest replicas (called validators) to remain
awake and use the incentive mechanism to penalize inactive
replicas. However, it was shown that an attack could cause all
honest replicas to be penalized even if honest replicas strictly

TABLE I: Comparison between sleepy consensus and consensus in the known participation model with sleepy replicas.

Minimum n to

Maximum number

Network Participation Protocol tolerate s of asleep Expected Stable
model . . latency storage?
asleep replicas honest replicas
MR [10] (without the .
Unknown recovery protocol) n=2f+s+1 n—2f-1 324 v
ie., slee MR [10] (with the . o
Synchronous (consensurs,il recovery protocol) n=2f+s+1 n—2f-1 354 X
MMR [12] n=2f+s+1* n—2f —1% 14A X
Known Koala-1 (Sec.@ n=2f+s+1 n—2f—1 5A + 26 X
Unknown Impossible. [9] - - -
Partiall ~ asub-protocol of* [17] A
artially with stable storage n=3f+1' n—f1 Required
synchronous Known (Sec. 8 f f (based on HotStuff) q
n=3f+s+1" or n—3f—1"or TA
Koala-2 (Sec. n=3f+2s+1 ==y (based on HotStuff) X

n is the number of replicas, f is the maximum number of Byzantine replicas, and s is the maximum number of asleep honest replicas. A
is the upper bound for message processing and transmission latency and § is the actual network latency. 1The bound considers the worst
case where all f Byzantine replicas remain awake. *The Ebb-and-Flow protocol has a sub-protocol Iy that tolerates Byzantine failures and
sleepy replicas. Iy does not specify whether stable storage is required. We show that the result can only be achieved by assuming stable
storage. Namely, with stable storage, all n — f honest replicas can fall asleep before the global awake time (GAT). T Liveness of the protocol
is guaranteed under the GAT assumption, where all honest replicas remain awake after GAT.

follow the specification of the protocol [24]. Accordingly,
consensus in the known participation model that handles
sleepy replicas by design can systematically address this issue.

Another example is that industrial systems such as Diem-
BFT [25] and Tendermint [26] are already taking actions
to handle sleepy replicas but in an informal way. For in-
stance, the DiemBFT codebase [27] clearly mentions that
some parameters are stored in the stable storage to “en-
sure liveness even if all replicas crash and later recover”
(persistent_liveness_storage.rs:24-2. However, storing all
consensus parameters might be too expensive [22]], 28], [29].
In the literature of BFT research, no analysis is given to
identify what should be stored in stable storage.

Therefore, an interesting open problem is:

Can we provide a more fine-grained treatment of consensus
in the known participation model with both Byzantine failures
and sleepy replicas?

Our technical approaches. In this paper, we provide a fine-
grained treatment of consensus in the known participation
model (where the minimum number of awake honest replicas
h, is known) in both synchronous and partially synchronous
networks, with and without stable storage. As summarized in
Table [[, we provide the following results.

> Koala-1: fast synchronous atomic broadcast with Byzan-
tine failures and sleepy replicas. While we can directly use a
sleepy consensus protocol in the unknown participation model,
the latency of the protocol can be very high. We show that in
the known participation model, the latency can be made closer
to conventional consensus protocols. Our protocol requires
n>2f+s+1 (Ge., hy = f + 1), where n is the number

'DiemBFT: https://github.com/diem/diem/blob/3b774462384ea37dd46f1c
67b525103937c45a0a/consensus/src/persistent_liveness_storage.rs

of replicas, f is the maximum number of Byzantine replicas,
and s is the maximum number of asleep honest replicas. An
interesting fact is that existing sleepy consensus protocols also
assume n > 2f + s+ 1 [9]-[13] but f and s are unknown.

We present Koala-1 that achieves an expected latency of
5A + 2§ and a best-case latency of 2A + 29, where A is the
upper bound for message processing and propagation latency
and J is the actual network latency. In contrast, the best result
of sleepy consensus has a latency of 14A (i.e., MMR [12]),
more than twice the latency of Koala-1. Our result is closer to
the 2A 49 latency achieved by conventional synchronous BFT
protocols [30] (not in the sleepy model). The major challenge
we address is that the conventional Byzantine quorum does
not work in the model where some replicas may fall asleep.
Important building blocks of Koala-1 include a new double
confirmation mechanism and a new validated triple-graded
proposal election (VI-GPE) primitive, which might be of
independent interest.

> Partially synchronous consensus with stable storage and
the impossibility result. To date, the only known result of
consensus with both Byzantine replicas and sleepy replicas
in the partially synchronous network is a Ilug sub-protocol
of Ebb-and-Flow [17] and its follow-up work [31]. It was
briefly mentioned that one can use conventional partially
synchronous BFT protocols [5], [7], [32] to support sleepy
replicas by assuming global awake time (GAT), where after
GAT, every honest replica becomes awake. However, concrete
constructions are not provided.

In this work, we show that by assuming the conventional
n = 3f+1 bound, a partially synchronous consensus protocol
that tolerates Byzantine and sleepy replicas cannot be achieved
without making the stable storage assumption. We provide

https://github.com/diem/diem/blob/3b774462384ea37dd46f1c67b525f03937c45a0a/consensus/src/persistent_liveness_storage.rs
https://github.com/diem/diem/blob/3b774462384ea37dd46f1c67b525f03937c45a0a/consensus/src/persistent_liveness_storage.rs

formal proof of the impossibility result, and use HotStuff [7]]
as a case study to show our results. While storing all the
intermediate parameters in stable storage is an option, it
is usually very expensive to do so as frequent disk I/O is
involved [22f, [28]], [29]. For instance, it was shown that the
throughput of BFT-SMaRt [33]] is only 23% of its storage-free
counterpart [29]. We then show that we only need to store
two parameters (the view number and locked@C') to make
HotStuff tolerate sleepy replicas (denoted as HotStuff-mSS).
We consider our result a complement to BFT in production
systems and the Il sub-protocol of Ebb-and-Flow [[17].

> Koala-2: partially synchronous protocol without stable

storage. In the partially synchronous model without assuming

stable storage, we transform HotStuff into Koala-2, a protocol
that tolerates Byzantine and sleepy replicas and still retains the

76 latency of HotStuff. we require that s = L%J ie.,

n>3f+2s+1and h, = (%fﬂ] (As defined, the values of

h, and s can be calculated from each other. Given s, h, can

be determined as n — f — s, and vice versa). Additionally, by

assuming the existence of GAT, the value of s can be further
improved ton—3f—1 (i.e., n > 3f+s+1and h, =2f+1).

We show that these bounds are tight.

QOur contributions. Our contributions are summarized be-

low:

e (Sec. In the synchronous model, we present Koala-1, a
protocol that tolerates both Byzantine and sleepy replicas
in the known participation model. Koala-1 achieves an
expected latency of 5A 424, almost half of the latency of the
state-of-the-art sleepy consensus protocol (in the unknown
participation model).

e (Sec. In the partially synchronous model, we show that
a BFT protocol with the n = 3f 4+ 1 bound can not tolerate
sleepy replicas without assuming stable storage. We further
use HotStuff as an example and show that by assuming GAT,
we only need to store two parameters in stable storage to
tolerate sleepy replicas.

e (Sec. In the partially synchronous model, we propose
Koala-2, a HotStuff-variant that tolerates sleepy replicas
without assuming stable storage while still achieving the
same latency as HotStuff. The bound is s = L%J
without the GAT assumption and s = n — 3f — 1 with
the GAT assumption.

e (Sec.|VI) We evaluate the performance of HotStuff-mSS and
Koala-2 and show that both protocols are efficient, achieving
performance very close to HotStuff (where no intermediate
parameters are stored in stable storage). Additionally, we
also provide a demo, showing that HotStuff suffers from the
double spending attack with no stable storage. In contrast,
none of our protocols suffers from the attack.

II. SYSTEM MODEL AND BUILDING BLOCKS

Byzantine fault tolerance (BFT). In a BFT protocol, clients
submit transactions (requests) and replicas deliver them. The
client obtains a final response to the submitted transaction from
the responses. Within a BFT system of n replicas, a maximum

of f replicas may fail arbitrarily under the control of an
adversary. These faulty replicas are also known as Byzantine
failures and non-Byzantine replicas are called honest replicas.
The correctness of a BFT protocol is specified as follows:

e Safety: If an honest replica delivers a transaction tx before
delivering tz', no honest replica delivers the transaction tx’
without first delivering tx.

e Liveness: If a transaction tx is submitted to all honest
replicas, all awake honest replicas eventually deliver tx.

An equivalent primitive atomic broadcast (ABC) is often
used interchangeably with BFT. Informally, the main differ-
ence is that ABC does not involve the role of the clients.

e Safety: If an honest replica a-delivers a message m before it
a-delivers m’, then no honest replica a-delivers the message
m’ without first a-delivering m.

e Liveness: If an honest replica a-broadcasts a message m,
then all awake honest replicas eventually a-deliver m.

While the BFT and atomic broadcast abstractions do not
expose the order to API, an implicit order is given in most
protocols, e.g., sequence number [S[, [34], height [7], [35].
Using this implicit order, many partially synchronous protocols
achieve a weaker safety property as follows [5], [[7], [35].

e Consistency: If an honest replica delivers a transaction tx
and another honest replica delivers a transaction tz’, both
with the same order, tz = tz'.

Our Koala-1 protocol follows the conventional atomic
broadcast model. Our Koala-2 protocol achieves the consis-
tency property, following that of HotStuff.

Network models and communication channels. We consider
both synchronous and partially synchronous networks. In
the synchronous model, there exists an upper bound A for
message processing and transmission latency and there exists
a completely synchronous clock. In the partially synchronous
model [36]], there still exists an upper bound but the value of A
is unknown. An alternative notion of the partially synchronous
model is that there exists an unknown global stabilization time
(GST) such that after GST, messages sent between two honest
replicas arrive within a fixed delay. Note that an asynchronous
network does not assume such an upper bound.

We assume authenticated channels for message transmis-
sion. We use the symbol * to denote any value. We use § to
denote the actual network latency.

Sleepy replicas. A sleepy replica can be either awake or
asleep [9]. An awake replica actively participates in the
execution, while an asleep replica does not execute any code
of the protocol or send/receive any message. In our system,
each honest replica can become asleep, whose status can
change at any time under the control of an adversary, without
any advance notice. In practice, this implies that replicas are
allowed to leave and rejoin the protocol’s execution at will
without notifying other replicas. Sleepy replicas align with
the crash-recovery model, where replicas can keep crashing
and recovering repeatedly [22]]. It is highlighted that an honest
replica might encounter “amnesia” after crashing, leading to

the loss of its internal state stored in its volatile storage. In
our work, Byzantine replicas can also be sleepy.

Our work considers the known participation model, where
all replicas have foreknowledge of the minimum number of
awake honest replicas h,. Meanwhile, we use s to denote
the maximum number of asleep replicas at any point of the
protocol execution. As defined, h, and s can be calculated
from each other. Given s, h, can be determined as n — f — s,
and vice versa. In our synchronous protocol, &, is f+1. In our
partially synchronous protocol, h,, is [%f“] If we consider
the global awake time (GAT) assumption, where after GAT
every sleeping replica will be awake, our partially synchronous
protocol can be achieved with h, = 2f + 1.

Cryptographic assumptions. We use digital signatures, mak-
ing the public-key infrastructure (PKI) assumption. We use
(1), to denote a message 4 signed by replica p;. We assume
a cryptographic collision-resistant hash function denoted as
H(-). We assume a verifiable random function (VRF) in one
of our protocols. A replica p; evaluates (p;, 7;) < VRF;(u)
on any input y and obtains a pseudorandom value p; and a
proof m;. Using 7; and the public key of replica p;, anyone
can verify whether p; is a correct evaluation of VRF; on p.
Blocks. We use block B to denote a batch of transactions.
Blocks are ordered in a chain where the previous block of B
is called its parent block. The first block in the chain is called
the genesis block By. A block B extends block B’ if B’ is
an ancestor of B in the chain. Two blocks B and B’ conflict
with each other if neither of them extends the other.

Byzantine quorums and quorum certificates. A byzantine
quorum (or quorum in short) denotes certain number of
replicas. Matching votes from a quorum is necessary for honest
replicas to reach an agreement. A set of signatures signed by
a quorum of replicas is called a quorum certificate (QC or
certificate). In conventional BFT with n > 3f + 1 replicas, a
Byzantine quorum consists of [%f“] replicas. By slightly
abusing notation, we use the view() function to denote the
view number of a QC or a block. For example, if gc is a QC
for block B, view(qc)=view(B).
Graded proposal election (GPE). In GPE [12], each replica
gpe-proposes a block and gpe-decides either (B,g) or L,
where B is a block and g € {0, 1} is the grade. GPE achieves
the following properties:
o Consistency. If an honest replica gpe-decides (B, *) and
another honest replica gpe-decides (B’,*), B = B’.
e Graded delivery. If an honest replica gpe-decides (B, 1),
all honest replicas gpe-decide (B, x).
e 1/2-validity. With a probability of at least 1/2, all honest
replicas gpe-decide (B, 1), where B has been gpe-proposed
by an honest replica.

ITI. KOALA-1: FAST SYNCHRONOUS CONSENSUS WITH
BYZANTINE AND SLEEPY REPLICAS

We introduce a synchronous atomic broadcast protocol
called Koala-1 that tolerates both Byzantine and sleepy repli-
cas. We consider a system with n > 2f + s + 1 replicas and

TABLE II: Comparison of synchronous BFT protocols.

Protocol Failure Participation Expected Best-case
rotoco model Model latency latency
Sync-HotStuff [37] Byzantine Known 2A+48§ 2A+§
MR [10] B . Unknown 32A 16A
MMR [12] o Zs‘i‘é‘;g’ye Unknown 14A 4A
Koala-1 Known 5A 42§ 2A 42§

A is the upper bound on message processing and transmission latency
and ¢ is the actual network latency.

he, = f + 1. Without loss of generality, we assume stable
storage and message delivery, i.e., once a replica becomes
awake at time ¢, it will immediately receive all messages
sent from any honest replica before time ¢ — A. Later in
Appendix we provide a practical recovery protocol to
remove both assumptions.

We build a practical protocol with latency close to conven-
tional synchronous BFT protocols (e.g., Sync HotStuff [37]]
has 2A + § latency). In particular, Koala-1 has a fast path
that achieves 2A + 2§ latency, which occurs when all awake
replicas are honest. The result is much lower than sleepy
consensus, as summarized in Table [[1

A. Overview of Koala-1

In the classic static participation model, one can obtain
a synchronous atomic broadcast (ABC) protocol assuming
n = 2f + 1 and a quorum size of f + 1. This is because
an quorum certificate (QC) with f + 1 votes is transferrable
and can be verified by any replica. Most prior synchronous
Byzantine agreement and atomic broadcast protocols [30],
[37], [38]] all follow a commit-lock paradigm, i.e., once a
replica commits a block B, all honest replicas will be locked
on B. This paradigm ensures that honest replicas will only
vote for blocks extending B. In this way, the safety of the
protocol is guaranteed. Such a paradigm can be realized via
the GPE protocol as reviewed in Sec.

In the mixed failure model, a tempting solution is to change
the size of the Byzantine quorum and transform the protocol
to one that tolerates sleepy replicas. Unfortunately, even under
the known participation model, building a secure protocol
is not trivial. This is mainly because we can no longer use
the conventional quorum size as (possibly more than the
majority of) honest replicas may become asleep and lose their
state. In fact, even if a certificate with h, matching votes is
transferrable (e.g., under the help of a powerful equivocation
detection mechanism), there might still be safety and liveness
issues. We show two scenarios in Figure [T] In both scenarios,
po is a Byzantine leader but it equivocates in different ways.
From the perspective of an honest replica p4, the two scenarios
are indistinguishable. Thus, we need to design the protocol
using additional techniques.

In Koala-1, our main contribution is h,-enabled quorum,
i.e., using h, as the quorum size and make the certificate
with h, matching votes transferrable. This is achieved via

Propose | Echo | Forward | O input
P17 w | @ ‘@’ (3 echo vote

A

% O 3 0 ‘ certificate
SNOC (X /O
N 58 @ A\Q

-~

PN N 3
l@‘, t ia-delivered
4 e’

awakens
; I 4] after 34)
0 A 2A 38 Timeline
(a) Scenario 1: p2 sends B2 to p1 and ps. p1 and ps echo B2, collect
a certificate, and forward the certificate. As p; and ps detect no
equivocation before t = 3A, they a-deliver Bz. When ps wakes

up, p2 sends B to p4.
i Propose | Echo

i Forward

() input
(O echo vote

‘certiﬁcate

\\ \ (p4 awakens

PaT § | {B) after 30)
A 3

0 A 2, A Timeline
(b) Scenario 2: ps sends Bs to p; and Bj to p3 and p4. p1 echoes

Bs and ps3 echoes B5. As p1 and ps3 observe the equivocation, none
of p1 or ps a-deliver any block.

Fig. 1: Two situations of synchronous ABC protocols with
sleepy replicas that are indistinguishable for py. In both
scenarios, po is Byzantine, p4 receives B from p, and a valid
certificate for By. In scenario 1, p; and ps a-deliver Bs. In
contrast, in scenario 2, none of p; or p3 a-deliver any block.
MMR

9=0 9=1 gzllock
g =1 0w
g=1 , >=—7 g=0
locked block

a-deliver candidate

= 9=1 lock
. g=0 oc
Koala-1 candndate%addiver

Fig. 2: MMR [[12] vs. Koala-1. GA denotes graded agreement.

a carefully designed double confirmation mechanism and an
equivocation mechanism. The double confirmation mechanism
uses two certificates as a proof for a block B to make the
proof verifiable. Meanwhile, we also extend the GPE notion
to validated triple-graded proposal election (VT-GPE). As
illustrated in Figure 2] compared to prior work, our protocol
is much simplified.

B. Validated Triple-Graded Proposal Election

Validated Triple-graded Proposal Election (VT-GPE). We
define validated triple-graded proposal election (VT-GPE) as
follows. Each honest replica tgpe-proposes a block (together
with a valid proof) and tgpe-decides either (B, g,0) (where
B # 1) or L. Here, g is a grade where g € {0,1,2}. We also
need an external validity property for VT-GPE to be validated.
In particular, we define a global predicate that is determined

by the particular application and known to all parties. In this
work, we define o as the proof for the validity of block B. Let
the predicate be @) and we say B is validated by o if Q(B, o)
holds. Each honest replica only tgpe-decides one block in a
VT-GPE instance, but it may fgpe-decides the same block
multiple times with different grades. A validated VT-GPE
protocol achieves the following properties:

o External validity. If an honest replica tgpe-decides (B, *,)
such that B # 1, Q(B,o) holds for at least an honest
replica.

o Consistency. If an honest replica rgpe-decides (B, x, *) and
another honest replica tgpe-decides (B',*,*), B = B'.

e Graded delivery. If an honest replica 7gpe-decides (B, g, *)
such that g € {1, 2}, any honest replica tgpe-decides (B, g—
1, %).

e Validity. With a probability of o > 1/2, all honest replicas
tgpe-decide (B, 2, x) where block B is tgpe-proposed by an
honest replica.

The VT-GPE protocol. We use VI-GPE, to denote a VT-
GPE instance. VT-GPE, consists of two phases: a VRF-based
leader election phase and a graded consensus phase. The leader
election phase selects a leader and honest replicas may select
different leaders. The graded consensus phase allows replicas
to converge on the result of the leader election.

As shown in Algorithm [I] the protocol begins with a
VRF-based leader election. Each replica p; broadcasts a
(INpUT, By, 04, pi, T;),; message, where B; is the block p; tgpe-
proposes, o; is the proof for B;, p; is a VRF evaluation
on the current view number, and 7; is a proof of the VRF
evaluation. As defined above, every replica only considers
B; valid if Q(B;,0;) holds. For now we do not care about
the instantiation of o; and later we will define it. The
VRF evaluations are used for leader election. In particular,
according to the VRF evaluations each replica receives, the
producer of the highest VRF is considered the leader, and
the corresponding (INPUT) message is defined as the winning
input. If equivocating (INPUT) messages are received from the
leader, the winning input is set as L. Additionally, the block B
associated with the winning input is called the winning block.

As each replica may receive different sets of (INPUT)
messages and the winning inputs might be different, we
define the winning input for each replica p;. In particular,
(NpUT, B, 0, p, 7r)j from p; is a winning input for p; if the
following conditions are met:

(1) Q(B, o) holds;
(2) m is a valid proof of p on the current view number;
(3) p is the highest among all the VRF evaluations in the

(INPUT) messages;

(4) p; has not received another valid (iNeut, B’ o', p,7)

such that B’ # B.

After the leader election, from time ¢ = A to t = 4/, the
graded consensus phase is executed as follows.

J

e At ¢t = A, if replica p; is awake, it broadcasts an (ECHO)
message for the winning block.

Algorithm 1 Validated Triple-graded Proposal Election of
view v - VI-GPE,,.

1: Replica p; executes the following algorithm at every time ¢ > 0
after starting VT-GPE, in view v, and tgpe-proposes (B;, ;)
such that a global predicate Q(B;, o;) holds.

2: p; maintains these parameters for each received block B:

3 E(B) < all received (ECHO, B)_ messages

4: R(B) <« all received (READY, B)_ messages

5: L(B) < all received (LOCK, B), messages

6.

7

8

Wi(B) < all received (WINNERI, (INPUT, B),) messages
W2(B) < all received (WINNER2, (INPUT, B),) messages
: if t = 0 then
9: (Pi, ﬂ'i) — VRF»L(’U)

10: broadcast (INPUT, B, 04, pi, i),

11: if t = A then

12: if there exists a winning input (INPUT, B;, 0;, p;, 7Tj>j then
13: forward the winning input (if not yet)

14: if Q(Bj,0;) holds then

15: broadcast (ECHO, Bj),

16: else

17: forward the equivocating INPUT messages by any replica
18: if t = 2A then

19: update local winning input from received INPUT messages
20: if (INPUT); # L then // Let (INPUT), be the winning input
21: broadcast <WINNER17 <INPUT>J.>'

2: if |E(B,)| > f + 1 then '

23: broadcast E(B;) and (READY, B;),

24: else

25: forward the equivocating INPUT messages by any replica
26: if t = 3A then

27: update local winning input from received INPUT messages
28: if (INPUT); # L then

29: broadcast { WINNER2, (INPUT) j>v

30: if |[R(B;)| > f +1 then '

31: broadcast R(B;) and (LOCK, Bj),

32: else

33: forward the equivocating INPUT messages by any replica
34: if t > 4A then

35: update local winning input from received INPUT messages
36: if (INPUT); # L and |L(B;)| > f + 1 then

37: tgpe-decide (Bj,2, L(Bj))

38: if |[R(B)| > f+1 and |W2(B)| > f+1 for a block B then
39: tgpe-decide (B, 1, (R(B), W2(B)))

40: if |[E(B)| > f+1 and |[W1(B)| > f+1 for a block B then
41: tgpe-decide (B, 0, (E(B),W1(B)))

42: if no block is tgpe-decided then

43: tgpe-decide |

e Attt =2A, p; broadcasts a (WINNER1) message containing
its winning input. If p; receives at least f + 1 matching
(EcHO) messages for its winning block, the replica forwards
these (ECHO) messages and broadcasts a (READY) message.

e Att = 3A, p; broadcasts a (WINNER2) message containing
its winning input. Similar to the previous round, if p;
receives at least f + 1 (READY) messages for its winning
block, the replica forwards these (READY) messages and
broadcasts a (LOCK) message.

e When t > 4A, there are four conditions. First, if p; receives
f + 1 matching (Lock) messages for its winning block Bj,
it tgpe-decides B; with grade 2 and uses f + 1 (LoCk)
messages as the proof for B;. Second, if p; receives f + 1
(READY) and f+ 1 (WINNER2) messages for any block B, it
tgpe-decides B with grade 1. Here, both f+1 (READY) and
f+1 (WINNER2) messages are used as proofs for B. Finally,
if p; receives f+ 1 (EcHO) and f + 1 (WINNERI) messages
for any block B, it tgpe-decides B with grade 0. Here, the
(ecHO) and (WINNER1) messages are used as proofs for B.
Otherwise, p; tgpe-decides a special symbol L.

C. Atomic Broadcast (ABC)

Our ABC protocol follows the view-by-view construction
of many classic BFT protocols [S], [7], [35] and also prior
sleepy consensus protocols. In each view, each honest replica
a-broadcasts a block and a-delivers at most one block.

The protocol starts from view 1 and the pseudocode for view
v is shown in Algorithm [2| In each view v, there is one VT-
GPE instance denoted as VT-GPE,,. In each VI-GPE,, each
replica p; tgpe-proposes block B that extends its candidate,
where B is the block p; a-broadcasts. Here, our idea is to use
the grade g € {2, 1,0} of VT-GPE to mimic the commit-lock-
prepare relation in conventional BFT. To maintain the status,
every replica maintains several local parameters, including the
candidate and lock, which are initially set as the genesis block
By. If a block B is tgpe-decided with grade O (resp. 1), the
candidate (resp. lock) is set as B.

We define the global predicate () for VT-GPE as follows.
Given the value (B,qc) tgpe-proposed by any replica pj,
Q(B, gc) holds at p; if and only if:

e view(B) equals the current view number of p;, gc is a valid
prepare@C for B, and B’s parent block is the block of qc;

e the view number of ¢c is at least the same as p;’s lock.

In our protocol, prepareQC' is the proof each replica p;
holds after it gpe-decides a block B with grade 0. According
to our VT-GPE instantiation, the proof consists of two cer-
tificates, i.e., f + 1 (EcHO) messages and f + 1 (WINNERI)
messages for B. The certificates are crucial for B to be
validated and we call them the double confirmation mechanism
for B. Meanwhile, ensuring the view number of gc is at least
the same as p;’s locked block further prevents forks from
happening and is crucial for both safety and liveness.

Every replica p; waits for the output of VT-GPE,, and there
are three possible outputs.

(1) If p; tgpe-decides (B, 0, (E(B), W1(B))), p; sets its can-
didate as B and prepareQC as (E(B), W1(B)).

(2) If p; tgpe-decides (B, 1, (R(B), Wx(B))), it sets its lock
as B and lockedQC as (R(B), Wx(B)). A valid locked@QC
for block B consists of f+1 (READY) and f+1 (WINNER2)
messages for B. The lock parameter is useful for defining
the predicate () and the locked@C' parameter is only useful
in the recovery protocol (to be described in Appendix [B).

(3) If p; tgpe-decides (B, 2, L(B)), it a-delivers B and all the
ancestors of B. It also sets its commitQC' as L(B), which
is only useful in the recovery protocol.

Algorithm 2 The Koala-1 atomic broadcast protocol for p;.

1: Initialize the following parameters

2: v < 1; candidate < Bo; lock < By; prepareQC <
L; lockedQC <+ 1; commitQC <« 1. // lockedQ)C' and
commit@QC' are used in the recovery protocol

: Let @ be the following predicate for VT-GPE:

Given (B, qc) tgpe-proposed by pj,

Q(B, qc) = (view(B) = v) and (gc is a valid prepareQC)

and (B.parent = gc.block) and view(qc) > view(lock)

AR

: In each view v, replica p; executes the following algorithm at
every time 0 < ¢ < 4A w.r.t. view v, then enters view v + 1.

8: if ¢ = 0 then

9: B + (vals, H(candidate), v),

10: tgpe-propose (B, prepare@QC) in VTI-GPE,, with predicate Q

11: // The following events may be triggered after view v

12: upon p; igpe-decides (B, 0, (E(B),Wi(B))) in VI-GPE, do

13: if view(B) > view(candidate) then

14: candidate < B, prepareQC «+ (E(B), W1(B))

15: upon p; tgpe-decides (B, 1, (R(B), W2(B))) in VI-GPE, do

16: if view(B) > view(lock) then

17: lock <— B, locked@QC <+ (R(B), W2(B))

18: upon p; tgpe-decides (B,2, L(B)) in VI-GPE, do

19: if B has not been a-delivered then

20: a-deliver B and all ancestors of B, commitQC < L(B)

Pipelining mode. Our protocol enjoys the benefit of pipelin-
ing, where replicas can enter the next view v + 1 at t = 3A
of the current view v. While a new instance VT-GPE,; is
started, the current instance VI-GPE, still runs until each
replica tgpe-decides. To see why replicas can enter the next
view at ¢ = 3A, consider that an honest replica is locked on
a block B in VT-GPE,. All replicas awake at ¢ = 3A must
receive the prepare@QC (including f + 1 (EcHO) and f + 1
(WINNER1) messages) for B. Any honest replica that proposes
new blocks must extend B in newer views. Besides, as lock
can be updated at ¢ = 4A of view v, replicas can use their
updated lock to verify the new blocks at ¢ = A of view v+ 1.

Fast path. Our protocol has a fast path that a-delivers a block
in 2A+24 time. We achieve this by slightly modifying our VT-
GPE primitive into a weaker version called WT-GPE. wT-
GPE no longer achieves the consistency property and has a
weak consistency property instead, defined as follows.

o Weak consistency. If an honest replica tgpe-decides (B, g,)
with grade g > 1 and another honest replica zgpe-decides
(B',*,%), B=B'.

The weak consistency property of VT-GPE achieves con-
sistency only if an honest replica tgpe-decides a block with
a grade of at least 1. Via this change, we do not need
the (WINNERI) and (WINNER2) messages in our WT-GPE
construction. Accordingly, each replica tgpe-decides a block
B with grade 0 when it receives valid E(B) at ¢ > 3A. If
there are multiple such blocks, choose the one corresponding
to the highest VRF. Meanwhile, each replica tgpe-decides a
block B with grade 1 or 2 after it receives valid R(B) or
L(B) at time ¢ > 2A.

Algorithm 3 Validated Triple-graded Proposal Election with
Weak Consistency for view v - wT-GPE,,.

1: Replica p; executes the following algorithm at every time ¢ > 0
after starting WT-GPE, in view v, and tgpe-proposes (B;, ;)
such that a global predicate Q(Bj;, 0;) holds.

2: p; maintains these parameters for each received block B:

3: E(B) < all received (ECHO, B), messages

4: R(B) <« all received (READY, B)_ messages

5: L(B) < all received (LOCK, B), messages

6: if ¢ = 0 then

7: (pi, 7T7;) < VRFZ(’U)

8: broadcast (INPUT, B;, 04, pi, Ti),;

9: if t = A then

10 if there exists a winning input (INPUT, Bj, 0;, pj, ;) then
11: forward the winning input (if not yet)

12: if Q(B;,0;) holds then

13: broadcast (ECHO, Bj),

14: else

15: forward the equivocating INPUT messages by any replica
16: if ¢ = 2A then

17: update local winning input from received INPUT messages
18: if (INPUT); # L then //Let (INPUT) be the winning input
19: forward (INPUT) (if not yet)

20: if |[E(B;)| > f + 1 then
21: broadcast £(B;) and (READY, B;),

22: if 2A <t < 3A then
23: if |R(B)| > f + 1 for any block B then
24: broadcast R(B) and (LOCK, B), (if not yet)

25: if t > 2A then
26: if |[L(B)| > f + 1 for any block B then

27: tgpe-decide (B,2,L(B))

28: if |R(B)| > f + 1 for any block B then

29: tgpe-decide (B,1, R(B))

30: if ¢ > 3A then

31: for each (INPUT, B;,0;,p;,m;); do // from inputs with
higher p;

32: if |E(Bj)| > f+1 then

33: tgpe-decide (B;,0, E(B;))

34: break

35: if no block is tgpe-decided then

36: tgpe-decide |

Although we do not need the (WINNER1) and (WINNER2)
messages, our WI-GPE protocol still employs the double
confirmation mechanism to make prepare@C consistent with
locked@C' in each view. This is achieved by additionally
modifying the predicate (. In particular, upon receiving a valid
prepare@QC ge with view(ge) = view(lock), each replica
additionally checks whether the block of the prepare@QC' is
the same as its lock. In this way, only the prepare@C that
matches the locked)C will be verified by each honest replica.

We present the pseudocode of the WT-GPE in Algorithm
and the pseudocode of our pipelined Koala-1 protocol (with
the fast path) in Algorithm []

D. Analysis

Why h,-enabled quorum? The double confirmation mech-
anism we use ensures that a certificate with h, matching
messages is transferrable. In our VT-GPE construction, we

Algorithm 4 The pipelined ABC protocol. Code for p;.

1: Initialize the following parameters

2: v < 1; candidate < Bo; lock < By; prepareQC <
L; lockedQC <+ 1; commitQC <« 1. // lockedQ)C' and
commit@QC' are used in the recovery protocol

: Let @ be the following predicate for WT-GPE:

Given (B, qc) tgpe-proposed by pj,

Q(B, qc) = (view(B) = v) and (gc is a valid prepareQC)

and (B.parent = gc.block) and

(view(gqc) > view(lock) or ge.block = lock)

® XLk w

: In each view v, replica p; executes the following algorithm at
every time 0 < ¢t < 3A w.r.t. view v, and then enter view v + 1.
9: if ¢ = 0 then

10: B < (vals, H(candidate), v),

11: tgpe-propose (B, prepare@QC') in WT-GPE,, with predicate @

12: // The following events may be triggered after view v

13: upon p; tgpe-decides (B,0, E(B)) in wT-GPE, do

14: if view(B) > view(candidate) then

15: candidate < B, prepareQC < E(B)

16: upon p; tgpe-decides (B, 1, R(B)) in wI-GPE, do

17: if view(B) > view(lock) then

18: lock <— B, lockedQC < R(B)

19: upon p; tgpe-decides (B,2, L(B)) in wT-GPE, do

20: if B has not been a-delivered then

21: a-deliver B and all ancestors of B, commitQC < L(B)

use the double confirmation scheme for both grade 0 and grade
1. To tgpe-decide block B with grade 0, a replica needs to
collect f + 1 matching (ECHO) messages and f + 1 matching
(WINNER1) messages for B. Meanwhile, to tgpe-decide B with
grade 1, a replica needs to collect f + 1 matching (READY)
messages and f + 1 matching (WINNER2) messages for B.

In our protocol, we can distinguish the two scenarios for py
in Figure[I] Namely, we introduce one change on top of the toy
construction: each replica additionally broadcasts a (WINNER1)
message at t = 2A for the block from the leader. In scenario 1
(Figure[Ta), p; and p3 do not detect any equivocation, so they
send (WINNER1) messages for block Bs at t = 2A. When py
wakes up after 3A, it receives the (WINNER1) messages due to
the message delivery assumption. Therefore, p4 can now gpe-
decide Bo with grade 0 according to the double confirmation
mechanism. Now consider scenario 2 (Figure [Ib), p; and p3
detect the equivocation after receiving both By and Bj, so
none of them sends a (WINNER1) message. As ps has not
received (WINNERI), it does not gpe-decide By. We show
the proof of Koala-1 in Appendix [A] and the correctness of
pipelined Koala-1 (with the fast path) in our full paper [39].

Latency and complexity. In the fast path, the latency of our
ABC protocol is 2A + 26. Specifically, replicas need to wait
for A time in the first two communication rounds of each
WT-GPE instance. In the last two rounds, each replica can
proceed to the next round after collecting a sufficient number
of messages. Meanwhile, the expected latency is 5A +26, as a
block is expected to be a-delivered every two views and each
replica enters the next view as early as 3A time has elapsed.

Also, Koala-1 achieves O(kn3 + Ln?) communication, where
k is the security parameter and L is the size of a block.

IV. PARTIALLY SYNCHRONOUS PROTOCOL WITH STABLE
STORAGE

In this section, we focus on the partially synchronous model
assuming the existence of stable storage. As mentioned in the
introduction, a sub-protocol in Ebb-and-Flow briefly mentions
that by assuming GAT, one can use a conventional BFT [5]],
[7], [32] to obtain a protocol that tolerates sleepy replicas in
the partially synchronous model. Namely, conventional BFT
protocols are safe in the presence of sleepy replicas and live
after both GAT and GST.

We show that the above statement can be achieved only if
stable storage is assumed and intermediate consensus param-
eters are stored in stable storage. To date, most BFT protocols
known so far do not explicitly discuss what should be stored
in stable storage as it is usually out of the scope of the
consensus problem. We show that without explicitly storing
the intermediate parameters, conventional BFT may not be
safe and live in the presence of sleepy replicas while retaining
the n > 3f + 1 assumption, even assuming both GST and
GAT. Intuitively, this is because if an honest replica does not
persist its intermediate status during the protocol, its status
might not be resumed after it sleeps and later becomes awake.
Even if the replica synchronizes with all honest replicas after
it becomes awake, the protocol may still not be correct.

In particular, we prove the following impossibility result
and we show the proof in Appendix [C|

Theorem 1. In the partially synchronous model, any BFT
protocol cannot handle sleepy replicas under the n > 3f 4+ 1
assumption without the stable storage, where f is the number
of byzantine replicas and n is the total number of replicas.

In this section, we use HotStuff as a case study and show
an attack on safety without assuming stable storage. Due to
the space limitation, we provide an overview of HotStuff
in our full paper [39]. We show that while one can simply
make conventional BFT tolerate sleepy replicas by asking each
replica to store all intermediate parameters in stable storage,
we offer a much cheaper approach where only two parameters
need to be stored. As stable storage is expensive [22], [28],
[29], our approach can then complement BFT in production
systems in terms of supporting sleepy replicas.

A. A Case Study of HotStuff

We present a case study of HotStuff in Figure [3] with
four replicas among which py is faulty. We show that if
no stable storage is assumed, safety can be violated. In the
period of asynchrony, we consider that an adversary (i.e.,
a network scheduler) manipulates the network, the same as
the assumption made by asynchronous protocols [1], [2], [6].
Note that in a partially synchronous network, we can assume
the existence of a network scheduler during the asynchronous
period. However, the network becomes synchronous after GST.
Additionally, the adversary controls the replicas that may

1Bn | 1Bn | |:| prepareQC
(leader) P [] precommitQC
P2 3 3 ElockedQC
p3 3 [] commitQc
Ps ‘ i ldelivered
viewv — 1 -

(a) The status of replicas in view v — 1.
|:| prepareQC
|:| precommitQC

[&lockedqc

commitQC

.....

viewv — 1 ! view v

(b) ps3 goes to sleep near the end of view v — 1 and becomes
awake at the beginning of view v. It loses its lockedQC' and
sets its locked@QC as the genesis block By.

[] prepare vote
] prepareQC
[] precommitQC
[] commitQC

Safety violation

(leader)| p,
3 P3
| Pa

| oview v

(c) The faulty leader p» creates a fork that extends Bj,_1 in view v
and is able to collect a QC with votes from p2, ps3, and p4. Safety

is violated as p; delivers By, and ps and p4 deliver B,’L.

Fig. 3: A case study of HotStuff. In particular, with no stable
storage (no intermediate consensus parameters are stored in
stable storage), HotStuff does not achieve safety in the pres-
ence of sleepy replicas.

become asleep. In this case, the asleep replicas are still honest
but just cannot process any messages when they sleep. Under
these assumptions, the attack proceeds as follows.

In view v — 1, as shown in Figure @ p1 is the leader and it
proposes block By,. After p; collects a commitQC, it delivers
block Bj and replicas p1, p2, and p3 become locked on Bj,.
Here, the network scheduler delays the messages received by
p4. Therefore, although p,4 is honest, it has not received any
messages for By,. After that, ps becomes asleep.

As shown in Figure [3b] replicas then enter view v and po
becomes the leader. p3 becomes awake in view v. As p3 does
not have stable storage, it loses its locked@QC. As a result,
locked@C' is set as the genesis block By. In view v, the leader
po is faulty and proposes a new block By that extends Bj_1
(the parent block of B _1 is By). As B;L is conflicting with
B, p1 considers the proposal B, invalid and will not vote for
Bj,. However, po, p3, and py can vote for By, as po is faulty
and the lockedQC of ps and p, is not conflicting with Bj,.

Finally, as illustrated in Figure [3c| replica p; delivers block
B, and replicas p3 and p4 deliver block Bj, where B}, and B},
are conflicting, violating the safety property of the protocol.

Remark 1. We assume that the adversary manipulates the
network and the replicas that go to sleep. In practice, even if
the adversary does not manipulate the network and the replicas
that go to sleep, the scenarios may still happen, e.g., during
network asynchrony or server crash.

Remark 2. Although we present a concrete example using
HotStuff, almost all partially synchronous BFT protocols use
a variant of commit-lock-prepare paradigm [5], [32]], [35].
Our attack is thus generic to almost all (if not all) partially
synchronous BFT. Since we already provide a formal proof
of the impossibility result, we omit the generalization of the
attack in our paper.

B. HotStuff-mSS: A Fully-Fledged Protocol under the Stable
Storage Assumption

Based on the discussion above, a natural solution to build
a protocol under the n > 3f + 1 assumption is storing all
intermediate consensus parameters in stable storage. However,
the system performance might also be degraded significantly.
Therefore, an interesting research question to answer is:

Under the n > 3f+1 and stable storage assumption, can we
transform a conventional BFT protocol to one that tolerates
sleepy replicas and stores minimum intermediate consensus
parameters in stable storage?

We use HotStuff as an example and show that the minimum
requirement for stable storage is the view number and the
locked@QQC. We use HotStuff-mSS to denote this protocol.
Namely, if the current view number is lost when an honest
replica falls asleep, the replica can only catch up with other
replicas to learn the latest view number after waking up. It is
possible that the replica re-enters the same view before it fell
asleep. In this case, the replica might vote for a conflicting
block with the one it has voted for (before falling asleep).
Thus, two conflicting gc could be generated in the same view,
violating the safety property. To ensure safety within a view,
the highest view v when a replica has cast a vote should be
stored in stable storage.

Meanwhile, the attack described in Figure [3| shows that
safety across views might be violated if a replica loses its
locked@C'. We show that storing locked@C' in stable storage
is sufficient to ensure safety across views. In particular, if a
block B is delivered, a quorum of replicas becomes locked on
B. To deliver a block B’ conflicting with B, at least one honest
replica of the quorum must have voted for B’. Since the honest
replica already sets its locked@QC as B, it will never vote for
a block conflicting with B. Consider the example mentioned
in Figure [3| ps stores its locked@C for block By, in stable
storage before it goes asleep. When ps becomes awake at the
beginning of view v, it restores locked@QC for By from its
stable storage. In view v, leader po proposes a new block B;l
that extends Bj_1 (By’s parent block). As B;L is conflicting
with By, replica p; and p3 do not consider the proposal By
valid and will not vote for B . Thus, only p, and p4 can vote
for B},. prepare@QC, precommitQC or commitQC cannot be
formed for Bj,, so no honest replicas will deliver block Bj,.

V. KOALA-2: PARTIALLY SYNCHRONOUS PROTOCOL
WITHOUT STABLE STORAGE

We study partially synchronous protocols that tolerate
sleepy replicas without the stable storage assumption. We
require n > 3f + 2s + 1 if GAT is not assumed, and
n > 3f+ s+ 1 if GAT is assumed. We discuss below that the
bounds are tight.

When GAT is not assumed, n > 3 f+2s+1 and a Byzantine
quorum of (%} is sufficient. This is because every two
Byzantine quorums have at least one overlapped honest and
awake replica. Also, the number of awake replicas must be
equal to or greater than the quorum size, i.e., n — f —s >
[#] Meanwhile, if GAT is assumed, the bound can be
lowered to n > 3f + s + 1. This is mainly because under
the GAT assumption, there exists some point after which all
honest replicas are awake. Let 5, be the quorum size and
B2 be the number of messages a recovering replica needs to
receive. The upper bounds of ; and (5 are: §; < n — f and
B2 < n— f—s. To ensure safety, 51 and By should have
at least f + 1 overlapped replicas. In this way, at least one
honest replica is in common. Thus, 1 + 82 —n > f+1, ie.,
n>3f+s+ 1.

Still using HotStuff as an example, we transform the proto-
col into Koala-2, a BFT protocol that tolerates sleepy replicas.
The main workflow remains almost the same as in HotStuff.
We only need to adjust the quorum size of the main protocol
and modify the view change protocol (i.e., leader election) to
incorporate a timeout)QC' mechanism. Besides, we introduce
a new recovery protocol for asleep replicas to catch up after
they recover. An asleep replica first enters the recovering status
and completes the recovery protocol before it becomes awake.

A. Overview of Koala-2

We now present the Koala-2 protocol without the GAT
assumption. Given the bound on n, f, and s, we only need to
change the quorum size of HotStuff from n — f ton — f — s.
The main technical challenge we solve is to ensure that any
honest replica that recovers will vote for the correct block(s).
This is not easy, as asleep replicas may become awake at any
time. Without stable storage, we need to ensure all recovered
replicas maintain the latest state so safety is not violated.

We provide a modified view change protocol and a recovery
protocol to achieve the goal above. The technical building
blocks include a timeout@QC mechanism and an atomic QC
acquiring mechanism. The timeout@C mechanism ensures
that a recovering replica obtains at least the state in the view it
fell asleep. Meanwhile, the atomic QC acquiring mechanism
ensures that each recovering replica obtains the highest QC
that is necessary to ensure the safety of the system.

B. The Modified View Change Protocol and the Recovery
Protocol

In this section, we present the modified view change pro-
tocol (Algorithm and our new recovery protocol (Algo-
rithm [6)).

Algorithm 5 Modified view change protocol (for replica p;).

1: Let cv be the current view number.
2: upon the timer of cv expires do
3: broadcast (TIMEOUT, cv),
4: upon receiving f + 1 (TIMEOUT, cv), do
5: stop the timer of cv and broadcast (TIMEOUT, cv),
6: upon receiving n — f — s (TIMEOUT, v'), such that v’ > cv do
7: timeout@QC <+ the set of n — f — s (TIMEOUT, v’),
8: broadcast (ADVANCE-VIEW, v', timeoutQC),
9: send (NEW-VIEW, v'+1, prepareQC'), to leader of view v'+1
10: cv v +1

11: upon receiving a timeoutQC tc of a view v’ > cv do
12: timeoutQC <+ tc

13: broadcast (ADVANCE-VIEW, V', tc),
14: send (NEW-VIEW, v'+1, prepareQC'), to leader of view v'+1
15: cv v +1

The modified view change protocol. The modified view
change protocol is triggered when a timeout occurs during
the normal case operation. When a replica p; experiences a
timeout in a view v, it stops the normal case operation and
broadcasts a (TIMEOUT, v); message. A collection of n— f —s
matching (TIMEOUT) messages from different replicas forms a
timeout@C'. After receiving a timeout@QC' of view v, p; enters
view v+ 1. To expedite the view change process, p; broadcasts
the (TIMEOUT,v), message once receiving f + 1 (TIMEOUT)
messages of view v. When p; receives the timeoutQC' of view
v, it forwards the timeout@QC' to all replicas.

The recovery protocol. The protocol proceeds as follows:

e Obtaining timeout@QQC. A recovering replica p; first
sends (RECOVERY-1) to all replicas. Upon receiving the
(RECOVERY-1) message, any awake replica will respond to
p; the latest timeout@QC (via a (ECHO-1) message). Once
receiving n — f — s timeout@QC, p; selects the one with the
highest view number vy,. Then p; waits for a timeoutQC
of a view v > vy, + 2 before entering the next step.

e Atomic QC acquiring mechanism. After receiving a
timeout@C tc for a view v > v, + 2, p; sets its lo-
cal timeoutQC as tc, and sends (RECOVERY-2,tc); to all
replicas. Any awake replica that receives this message will
first start the view change protocol and proceed to view
view(tc) + 1 (if not yet). Then the replica sends to p;
a (ECHO-2, cv, (prepareQC, lockedQC, commitQC')) mes-
sage, where cv is the current view number. Also, the replica
sends to p; all delivered blocks, the block B corresponding
to prepare@C, and all ancestors of B. When p; receives
n — f — s valid (EcHO-2) with view numbers higher than
vp+2, it sets its locked@QC' as the highest locked@)C' among
the messages, sets its prepare@C as the highest prepare QC,
and sets its commitQC as the highest commitQC'. Then,
p; delivers the block corresponding to commitQQC' and
all its ancestors. p; also sets the current view number as
view(timeout@QC') + 1 and wakes up.

Correctness and complexity. We prove the correctness of
Koala-2 in our full paper [39] and sketch the correctness here.
Safety is guaranteed via the timeout@C mechanism and the

Algorithm 6 Recovery protocol for HotStuff (for replica p;).

1: Let cv be the current view number, pqc be the prepareQC, lqc
be the lockedQC, and cqc be the commitQC'.

2: as a recovering replica
broadcast a (RECOVERY-1), message
wait for n — f — s (ECHO-1, timeoutQC'),
vp, — the view number of the highest timeoutQC
among received (ECHO-1) messages
wait for a timeout@QC tc such that view(tc) > vp + 2
timeoutQC' < tc
broadcast (RECOVERY-2, tc),
wait for n — f — s (ECHO-2,v’, (pqc, lqc, cqc)), where:
pqcis a prepareQC, lqcis a lockedQC, cqc is a commitQC,
and v' > vy, + 2
10: locked@QC < the locked@C' with the highest view number
among received (ECHO-2) messages
11: prepare@C < the prepareQC with the highest view number
among received (ECHO-2) messages

nohw

0O X

12: commit@QC <—the commitQ)C with the highest view number
among received (ECHO-2) messages
13: deliver the block corresponding to commitQC

and all its ancestors
14: cv < view(timeoutQC) + 1

15: send (NEW-VIEW, cv, prepare@C), to the leader of cv

16: set status to awake and rejoin the main protocol’s execution
17: as an awake replica

18: upon receiving (RECOVERY-1) . do

19: send (ECHO-1, timeothCii to p;

20: upon receiving (RECOVERY-2, timeoutQC); do

21: if view(timeout@QC) > cv then

22: start view change and enter view(timeoutQC') + 1
23: send (ECHO-2, cv, (pgc, lgc, cqc)), to p;

24: forward to p; all delivered blocks, the block B

corresponding to prepare@C, and all ancestors of B

recovery protocol. Suppose that an honest replica p; fell asleep
in view v. During recovery, p; must obtain a timeout@QC with
a view number of at least v — 2, i.e., if the highest received
timeout@QC' is formed in view vy, vy, > v — 2. According to
the recovery protocol, p; waits for a timeoutQC tc with view
number of at least vy, + 2 and then enter view view(tc) + 1,
i.e., it enters view vy, +3 > v+ 1. Thus, p; will not vote twice
for blocks in the same view, so safety is achieved. Meanwhile,
liveness roughly follows that of HotStuff, as we only modify
the quorum size. The recovery protocol is non-blocking, as
a recovering replica can complete the protocol and obtain a
prepare@C no lower than its locked@C' before it fell asleep.

Koala-2 achieves O(mnz) communication, where s is the
security parameter. The recovery protocol achieves O(xkn +
InL) communication, where L is the size of a block and [is
the length of the longest chain corresponding to a prepareQC.

VI. IMPLEMENTATION AND EVALUATION

We implement Koala-1, MMR [12f], HotStuff [7], and
Koala-2 in Golan Our implementation involves around
8,500 LOC for the protocols and about 1,000 LOC for
evaluation. We use gRPC as the communication library. We

2Part of our codebase can be found at: https://github.com/Spongebob-bea
r/Koala-NDSS-AE or https://doi.org/10.5281/zenodo.16956543

TABLE III: The latencies of Koala-1 and MMR.

Protocol The number of Expected Best-case
rotoco Byzantine replicas latency (ms) latency (ms)

Koala-1 f=10 5019.70 2117.80

f=20 5272.74 2400.75

MMR (i3] f=10 11194.71 4000.00

f=20 13668.65 3999.96

use ECDSA to realize the authenticated channel and use
SHA256 as the underlying hash function. We use LevelDBE]
to implement the stable storage.

We evaluate the performance of our protocols on Amazon
EC2 using up to 91 virtual machines (VMs). We use m5.xlarge
instances for our evaluation. The m5.xlarge instance has four
virtual CPUs and 16GB memory. We evaluate protocols in
both LAN and WAN. Unless otherwise mentioned, we report
the results in the WAN setting, where replicas are evenly
distributed in up to six regions: us-west-2 (Oregon, US),
us-east-2 (Ohio, US), ap-southeast-2 (Sydney, Australia), ap-
northeast-1 (Tokyo, Japan), sa-east-1 (Sao Paulo, Brazil), and
eu-west-1 (Ireland).

We conduct experiments under different network sizes and
batch sizes. We use f to denote the network size. For Koala-1
and MMR, we use n = 2f + 1 replicas in total, assuming that
all replicas remain awake. For HotStuff, we use n = 3f + 1
replicas. For Koala-2, we use n = 3f+2s+1 replicas, and we
vary s to report the performance. We use b to denote the batch
size, where a leader proposes b transactions in each block. The
default transaction size is 250 bytes.

Koala-1 vs. MMR. We evaluate the best-case latency and
expected latency of Koala-1 and MMR for f = 10 and f = 20.
As both protocols assume a synchronous network, we evaluate
them in the LAN setting, where all instances are launched in
the us-west-2 (Oregon, US) region. We set A as one second.
For each experiment, we report the average latency of a-
delivering 200 blocks. As shown in Table the latency of
MMR is consistently higher than that of Koala-1. Specifically,
the best-case latency of Koala-1 is about 56.5% that of MMR
and the expected latency of Koala-1 is about 41.7% that of
MMR. This matches with our theoretical results in Table [

HotStuff under different storage options. We evaluate
three modes to support our result in Sec. all consensus
parameters are stored in stable storage (the default solution to
build sleepy consensus with n = 3f + 1 setting); minimum
parameters are stored (i.e., HotStuff-mSS); no intermediate
parameters are stored (sleepy consensus cannot be achieved
in the n = 3f + 1 setting).

We show the latency vs. throughput for f = 10,20, 30
in Figures [fa and For each f, the performance is
the highest if no consensus parameters are stored in stable
storage and the lowest if all consensus parameters are stored
in stable storage. This is expected as stable storage involves

3https://github.com/syndtr/goleveldb

https://github.com/Spongebob-bear/Koala-NDSS-AE
https://github.com/Spongebob-bear/Koala-NDSS-AE
https://doi.org/10.5281/zenodo.16956543
https://github.com/syndtr/goleveldb

T
Minimum —e— None ‘

T .| s T

\— <~ All = Minimum —— None \

1 T T T -] = -
4 -A- All Minimum —e— None 4 ‘7,‘7 All
3 35 1 3 3t
2 e
> o i 2 9L
2 2 4, g 2
2 4 £ a-
SR ANPR ST CLPREC LI e
O Il Il Il

Latency (Sec)

10
Throughput (ktx/sec)

(a) Latency vs. throughput of different
stable storage optlons for f= 10

Throughput (ktx/sec)

(b) Latency vs. throughput of different
stable storage opnons for f= 20

Il
10
Throughput (ktx/sec)

Il
10 1

(c) Latency vs. throughput of different
stable storage optlons for f= 30

‘ —— Awake replua —— Sleepy repllca ‘

‘ —e— Awake rephca —— Sleepy repllca ‘

‘ —— Awdke rephua —— Sleepy repllca L

81

‘Fdll asgee]
‘h m" WM

|

=

Throughput (ktx/sec)
L=
Throughput (ktx/sec)

[N

\
;‘ |

25 30

La
15
Time (Sec)

20

(d) Throughput of Koala-2 for s = 10.

(e) Throughput of Koala-2 for s = 20.

‘Fal] asleep g 81 ! Fall aaleep H
7 w? - = . 3 -
L H ol i g, i
| H ri | iw | jL | 5 il “" ‘*
I []] £ 2] }']
. * 1 H i “* . “ *A‘ 1 ﬂ_ 1 - 0 “ ‘ - & |
5 15 20 25 30 35 25 30 35
Time (Sec) Tlme (SCL)

(f) Throughput of Koala-2 for s = 30.

Fig. 4: The performance of HotStuff under different storage options (Sec. and the performance of Koala-2 (Sec. with

different numbers of sleeping replicas.

hard disk I/O. In contrast, the performance of HotStuff-mSS is
already very close to that of storing no consensus parameters
in stable storage, especially when f is large. When f = 30,
the peak throughput of HotStuff-mSS is 44.3% higher than
that of storing all consensus parameters and 20.4% lower than
that of storing no consensus parameters.

Performance of Koala-2. We show the throughput of Koala-
2 for s = 10,20, 30 in Figures [e] and [respectively.
View change is started every 5 seconds. We make s replicas
fall asleep in the middle of the experiment and immediately
start the recovery procedure afterward.

Our results show that our recovery procedure introduces
short-lived throughput fluctuation. When the recovery proce-
dure begins, the throughput of an awake replica degrades to
at most 53.4% of the average throughput. This is because
replicas need to synchronize their latest timeoutQ)C with the
recovering replicas. However, the degradation only lasts for
a short period as our recovery procedure only involves four
communication steps. Moreover, the throughput fluctuation
does not become more obvious as s grows. This result shows
that our recovery mechanism is efficient.

We also show the latency of the recovery protocol in
Figures and [Af] The recovery time is 9.25s for s = 10,
9.89s for s = 20, and 10.38s for s = 30. This is expected
since the recovery protocol requires a recovering replica to
wait for two subsequent view changes.

Koala-2 vs. HotStuff without stable storage. We assess the
throughput of Koala-2 and HotStuff without stable storage and
show the results in Figure 5] We focus on the failure-free
case, since HotStuff without stable storage is not safe or live
in other cases. We fix f = 10 and vary the number of sleepy
replicas s. For HotStuff, the total number of replicas is fixed at
n = 3f 4+ 1 = 31. For Koala-2, the number of replicas is n =

12

4 lmms=0 . ,
s =10 3.31
=s =20

ol =8 =30]

Throughput (ktx/sec)

I

Koala-2

0 :
HotStuff

Fig. 5: The performance comparison between Koala-2 and
HotStuff without stable storage.

3f+42s+1. Our results show that when s = 0, the throughput
of both protocols is nearly identical. As s increases, Koala-
2’s throughput decreases. This is because Koala-2 requires a
larger number of replicas when s increases, leading to a higher
communication overhead.

Demo of double spending attack. Our attack in Sec. [[V-A]
can be adapted into a double-spending attack against decen-
tralized payment systems that use partially synchronous BFT
consensus. We implement a demo of a decentralized payment
system to simulate the double-spending attack. We configure
the consensus layer using three different protocols: HotStuff
without stable storage, HotStuff with minimum consensus
parameters stored (i.e., HotStuff-mSS), and Koala-2.

We use four replicas when running HotStuff and six replicas
when running Koala-2. In both cases, replica 0 is designated as
the leader of view 0 and is Byzantine. Also, an honest replica
falls asleep upon receiving the fifth block and wakes up after a
few seconds. When running HotStuff without stable storage, as
shown in Figure[6] the sleepy replica delivers a new block after
waking up, and the block consists of a transaction that causes
double spending. This validates the result in Sec. When
running HotStuff-mSS and Koala-2, as shown in Figure [/| and

,"Timestamp":1753427064678} 1}

15:04:24 {"View":@, "Height":2,"TXS": [{"ID":@, "TX":{"From":"", “To":"@", "Value"
50}, "Timestamp":1753427064750}, {"ID":100, "TX" : {"From": "1","To": "2", "Value": 40}
,"Timestamp":1753427064699} 1} The delivered history

15:04:24 {"View":0, "Height":0,"TXS":[{"ID":0,"TX":{"From":"", "To":"@", "Value": 15:01:02 {"View":0,"Height":@,"TXS":[{"ID":0,"TX":{"From":"","To":"@", "Value":
50}, "Timestamp":0}1} 50}, "Timestamp":0}1}

15:04:24 {"View":0,"Height":1,"TXS":[{"ID":0," 15:01:02 {"View":0,"Height":1,"TXS":[{"ID":0,"TX":{"From 0", "Value":
50}, "Timestamp" :1753427064703},{"ID":100, "TX 50}, "Timestamp":1753426862075},{"ID":100, "TX" :{"From":"@","To":"1", "Value":40}

,"Timestamp":1753426862025} 1}
15:01:02 {"View":@, "Height":2,"TXS":[{"ID":@,"TX":{"From":"", "To":"@", "Value":
50}, "Timestamp":1753426862112},{"ID":100, "TX":{"From":"1", "To":"2", "Value" : 40}
,"Timestamp" :1753426862055} 1}

15:04:24 Falling asleep 1n sequence 5...

15:04:24 sleepTime: 3000 ms before falling asleep
15:04:27 Wake up...

15:04:27 Start the recovery pro(l:(ess. The delivered history
15:04:27 recover to READY \Wake u A

15:04:30 [!1!1!1] Ready_to output_a vafﬂe for height 1 afterfalhng aSIeep
15:04:30 {"View":0,"Height":0,"TXS":[{"ID":0,"TX":{"From":"","To":"@", "Value":
50}, "Timestamp":0}1}

15:04:30 {"View":0,"Height":1,"TXS":[{"ID":0,"
50}, "Timestamp" :1753427069891}, {"ID":100, "TX
,"Timestamp" :1753427069735} 1}

Fig. 6: The double-spending attack to HotStuff without stable
storage. Before sleep, an honest replica delivers a block at
height 1, containing a transaction where replica O transfers
40 tokens to replica 1. After the replica falls asleep and later
wakes up, it delivers a new block at height 1, containing a
transaction where replica O transfers 40 tokens to replica 2. In
this way, a double-spending attack is performed successfully.

15:00:12 {"View":0, "Height":0,"TXS":[{"ID":0,"TX":{"From":"", "To":"@", "Value":
50}, "Timestamp":0}1}
15:00:12 {"view":@,"Height":1,"TXS":[{"ID":0,"TX":{"From":"", "To":"@", "Value":

50}, "Timestamp":1753426812036},{"ID":100, "TX":{"From":"@","To":"1", "Value":40}
,"Timestamp":1753426811990}1}

15:00:12 {"view":@,"Height":2,"TXS":[{"ID":0,"TX":{"From":"", "To":"@", "Value":
50}, "Timestamp":1753426812066},{"ID":100, "TX":{"From":"1","To":"2", "Value":40}
,"Timestamp":1753426812009} 1}

15:00:12 Falling asleep 1n sequence 5...
15:00:12 sleepTime: 3000 ms

15:00:15 Wake up...

15:00:15 Start the recovery process.
15:00:15 recover to the view 1 \Wake up
15:00:15 Starting view change to view 1
15:00:15 hostuff start view change to view 1
15:00:15 sending a vc message...

15:00:22 hotstuff handler rotating timer expires in view @

15:00:22 processing block sequence 6, 6786 ms The delivered history
15:00:22 processing block sequence 7, 6836 ms .

15:00:22 [!!!] Ready_to output a value for height 3 afterfaulng aSIeeP
15:00:22 {"view":@,"Height":0,"TXS":[{"ID":0@, "TX":{"From":"", "To":"@", "Value":
50}, "Timestamp":0}1}

15:00:22 {"view":@,"Height":1,"TXS":[{"ID":0@, "TX":{"From":"", "To":"@", "Value":
50}, "Timestamp":1753426812036}, {"ID":100, "TX":{"From":"@","To":"1", "Value":40}
,"Timestamp":1753426811990}1}
15:00:22 {"View":0,"Height":2,"TXS":[{"ID":0,"TX":{"From]
50}, "Timestamp":1753426812066},{"1D":100, "TX":{"From":"1" "To":

Fig. 7: HotStuff-mSS defends against the double-spending
attack. When the sleepy replica recovers, it restores its
locked@C' and view number from stable storage. After waking
up, it delivers blocks that extend the block before it falls
asleep. Thus, the double-spending attack fails.

The delivered history
before falling asleep

wengn wyalue":
", "Value":40}

Figure [8] no double spending is caused. This is expected by
our analysis in Sec. [[V-B]and Sec. [V]

VII. ADDITIONAL RELATED WORK

Synchronous BFT and sleepy consensus. Under the un-
known participation model, sleepy consensus can only be
achieved in a synchronous network [9]]. Many recent sleepy
consensus focus on lowering the latency [10], [12]]. A recent
work by D’Amato et al. [13|] achieves lower latency than
MMR, but a new stable participation assumption is introduced.
Goldfish [40] achieves 4A latency under a high participation
level (i.e., hq/n is high), but exhibits much longer latency
than MR in the worst case.

There are some variants of sleepy consensus. Gafni and
Losa [[11] studied Byzantine agreement in the sleepy model

15:01:02 Falling asleep 1n sequence 5...
15:01:02 sleepTime: 4000 ms

15:01:06 Wake up...

15:01:06 Start the recovery process.
15:01:06 receive a ECHO1 msg from replica @
15:01:06 The TQC is for view -1.

The delivered history
before falling asleep

(a) When the sleepy replica recovers, it collects the latest timeoutQC

from awake replicas and enters view view(timeout@QC) + 3.
15:01:22 receive a ECHO2 msg from replica 4
15:01:22 receive a ECHO2 msg from replica @
15:01:22 recover to READY \Wake up
15:01:22 [!!!] Ready_to output a value for

The delivered history
height 198 after falling asleep

15:01:22 {"View":0, "Height":@, "TXS":[{"ID":0, "TX":{"From": ", "To":"@", "Value"
50}, "Timestamp":0}1}
15:01:22 {"View":@,"Height":1,"TXS":[{"ID":@,"TX":{"From":"", "To":"@", "Value":

50}, "Timestamp" :1753426862075},{"ID":100, "TX": {"From":"@","To":"1", "Value" :40}
,"Timestamp":1753426862025} 1}
15:01:22 {"View":@,"Height":2,"TXS":[{"ID":0,"TX":{"From":"","To":"@", "Value":
50}, "Timestamp" :1753426862112},{"ID":100, "TX":{"From":"1", "To":"2", "Value" :40}
L"Timestamp":1753426862055} 1}

(b) During recovery, the replica collects the latest locked@QC' from
awake replicas. After waking up, it delivers blocks that extend the
block before it falls asleep. The double-spending attack fails.

Fig. 8: Koala-2 defends against the double-spending attack.

that achieves constant latency. A recent work by D’Amato,
Losa, and Zanolini [41] studies asynchrony resilience for syn-
chronous sleepy consensus. The idea is to make a synchronous
protocol safe and live under intermittent asynchronous periods.

Our protocols can be viewed as BFT that also tolerates
sleepy replicas. Different from sleepy consensus, we assume a
known h,. The assumptions we made about the known h, are
stronger than sleepy consensus. Namely, sleepy consensus only
assumes that at each point, over half of the awake replicas are
honest, but the number of awake honest replicas is unknown.
Our requirement on h, might require a larger number of
awake honest replicas compared to sleepy consensus. Although
our assumptions are stronger, they are realistic and useful
in practice. Indeed, in most industrial systems, most replicas
are awake. For instance, the participation rate of Ethereum is
99.8%E| out of over a million replicas.

Variants of consensus in the unknown participation
model. There are some variants of consensus where n is
unknown [42]-[44]. In these works, each replica is not directly
connected to all replicas in the system when the system starts.
These works do not handle sleepy replicas.

Dynamic BFT. Dyno [34] studies dynamic BFT in the
partially synchronous model, where replicas may join and
leave the system. Khanchandani and Wattenhofer [45] study
Byzantine agreement when both n and f are unknown and
replicas can join and leave the system. MITOSIS [46] provides
a dynamic sharding approach. This line of work assumes that
honest replicas that still participate in the system are always
awake. In contrast, we assume sleepy replicas where honest
replicas in the system may go asleep.

4Data source (accessed in Jul 2025): https://www.rated.network/

13

Sleepy replicas vs. crash-recovery model. Before MR, all
sleepy consensus protocols assumed message delivery, as
defined in Sec. MR pointed out that such an assumption
might be strong. As a solution to remove the assumption, a
recovery protocol is proposed for replicas that fall asleep to
catch up with awake replicas. Accordingly, all sleepy con-
sensus protocols known so far without the message delivery
assumption can be considered protocols that tolerate both
Byzantine failures and crash-recovery failures [10], [12], [13]].

Consensus in the mixed failure model. Several work study
protocols with both Byzantine failures and crash failures [[18]]—
[21]. In the partially synchronous network, UpRight [20]
implements a BFT protocol assuming n > 3f + 2¢+ 1, where
c is the number of crash failures. Scrooge [18] presents a
fast Byzantine agreement protocol that requires n > 4f + 2c.
SBFT [19] provides a BFT-SMR protocol assuming n >
3f +2c+ 1. In the synchronous network, a recent work [21]]
proves a lower bound of n > 2f 4 ¢ + 1. In contrast, our
model considers both Byzantine failures and sleepy replicas.
As replicas may lose their state after they become asleep,
the model we consider is more challenging compared to prior
works. The bound we show in the partially synchronous model
without GAT is n > 3f + 2s + 1, which resembles that with
Byzantine and crash failures.

Diskless crash recovery. Consensus in the crash-recovery
model has been studied for crash fault-tolerant protocols [47]—
[49]. Most protocols rely on the stable storage assumption.
Protocols without the stable storage assumption are also
known as protocols in the diskless crash recovery (DCR)
model [S0]. Aguilera, Chen, and Toueg [51]] discuss under
what conditions stable storage is necessary. Michael, Ports,
Sharma, and Szekeres [50] provide a generic approach that
transforms protocols in the crash-recovery model (with stable
storage) to the DCR model. All these works consider benign
crash failures. In contrast, our Koala-2 protocol can be con-
sidered as the first BFT protocol in the DCR model.

VIII. CONCLUSION

We study consensus with Byzantine failures and sleepy
replicas in the known participation model, where all awake
replicas are aware of the minimum number of awake honest
replicas. Such a model has practical implications for systems
where honest parties might crash and later recover. We provide
three results in both synchronous and partially synchronous
networks.

ACKNOWLEDGMENT

This study was supported by the National Key R&D Pro-
gram of China (No.2023YFB2703600), the National Natu-
ral Science Foundation of China (No. 62302266, 62232010,
U23A20302, U24A20244), the Shandong Science Fund for
Excellent Young Scholars (No.2023HWYQ-008), and the
project ZR2022ZD02 supported by Shandong Provincial Nat-
ural Science Foundation. This study was also supported in part
by the National Natural Science Foundation of China under
92267203, Beijing Natural Science Foundation under M23015.

14

ETHICS CONSIDERATIONS

This research is committed to the principles of research
ethics. In particular, we adhere to the following principles:
e Respect for persons: No personal data was used in our
research. The transaction data in the demo of the double-
spending attack was fabricated, solely to demonstrate the
double-spending attack.
Beneficence: Our research offers a fine-grained treatment of
consensus that tolerates both Byzantine failures and sleepy
replicas, which can improve existing blockchain systems and
potentially mitigate the risk of economic loss for investors.
Justice: The security of our protocols has been proven.
Therefore, all developers who implement our protocols
in their blockchain systems can safeguard their systems
against sleepy replicas, ensuring that every user’s benefits
are equally protected as long as the protocol is followed.
Respect for law and public interest: We ensure that our
research complies with all relevant laws and regulations.
Our methods and results are transparent, with no aspects
concealed that might violate existing laws.

REFERENCES
[1]
2]
3

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in CCS, 2016, pp. 31-42.

S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous bft made
practical,” in CCS, 2018, pp. 2028-2041.

H. Zhang, S. Duan, B. Zhao, and L. Zhu, “WaterBear: Practical asyn-
chronous BFT matching security guarantees of partially synchronous
BFT,” in USENIX Security, 2023, pp. 5341-5357.

H. Zhang, C. Liu, and S. Duan, “How to achieve adaptive security for
asynchronous bft?” JPDC, vol. 169, pp. 252-268, 2022.

M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI,
1999, pp. 173-186.

S. Duan, X. Wang, and H. Zhang, “Practical signature-free asynchronous
common subset in constant time,” in CCS, 2023, pp. 815-829.

M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in PODC,
2019, pp. 347-356.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
R. Pass and E. Shi, “The sleepy model of consensus,” in ASTACRYPT,
2017, pp. 380-409.

A. Momose and L. Ren, “Constant latency in sleepy consensus,” in CCS,
2022, pp. 2295-2308.

G. Losa and E. Gafni, “Consensus in the unknown-participation
message-adversary model,” arXiv preprint arXiv:2301.04817, 2023.

D. Malkhi, A. Momose, and L. Ren, “Towards practical sleepy bft,” in
CCS, 2023, pp. 490-503.

F. D’Amato, R. Saltini, T.-H. Tran, and L. Zanolini, “Tob-svd: Total-
order broadcast with single-vote decisions in the sleepy model,” arXiv
preprint arXiv:2310.11331, 2024.

C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas, “Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availabil-
ity,” in CCS, 2018, pp. 913-930.

C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas,
“Ouroboros chronos: Permissionless clock synchronization via proof-
of-stake,” Cryptology ePrint Archive, 2019.

E. Budish, A. Lewis-Pye, and T. Roughgarden, “The economic limits
of permissionless consensus,” in EC, 2024, pp. 704-731.

J. Neu, E. N. Tas, and D. Tse, “Ebb-and-flow protocols: A resolution
of the availability-finality dilemma,” in SP, 2021, pp. 446-465.

M. Serafini, P. Bokor, D. Dobre, M. Majuntke, and N. Suri, “Scrooge:
Reducing the costs of fast byzantine replication in presence of unre-
sponsive replicas,” in DSN, 2010, pp. 353-362.

G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D.-A. Seredinschi, O. Tamir, and A. Tomescu, “Sbft: A scalable and
decentralized trust infrastructure,” in DSN, 2019, pp. 568-580.

=

[4

[l

[5

[ty

[6

=

[7]
[8]
[9]
[10]
(11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]
(27
[28]

[29]

(30]

(31]
(32]
[33]
[34]
[35]
[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

(48]

A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche, “Upright cluster services,” in SOSP, 2009, pp. 277-290.

I. Abraham, D. Dolev, A. Kagan, and G. Stern, “Authenticated consensus
in synchronous systems with mixed faults,” Cryptology ePrint Archive,
2022.

C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and
Secure Distributed Programming. Springer Science & Business Media,
2011.

G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, 2014.

M. Zhang, R. Li, and S. Duan, “Max attestation matters: Making honest
parties lose their incentives in ethereum pos,” in USENIX Security, 2024.
Diem Association, “The diem blockchain,” 2020, available at: https://de
velopers.diem.com/docs/technical-papers/the-diem-blockchain-paper/.
Accessed in 9-2024.

E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on bft
consensus,” arXiv preprint arXiv:1807.04938, 2019.

Diem Association, “Diem BFT project page,” 2020, available at: https:
//github.com/diem/diem. Accessed in 9-2024.

M. Davis and H. Vandierendonck, “Achieving scalable consensus by
being less writey,” in HPDC, 2021, pp. 257-258.

A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia, “On the
efficiency of durable state machine replication,” in USENIX ATC, 2013,
pp- 169-180.

I. Abraham, K. Nayak, L. Ren, and Z. Xiang, “Byzantine agreement,
broadcast and state machine replication with near-optimal good-case
latency,” arXiv preprint arXiv:2003.13155, 2020.

J. Neu, E. N. Tas, and D. Tse, “The availability-accountability dilemma
and its resolution via accountability gadgets,” in FC, 2022, pp. 541-559.
B. Y. Chan and E. Shi, “Streamlet: Textbook streamlined blockchains,”
in AFT, 2020, p. 1-11.

J. Sousa, E. Alchieri, and A. Bessani, “State machine replication for the
masses with BFT-SMaRt,” in DSN, 2014, pp. 355-362.

S. Duan and H. Zhang, “Foundations of dynamic bft,” in SP, 2022, pp.
1317-1334.

X. Sui, S. Duan, and H. Zhang, “Marlin: Two-phase bft with linearity,”
in DSN, 2022, pp. 54-66.

C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” JACM, vol. 35, no. 2, pp. 288-323, 1988.

I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync hotstuff:
Simple and practical synchronous state machine replication,” in SP,
2020, pp. 106-118.

I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren, “Synchronous
byzantine agreement with expected o (1) rounds, expected communica-
tion, and optimal resilience,” in FC. Springer, 2019, pp. 320-334.

C. Wang, S. Duan, M. Xu, F Li, and X. Cheng, “Consensus in
the known participation model with byzantine failures and sleepy
replicas,” Cryptology ePrint Archive, 2024. [Online]. Available:
https://eprint.iacr.org/2024/137

F. D’Amato, J. Neu, E. N. Tas, and D. Tse, “Goldfish: No more attacks
on ethereum?!” in FC, 2025, p. 3-23.

F. D’Amato, G. Losa, and L. Zanolini, “Asynchrony-resilient sleepy
total-order broadcast protocols,” in PODC, 2024, p. 247-256.

H. Heydari, R. Vassantlal, and A. Bessani, “Knowledge connectivity
requirements for solving bft consensus with unknown participants and
fault threshold,” in ICDCS, 2024, pp. 221-231.

E. A. P. Alchieri, A. Bessani, F. Greve, and J. d. S. Fraga, “Knowl-
edge connectivity requirements for solving byzantine consensus with
unknown participants,” TDSC, vol. 15, no. 2, pp. 246-259, 2018.

E. Alchieri, A. Bessani, J. Silva Fragao, and F. Greve, “Byzantine
consensus with unknown participants,” in OPODIS, 2008.

P. Khanchandani and R. Wattenhofer, “Byzantine agreement with un-
known participants and failures,” in [PDPS. 1EEE, 2021, pp. 952-961.
G. A. Marson, S. Andreina, L. Alluminio, K. Munichev, and G. Karame,
“Mitosis: practically scaling permissioned blockchains,” in ACSAC,
2021, pp. 773-783.

E. Jiménez, J. L. Lopez-Presa, and M. Patifio-Martinez, “Consensus
in anonymous asynchronous systems with crash-recovery and omission
failures,” Computing, vol. 103, no. 12, pp. 2811-2837, 2021.

M. Hurfin, A. Mostefaoui, and M. Raynal, “Consensus in asynchronous
systems where processes can crash and recover,” in SRDS, 1998, pp.
280-286.

15

[49] M. Backes and C. Cachin, “Reliable broadcast in a computational hybrid
model with byzantine faults, crashes, and recoveries,” in DSN, vol. 3,
2003, pp. 37-46.

E. Michael, D. R. Ports, N. K. Sharma, and A. Szekeres, “Recovering
shared objects without stable storage,” in DISC, 2017, pp. 36:1-36:16.
M. K. Aguilera, W. Chen, and S. Toueg, “Failure detection and consen-
sus in the crash-recovery model,” Distributed computing, vol. 13, pp.
99-125, 2000.

[50]

(51]

APPENDIX A
PROOF OF KOALA-1

Proof of our VI-GPE. We begin with the correctness of our
VT-GPE protocol shown in Algorithm [T} We split the graded
delivery property into graded delivery-1 and graded delivery-2
for our proof.

Lemma 1 (External Validity). If an honest replica tgpe-
decides (B, *,) such that B # L, at least one honest replica
has verified B and Q(B, o) holds at it, where o is the proof
of B.

Proof. If an honest replica p; tgpe-decides (B, *, %), p; holds
valid E(B), i.e., p; receives f+ 1 matching (ECHO) messages
for B. At least one of the (ECHO) messages is from an honest
replica. This replica must have verified B before echoing B,
thus Q(B, o) holds. O

Lemma 2 (Consistency). If an honest replica tgpe-decides
(B, *,*) and another honest replica tgpe-decides (B', *, x),
B=PRB.

Proof. Assuming that p; tgpe-decides (B,x,*) and p; tgpe-
decides (B’,x,*) and B # B’. According to Lemma
Q (B, *) holds for at least one honest replica p; and Q(B’,)
holds for at least one honest replica p». In this case, p; must
have sent an (ECHO) message for B at t = A and py must
have sent an (ECHO) message for B’ at t = A. As each honest
replica sends an (ECHO) message for block B only if B is a
winning input, p; must have forwarded B at t = A. Similarly,
p2 has forwarded B’ at t = A. Therefore, every honest replica
must have received (INPUT) messages for both B and B’ by
t = 2A. At most one of these two inputs could be chosen as
the winning input by any honest replica at t = 2A.

Suppose the B is chosen by all honest replicas after ¢ = 2A.
No honest replicas will send (WINNER1) or (READY) messages
for B’ at t = 2A. No honest replicas will send (LOCK)
messages for B’ at ¢ = 3A. Since replicas need to receive
(WINNER1), (READY), or (LOCK) messages from at least one
honest replica to tgpe-decide block B’ with grade 0, 1, and 2,
none of them would tgpe-decide B’, a contradiction. O

Corollary 1. If an honest replica receives a valid E(B) and
W1 (B) for a block B and another honest replica receives a
valid E(B') and W1(B') for a block B’ with view(B)
view(B'), B = DB'.

Proof. Suppose view(B) = view(B’) = v. According to the
protocol, an honest replica p; will tgpe-decide B in VT-GPE,
when it receives a valid E(B) and W7(B) for B. Similarly,
another honest replica p; will rgpe-decide B’ in VT-GPE,

https://developers.diem.com/docs/technical-papers/the-diem-blockchain-paper/
https://developers.diem.com/docs/technical-papers/the-diem-blockchain-paper/
https://github.com/diem/diem
https://github.com/diem/diem
https://eprint.iacr.org/2024/137

when it receives a valid E(B’) and Wy (B’) for B’. Due to
Lemma2} B = B’ O

Lemma 3 (Graded Delivery-1). If an honest replica tgpe-
decides (B,1,%), any honest replica tgpe-decides (B,0,%).

Proof. If an honest replica p; tgpe-decides (B, 1,x), it must
have received at least f + 1 valid (READY) messages for B
and at least one honest replica ps has broadcast the (READY)
message for B at ¢ 2A. Before p, sent the (READY)
message, it must have collected a valid E(B) (e, f + 1
(EcHO) messages) and forwarded E(B). Therefore, at t > 3A,
every honest replica can collect a valid E(B).

Let the proposer of B be p3. Below we prove that all honest
replicas must have observed a winning input for B at time
t = 2A. Firstly, according to the protocol, replica p; must have
received at least f + 1 valid (WINNER2) messages for B when
it tgpe-decides B. In this case, an honest replica must have
observed a winning input for B at ¢t = 3A. Therefore, at t =
2/, no honest replica could observe a VRF evaluation higher
than the VRF evaluation generated by ps. Furthermore, no
equivocation by ps is detected. Meanwhile, all honest replicas
must have received the (iNpuT) for B by ¢ = 2A. This is
because py already has |E(B)| > f+ 1 by t = 2A so at
least one honest replica has previously set the (INPUT) message
for B as its winning input by ¢t = A. As the honest replica
forwards the (INPUT) message, any honest replicas awake at
t = 2A must have considered the (INPUT) message for B as
their winning input and sent (WINNER1) messages for B.

Since at least h, = f + 1 honest replicas are awake at
t = 2/, any honest replicas awake at time ¢ > 4A must have
|[E(B)| > f+1 and |W1(B)| > f + 1 and then rgpe-decide
(B, 0,). O

Lemma 4 (Graded Delivery-2). If an honest replica tgpe-
decides (B,2,x), any honest replica tgpe-decides (B, 1, x).

Proof. If an honest replica p; tgpe-decides (B,2,*), it must
have received at least f + 1 valid (Lock) messages for B and
at least one honest replica p, has sent a (Lock) message for
B at t = 3A. Before py sent the (LOCK) message, it must
have collected a valid R(B) (at least f + 1 matching (READY)
messages) and forwarded R(B). Therefore, at ¢ > 4A, every
honest replica can collect a valid R(B).

Let the proposer of B be p3. Below we prove that all honest
replicas must have observed a winning input for B at time ¢ =
3A. Firstly, when p; tgpe-decides B, it must have observed
a winning input for B at t = 4A. Therefore, at ¢ = 3A, no
honest replica could observe a VRF evaluation higher than
that of p3 or any equivocating messages by ps. Meanwhile,
all honest replicas must have received the (INPUT) message
for B by t = 3A. This is because py has |[R(B)| > f+ 1 at
time ¢ = 3A and at least one honest replica has previously
sent a (READY) message at time ¢ = 2A. The honest replica
must have forwarded the (INPUT) message for B at t = 2A.
As a result, all honest replicas awake at ¢ = 3A must have

16

considered the (INPUT) message for B as their winning input
and sent (WINNER2) messages for B.

Since at least h, = f + 1 honest replicas are awake at t =
3A, any honest replicas awake at any ¢ > 4A have |R(B)| >
f+1and [Wo(B)| > f+1 and then tgpe-decide (B, 1,%). O

Lemma 5 (Validity). With a probability of a > 1/2, all honest
replicas tgpe-decide (B, 2,) where block B is tgpe-proposed
by an honest replica.

Proof. As at least h, = f + 1 honest replicas are awake
at time ¢ = 0 and there are at most f faulty replicas, with
probability « > 1/2, an honest replica’s VRF evaluation will
be the highest among all awake replicas. Let the replica be
p1 and the block py tgpe-proposes be (B, o), where o is the
proof of block B. After p; broadcasts its (INPUT) message, all
honest replicas awake at time ¢ > A will set their winning
input as the (INPUT) message for B.

As pp is an honest replica, Q(B,o) holds at all honest
replicas. It is then not difficult to see that any honest replica
broadcasts a (EcHO) message for B at ¢ = A. Each honest
replica awake at ¢ = 2A observes a valid E(B) such that
|[E(B)| > f + 1 and broadcasts a (WINNER) and a (READY)
message for B. Similarly, all honest replicas awake at t = 3A
observe a valid R(B) such that |R(B)| > f + 1. Therefore,
they broadcast (WINNER2) and (LoCK) messages for B. Finally,
att > 4A, all awake honest replicas will observe a valid L(B)
such that |L(B)| > f + 1 and then tgpe-decide (B,2,%). O

Proof of Koala-1. We now prove the correctness of our ABC
protocol. In this section, we prove the correctness of the
protocol shown in Algorithm [2] (the none-pipelining mode).

Theorem 2 (Safety). If an honest replica a-delivers a block
B before it a-delivers a block Bs, then no honest replica
a-delivers the block By without first a-delivering B;.

Proof. Suppose an honest replica p; a-delivers block Bj
before it a-delivers Bo and another honest replica ps a-delivers
By before it a-delivers B;. W.l.o.g., we assume that p; a-
delivers By after it tgpe-decides (B1,2, %) in VI-GPE,,,. Ad-
ditionally, po a-delivers By after it tgpe-decides (Bs,2,*) in
VT-GPE,,. Obviously, v; # v, as otherwise the consistency
property of VT-GPE is violated. W.Lo.g, let v; < va.

According to Lemma {4} if py tgpe-decides (Bi,2,*) for
block B; in VT-GPE,,, any honest replica p; (including p2)
tgpe-decides (B1,1,) in VI-GPE,, . Furthermore, if p; tgpe-
decides (Bi,1,%) in VI-GPE,,, by Lemma [3] any honest
replica will rgpe-decide (B, 0, qc;) in VI-GPE,, . According
to our protocol, gc¢; is a valid prepareQC with f+ 1 (ECHO)
messages and f + 1 (WINNER1) messages for B;. Therefore,
any honest replica that enters the next view v; + 1 uses gc;
as input. Furthermore, since any honest replica (including ps)
tgpe-decides (Bi,1,x), the replica sets its lock as Bj. The
lock parameter can be set as a block that extends B; unless
the replica becomes unlocked on B;.

Since py tgpe-decides (Ba,2,x) in view vg and is locked
on B in view v; (where v; < v3), there must exist a view

vs such that the following holds: 1) v; < v3 < vg; 2) an
honest replica tgpe-decides a block B3 in VT-GPE,,, and Bj is
conflicting with By; 3) a valid gcg is provided by the proposer
of block Bs and Q(Bs, qc3) is verified by at least one honest
replica (as otherwise the external validity property of VT-GPE
is violated). Here, view(qcs) < vs as gcg is a proof included
in the proposal of block Bs. W.L.o.g., suppose vs is the first
view such that the above holds.

Towards a contradiction, we now show that Bz cannot be
a conflicting block of B;. According to our protocol, gcs is
a prepare@C and consists of f + 1 matching (EcHO) and
f + 1 matching (WINNER1) messages. Any honest replica
pr that verifies Q(Bs, gcs) in view vs must have a lock
(denoted as locky) such that view(locky) < view(qcsy). As
view(locky) > v1, now there are two cases: view(qcs) = v1
and view(ges) > wvi. If view(qes) = w1, geg and geq
must have been formed in VI-GPE,,, where gc, is a valid
prepare@C for By. Both ¢c; and gc; have been received
by any honest replica awake after view v;. According to
Corollary the block for gc; is Bp, a contradiction. If
view(ges) > vy, we have v1 < view(ges) < vy < vg. The
block corresponding to gcs is a conflicting block with B; and
has been verified by at least one honest replica. However, we
already assume that v3 is the first view such that a conflicting
block is proposed, a contradiction.

As Bs cannot be a conflicting block of By, block Bs extends
block B;. However, ps a-delivers B after it a-delivers B, a
contradiction. O

Theorem 3 (Liveness). If an honest replica a-broadcasts a
message m, then all awake honest replicas eventually a-deliver
m.

Proof. We first prove that any block (B, gc) tgpe-proposed
by any honest replica p; in a view v; can be verified by all
honest replicas such that (B, gc) holds. At the beginning
of view vy, By extends the candidate of p; and gqc is
a prepare@QC of candidate. As p; broadcasts an (INPUT)
message for (By, ¢c) in VI-GPE,,, all awake honest replicas
eventually receive the (INPUT) message for B;. According to
the graded delivery-1 property of VT-GPE, in any VT-GPE,
such that v < vy, if any honest replica tgpe-decides a block
B with grade 1, p; must have tgpe-decided (B,0,x) and
set its candidate as B. Therefore, the view number of p;’s
candidate must be equal to or higher than that of the lock
of any honest replica in view v;1. Q(Bi, gc) thus holds at any
honest replica.

According to the validity property of VT-GPE, with a
probability of « > 1/2, all honest replicas will zgpe-decide
(B,2,%) for a block B in a VT-GPE instance. With trivial
input dissemination, honest replicas can broadcast their a-
broadcast messages and any honest replica can a-broadcast
the messages that have not been a-delivered. It is then not
difficult to see that any message m a-broadcast by an honest
replica will eventually be a-delivered within a constant number
of views. O

17

APPENDIX B
PRACTICAL RECOVERY PROTOCOL FOR KOALA-1

In Koala-1 presented in Sec. we have assumed stable
storage and message delivery. In this section, we provide a
practical recovery protocol to remove this assumption. Similar
to prior works [10], [12], the recovery protocol is used for
recovering replicas (that become awake after sleeping) to catch
up with awake replicas.

We follow the notations used by prior works and define
a third status (besides awake and asleep) called recovering.
An asleep replica first enters the recovering status before it
becomes awake. The recovery period lasts for I' > 2A time.
In practice, the value of I' may be adjusted by each replica
depending on the amount of data it needs to receive.

We present the recovery protocol for Koala-1 in Algo-
rithm [/} When a replica p; enters the recovering status at time
t, it first computes the current view number v through the
global synchronous clock. Then it sends a (RECOVER,v,t);
message to all replicas, starts a timer with a duration of T,
and waits for the reply from other replicas. Upon receiving
an (RECOVER) message before ¢ + A, each replica responds
by sending to p; all its local parameters at ¢ + A, along with
the VRF evaluation and the proof that were included in the
same message when candidate was proposed. Additionally,
the replica also sends to p; all a-delivered blocks, the ancestors
of candidate, and all messages it receives for view v. When
the timer of p; expires, p; updates each of its local parameters
to the latest valid one it has received, e.g., QC with the highest
view number. For the pipelined Koala-1 protocol, multiple
prepare@C' with the highest view number can be formed. In
such cases, p; sets its prepare@C as the one with the highest
VRF evaluation. After updating the local parameters, p; a-
delivers the block B corresponding to commitQC and all
ancestors of B. It then sets its status as awake.

Sketch of correctness. By using the recovery protocol, we
can remove the assumptions on stable storage and message
delivery. This is mainly because every recovered replica is able
to collect all the information needed to ensure the correctness
of the protocol. In particular, suppose an honest replica p;
recovers at time ¢ in view v. If a block B is a-delivered in a
view v/ < v, our recovery protocol ensures that p; sets its lock
as a block no lower than B. In this way, safety is achieved.
Namely, if B is a-delivered in view v’ < v, the graded delivery
property of VI-GPE (or WT-GPE) ensures that all awake
honest replicas set their lock as B at the end of view v’. Thus
any replica that recovers after view v’ (including p;) must
receive a lock no lower than B from awake replicas. If B is
a-delivered in view v, p; will set its lock as B in VI-GPE,, (or
wT-GPE,), as p; receives all messages of view v. Therefore,
safety will never be violated. Similarly, if an honest replica is
locked on block B in view v’ < v, all awake honest replicas
must set their candidate as B at the end of view v’ and
p; must collect a candidate such that candidate = B or
view(candidate) > v’. Therefore, liveness can be achieved.

Algorithm 7 Recovery protocol for Koala-1

1: Replica p; executes the following algorithm.
2: upon going online at time ¢ do

3: Let v be the current view.

broadcast (RECOVER, v, t),

upon the timer expires do
prepare@)C < the received prepareQC

with the highest view number
: if multiple prepare@C exist for this view then
8: prepareQQC < the prepareQC

with the highest VRF evaluation

9: candidate <« the block corresponding to prepare@QC
10: locked@C <« the received lockedQC
with the highest view number

IARSANEE

11: lock < the block corresponding to lockedQC
12: commit@QC <+ the received commitQC
with the highest view number
13: a-deliver the block corresponding to commitQC
and all its ancestors
14: set status to awake and participate in the protocol’s execution

15: // respond to a recovering replica

16: upon receiving (RECOVER, v,) before time ¢ + A do

17: if p; is awake at ¢t + A then

18: send to p; candidate, candidate’s ancestors,
the VRF evaluation and proof included in the same

(INPUT) message when candidate was proposed,

prepare@QC, lock, lockedQC, all a-delivered blocks,
commit@C, and all received messages of view v

The communication complexity of the recovery protocol is
O(kn3+ Ln? +InL), where L is the size of a block, is the
security parameter (i.e., length of the digital signature), and
[is the length of the longest chain led by candidate of an
awake replica.

Discussion. In our protocols, the leader of a view proposes
a new block without including the preceding blocks. We
assume that any replica missing the preceding blocks can fetch
them from other replicas. In practice, to ensure that all the
missing blocks can be fetched, we need to revise the recovery
mechanism so that replicas forward all received blocks to
the recovering replicas. Prior work such as MR [10] uses a
similar approach. Such a recovery mechanism may incur high
communication costs. It is still an open question whether a
more efficient approach can be obtained.

APPENDIX C
PROOF OF IMPOSSIBILITY RESULT

Theorem 1. In the partially synchronous model, any BFT
protocol cannot handle sleepy replicas under the n > 3f + 1
assumption without the stable storage, where f is the number
of byzantine replicas and n is the total number of replicas.

Proof. Towards a contradiction, we assume that there exists
a partially synchronous BFT protocol that tolerates at least
one sleepy replica without the stable storage assumption. We
construct the strategy of the adversary as follows. First, let
one honest replica p; sleep and wake up at a chosen time.
The other replicas remain awake throughout the execution.
Second, divide the awake honest replicas into two groups (each

of size f) Gy and G,. Third, let there be a large network delay
between the two groups until GST.

We use ()1 to denote GG1, all Byzantine replicas, and p;.
We use (2 to denote G2 and all Byzantine replicas. It is not
difficult to see that |Q1| = 2f +1 and |Q2| = 2f. The quorum
size is 2f + 1.

We now describe an execution F; of the protocol. The
adversary lets replicas in (); communicate with each other
with no network delay (while @)1 and ()5 have a large network
delay before GST). Without loss of generality, we assume a
block Bj is a-broadcast by a replica in @Q);. Since |@Q1| equals
the quorum size, all replicas in)y eventually a-deliver B; at
some time ¢1. At time ¢, where 1 < to < GST, p; falls asleep
and immediately wakes up. Since no stable storage is assumed,
p1 does not hold any proof that B is a-delivered. Meanwhile,
replicas of ()5 begin executing the protocol at time t5. After
time ¢, the adversary lets p; communicate with ()2 with no
network delay but p; and replicas in ()1 have a large delay.
Now, |Q1 \ {P1}| = 2f and |Q2 U {p1}| = 2f + 1. Without
loss of generality, we assume a block Bs is a-broadcast by a
replica in Q2. As |@Q2 U {p1}| equals the quorum size, p; has
to first a-deliver By before it can a-deliver Bs, as otherwise
the safety property of the protocol is violated.

There exists another execution Fs. In this execution, repli-
cas in (2 begin executing the protocol at time ¢5. Again, let
py fall asleep and immediately wake up at t. After that, the
adversary lets p; communicate with replicas in ()3 with no
network delay (while @1 \ {p1} and Q2 U {p1} still have a
large network delay before GST). In this case, if By is a-
broadcast, p; may choose to a-deliver Bs.

It can be seen that F; and E5 are indistinguishable for p;.
However, p; needs to first a-deliver By before a-delivering
B> in F; for the protocol to be safe while p; does not need
to a-deliver B in Es. O

We would like to comment that even if we have a powerful
“recovery” protocol for p; in Ej, the protocol may still be
problematic. Indeed, as the number of honest replicas in ()
is f, p1 cannot learn any proof that By is a-delivered. For
example, the adversary can simply let p; communicate with
Byzantine replicas and replicas in Q2. Besides, if up to 2f+1
honest replicas fall asleep (as assumed in Ebb-and-Flow), it is
not clear to us how the quorum size (the number of messages
a recovering replica should wait for) should be determined for
the recovery protocol when no stable storage is involved.

APPENDIX D
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The artifact is available in a public Git
repository at https://github.com/Spongebob-bear/Koala-NDS
S-AE. All the scripts and source codes can also be accessed
via the stable URL: https://doi.org/10.5281/zenodo.16956543.

2) Hardware dependencies: The experiments can be run
on a single machine that simulates all servers and clients. The
recommended hardware specifications are:

https://github.com/Spongebob-bear/Koala-NDSS-AE
https://github.com/Spongebob-bear/Koala-NDSS-AE
https://doi.org/10.5281/zenodo.16956543

e« CPU: 4 or more cores
e Memory: 16 GB or more
« Disk: 40 GB of free space (SSD recommended)

3) Software dependencies: The artifact can be tested on
Ubuntu Server 22.04 LTS. The following software is required:

e Go1.19.4 linux/amd64 or a higher version
o Python 3.10 or a higher version
o Standard build tools: git, wget, zip, unzip, psmisc

All dependencies can be installed using the system’s package
manager (apt) or downloaded from the internet. We have
provided the related commands in README . md.

4) Benchmarks: None.

B. Artifact Installation & Configuration

The installation process involves setting up the required
software dependencies, cloning the repository, and building
the project.

1. Install the software dependencies listed above using apt
and wget as detailed in the README . md file.
Git clone the repository:

git clone https://github.com/Spongebob-
bear/Koala-NDSS-AE.git

Enter the root directory of the project:

cd Koala-NDSS-AE

Switch to the stable version:

git checkout ndss-ae-2

Build the project:
./scripts/build_offline.sh

2.

Detailed commands are provided in the README . md file. After
a successful build, you will find the executables (server,
client, ecdsagen) in the root directory of the project.

C. Major Claims

e (C1): HotStuff-mSS achieves higher throughput and
lower latency compared to HotStuff that stores all con-
sensus parameters in stable storage, and achieves lower
throughput and higher latency compared to HotStuff that
stores no parameters in stable storage. This is validated by
experiment (E1), which reproduces the results described
in Figures 4a-4c, Section 6 of the paper.

(C2): HotStuff without stable storage is vulnerable to a
double-spending attack. This is proven by the experiment
(E2), which reproduces the results described in Figure 5,
Appendix J of the paper.

(C3): HotStuff-mSS can defend against the double-
spending attack. This is proven by the experiment (E3),
which reproduces the results described in Figure 6, Ap-
pendix J of the paper.

(C4): Koala-2 can defend against the double-spending
attack. This is proven by the experiment (E4), which
reproduces the results described in Figure 7, Appendix
J of the paper.

19

D. Evaluation

We conduct four experiments: HotStuff with different stor-
age options (El), the double-spending attack on HotStuff
without stable storage (E2), the double-spending attack on
HotStuff-mSS (E3), and the double-spending attack on Koala-
2 (E4). E1, E2, E3, and E4 are used to validate Claim C1, C2,
C3, and C4, respectively.

1) Experiment (E1): [HotStuff with different storage op-
tions] [10 human-minutes]: We assess latency and throughput
for HotStuff under three storage options, i.e., all consensus
parameters are stored in stable storage, minimum parameters
are stored (i.e., HotStuff-mSS), and no intermediate parameters
are stored.

[Notes on scaled-down experiments] The results reported in
Figure 4a-4c of our paper require access to the Amazon EC2.
In this artifact appendix, we present the procedure of scaled-
down experiments using a single machine, which launches four
server replicas and one client process.

[How to] Run the following script from the project’s root
directory.

For HotStuff that stores all parameters in stable storage:

./scripts/run_experiment_1l.sh 1 50

For HotStuff-mSS:

./scripts/run_experiment _1l.sh 2 30

For HotStuff that stores no parameters in stable storage:

./scripts/run_experiment 1l.sh 3 30

The first argument selects the specific sub-experiment. The
second argument specifies the duration (in seconds) the script
waits for the experiment to complete. The script will first set
up the correct configuration, start the 4 server processes, and
then launch the client. After starting the script, wait for some
time (i.e., the duration specified in the second argument). The
script will automatically terminate all processes and calculate
the average performance results.

[Results] The scripts will print the throughput and latency
of HotStuff at the final line. The following is expected to be

shown on the terminal:

[Output] Print the performance of the sleepy replica
throughput (tps) :4643.004716981132,

latency (ms) :698.544117647059

Based on our tests on a machine with 4 vCPUs, 16 GB
RAM, and 40 GB SSD, the expected performance of HotStuff-
mSS relative to the baselines is as follows. Throughput should
be approximately 2.4x that of storing all consensus parameters,
and 64% that of storing no parameters. Latency should be
about 42% that of storing all parameters and 1.7x that of
storing no parameters.

On different hardware, the results are expected to vary. Vari-
ations in CPU or storage speed (e.g., using a mechanical disk
instead of an SSD) are expected to be the major factors that
affect the evaluation results. However, the trend is expected to
hold, which is sufficient to validate Claim Cl1.

2) Experiment (E2): [Attack on HotStuff without stable
storage] [5 human-minutes]: This experiment aims to repro-
duce the result shown in Figure 5 of the paper, showing that
HotStuff storing no consensus parameters in stable storage is
vulnerable to a double-spending attack.

—

[How to] Run the following script from the project’s root
directory.

./scripts/run_experiment_2_1.sh

[Results] The script will first show the setup and client
transaction submissions. The crucial part of the output is the
log from the sleepy replica (replica 2), which will be printed
on the terminal. The following sequence of events is expected
to be printed, which confirms a successful double-spending
attack.

First, the replica commits the first transaction
{From:0, To:1,Value:40} within a block of height 1
before going to sleep.

13:39:41 [!!!] Ready to output a value for height 2
13:39:41 {"View":0,"Height":1,"TXS":[...,{"ID":100,
"TX": {"From":"0","To":"1","Value":40"},...}]1}

13:39:41 Falling asleep in sequence 5...

After waking up, the replica commits a conflicting trans-
action {From:0, To:2,Value:40} within a block of height
1.

13:39:41 sleepTime: 3000 ms

13:39:44 Wake up...

13:39:44 Start the recovery process.

13:39:44 recover to READY

13:39:46 [!!!] Ready to output a value for height 1
13:39:46 {"View":0,"Height":1,"TXS":[...,{"ID":100,

"TX":{"From":"0","To":"2","Value":40"},...}]1}

This sequence demonstrates that the sleepy replica has
committed two conflicting blocks at the same height, thus the
double-spending attack is performed successfully. The output
log should align with Figure 5 in our paper, validating Claim
C2.

3) Experiment (E3): [Attack on HotStuff-mSS] [5 human-
minutes]: This experiment aims to reproduce the result shown
in Figure 6 of the paper, demonstrating that HotStuff-mSS can
defend against the double-spending attack.

[How to] Run the following script from the project’s root
directory.

./scripts/run_experiment 2 2.sh

[Results] You should observe the following sequence of
events:

Before sleep, the sleepy replica commits the first transaction
{From:0, To:1,Value:40} within a block of height 1.
13:58:35 [!!!] Ready to output a value for height 2
13:58:35 {"View":0,"Height":1,"TXS":[...,{"ID":100,
"TX":{"From":"0","To":"1","Value":40"},...}}1}

13:58:35 Falling asleep in sequence 5...

After waking up, the replica knows it was in view O and
initiates a view change to view 1. The log after the recovery
shows that the blocks from view 0, including the one with the
first transaction {From:0, To:1, Value:40}, are included in
the ledger.

13:58:38 Wake up...

13:58:38 Start the recovery process.
13:58:38 recover to the view 1

13:58:38 Starting view change to view 1

20

13:58:45 [!!!] Ready to output a value for height 3

13:58:45 {"View":0,"Height":1,"TXS": [...,{"ID":100,
"TX":{"From":"0","To":"1", "Value":40},...}]}

This sequence demonstrates that the double-spending attack
fails. The output log should align with Figure 6 in our paper,
validating Claim C3.

4) Experiment (E4): [Attack on Koala-2] [5 human-
minutes]: This experiment aims to reproduce the result shown
in Figure 7 of the paper, showing that Koala-2 can defend
against the double-spending attack.

[How to] Run the following script from the project’s root
directory.

./scripts/run_experiment 2 _ 3.sh

[Results] Following sequence of events is expected:

Before sleep, the sleepy replica commits the first transaction
{From:0, To:1,Value:40} within a block of height 1.
14:17:50 [!!!] Ready to output a value for height 2
14:17:50 {"View":0,"Height":1,"TXS": [...,{"ID":100,
"TX":{"From":"0","To":"1","Value":40},...}1}

14:17:50 Falling asleep in sequence 5...

After waking up, the replica wakes up and executes the
recovery protocol of Koala-2. The log shows the messages
received by the sleepy replica, such as ECHO1 and ECHO2
messages. The log after recovery shows that the blocks
from view O, including the one with the first transaction
{From:0, To:1,Value:40}, are included in the ledger.

14:17:54
14:17:54
14:17:54

Wake up...

Start the recovery process.
receive a ECHO1 msg from replica O
14:18:
14:18:

00
00

receive a TQC
Starting view

msg from replica 1 for view O
change to view 1

14:
14:

18:
18:

10
10

receive a TQC
Starting view

msg from replica 5 for view 1
change to view 2

14:18:10 receive a ECHO2 msg from replica 4
14:18:10 recover to READY
14:18:10 [!!!] Ready to output a value for height 198
14:18:10 {"View":0,"Height":1,"TXs":[...,{"ID":100,
"TX":{"From":"0","To":"1","Value":40},...}1}

This sequence demonstrates that the double-spending attack
fails. The output log should align with Figure 7 in our paper,
validating Claim C4.

	Introduction
	System Model and Building Blocks
	Koala-1: Fast Synchronous Consensus with Byzantine and Sleepy Replicas
	Overview of Koala-1
	Validated Triple-Graded Proposal Election
	Atomic Broadcast (ABC)
	Analysis

	Partially Synchronous Protocol with Stable Storage
	A Case Study of HotStuff
	HotStuff-mSS: A Fully-Fledged Protocol under the Stable Storage Assumption

	Koala-2: Partially Synchronous Protocol without Stable Storage
	Overview of Koala-2
	The Modified View Change Protocol and the Recovery Protocol

	Implementation and Evaluation
	Additional Related Work
	Conclusion
	References
	Appendix A: Proof of Koala-1
	Appendix B: Practical Recovery Protocol for Koala-1
	Appendix C: Proof of Impossibility Result
	Appendix D: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)

