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have shown an impossibility result for partially synchronous
and asynchronous networks. Such protocols are also called
dynamically available protocols [14]–[17].

Another notable study is consensus with a mixed failure
model, i.e., the system consists of both Byzantine failures and
other types of failures. Such a study has a history of more
than a decade, and many prior works consider both Byzantine
and crash failures [18]–[21]. In fact, sleepy consensus can
also be viewed as one in the mixed failure model. For
example, Momose and Ren (MR) [10] present a model where
sleepy replicas are embedded with a recovery module. Sleepy
model with recovery matches the crash-recovery model in
the distributed computing literature [22], where replicas keep
infinitely often crashing and recovering. MR provides a sleepy
consensus protocol under this model and describes the protocol
as one that “tolerates any number of crash-recovery faults plus
minority Byzantine faults [10, Sec. 3.1].”

Since sleepy consensus focuses on the unknown participa-
tion model, we make a clear distinction in this work. We
call replicas that may fall asleep and become awake sleepy
replicas. We use sleepy consensus to denote protocols that
tolerate both Byzantine failures and an unknown number of
sleepy replicas. In this work, we are interested in protocols in
the known participation model, where the minimum number of
awake honest replicas ha is known. We call our protocols ones
that tolerate both Byzantine failures and sleepy replicas in the
known participation model and show that these protocols are
of independent interest.

We provide a comparison of both sleepy consensus and
consensus in the known participation model in Table I. As
summarized in the table, consensus in the known participation
model has not been well studied.

Motivation of the known participation model. Consensus
with both Byzantine failures and sleepy replicas in the known
participation model is useful and has been informally studied
in existing systems. One example is Ethereum [23]. In the
current production system, Ethereum assumes the partially
synchronous model and does not handle sleepy replicas by
design. It expects honest replicas (called validators) to remain
awake and use the incentive mechanism to penalize inactive
replicas. However, it was shown that an attack could cause all
honest replicas to be penalized even if honest replicas strictly

Abstract—We study consensus in the known participation 
model with both Byzantine failures and sleepy replicas, where 
honest replicas may unpredictably fall asleep, and replicas know 
the minimum number of awake honest replicas. Our main 
contribution is providing a fine-grained t reatment o f consensus 
in such a mixed failure model. First, we present a synchronous 
atomic broadcast protocol with 5∆ + 2δ expected latency and 
2∆ + 2δ best-case latency, where ∆ is the bound on network 
delay and δ is the actual network delay. Second, in the partially 
synchronous network (the value of ∆ is unknown), we show 
that one can make a conventional Byzantine fault-tolerant (BFT) 
protocol tolerate sleepy replicas but has to make the stable 
storage assumption (where replicas need to store intermediate 
consensus parameters in stable storage). Finally, in the partially 
synchronous network but not assuming stable storage, we show 
several bounds on the relationship between the total number of 
replicas n, the maximum number of Byzantine replicas f , and 
the maximum number of simultaneous sleeping replicas s. Using 
these bounds, we transform HotStuff (PODC’19) into a protocol 
that tolerates sleepy replicas without sacrificing the performance.

I. INTRODUCTION

Byzantine fault-tolerant state machine replication (BFT) is
a fundamental tool in fault-tolerant distributed computing,
allowing a group of replicas to reach an agreement in the
presence of arbitrary failures [1]–[7]. Conventional BFT pro-
tocols assume that replicas know each other’s identities and
non-faulty replicas are expected to always stay online. With
the rise of Bitcoin [8], BFT (and blockchains) have been
characterized by new features. The sleepy model of consen-
sus [9] is an example. In sleepy consensus, besides Byzantine
replicas, honest replicas may unpredictably go offline (and
become asleep) and later come back online (and become
awake). So far, all the sleepy consensus protocols focus on the
unknown participation model [9]–[13], where replicas are not
aware of the minimum number of awake honest replicas ha.
Sleepy consensus protocols can only be built in a synchronous
network [9]–[13], where there exists a known upper bound
for message processing and propagation. Pass and Shi [9]
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TABLE I: Comparison between sleepy consensus and consensus in the known participation model with sleepy replicas.

Network Participation
model Protocol

Minimum n to
tolerate s

asleep replicas

Maximum number
of asleep

honest replicas

Expected
latency

Stable
storage?

Synchronous

Unknown
(i.e., sleepy
consensus)

MR [10] (without the
recovery protocol) n = 2f + s+ 1 n− 2f − 1 32∆ ✓

MR [10] (with the
recovery protocol) n = 2f + s+ 1 n− 2f − 1 35∆ ✗

MMR [12] n = 2f + s+ 1‡ n− 2f − 1‡ 14∆ ✗

Known Koala-1 (Sec. III) n = 2f + s+ 1 n− 2f − 1 5∆ + 2δ ✗

Partially
synchronous

Unknown Impossible. [9] – – – –

Known

a sub-protocol of⋆ [17]
with stable storage

(Sec. IV)
n = 3f + 1† n− f † 7∆

(based on HotStuff) Required

Koala-2 (Sec. V) n = 3f + s+ 1† or
n = 3f + 2s+ 1

n− 3f − 1† or
⌊n−3f−1

2
⌋

7∆
(based on HotStuff) ✗

n is the number of replicas, f is the maximum number of Byzantine replicas, and s is the maximum number of asleep honest replicas. ∆
is the upper bound for message processing and transmission latency and δ is the actual network latency. ‡The bound considers the worst
case where all f Byzantine replicas remain awake. ⋆The Ebb-and-Flow protocol has a sub-protocol Πbft that tolerates Byzantine failures and
sleepy replicas. Πbft does not specify whether stable storage is required. We show that the result can only be achieved by assuming stable
storage. Namely, with stable storage, all n−f honest replicas can fall asleep before the global awake time (GAT). † Liveness of the protocol
is guaranteed under the GAT assumption, where all honest replicas remain awake after GAT.

follow the specification of the protocol [24]. Accordingly,
consensus in the known participation model that handles
sleepy replicas by design can systematically address this issue.

Another example is that industrial systems such as Diem-
BFT [25] and Tendermint [26] are already taking actions
to handle sleepy replicas but in an informal way. For in-
stance, the DiemBFT codebase [27] clearly mentions that
some parameters are stored in the stable storage to “en-
sure liveness even if all replicas crash and later recover”
(persistent liveness storage.rs:24-281). However, storing all
consensus parameters might be too expensive [22], [28], [29].
In the literature of BFT research, no analysis is given to
identify what should be stored in stable storage.

Therefore, an interesting open problem is:
Can we provide a more fine-grained treatment of consensus

in the known participation model with both Byzantine failures
and sleepy replicas?

Our technical approaches. In this paper, we provide a fine-
grained treatment of consensus in the known participation
model (where the minimum number of awake honest replicas
ha is known) in both synchronous and partially synchronous
networks, with and without stable storage. As summarized in
Table I, we provide the following results.
� Koala-1: fast synchronous atomic broadcast with Byzan-
tine failures and sleepy replicas. While we can directly use a
sleepy consensus protocol in the unknown participation model,
the latency of the protocol can be very high. We show that in
the known participation model, the latency can be made closer
to conventional consensus protocols. Our protocol requires
n ≥ 2f + s + 1 (i.e., ha = f + 1), where n is the number

1DiemBFT: https://github.com/diem/diem/blob/3b774462384ea37dd46f1c
67b525f03937c45a0a/consensus/src/persistent liveness storage.rs

of replicas, f is the maximum number of Byzantine replicas,
and s is the maximum number of asleep honest replicas. An
interesting fact is that existing sleepy consensus protocols also
assume n ≥ 2f + s+ 1 [9]–[13] but f and s are unknown.

We present Koala-1 that achieves an expected latency of
5∆ + 2δ and a best-case latency of 2∆ + 2δ, where ∆ is the
upper bound for message processing and propagation latency
and δ is the actual network latency. In contrast, the best result
of sleepy consensus has a latency of 14∆ (i.e., MMR [12]),
more than twice the latency of Koala-1. Our result is closer to
the 2∆+δ latency achieved by conventional synchronous BFT
protocols [30] (not in the sleepy model). The major challenge
we address is that the conventional Byzantine quorum does
not work in the model where some replicas may fall asleep.
Important building blocks of Koala-1 include a new double
confirmation mechanism and a new validated triple-graded
proposal election (VT-GPE) primitive, which might be of
independent interest.

� Partially synchronous consensus with stable storage and
the impossibility result. To date, the only known result of
consensus with both Byzantine replicas and sleepy replicas
in the partially synchronous network is a Πbft sub-protocol
of Ebb-and-Flow [17] and its follow-up work [31]. It was
briefly mentioned that one can use conventional partially
synchronous BFT protocols [5], [7], [32] to support sleepy
replicas by assuming global awake time (GAT), where after
GAT, every honest replica becomes awake. However, concrete
constructions are not provided.

In this work, we show that by assuming the conventional
n = 3f+1 bound, a partially synchronous consensus protocol
that tolerates Byzantine and sleepy replicas cannot be achieved
without making the stable storage assumption. We provide
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formal proof of the impossibility result, and use HotStuff [7]
as a case study to show our results. While storing all the
intermediate parameters in stable storage is an option, it
is usually very expensive to do so as frequent disk I/O is
involved [22], [28], [29]. For instance, it was shown that the
throughput of BFT-SMaRt [33] is only 23% of its storage-free
counterpart [29]. We then show that we only need to store
two parameters (the view number and lockedQC ) to make
HotStuff tolerate sleepy replicas (denoted as HotStuff-mSS).
We consider our result a complement to BFT in production
systems and the Πbft sub-protocol of Ebb-and-Flow [17].

� Koala-2: partially synchronous protocol without stable
storage. In the partially synchronous model without assuming
stable storage, we transform HotStuff into Koala-2, a protocol
that tolerates Byzantine and sleepy replicas and still retains the
7δ latency of HotStuff. we require that s = ⌊n−3f−1

2 ⌋, i.e.,
n ≥ 3f+2s+1 and ha = ⌈n+f+1

2 ⌉. (As defined, the values of
ha and s can be calculated from each other. Given s, ha can
be determined as n− f − s, and vice versa). Additionally, by
assuming the existence of GAT, the value of s can be further
improved to n−3f−1 (i.e., n ≥ 3f+s+1 and ha = 2f+1).
We show that these bounds are tight.

Our contributions. Our contributions are summarized be-
low:
• (Sec. III) In the synchronous model, we present Koala-1, a

protocol that tolerates both Byzantine and sleepy replicas
in the known participation model. Koala-1 achieves an
expected latency of 5∆+2δ, almost half of the latency of the
state-of-the-art sleepy consensus protocol (in the unknown
participation model).
• (Sec. IV) In the partially synchronous model, we show that

a BFT protocol with the n = 3f +1 bound can not tolerate
sleepy replicas without assuming stable storage. We further
use HotStuff as an example and show that by assuming GAT,
we only need to store two parameters in stable storage to
tolerate sleepy replicas.
• (Sec. V) In the partially synchronous model, we propose

Koala-2, a HotStuff-variant that tolerates sleepy replicas
without assuming stable storage while still achieving the
same latency as HotStuff. The bound is s = ⌊n−3f−1

2 ⌋
without the GAT assumption and s = n − 3f − 1 with
the GAT assumption.
• (Sec. VI) We evaluate the performance of HotStuff-mSS and

Koala-2 and show that both protocols are efficient, achieving
performance very close to HotStuff (where no intermediate
parameters are stored in stable storage). Additionally, we
also provide a demo, showing that HotStuff suffers from the
double spending attack with no stable storage. In contrast,
none of our protocols suffers from the attack.

II. SYSTEM MODEL AND BUILDING BLOCKS

Byzantine fault tolerance (BFT). In a BFT protocol, clients
submit transactions (requests) and replicas deliver them. The
client obtains a final response to the submitted transaction from
the responses. Within a BFT system of n replicas, a maximum

of f replicas may fail arbitrarily under the control of an
adversary. These faulty replicas are also known as Byzantine
failures and non-Byzantine replicas are called honest replicas.
The correctness of a BFT protocol is specified as follows:
• Safety: If an honest replica delivers a transaction tx before

delivering tx′, no honest replica delivers the transaction tx′

without first delivering tx.
• Liveness: If a transaction tx is submitted to all honest

replicas, all awake honest replicas eventually deliver tx.
An equivalent primitive atomic broadcast (ABC) is often

used interchangeably with BFT. Informally, the main differ-
ence is that ABC does not involve the role of the clients.
• Safety: If an honest replica a-delivers a message m before it

a-delivers m′, then no honest replica a-delivers the message
m′ without first a-delivering m.
• Liveness: If an honest replica a-broadcasts a message m,

then all awake honest replicas eventually a-deliver m.
While the BFT and atomic broadcast abstractions do not

expose the order to API, an implicit order is given in most
protocols, e.g., sequence number [5], [34], height [7], [35].
Using this implicit order, many partially synchronous protocols
achieve a weaker safety property as follows [5], [7], [35].
• Consistency: If an honest replica delivers a transaction tx

and another honest replica delivers a transaction tx′, both
with the same order, tx = tx′.
Our Koala-1 protocol follows the conventional atomic

broadcast model. Our Koala-2 protocol achieves the consis-
tency property, following that of HotStuff.

Network models and communication channels. We consider
both synchronous and partially synchronous networks. In
the synchronous model, there exists an upper bound ∆ for
message processing and transmission latency and there exists
a completely synchronous clock. In the partially synchronous
model [36], there still exists an upper bound but the value of ∆
is unknown. An alternative notion of the partially synchronous
model is that there exists an unknown global stabilization time
(GST) such that after GST, messages sent between two honest
replicas arrive within a fixed delay. Note that an asynchronous
network does not assume such an upper bound.

We assume authenticated channels for message transmis-
sion. We use the symbol ∗ to denote any value. We use δ to
denote the actual network latency.

Sleepy replicas. A sleepy replica can be either awake or
asleep [9]. An awake replica actively participates in the
execution, while an asleep replica does not execute any code
of the protocol or send/receive any message. In our system,
each honest replica can become asleep, whose status can
change at any time under the control of an adversary, without
any advance notice. In practice, this implies that replicas are
allowed to leave and rejoin the protocol’s execution at will
without notifying other replicas. Sleepy replicas align with
the crash-recovery model, where replicas can keep crashing
and recovering repeatedly [22]. It is highlighted that an honest
replica might encounter “amnesia” after crashing, leading to
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the loss of its internal state stored in its volatile storage. In
our work, Byzantine replicas can also be sleepy.

Our work considers the known participation model, where
all replicas have foreknowledge of the minimum number of
awake honest replicas ha. Meanwhile, we use s to denote
the maximum number of asleep replicas at any point of the
protocol execution. As defined, ha and s can be calculated
from each other. Given s, ha can be determined as n− f − s,
and vice versa. In our synchronous protocol, ha is f+1. In our
partially synchronous protocol, ha is ⌈n+f+1

2 ⌉. If we consider
the global awake time (GAT) assumption, where after GAT
every sleeping replica will be awake, our partially synchronous
protocol can be achieved with ha = 2f + 1.
Cryptographic assumptions. We use digital signatures, mak-
ing the public-key infrastructure (PKI) assumption. We use
⟨µ⟩i to denote a message µ signed by replica pi. We assume
a cryptographic collision-resistant hash function denoted as
H(·). We assume a verifiable random function (VRF) in one
of our protocols. A replica pi evaluates (ρi, πi) ← VRFi(µ)
on any input µ and obtains a pseudorandom value ρi and a
proof πi. Using πi and the public key of replica pi, anyone
can verify whether ρi is a correct evaluation of VRFi on µ.
Blocks. We use block B to denote a batch of transactions.
Blocks are ordered in a chain where the previous block of B
is called its parent block. The first block in the chain is called
the genesis block B0. A block B extends block B′ if B′ is
an ancestor of B in the chain. Two blocks B and B′ conflict
with each other if neither of them extends the other.
Byzantine quorums and quorum certificates. A byzantine
quorum (or quorum in short) denotes certain number of
replicas. Matching votes from a quorum is necessary for honest
replicas to reach an agreement. A set of signatures signed by
a quorum of replicas is called a quorum certificate (QC or
certificate). In conventional BFT with n ≥ 3f + 1 replicas, a
Byzantine quorum consists of ⌈n+f+1

2 ⌉ replicas. By slightly
abusing notation, we use the view() function to denote the
view number of a QC or a block. For example, if qc is a QC
for block B, view(qc)=view(B).
Graded proposal election (GPE). In GPE [12], each replica
gpe-proposes a block and gpe-decides either (B, g) or ⊥,
where B is a block and g ∈ {0, 1} is the grade. GPE achieves
the following properties:
• Consistency. If an honest replica gpe-decides (B, ∗) and

another honest replica gpe-decides (B′, ∗), B = B′.
• Graded delivery. If an honest replica gpe-decides (B, 1),

all honest replicas gpe-decide (B, ∗).
• 1/2-validity. With a probability of at least 1/2, all honest

replicas gpe-decide (B, 1), where B has been gpe-proposed
by an honest replica.

III. KOALA-1: FAST SYNCHRONOUS CONSENSUS WITH
BYZANTINE AND SLEEPY REPLICAS

We introduce a synchronous atomic broadcast protocol
called Koala-1 that tolerates both Byzantine and sleepy repli-
cas. We consider a system with n ≥ 2f + s+ 1 replicas and

TABLE II: Comparison of synchronous BFT protocols.

Protocol Failure
model

Participation
Model

Expected
latency

Best-case
latency

Sync-HotStuff [37] Byzantine Known 2∆ + δ 2∆ + δ

MR [10]
Byzantine
& sleepy

Unknown 32∆ 16∆

MMR [12] Unknown 14∆ 4∆

Koala-1 Known 5∆ + 2δ 2∆ + 2δ

∆ is the upper bound on message processing and transmission latency
and δ is the actual network latency.

ha = f + 1. Without loss of generality, we assume stable
storage and message delivery, i.e., once a replica becomes
awake at time t, it will immediately receive all messages
sent from any honest replica before time t − ∆. Later in
Appendix B, we provide a practical recovery protocol to
remove both assumptions.

We build a practical protocol with latency close to conven-
tional synchronous BFT protocols (e.g., Sync HotStuff [37]
has 2∆ + δ latency). In particular, Koala-1 has a fast path
that achieves 2∆ + 2δ latency, which occurs when all awake
replicas are honest. The result is much lower than sleepy
consensus, as summarized in Table II.

A. Overview of Koala-1

In the classic static participation model, one can obtain
a synchronous atomic broadcast (ABC) protocol assuming
n = 2f + 1 and a quorum size of f + 1. This is because
an quorum certificate (QC) with f + 1 votes is transferrable
and can be verified by any replica. Most prior synchronous
Byzantine agreement and atomic broadcast protocols [30],
[37], [38] all follow a commit-lock paradigm, i.e., once a
replica commits a block B, all honest replicas will be locked
on B. This paradigm ensures that honest replicas will only
vote for blocks extending B. In this way, the safety of the
protocol is guaranteed. Such a paradigm can be realized via
the GPE protocol as reviewed in Sec. II.

In the mixed failure model, a tempting solution is to change
the size of the Byzantine quorum and transform the protocol
to one that tolerates sleepy replicas. Unfortunately, even under
the known participation model, building a secure protocol
is not trivial. This is mainly because we can no longer use
the conventional quorum size as (possibly more than the
majority of) honest replicas may become asleep and lose their
state. In fact, even if a certificate with ha matching votes is
transferrable (e.g., under the help of a powerful equivocation
detection mechanism), there might still be safety and liveness
issues. We show two scenarios in Figure 1. In both scenarios,
p2 is a Byzantine leader but it equivocates in different ways.
From the perspective of an honest replica p4, the two scenarios
are indistinguishable. Thus, we need to design the protocol
using additional techniques.

In Koala-1, our main contribution is ha-enabled quorum,
i.e., using ha as the quorum size and make the certificate
with ha matching votes transferrable. This is achieved via

4



𝑒𝑐ℎ𝑜 vote
certificate

inputPropose
𝐵!

𝐵"

𝐵#

𝐵"

Echo Forward

0 ∆ 2∆ 3∆

𝑝!
𝑝"

𝑝#

𝑝$

𝐵"

Timeline

𝐵"$

𝑎−𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

(𝑝% awakens
after 3∆)

𝐵"

𝐵"

𝐵"$
𝐵"

𝐵"

𝐵"

(a) Scenario 1: p2 sends B2 to p1 and p3. p1 and p3 echo B2, collect
a certificate, and forward the certificate. As p1 and p3 detect no
equivocation before t = 3∆, they a-deliver B2. When p4 wakes
up, p2 sends B′

2 to p4.
Propose

𝐵!

𝐵"#

𝐵$

𝐵"

Echo Forward

0 ∆ 2∆ 3∆

𝑝!
𝑝"

𝑝#

𝑝$

𝐵"#

Timeline

(𝑝% awakens
after 3∆)𝐵"#

𝐵"

𝐵" 𝑒𝑐ℎ𝑜 vote
certificate

input

𝐵"#
𝐵"

(b) Scenario 2: p2 sends B2 to p1 and B′
2 to p3 and p4. p1 echoes

B2 and p3 echoes B′
2. As p1 and p3 observe the equivocation, none

of p1 or p3 a-deliver any block.
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Fig. 2: MMR [12] vs. Koala-1. GA denotes graded agreement.

a carefully designed double confirmation mechanism and an
equivocation mechanism. The double confirmation mechanism
uses two certificates as a proof for a block B to make the
proof verifiable. Meanwhile, we also extend the GPE notion
to validated triple-graded proposal election (VT-GPE). As
illustrated in Figure 2, compared to prior work, our protocol
is much simplified.

B. Validated Triple-Graded Proposal Election

Validated Triple-graded Proposal Election (VT-GPE). We
define validated triple-graded proposal election (VT-GPE) as
follows. Each honest replica tgpe-proposes a block (together
with a valid proof) and tgpe-decides either (B, g, σ) (where
B ̸= ⊥) or ⊥. Here, g is a grade where g ∈ {0, 1, 2}. We also
need an external validity property for VT-GPE to be validated.
In particular, we define a global predicate that is determined

by the particular application and known to all parties. In this
work, we define σ as the proof for the validity of block B. Let
the predicate be Q and we say B is validated by σ if Q(B, σ)
holds. Each honest replica only tgpe-decides one block in a
VT-GPE instance, but it may tgpe-decides the same block
multiple times with different grades. A validated VT-GPE
protocol achieves the following properties:

• External validity. If an honest replica tgpe-decides (B, ∗, ∗)
such that B ̸= ⊥, Q(B, σ) holds for at least an honest
replica.
• Consistency. If an honest replica tgpe-decides (B, ∗, ∗) and

another honest replica tgpe-decides (B′, ∗, ∗), B = B′.
• Graded delivery. If an honest replica tgpe-decides (B, g, ∗)

such that g ∈ {1, 2}, any honest replica tgpe-decides (B, g−
1, ∗).
• Validity. With a probability of α > 1/2, all honest replicas

tgpe-decide (B, 2, ∗) where block B is tgpe-proposed by an
honest replica.

The VT-GPE protocol. We use VT-GPEv to denote a VT-
GPE instance. VT-GPEv consists of two phases: a VRF-based
leader election phase and a graded consensus phase. The leader
election phase selects a leader and honest replicas may select
different leaders. The graded consensus phase allows replicas
to converge on the result of the leader election.

As shown in Algorithm 1, the protocol begins with a
VRF-based leader election. Each replica pi broadcasts a
⟨INPUT, Bi, σi, ρi, πi⟩i message, where Bi is the block pi tgpe-
proposes, σi is the proof for Bi, ρi is a VRF evaluation
on the current view number, and πi is a proof of the VRF
evaluation. As defined above, every replica only considers
Bi valid if Q(Bi, σi) holds. For now we do not care about
the instantiation of σi and later we will define it. The
VRF evaluations are used for leader election. In particular,
according to the VRF evaluations each replica receives, the
producer of the highest VRF is considered the leader, and
the corresponding ⟨INPUT⟩ message is defined as the winning
input. If equivocating ⟨INPUT⟩ messages are received from the
leader, the winning input is set as ⊥. Additionally, the block B
associated with the winning input is called the winning block.

As each replica may receive different sets of ⟨INPUT⟩
messages and the winning inputs might be different, we
define the winning input for each replica pi. In particular,
⟨INPUT, B, σ, ρ, π⟩j from pj is a winning input for pi if the
following conditions are met:

(1) Q(B, σ) holds;
(2) π is a valid proof of ρ on the current view number;
(3) ρ is the highest among all the VRF evaluations in the
⟨INPUT⟩ messages;

(4) pi has not received another valid ⟨INPUT, B′, σ′, ρ, π⟩j
such that B′ ̸= B.

After the leader election, from time t = ∆ to t = 4∆, the
graded consensus phase is executed as follows.

• At t = ∆, if replica pi is awake, it broadcasts an ⟨ECHO⟩
message for the winning block.

5



Algorithm 1 Validated Triple-graded Proposal Election of
view v - VT-GPEv .

1: Replica pi executes the following algorithm at every time t ≥ 0
after starting VT-GPEv in view v, and tgpe-proposes (Bi, σi)
such that a global predicate Q(Bi, σi) holds.

2: pi maintains these parameters for each received block B:
3: E(B) ← all received ⟨ECHO, B⟩∗ messages
4: R(B) ← all received ⟨READY, B⟩∗ messages
5: L(B) ← all received ⟨LOCK, B⟩∗ messages
6: W1(B)← all received

〈
WINNER1, ⟨INPUT, B⟩∗

〉
∗ messages

7: W2(B)← all received
〈

WINNER2, ⟨INPUT, B⟩∗
〉
∗ messages

8: if t = 0 then
9: (ρi, πi)← VRFi(v)

10: broadcast ⟨INPUT, Bi, σi, ρi, πi⟩i
11: if t = ∆ then
12: if there exists a winning input ⟨INPUT, Bj , σj , ρj , πj⟩j then
13: forward the winning input (if not yet)
14: if Q(Bj , σj) holds then
15: broadcast ⟨ECHO, Bj⟩i
16: else
17: forward the equivocating INPUT messages by any replica
18: if t = 2∆ then
19: update local winning input from received INPUT messages
20: if ⟨INPUT⟩j ̸= ⊥ then // Let ⟨INPUT⟩j be the winning input

21: broadcast
〈

WINNER1, ⟨INPUT⟩j
〉
i

22: if |E(Bj)| ≥ f + 1 then
23: broadcast E(Bj) and ⟨READY, Bj⟩i
24: else
25: forward the equivocating INPUT messages by any replica
26: if t = 3∆ then
27: update local winning input from received INPUT messages
28: if ⟨INPUT⟩j ̸= ⊥ then
29: broadcast

〈
WINNER2, ⟨INPUT⟩j

〉
i

30: if |R(Bj)| ≥ f + 1 then
31: broadcast R(Bj) and ⟨LOCK, Bj⟩i
32: else
33: forward the equivocating INPUT messages by any replica
34: if t ≥ 4∆ then
35: update local winning input from received INPUT messages
36: if ⟨INPUT⟩j ̸= ⊥ and |L(Bj)| ≥ f + 1 then
37: tgpe-decide (Bj , 2, L(Bj))

38: if |R(B)| ≥ f+1 and |W2(B)| ≥ f+1 for a block B then
39: tgpe-decide (B, 1, (R(B),W2(B)))

40: if |E(B)| ≥ f+1 and |W1(B)| ≥ f+1 for a block B then
41: tgpe-decide (B, 0, (E(B),W1(B)))

42: if no block is tgpe-decided then
43: tgpe-decide ⊥

• At t = 2∆, pi broadcasts a ⟨WINNER1⟩ message containing
its winning input. If pi receives at least f + 1 matching
⟨ECHO⟩ messages for its winning block, the replica forwards
these ⟨ECHO⟩ messages and broadcasts a ⟨READY⟩ message.
• At t = 3∆, pi broadcasts a ⟨WINNER2⟩ message containing

its winning input. Similar to the previous round, if pi
receives at least f + 1 ⟨READY⟩ messages for its winning
block, the replica forwards these ⟨READY⟩ messages and
broadcasts a ⟨LOCK⟩ message.

• When t ≥ 4∆, there are four conditions. First, if pi receives
f +1 matching ⟨LOCK⟩ messages for its winning block Bj ,
it tgpe-decides Bj with grade 2 and uses f + 1 ⟨LOCK⟩
messages as the proof for Bj . Second, if pi receives f + 1
⟨READY⟩ and f+1 ⟨WINNER2⟩ messages for any block B, it
tgpe-decides B with grade 1. Here, both f +1 ⟨READY⟩ and
f+1 ⟨WINNER2⟩ messages are used as proofs for B. Finally,
if pi receives f +1 ⟨ECHO⟩ and f +1 ⟨WINNER1⟩ messages
for any block B, it tgpe-decides B with grade 0. Here, the
⟨ECHO⟩ and ⟨WINNER1⟩ messages are used as proofs for B.
Otherwise, pi tgpe-decides a special symbol ⊥.

C. Atomic Broadcast (ABC)

Our ABC protocol follows the view-by-view construction
of many classic BFT protocols [5], [7], [35] and also prior
sleepy consensus protocols. In each view, each honest replica
a-broadcasts a block and a-delivers at most one block.

The protocol starts from view 1 and the pseudocode for view
v is shown in Algorithm 2. In each view v, there is one VT-
GPE instance denoted as VT-GPEv . In each VT-GPEv , each
replica pi tgpe-proposes block B that extends its candidate,
where B is the block pi a-broadcasts. Here, our idea is to use
the grade g ∈ {2, 1, 0} of VT-GPE to mimic the commit-lock-
prepare relation in conventional BFT. To maintain the status,
every replica maintains several local parameters, including the
candidate and lock, which are initially set as the genesis block
B0. If a block B is tgpe-decided with grade 0 (resp. 1), the
candidate (resp. lock) is set as B.

We define the global predicate Q for VT-GPE as follows.
Given the value (B, qc) tgpe-proposed by any replica pj ,
Q(B, qc) holds at pi if and only if:
• view(B) equals the current view number of pi, qc is a valid
prepareQC for B, and B’s parent block is the block of qc;
• the view number of qc is at least the same as pi’s lock.

In our protocol, prepareQC is the proof each replica pi
holds after it tgpe-decides a block B with grade 0. According
to our VT-GPE instantiation, the proof consists of two cer-
tificates, i.e., f + 1 ⟨ECHO⟩ messages and f + 1 ⟨WINNER1⟩
messages for B. The certificates are crucial for B to be
validated and we call them the double confirmation mechanism
for B. Meanwhile, ensuring the view number of qc is at least
the same as pi’s locked block further prevents forks from
happening and is crucial for both safety and liveness.

Every replica pi waits for the output of VT-GPEv and there
are three possible outputs.
(1) If pi tgpe-decides (B, 0, (E(B),W1(B))), pi sets its can-

didate as B and prepareQC as (E(B),W1(B)).
(2) If pi tgpe-decides (B, 1, (R(B),W2(B))), it sets its lock

as B and lockedQC as (R(B),W2(B)). A valid lockedQC
for block B consists of f+1 ⟨READY⟩ and f+1 ⟨WINNER2⟩
messages for B. The lock parameter is useful for defining
the predicate Q and the lockedQC parameter is only useful
in the recovery protocol (to be described in Appendix B).

(3) If pi tgpe-decides (B, 2, L(B)), it a-delivers B and all the
ancestors of B. It also sets its commitQC as L(B), which
is only useful in the recovery protocol.
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Algorithm 2 The Koala-1 atomic broadcast protocol for pi.
1: Initialize the following parameters
2: v ← 1; candidate ← B0; lock ← B0; prepareQC ←
⊥; lockedQC ← ⊥; commitQC ← ⊥. // lockedQC and
commitQC are used in the recovery protocol

3: Let Q be the following predicate for VT-GPE:
4: Given (B, qc) tgpe-proposed by pj ,
5: Q(B, qc) ≡ (view(B) = v) and (qc is a valid prepareQC )
6: and (B.parent = qc.block) and view(qc) ≥ view(lock)

7: In each view v, replica pi executes the following algorithm at
every time 0 ≤ t ≤ 4∆ w.r.t. view v, then enters view v + 1.

8: if t = 0 then
9: B ← ⟨vals,H(candidate), v⟩i

10: tgpe-propose (B, prepareQC ) in VT-GPEv with predicate Q

11: // The following events may be triggered after view v
12: upon pi tgpe-decides (B, 0, (E(B),W1(B))) in VT-GPEv do
13: if view(B) > view(candidate) then
14: candidate← B, prepareQC ← (E(B),W1(B))

15: upon pi tgpe-decides (B, 1, (R(B),W2(B))) in VT-GPEv do
16: if view(B) > view(lock) then
17: lock← B, lockedQC ← (R(B),W2(B))

18: upon pi tgpe-decides (B, 2, L(B)) in VT-GPEv do
19: if B has not been a-delivered then
20: a-deliver B and all ancestors of B, commitQC ← L(B)

Pipelining mode. Our protocol enjoys the benefit of pipelin-
ing, where replicas can enter the next view v + 1 at t = 3∆
of the current view v. While a new instance VT-GPEv+1 is
started, the current instance VT-GPEv still runs until each
replica tgpe-decides. To see why replicas can enter the next
view at t = 3∆, consider that an honest replica is locked on
a block B in VT-GPEv . All replicas awake at t = 3∆ must
receive the prepareQC (including f + 1 ⟨ECHO⟩ and f + 1
⟨WINNER1⟩ messages) for B. Any honest replica that proposes
new blocks must extend B in newer views. Besides, as lock
can be updated at t = 4∆ of view v, replicas can use their
updated lock to verify the new blocks at t = ∆ of view v+1.

Fast path. Our protocol has a fast path that a-delivers a block
in 2∆+2δ time. We achieve this by slightly modifying our VT-
GPE primitive into a weaker version called WT-GPE. WT-
GPE no longer achieves the consistency property and has a
weak consistency property instead, defined as follows.

• Weak consistency. If an honest replica tgpe-decides (B, g, ∗)
with grade g ≥ 1 and another honest replica tgpe-decides
(B′, ∗, ∗), B = B′.

The weak consistency property of VT-GPE achieves con-
sistency only if an honest replica tgpe-decides a block with
a grade of at least 1. Via this change, we do not need
the ⟨WINNER1⟩ and ⟨WINNER2⟩ messages in our WT-GPE
construction. Accordingly, each replica tgpe-decides a block
B with grade 0 when it receives valid E(B) at t ≥ 3∆. If
there are multiple such blocks, choose the one corresponding
to the highest VRF. Meanwhile, each replica tgpe-decides a
block B with grade 1 or 2 after it receives valid R(B) or
L(B) at time t > 2∆.

Algorithm 3 Validated Triple-graded Proposal Election with
Weak Consistency for view v - wT-GPEv .

1: Replica pi executes the following algorithm at every time t ≥ 0
after starting wT-GPEv in view v, and tgpe-proposes (Bi, σi)
such that a global predicate Q(Bi, σi) holds.

2: pi maintains these parameters for each received block B:
3: E(B) ← all received ⟨ECHO, B⟩∗ messages
4: R(B) ← all received ⟨READY, B⟩∗ messages
5: L(B) ← all received ⟨LOCK, B⟩∗ messages
6: if t = 0 then
7: (ρi, πi)← VRFi(v)
8: broadcast ⟨INPUT, Bi, σi, ρi, πi⟩i
9: if t = ∆ then

10: if there exists a winning input ⟨INPUT, Bj , σj , ρj , πj⟩j then
11: forward the winning input (if not yet)
12: if Q(Bj , σj) holds then
13: broadcast ⟨ECHO, Bj⟩i
14: else
15: forward the equivocating INPUT messages by any replica
16: if t = 2∆ then
17: update local winning input from received INPUT messages
18: if ⟨INPUT⟩j ̸= ⊥ then // Let ⟨INPUT⟩j be the winning input
19: forward ⟨INPUT⟩j (if not yet)
20: if |E(Bj)| ≥ f + 1 then
21: broadcast E(Bj) and ⟨READY, Bj⟩i
22: if 2∆ < t ≤ 3∆ then
23: if |R(B)| ≥ f + 1 for any block B then
24: broadcast R(B) and ⟨LOCK, B⟩i (if not yet)
25: if t > 2∆ then
26: if |L(B)| ≥ f + 1 for any block B then
27: tgpe-decide (B, 2, L(B))

28: if |R(B)| ≥ f + 1 for any block B then
29: tgpe-decide (B, 1, R(B))

30: if t ≥ 3∆ then
31: for each ⟨INPUT, Bj , σj , ρj , πj⟩j do // from inputs with

higher ρj
32: if |E(Bj)| ≥ f + 1 then
33: tgpe-decide (Bj , 0, E(Bj))
34: break
35: if no block is tgpe-decided then
36: tgpe-decide ⊥

Although we do not need the ⟨WINNER1⟩ and ⟨WINNER2⟩
messages, our WT-GPE protocol still employs the double
confirmation mechanism to make prepareQC consistent with
lockedQC in each view. This is achieved by additionally
modifying the predicate Q. In particular, upon receiving a valid
prepareQC qc with view(qc) = view(lock), each replica
additionally checks whether the block of the prepareQC is
the same as its lock. In this way, only the prepareQC that
matches the lockedQC will be verified by each honest replica.

We present the pseudocode of the WT-GPE in Algorithm 3
and the pseudocode of our pipelined Koala-1 protocol (with
the fast path) in Algorithm 4.

D. Analysis

Why ha-enabled quorum? The double confirmation mech-
anism we use ensures that a certificate with ha matching
messages is transferrable. In our VT-GPE construction, we
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Algorithm 4 The pipelined ABC protocol. Code for pi.
1: Initialize the following parameters
2: v ← 1; candidate ← B0; lock ← B0; prepareQC ←
⊥; lockedQC ← ⊥; commitQC ← ⊥. // lockedQC and
commitQC are used in the recovery protocol

3: Let Q be the following predicate for WT-GPE:
4: Given (B, qc) tgpe-proposed by pj ,
5: Q(B, qc) ≡ (view(B) = v) and (qc is a valid prepareQC )
6: and (B.parent = qc.block) and
7: (view(qc) > view(lock) or qc.block = lock)

8: In each view v, replica pi executes the following algorithm at
every time 0 ≤ t ≤ 3∆ w.r.t. view v, and then enter view v+1.

9: if t = 0 then
10: B ← ⟨vals,H(candidate), v⟩i
11: tgpe-propose (B, prepareQC ) in wT-GPEv with predicate Q

12: // The following events may be triggered after view v
13: upon pi tgpe-decides (B, 0, E(B)) in wT-GPEv do
14: if view(B) > view(candidate) then
15: candidate← B, prepareQC ← E(B)

16: upon pi tgpe-decides (B, 1, R(B)) in wT-GPEv do
17: if view(B) > view(lock) then
18: lock← B, lockedQC ← R(B)

19: upon pi tgpe-decides (B, 2, L(B)) in wT-GPEv do
20: if B has not been a-delivered then
21: a-deliver B and all ancestors of B, commitQC ← L(B)

use the double confirmation scheme for both grade 0 and grade
1. To tgpe-decide block B with grade 0, a replica needs to
collect f + 1 matching ⟨ECHO⟩ messages and f + 1 matching
⟨WINNER1⟩ messages for B. Meanwhile, to tgpe-decide B with
grade 1, a replica needs to collect f + 1 matching ⟨READY⟩
messages and f + 1 matching ⟨WINNER2⟩ messages for B.

In our protocol, we can distinguish the two scenarios for p4
in Figure 1. Namely, we introduce one change on top of the toy
construction: each replica additionally broadcasts a ⟨WINNER1⟩
message at t = 2∆ for the block from the leader. In scenario 1
(Figure 1a), p1 and p3 do not detect any equivocation, so they
send ⟨WINNER1⟩ messages for block B2 at t = 2∆. When p4
wakes up after 3∆, it receives the ⟨WINNER1⟩ messages due to
the message delivery assumption. Therefore, p4 can now gpe-
decide B2 with grade 0 according to the double confirmation
mechanism. Now consider scenario 2 (Figure 1b), p1 and p3
detect the equivocation after receiving both B2 and B′

2, so
none of them sends a ⟨WINNER1⟩ message. As p4 has not
received ⟨WINNER1⟩, it does not gpe-decide B2. We show
the proof of Koala-1 in Appendix A and the correctness of
pipelined Koala-1 (with the fast path) in our full paper [39].

Latency and complexity. In the fast path, the latency of our
ABC protocol is 2∆ + 2δ. Specifically, replicas need to wait
for ∆ time in the first two communication rounds of each
WT-GPE instance. In the last two rounds, each replica can
proceed to the next round after collecting a sufficient number
of messages. Meanwhile, the expected latency is 5∆+2δ, as a
block is expected to be a-delivered every two views and each
replica enters the next view as early as 3∆ time has elapsed.

Also, Koala-1 achieves O(κn3+Ln2) communication, where
κ is the security parameter and L is the size of a block.

IV. PARTIALLY SYNCHRONOUS PROTOCOL WITH STABLE
STORAGE

In this section, we focus on the partially synchronous model
assuming the existence of stable storage. As mentioned in the
introduction, a sub-protocol in Ebb-and-Flow briefly mentions
that by assuming GAT, one can use a conventional BFT [5],
[7], [32] to obtain a protocol that tolerates sleepy replicas in
the partially synchronous model. Namely, conventional BFT
protocols are safe in the presence of sleepy replicas and live
after both GAT and GST.

We show that the above statement can be achieved only if
stable storage is assumed and intermediate consensus param-
eters are stored in stable storage. To date, most BFT protocols
known so far do not explicitly discuss what should be stored
in stable storage as it is usually out of the scope of the
consensus problem. We show that without explicitly storing
the intermediate parameters, conventional BFT may not be
safe and live in the presence of sleepy replicas while retaining
the n ≥ 3f + 1 assumption, even assuming both GST and
GAT. Intuitively, this is because if an honest replica does not
persist its intermediate status during the protocol, its status
might not be resumed after it sleeps and later becomes awake.
Even if the replica synchronizes with all honest replicas after
it becomes awake, the protocol may still not be correct.

In particular, we prove the following impossibility result
and we show the proof in Appendix C.

Theorem 1. In the partially synchronous model, any BFT
protocol cannot handle sleepy replicas under the n ≥ 3f + 1
assumption without the stable storage, where f is the number
of byzantine replicas and n is the total number of replicas.

In this section, we use HotStuff as a case study and show
an attack on safety without assuming stable storage. Due to
the space limitation, we provide an overview of HotStuff
in our full paper [39]. We show that while one can simply
make conventional BFT tolerate sleepy replicas by asking each
replica to store all intermediate parameters in stable storage,
we offer a much cheaper approach where only two parameters
need to be stored. As stable storage is expensive [22], [28],
[29], our approach can then complement BFT in production
systems in terms of supporting sleepy replicas.

A. A Case Study of HotStuff

We present a case study of HotStuff in Figure 3 with
four replicas among which p2 is faulty. We show that if
no stable storage is assumed, safety can be violated. In the
period of asynchrony, we consider that an adversary (i.e.,
a network scheduler) manipulates the network, the same as
the assumption made by asynchronous protocols [1], [2], [6].
Note that in a partially synchronous network, we can assume
the existence of a network scheduler during the asynchronous
period. However, the network becomes synchronous after GST.
Additionally, the adversary controls the replicas that may
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(c) The faulty leader p2 creates a fork that extends Bh−1 in view v
and is able to collect a QC with votes from p2, p3, and p4. Safety
is violated as p1 delivers Bh and p3 and p4 deliver B′

h.

Fig. 3: A case study of HotStuff. In particular, with no stable
storage (no intermediate consensus parameters are stored in
stable storage), HotStuff does not achieve safety in the pres-
ence of sleepy replicas.

become asleep. In this case, the asleep replicas are still honest
but just cannot process any messages when they sleep. Under
these assumptions, the attack proceeds as follows.

In view v−1, as shown in Figure 3a, p1 is the leader and it
proposes block Bh. After p1 collects a commitQC, it delivers
block Bh and replicas p1, p2, and p3 become locked on Bh.
Here, the network scheduler delays the messages received by
p4. Therefore, although p4 is honest, it has not received any
messages for Bh. After that, p3 becomes asleep.

As shown in Figure 3b, replicas then enter view v and p2
becomes the leader. p3 becomes awake in view v. As p3 does
not have stable storage, it loses its lockedQC . As a result,
lockedQC is set as the genesis block B0. In view v, the leader
p2 is faulty and proposes a new block B′

h that extends Bh−1

(the parent block of Bh−1 is Bh). As B′
h is conflicting with

Bh, p1 considers the proposal B′
h invalid and will not vote for

B′
h. However, p2, p3, and p4 can vote for B′

h, as p2 is faulty
and the lockedQC of p3 and p4 is not conflicting with B′

h.

Finally, as illustrated in Figure 3c, replica p1 delivers block
Bh and replicas p3 and p4 deliver block B′

h where B′
h and Bh

are conflicting, violating the safety property of the protocol.

Remark 1. We assume that the adversary manipulates the
network and the replicas that go to sleep. In practice, even if
the adversary does not manipulate the network and the replicas
that go to sleep, the scenarios may still happen, e.g., during
network asynchrony or server crash.

Remark 2. Although we present a concrete example using
HotStuff, almost all partially synchronous BFT protocols use
a variant of commit-lock-prepare paradigm [5], [32], [35].
Our attack is thus generic to almost all (if not all) partially
synchronous BFT. Since we already provide a formal proof
of the impossibility result, we omit the generalization of the
attack in our paper.

B. HotStuff-mSS: A Fully-Fledged Protocol under the Stable
Storage Assumption

Based on the discussion above, a natural solution to build
a protocol under the n ≥ 3f + 1 assumption is storing all
intermediate consensus parameters in stable storage. However,
the system performance might also be degraded significantly.
Therefore, an interesting research question to answer is:

Under the n ≥ 3f+1 and stable storage assumption, can we
transform a conventional BFT protocol to one that tolerates
sleepy replicas and stores minimum intermediate consensus
parameters in stable storage?

We use HotStuff as an example and show that the minimum
requirement for stable storage is the view number and the
lockedQC . We use HotStuff-mSS to denote this protocol.
Namely, if the current view number is lost when an honest
replica falls asleep, the replica can only catch up with other
replicas to learn the latest view number after waking up. It is
possible that the replica re-enters the same view before it fell
asleep. In this case, the replica might vote for a conflicting
block with the one it has voted for (before falling asleep).
Thus, two conflicting qc could be generated in the same view,
violating the safety property. To ensure safety within a view,
the highest view v when a replica has cast a vote should be
stored in stable storage.

Meanwhile, the attack described in Figure 3 shows that
safety across views might be violated if a replica loses its
lockedQC . We show that storing lockedQC in stable storage
is sufficient to ensure safety across views. In particular, if a
block B is delivered, a quorum of replicas becomes locked on
B. To deliver a block B′ conflicting with B, at least one honest
replica of the quorum must have voted for B′. Since the honest
replica already sets its lockedQC as B, it will never vote for
a block conflicting with B. Consider the example mentioned
in Figure 3. p3 stores its lockedQC for block Bh in stable
storage before it goes asleep. When p3 becomes awake at the
beginning of view v, it restores lockedQC for Bh from its
stable storage. In view v, leader p2 proposes a new block B′

h

that extends Bh−1 (Bh’s parent block). As B′
h is conflicting

with Bh, replica p1 and p3 do not consider the proposal B′
h

valid and will not vote for B′
h. Thus, only p2 and p4 can vote

for B′
h. prepareQC , precommitQC or commitQC cannot be

formed for B′
h, so no honest replicas will deliver block B′

h.
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V. KOALA-2: PARTIALLY SYNCHRONOUS PROTOCOL
WITHOUT STABLE STORAGE

We study partially synchronous protocols that tolerate
sleepy replicas without the stable storage assumption. We
require n ≥ 3f + 2s + 1 if GAT is not assumed, and
n ≥ 3f + s+1 if GAT is assumed. We discuss below that the
bounds are tight.

When GAT is not assumed, n ≥ 3f+2s+1 and a Byzantine
quorum of ⌈n+f+1

2 ⌉ is sufficient. This is because every two
Byzantine quorums have at least one overlapped honest and
awake replica. Also, the number of awake replicas must be
equal to or greater than the quorum size, i.e., n − f − s ≥
⌈n+f+1

2 ⌉. Meanwhile, if GAT is assumed, the bound can be
lowered to n ≥ 3f + s + 1. This is mainly because under
the GAT assumption, there exists some point after which all
honest replicas are awake. Let β1 be the quorum size and
β2 be the number of messages a recovering replica needs to
receive. The upper bounds of β1 and β2 are: β1 ≤ n− f and
β2 ≤ n − f − s. To ensure safety, β1 and β2 should have
at least f + 1 overlapped replicas. In this way, at least one
honest replica is in common. Thus, β1 + β2−n ≥ f +1, i.e.,
n ≥ 3f + s+ 1.

Still using HotStuff as an example, we transform the proto-
col into Koala-2, a BFT protocol that tolerates sleepy replicas.
The main workflow remains almost the same as in HotStuff.
We only need to adjust the quorum size of the main protocol
and modify the view change protocol (i.e., leader election) to
incorporate a timeoutQC mechanism. Besides, we introduce
a new recovery protocol for asleep replicas to catch up after
they recover. An asleep replica first enters the recovering status
and completes the recovery protocol before it becomes awake.

A. Overview of Koala-2

We now present the Koala-2 protocol without the GAT
assumption. Given the bound on n, f , and s, we only need to
change the quorum size of HotStuff from n− f to n− f − s.
The main technical challenge we solve is to ensure that any
honest replica that recovers will vote for the correct block(s).
This is not easy, as asleep replicas may become awake at any
time. Without stable storage, we need to ensure all recovered
replicas maintain the latest state so safety is not violated.

We provide a modified view change protocol and a recovery
protocol to achieve the goal above. The technical building
blocks include a timeoutQC mechanism and an atomic QC
acquiring mechanism. The timeoutQC mechanism ensures
that a recovering replica obtains at least the state in the view it
fell asleep. Meanwhile, the atomic QC acquiring mechanism
ensures that each recovering replica obtains the highest QC
that is necessary to ensure the safety of the system.

B. The Modified View Change Protocol and the Recovery
Protocol

In this section, we present the modified view change pro-
tocol (Algorithm 5) and our new recovery protocol (Algo-
rithm 6).

Algorithm 5 Modified view change protocol (for replica pi).
1: Let cv be the current view number.
2: upon the timer of cv expires do
3: broadcast ⟨TIMEOUT, cv⟩i
4: upon receiving f + 1 ⟨TIMEOUT, cv⟩∗ do
5: stop the timer of cv and broadcast ⟨TIMEOUT, cv⟩i
6: upon receiving n− f − s ⟨TIMEOUT, v′⟩∗ such that v′ ≥ cv do
7: timeoutQC ← the set of n− f − s ⟨TIMEOUT, v′⟩∗
8: broadcast ⟨ADVANCE-VIEW, v′, timeoutQC ⟩i
9: send ⟨NEW-VIEW, v′+1, prepareQC ⟩i to leader of view v′+1

10: cv ← v′ + 1
11: upon receiving a timeoutQC tc of a view v′ ≥ cv do
12: timeoutQC ← tc
13: broadcast ⟨ADVANCE-VIEW, v′, tc⟩i
14: send ⟨NEW-VIEW, v′+1, prepareQC ⟩i to leader of view v′+1
15: cv ← v′ + 1

The modified view change protocol. The modified view
change protocol is triggered when a timeout occurs during
the normal case operation. When a replica pi experiences a
timeout in a view v, it stops the normal case operation and
broadcasts a ⟨TIMEOUT, v⟩i message. A collection of n−f−s
matching ⟨TIMEOUT⟩ messages from different replicas forms a
timeoutQC . After receiving a timeoutQC of view v, pi enters
view v+1. To expedite the view change process, pi broadcasts
the ⟨TIMEOUT, v⟩i message once receiving f + 1 ⟨TIMEOUT⟩
messages of view v. When pi receives the timeoutQC of view
v, it forwards the timeoutQC to all replicas.
The recovery protocol. The protocol proceeds as follows:
• Obtaining timeoutQC . A recovering replica pi first

sends ⟨RECOVERY-1⟩ to all replicas. Upon receiving the
⟨RECOVERY-1⟩ message, any awake replica will respond to
pi the latest timeoutQC (via a ⟨ECHO-1⟩ message). Once
receiving n− f − s timeoutQC , pi selects the one with the
highest view number vh. Then pi waits for a timeoutQC
of a view v ≥ vh + 2 before entering the next step.
• Atomic QC acquiring mechanism. After receiving a
timeoutQC tc for a view v ≥ vh + 2, pi sets its lo-
cal timeoutQC as tc, and sends ⟨RECOVERY-2, tc⟩i to all
replicas. Any awake replica that receives this message will
first start the view change protocol and proceed to view
view(tc) + 1 (if not yet). Then the replica sends to pi
a ⟨ECHO-2, cv , (prepareQC , lockedQC , commitQC )⟩ mes-
sage, where cv is the current view number. Also, the replica
sends to pi all delivered blocks, the block B corresponding
to prepareQC , and all ancestors of B. When pi receives
n − f − s valid ⟨ECHO-2⟩ with view numbers higher than
vh+2, it sets its lockedQC as the highest lockedQC among
the messages, sets its prepareQC as the highest prepareQC ,
and sets its commitQC as the highest commitQC . Then,
pi delivers the block corresponding to commitQC and
all its ancestors. pi also sets the current view number as
view(timeoutQC ) + 1 and wakes up.

Correctness and complexity. We prove the correctness of
Koala-2 in our full paper [39] and sketch the correctness here.
Safety is guaranteed via the timeoutQC mechanism and the
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Algorithm 6 Recovery protocol for HotStuff (for replica pi).
1: Let cv be the current view number, pqc be the prepareQC , lqc

be the lockedQC , and cqc be the commitQC .
2: as a recovering replica
3: broadcast a ⟨RECOVERY-1⟩i message
4: wait for n− f − s ⟨ECHO-1, timeoutQC ⟩∗
5: vh ← the view number of the highest timeoutQC

among received ⟨ECHO-1⟩ messages
6: wait for a timeoutQC tc such that view(tc) ≥ vh + 2
7: timeoutQC ← tc
8: broadcast ⟨RECOVERY-2, tc⟩i
9: wait for n− f − s ⟨ECHO-2, v′, (pqc, lqc, cqc)⟩∗ where:

pqc is a prepareQC , lqc is a lockedQC , cqc is a commitQC ,
and v′ > vh + 2

10: lockedQC ← the lockedQC with the highest view number
among received ⟨ECHO-2⟩ messages

11: prepareQC ← the prepareQC with the highest view number
among received ⟨ECHO-2⟩ messages

12: commitQC ←the commitQC with the highest view number
among received ⟨ECHO-2⟩ messages

13: deliver the block corresponding to commitQC
and all its ancestors

14: cv ← view(timeoutQC ) + 1
15: send ⟨NEW-VIEW, cv , prepareQC ⟩i to the leader of cv
16: set status to awake and rejoin the main protocol’s execution
17: as an awake replica
18: upon receiving ⟨RECOVERY-1⟩j do
19: send ⟨ECHO-1, timeoutQC ⟩i to pj

20: upon receiving ⟨RECOVERY-2, timeoutQC ⟩j do
21: if view(timeoutQC ) ≥ cv then
22: start view change and enter view(timeoutQC ) + 1

23: send ⟨ECHO-2, cv , (pqc, lqc, cqc)⟩i to pj
24: forward to pj all delivered blocks, the block B

corresponding to prepareQC , and all ancestors of B

recovery protocol. Suppose that an honest replica pi fell asleep
in view v. During recovery, pi must obtain a timeoutQC with
a view number of at least v − 2, i.e., if the highest received
timeoutQC is formed in view vh, vh ≥ v − 2. According to
the recovery protocol, pi waits for a timeoutQC tc with view
number of at least vh + 2 and then enter view view(tc) + 1,
i.e., it enters view vh+3 ≥ v+1. Thus, pi will not vote twice
for blocks in the same view, so safety is achieved. Meanwhile,
liveness roughly follows that of HotStuff, as we only modify
the quorum size. The recovery protocol is non-blocking, as
a recovering replica can complete the protocol and obtain a
prepareQC no lower than its lockedQC before it fell asleep.

Koala-2 achieves O(κn2) communication, where κ is the
security parameter. The recovery protocol achieves O(κn +
lnL) communication, where L is the size of a block and l is
the length of the longest chain corresponding to a prepareQC .

VI. IMPLEMENTATION AND EVALUATION

We implement Koala-1, MMR [12], HotStuff [7], and
Koala-2 in Golang2. Our implementation involves around
8,500 LOC for the protocols and about 1,000 LOC for
evaluation. We use gRPC as the communication library. We

2Part of our codebase can be found at: https://github.com/Spongebob-bea
r/Koala-NDSS-AE or https://doi.org/10.5281/zenodo.16956543

TABLE III: The latencies of Koala-1 and MMR.

Protocol The number of
Byzantine replicas

Expected
latency (ms)

Best-case
latency (ms)

Koala-1
f = 10 5019.70 2117.80
f = 20 5272.74 2400.75

MMR [12]
f = 10 11194.71 4000.00
f = 20 13668.65 3999.96

use ECDSA to realize the authenticated channel and use
SHA256 as the underlying hash function. We use LevelDB3

to implement the stable storage.
We evaluate the performance of our protocols on Amazon

EC2 using up to 91 virtual machines (VMs). We use m5.xlarge
instances for our evaluation. The m5.xlarge instance has four
virtual CPUs and 16GB memory. We evaluate protocols in
both LAN and WAN. Unless otherwise mentioned, we report
the results in the WAN setting, where replicas are evenly
distributed in up to six regions: us-west-2 (Oregon, US),
us-east-2 (Ohio, US), ap-southeast-2 (Sydney, Australia), ap-
northeast-1 (Tokyo, Japan), sa-east-1 (São Paulo, Brazil), and
eu-west-1 (Ireland).

We conduct experiments under different network sizes and
batch sizes. We use f to denote the network size. For Koala-1
and MMR, we use n = 2f +1 replicas in total, assuming that
all replicas remain awake. For HotStuff, we use n = 3f + 1
replicas. For Koala-2, we use n = 3f+2s+1 replicas, and we
vary s to report the performance. We use b to denote the batch
size, where a leader proposes b transactions in each block. The
default transaction size is 250 bytes.

Koala-1 vs. MMR. We evaluate the best-case latency and
expected latency of Koala-1 and MMR for f = 10 and f = 20.
As both protocols assume a synchronous network, we evaluate
them in the LAN setting, where all instances are launched in
the us-west-2 (Oregon, US) region. We set ∆ as one second.
For each experiment, we report the average latency of a-
delivering 200 blocks. As shown in Table III, the latency of
MMR is consistently higher than that of Koala-1. Specifically,
the best-case latency of Koala-1 is about 56.5% that of MMR
and the expected latency of Koala-1 is about 41.7% that of
MMR. This matches with our theoretical results in Table II.

HotStuff under different storage options. We evaluate
three modes to support our result in Sec. IV: all consensus
parameters are stored in stable storage (the default solution to
build sleepy consensus with n = 3f + 1 setting); minimum
parameters are stored (i.e., HotStuff-mSS); no intermediate
parameters are stored (sleepy consensus cannot be achieved
in the n = 3f + 1 setting).

We show the latency vs. throughput for f = 10, 20, 30
in Figures 4a, 4b, and 4c. For each f , the performance is
the highest if no consensus parameters are stored in stable
storage and the lowest if all consensus parameters are stored
in stable storage. This is expected as stable storage involves

3https://github.com/syndtr/goleveldb
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(a) Latency vs. throughput of different
stable storage options for f = 10.
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(b) Latency vs. throughput of different
stable storage options for f = 20.
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(c) Latency vs. throughput of different
stable storage options for f = 30.
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(d) Throughput of Koala-2 for s = 10.
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(e) Throughput of Koala-2 for s = 20.
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(f) Throughput of Koala-2 for s = 30.

Fig. 4: The performance of HotStuff under different storage options (Sec. IV) and the performance of Koala-2 (Sec. V) with
different numbers of sleeping replicas.

hard disk I/O. In contrast, the performance of HotStuff-mSS is
already very close to that of storing no consensus parameters
in stable storage, especially when f is large. When f = 30,
the peak throughput of HotStuff-mSS is 44.3% higher than
that of storing all consensus parameters and 20.4% lower than
that of storing no consensus parameters.

Performance of Koala-2. We show the throughput of Koala-
2 for s = 10, 20, 30 in Figures 4d, 4e, and 4f, respectively.
View change is started every 5 seconds. We make s replicas
fall asleep in the middle of the experiment and immediately
start the recovery procedure afterward.

Our results show that our recovery procedure introduces
short-lived throughput fluctuation. When the recovery proce-
dure begins, the throughput of an awake replica degrades to
at most 53.4% of the average throughput. This is because
replicas need to synchronize their latest timeoutQC with the
recovering replicas. However, the degradation only lasts for
a short period as our recovery procedure only involves four
communication steps. Moreover, the throughput fluctuation
does not become more obvious as s grows. This result shows
that our recovery mechanism is efficient.

We also show the latency of the recovery protocol in
Figures 4d, 4e, and 4f. The recovery time is 9.25s for s = 10,
9.89s for s = 20, and 10.38s for s = 30. This is expected
since the recovery protocol requires a recovering replica to
wait for two subsequent view changes.

Koala-2 vs. HotStuff without stable storage. We assess the
throughput of Koala-2 and HotStuff without stable storage and
show the results in Figure 5. We focus on the failure-free
case, since HotStuff without stable storage is not safe or live
in other cases. We fix f = 10 and vary the number of sleepy
replicas s. For HotStuff, the total number of replicas is fixed at
n = 3f +1 = 31. For Koala-2, the number of replicas is n =

HotStuff Koala-2
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Fig. 5: The performance comparison between Koala-2 and
HotStuff without stable storage.

3f+2s+1. Our results show that when s = 0, the throughput
of both protocols is nearly identical. As s increases, Koala-
2’s throughput decreases. This is because Koala-2 requires a
larger number of replicas when s increases, leading to a higher
communication overhead.

Demo of double spending attack. Our attack in Sec. IV-A
can be adapted into a double-spending attack against decen-
tralized payment systems that use partially synchronous BFT
consensus. We implement a demo of a decentralized payment
system to simulate the double-spending attack. We configure
the consensus layer using three different protocols: HotStuff
without stable storage, HotStuff with minimum consensus
parameters stored (i.e., HotStuff-mSS), and Koala-2.

We use four replicas when running HotStuff and six replicas
when running Koala-2. In both cases, replica 0 is designated as
the leader of view 0 and is Byzantine. Also, an honest replica
falls asleep upon receiving the fifth block and wakes up after a
few seconds. When running HotStuff without stable storage, as
shown in Figure 6, the sleepy replica delivers a new block after
waking up, and the block consists of a transaction that causes
double spending. This validates the result in Sec. IV-A. When
running HotStuff-mSS and Koala-2, as shown in Figure 7 and

12



The delivered history
before falling asleep

Wake up
The delivered history
after falling asleep

Fig. 6: The double-spending attack to HotStuff without stable
storage. Before sleep, an honest replica delivers a block at
height 1, containing a transaction where replica 0 transfers
40 tokens to replica 1. After the replica falls asleep and later
wakes up, it delivers a new block at height 1, containing a
transaction where replica 0 transfers 40 tokens to replica 2. In
this way, a double-spending attack is performed successfully.

Wake up

The delivered history
before falling asleep

Wake up

The delivered history
after falling asleep

Fig. 7: HotStuff-mSS defends against the double-spending
attack. When the sleepy replica recovers, it restores its
lockedQC and view number from stable storage. After waking
up, it delivers blocks that extend the block before it falls
asleep. Thus, the double-spending attack fails.

Figure 8, no double spending is caused. This is expected by
our analysis in Sec. IV-B and Sec. V.

VII. ADDITIONAL RELATED WORK

Synchronous BFT and sleepy consensus. Under the un-
known participation model, sleepy consensus can only be
achieved in a synchronous network [9]. Many recent sleepy
consensus focus on lowering the latency [10], [12]. A recent
work by D’Amato et al. [13] achieves lower latency than
MMR, but a new stable participation assumption is introduced.
Goldfish [40] achieves 4∆ latency under a high participation
level (i.e., ha/n is high), but exhibits much longer latency
than MR in the worst case.

There are some variants of sleepy consensus. Gafni and
Losa [11] studied Byzantine agreement in the sleepy model

The delivered history
before falling asleep

(a) When the sleepy replica recovers, it collects the latest timeoutQC
from awake replicas and enters view view(timeoutQC ) + 3.

Wake up
The delivered history
after falling asleep

(b) During recovery, the replica collects the latest lockedQC from
awake replicas. After waking up, it delivers blocks that extend the
block before it falls asleep. The double-spending attack fails.

Fig. 8: Koala-2 defends against the double-spending attack.

that achieves constant latency. A recent work by D’Amato,
Losa, and Zanolini [41] studies asynchrony resilience for syn-
chronous sleepy consensus. The idea is to make a synchronous
protocol safe and live under intermittent asynchronous periods.

Our protocols can be viewed as BFT that also tolerates
sleepy replicas. Different from sleepy consensus, we assume a
known ha. The assumptions we made about the known ha are
stronger than sleepy consensus. Namely, sleepy consensus only
assumes that at each point, over half of the awake replicas are
honest, but the number of awake honest replicas is unknown.
Our requirement on ha might require a larger number of
awake honest replicas compared to sleepy consensus. Although
our assumptions are stronger, they are realistic and useful
in practice. Indeed, in most industrial systems, most replicas
are awake. For instance, the participation rate of Ethereum is
99.8%4 out of over a million replicas.

Variants of consensus in the unknown participation
model. There are some variants of consensus where n is
unknown [42]–[44]. In these works, each replica is not directly
connected to all replicas in the system when the system starts.
These works do not handle sleepy replicas.

Dynamic BFT. Dyno [34] studies dynamic BFT in the
partially synchronous model, where replicas may join and
leave the system. Khanchandani and Wattenhofer [45] study
Byzantine agreement when both n and f are unknown and
replicas can join and leave the system. MITOSIS [46] provides
a dynamic sharding approach. This line of work assumes that
honest replicas that still participate in the system are always
awake. In contrast, we assume sleepy replicas where honest
replicas in the system may go asleep.

4Data source (accessed in Jul 2025): https://www.rated.network/
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Sleepy replicas vs. crash-recovery model. Before MR, all
sleepy consensus protocols assumed message delivery, as
defined in Sec. III. MR pointed out that such an assumption
might be strong. As a solution to remove the assumption, a
recovery protocol is proposed for replicas that fall asleep to
catch up with awake replicas. Accordingly, all sleepy con-
sensus protocols known so far without the message delivery
assumption can be considered protocols that tolerate both
Byzantine failures and crash-recovery failures [10], [12], [13].
Consensus in the mixed failure model. Several work study
protocols with both Byzantine failures and crash failures [18]–
[21]. In the partially synchronous network, UpRight [20]
implements a BFT protocol assuming n ≥ 3f +2c+1, where
c is the number of crash failures. Scrooge [18] presents a
fast Byzantine agreement protocol that requires n ≥ 4f + 2c.
SBFT [19] provides a BFT-SMR protocol assuming n ≥
3f +2c+1. In the synchronous network, a recent work [21]
proves a lower bound of n ≥ 2f + c + 1. In contrast, our
model considers both Byzantine failures and sleepy replicas.
As replicas may lose their state after they become asleep,
the model we consider is more challenging compared to prior
works. The bound we show in the partially synchronous model
without GAT is n ≥ 3f + 2s+ 1, which resembles that with
Byzantine and crash failures.
Diskless crash recovery. Consensus in the crash-recovery
model has been studied for crash fault-tolerant protocols [47]–
[49]. Most protocols rely on the stable storage assumption.
Protocols without the stable storage assumption are also
known as protocols in the diskless crash recovery (DCR)
model [50]. Aguilera, Chen, and Toueg [51] discuss under
what conditions stable storage is necessary. Michael, Ports,
Sharma, and Szekeres [50] provide a generic approach that
transforms protocols in the crash-recovery model (with stable
storage) to the DCR model. All these works consider benign
crash failures. In contrast, our Koala-2 protocol can be con-
sidered as the first BFT protocol in the DCR model.

VIII. CONCLUSION

We study consensus with Byzantine failures and sleepy
replicas in the known participation model, where all awake
replicas are aware of the minimum number of awake honest
replicas. Such a model has practical implications for systems
where honest parties might crash and later recover. We provide
three results in both synchronous and partially synchronous
networks.
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[47] E. Jiménez, J. L. López-Presa, and M. Patiño-Martı́nez, “Consensus
in anonymous asynchronous systems with crash-recovery and omission
failures,” Computing, vol. 103, no. 12, pp. 2811–2837, 2021.

[48] M. Hurfin, A. Mostefaoui, and M. Raynal, “Consensus in asynchronous
systems where processes can crash and recover,” in SRDS, 1998, pp.
280–286.

[49] M. Backes and C. Cachin, “Reliable broadcast in a computational hybrid
model with byzantine faults, crashes, and recoveries,” in DSN, vol. 3,
2003, pp. 37–46.

[50] E. Michael, D. R. Ports, N. K. Sharma, and A. Szekeres, “Recovering
shared objects without stable storage,” in DISC, 2017, pp. 36:1–36:16.

[51] M. K. Aguilera, W. Chen, and S. Toueg, “Failure detection and consen-
sus in the crash-recovery model,” Distributed computing, vol. 13, pp.
99–125, 2000.

APPENDIX A
PROOF OF KOALA-1

Proof of our VT-GPE. We begin with the correctness of our
VT-GPE protocol shown in Algorithm 1. We split the graded
delivery property into graded delivery-1 and graded delivery-2
for our proof.

Lemma 1 (External Validity). If an honest replica tgpe-
decides (B, ∗, ∗) such that B ̸= ⊥, at least one honest replica
has verified B and Q(B, σ) holds at it, where σ is the proof
of B.

Proof. If an honest replica pi tgpe-decides (B, ∗, ∗), pi holds
valid E(B), i.e., pi receives f +1 matching ⟨ECHO⟩ messages
for B. At least one of the ⟨ECHO⟩ messages is from an honest
replica. This replica must have verified B before echoing B,
thus Q(B, σ) holds.

Lemma 2 (Consistency). If an honest replica tgpe-decides
(B, ∗, ∗) and another honest replica tgpe-decides (B′, ∗, ∗),
B = B′.

Proof. Assuming that pi tgpe-decides (B, ∗, ∗) and pj tgpe-
decides (B′, ∗, ∗) and B ̸= B′. According to Lemma 1,
Q(B, ∗) holds for at least one honest replica p1 and Q(B′, ∗)
holds for at least one honest replica p2. In this case, p1 must
have sent an ⟨ECHO⟩ message for B at t = ∆ and p2 must
have sent an ⟨ECHO⟩ message for B′ at t = ∆. As each honest
replica sends an ⟨ECHO⟩ message for block B only if B is a
winning input, p1 must have forwarded B at t = ∆. Similarly,
p2 has forwarded B′ at t = ∆. Therefore, every honest replica
must have received ⟨INPUT⟩ messages for both B and B′ by
t = 2∆. At most one of these two inputs could be chosen as
the winning input by any honest replica at t = 2∆.

Suppose the B is chosen by all honest replicas after t = 2∆.
No honest replicas will send ⟨WINNER1⟩ or ⟨READY⟩ messages
for B′ at t = 2∆. No honest replicas will send ⟨LOCK⟩
messages for B′ at t = 3∆. Since replicas need to receive
⟨WINNER1⟩, ⟨READY⟩, or ⟨LOCK⟩ messages from at least one
honest replica to tgpe-decide block B′ with grade 0, 1, and 2,
none of them would tgpe-decide B′, a contradiction.

Corollary 1. If an honest replica receives a valid E(B) and
W1(B) for a block B and another honest replica receives a
valid E(B′) and W1(B

′) for a block B′ with view(B) =
view(B′), B = B′.

Proof. Suppose view(B) = view(B′) = v. According to the
protocol, an honest replica pi will tgpe-decide B in VT-GPEv

when it receives a valid E(B) and W1(B) for B. Similarly,
another honest replica pj will tgpe-decide B′ in VT-GPEv
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when it receives a valid E(B′) and W1(B
′) for B′. Due to

Lemma 2, B = B′.

Lemma 3 (Graded Delivery-1). If an honest replica tgpe-
decides (B, 1, ∗), any honest replica tgpe-decides (B, 0, ∗).

Proof. If an honest replica p1 tgpe-decides (B, 1, ∗), it must
have received at least f + 1 valid ⟨READY⟩ messages for B
and at least one honest replica p2 has broadcast the ⟨READY⟩
message for B at t = 2∆. Before p2 sent the ⟨READY⟩
message, it must have collected a valid E(B) (i.e., f + 1
⟨ECHO⟩ messages) and forwarded E(B). Therefore, at t ≥ 3∆,
every honest replica can collect a valid E(B).

Let the proposer of B be p3. Below we prove that all honest
replicas must have observed a winning input for B at time
t = 2∆. Firstly, according to the protocol, replica p1 must have
received at least f +1 valid ⟨WINNER2⟩ messages for B when
it tgpe-decides B. In this case, an honest replica must have
observed a winning input for B at t = 3∆. Therefore, at t =
2∆, no honest replica could observe a VRF evaluation higher
than the VRF evaluation generated by p3. Furthermore, no
equivocation by p3 is detected. Meanwhile, all honest replicas
must have received the ⟨INPUT⟩ for B by t = 2∆. This is
because p2 already has |E(B)| ≥ f + 1 by t = 2∆ so at
least one honest replica has previously set the ⟨INPUT⟩ message
for B as its winning input by t = ∆. As the honest replica
forwards the ⟨INPUT⟩ message, any honest replicas awake at
t = 2∆ must have considered the ⟨INPUT⟩ message for B as
their winning input and sent ⟨WINNER1⟩ messages for B.

Since at least ha = f + 1 honest replicas are awake at
t = 2∆, any honest replicas awake at time t ≥ 4∆ must have
|E(B)| ≥ f + 1 and |W1(B)| ≥ f + 1 and then tgpe-decide
(B, 0, ∗).

Lemma 4 (Graded Delivery-2). If an honest replica tgpe-
decides (B, 2, ∗), any honest replica tgpe-decides (B, 1, ∗).

Proof. If an honest replica p1 tgpe-decides (B, 2, ∗), it must
have received at least f +1 valid ⟨LOCK⟩ messages for B and
at least one honest replica p2 has sent a ⟨LOCK⟩ message for
B at t = 3∆. Before p2 sent the ⟨LOCK⟩ message, it must
have collected a valid R(B) (at least f +1 matching ⟨READY⟩
messages) and forwarded R(B). Therefore, at t ≥ 4∆, every
honest replica can collect a valid R(B).

Let the proposer of B be p3. Below we prove that all honest
replicas must have observed a winning input for B at time t =
3∆. Firstly, when p1 tgpe-decides B, it must have observed
a winning input for B at t = 4∆. Therefore, at t = 3∆, no
honest replica could observe a VRF evaluation higher than
that of p3 or any equivocating messages by p3. Meanwhile,
all honest replicas must have received the ⟨INPUT⟩ message
for B by t = 3∆. This is because p2 has |R(B)| ≥ f + 1 at
time t = 3∆ and at least one honest replica has previously
sent a ⟨READY⟩ message at time t = 2∆. The honest replica
must have forwarded the ⟨INPUT⟩ message for B at t = 2∆.
As a result, all honest replicas awake at t = 3∆ must have

considered the ⟨INPUT⟩ message for B as their winning input
and sent ⟨WINNER2⟩ messages for B.

Since at least ha = f + 1 honest replicas are awake at t =
3∆, any honest replicas awake at any t ≥ 4∆ have |R(B)| ≥
f+1 and |W2(B)| ≥ f+1 and then tgpe-decide (B, 1, ∗).

Lemma 5 (Validity). With a probability of α > 1/2, all honest
replicas tgpe-decide (B, 2, ∗) where block B is tgpe-proposed
by an honest replica.

Proof. As at least ha = f + 1 honest replicas are awake
at time t = 0 and there are at most f faulty replicas, with
probability α > 1/2, an honest replica’s VRF evaluation will
be the highest among all awake replicas. Let the replica be
p1 and the block p1 tgpe-proposes be (B, σ), where σ is the
proof of block B. After p1 broadcasts its ⟨INPUT⟩ message, all
honest replicas awake at time t ≥ ∆ will set their winning
input as the ⟨INPUT⟩ message for B.

As p1 is an honest replica, Q(B, σ) holds at all honest
replicas. It is then not difficult to see that any honest replica
broadcasts a ⟨ECHO⟩ message for B at t = ∆. Each honest
replica awake at t = 2∆ observes a valid E(B) such that
|E(B)| ≥ f + 1 and broadcasts a ⟨WINNER1⟩ and a ⟨READY⟩
message for B. Similarly, all honest replicas awake at t = 3∆
observe a valid R(B) such that |R(B)| ≥ f + 1. Therefore,
they broadcast ⟨WINNER2⟩ and ⟨LOCK⟩messages for B. Finally,
at t ≥ 4∆, all awake honest replicas will observe a valid L(B)
such that |L(B)| ≥ f + 1 and then tgpe-decide (B, 2, ∗).

Proof of Koala-1. We now prove the correctness of our ABC
protocol. In this section, we prove the correctness of the
protocol shown in Algorithm 2 (the none-pipelining mode).

Theorem 2 (Safety). If an honest replica a-delivers a block
B1 before it a-delivers a block B2, then no honest replica
a-delivers the block B2 without first a-delivering B1.

Proof. Suppose an honest replica p1 a-delivers block B1

before it a-delivers B2 and another honest replica p2 a-delivers
B2 before it a-delivers B1. W.l.o.g., we assume that p1 a-
delivers B1 after it tgpe-decides (B1, 2, ∗) in VT-GPEv1 . Ad-
ditionally, p2 a-delivers B2 after it tgpe-decides (B2, 2, ∗) in
VT-GPEv2 . Obviously, v1 ̸= v2, as otherwise the consistency
property of VT-GPE is violated. W.l.o.g, let v1 < v2.

According to Lemma 4, if p1 tgpe-decides (B1, 2, ∗) for
block B1 in VT-GPEv1 , any honest replica pi (including p2)
tgpe-decides (B1, 1, ∗) in VT-GPEv1 . Furthermore, if pi tgpe-
decides (B1, 1, ∗) in VT-GPEv1 , by Lemma 3, any honest
replica will tgpe-decide (B1, 0, qc1) in VT-GPEv1 . According
to our protocol, qc1 is a valid prepareQC with f +1 ⟨ECHO⟩
messages and f + 1 ⟨WINNER1⟩ messages for B1. Therefore,
any honest replica that enters the next view v1 + 1 uses qc1
as input. Furthermore, since any honest replica (including p2)
tgpe-decides (B1, 1, ∗), the replica sets its lock as B1. The
lock parameter can be set as a block that extends B1 unless
the replica becomes unlocked on B1.

Since p2 tgpe-decides (B2, 2, ∗) in view v2 and is locked
on B1 in view v1 (where v1 < v2), there must exist a view
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v3 such that the following holds: 1) v1 < v3 ≤ v2; 2) an
honest replica tgpe-decides a block B3 in VT-GPEv3 and B3 is
conflicting with B1; 3) a valid qc3 is provided by the proposer
of block B3 and Q(B3, qc3) is verified by at least one honest
replica (as otherwise the external validity property of VT-GPE
is violated). Here, view(qc3) < v3 as qc3 is a proof included
in the proposal of block B3. W.l.o.g., suppose v3 is the first
view such that the above holds.

Towards a contradiction, we now show that B3 cannot be
a conflicting block of B1. According to our protocol, qc3 is
a prepareQC and consists of f + 1 matching ⟨ECHO⟩ and
f + 1 matching ⟨WINNER1⟩ messages. Any honest replica
pk that verifies Q(B3, qc3) in view v3 must have a lock
(denoted as lockk) such that view(lockk) ≤ view(qc3). As
view(lockk) ≥ v1, now there are two cases: view(qc3) = v1
and view(qc3) > v1. If view(qc3) = v1, qc3 and qc1
must have been formed in VT-GPEv1 , where qc1 is a valid
prepareQC for B1. Both qc3 and qc1 have been received
by any honest replica awake after view v1. According to
Corollary 1, the block for qc3 is B1, a contradiction. If
view(qc3) > v1, we have v1 < view(qc3) < v3 ≤ v2. The
block corresponding to qc3 is a conflicting block with B1 and
has been verified by at least one honest replica. However, we
already assume that v3 is the first view such that a conflicting
block is proposed, a contradiction.

As B3 cannot be a conflicting block of B1, block B2 extends
block B1. However, p2 a-delivers B1 after it a-delivers B2, a
contradiction.

Theorem 3 (Liveness). If an honest replica a-broadcasts a
message m, then all awake honest replicas eventually a-deliver
m.

Proof. We first prove that any block (B1, qc) tgpe-proposed
by any honest replica p1 in a view v1 can be verified by all
honest replicas such that Q(B1, qc) holds. At the beginning
of view v1, B1 extends the candidate of p1 and qc is
a prepareQC of candidate. As p1 broadcasts an ⟨INPUT⟩
message for (B1, qc) in VT-GPEv1 , all awake honest replicas
eventually receive the ⟨INPUT⟩ message for B1. According to
the graded delivery-1 property of VT-GPE, in any VT-GPEv

such that v < v1, if any honest replica tgpe-decides a block
B with grade 1, p1 must have tgpe-decided (B, 0, ∗) and
set its candidate as B. Therefore, the view number of p1’s
candidate must be equal to or higher than that of the lock
of any honest replica in view v1. Q(B1, qc) thus holds at any
honest replica.

According to the validity property of VT-GPE, with a
probability of α > 1/2, all honest replicas will tgpe-decide
(B, 2, ∗) for a block B in a VT-GPE instance. With trivial
input dissemination, honest replicas can broadcast their a-
broadcast messages and any honest replica can a-broadcast
the messages that have not been a-delivered. It is then not
difficult to see that any message m a-broadcast by an honest
replica will eventually be a-delivered within a constant number
of views.

APPENDIX B
PRACTICAL RECOVERY PROTOCOL FOR KOALA-1

In Koala-1 presented in Sec. III, we have assumed stable
storage and message delivery. In this section, we provide a
practical recovery protocol to remove this assumption. Similar
to prior works [10], [12], the recovery protocol is used for
recovering replicas (that become awake after sleeping) to catch
up with awake replicas.

We follow the notations used by prior works and define
a third status (besides awake and asleep) called recovering.
An asleep replica first enters the recovering status before it
becomes awake. The recovery period lasts for Γ ≥ 2∆ time.
In practice, the value of Γ may be adjusted by each replica
depending on the amount of data it needs to receive.

We present the recovery protocol for Koala-1 in Algo-
rithm 7. When a replica pi enters the recovering status at time
t, it first computes the current view number v through the
global synchronous clock. Then it sends a ⟨RECOVER, v, t⟩i
message to all replicas, starts a timer with a duration of Γ,
and waits for the reply from other replicas. Upon receiving
an ⟨RECOVER⟩ message before t + ∆, each replica responds
by sending to pi all its local parameters at t+∆, along with
the VRF evaluation and the proof that were included in the
same message when candidate was proposed. Additionally,
the replica also sends to pi all a-delivered blocks, the ancestors
of candidate, and all messages it receives for view v. When
the timer of pi expires, pi updates each of its local parameters
to the latest valid one it has received, e.g., QC with the highest
view number. For the pipelined Koala-1 protocol, multiple
prepareQC with the highest view number can be formed. In
such cases, pi sets its prepareQC as the one with the highest
VRF evaluation. After updating the local parameters, pi a-
delivers the block B corresponding to commitQC and all
ancestors of B. It then sets its status as awake.

Sketch of correctness. By using the recovery protocol, we
can remove the assumptions on stable storage and message
delivery. This is mainly because every recovered replica is able
to collect all the information needed to ensure the correctness
of the protocol. In particular, suppose an honest replica pi
recovers at time t in view v. If a block B is a-delivered in a
view v′ ≤ v, our recovery protocol ensures that pi sets its lock
as a block no lower than B. In this way, safety is achieved.
Namely, if B is a-delivered in view v′ < v, the graded delivery
property of VT-GPE (or WT-GPE) ensures that all awake
honest replicas set their lock as B at the end of view v′. Thus
any replica that recovers after view v′ (including pi) must
receive a lock no lower than B from awake replicas. If B is
a-delivered in view v, pi will set its lock as B in VT-GPEv (or
wT-GPEv), as pi receives all messages of view v. Therefore,
safety will never be violated. Similarly, if an honest replica is
locked on block B in view v′ ≤ v, all awake honest replicas
must set their candidate as B at the end of view v′ and
pi must collect a candidate such that candidate = B or
view(candidate) > v′. Therefore, liveness can be achieved.
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Algorithm 7 Recovery protocol for Koala-1
1: Replica pi executes the following algorithm.
2: upon going online at time t do
3: Let v be the current view.
4: broadcast ⟨RECOVER, v, t⟩i
5: upon the timer expires do
6: prepareQC ← the received prepareQC

with the highest view number
7: if multiple prepareQC exist for this view then
8: prepareQC ← the prepareQC

with the highest VRF evaluation
9: candidate← the block corresponding to prepareQC

10: lockedQC ← the received lockedQC
with the highest view number

11: lock← the block corresponding to lockedQC
12: commitQC ← the received commitQC

with the highest view number
13: a-deliver the block corresponding to commitQC

and all its ancestors
14: set status to awake and participate in the protocol’s execution

15: // respond to a recovering replica
16: upon receiving ⟨RECOVER, v, t⟩j before time t+∆ do
17: if pi is awake at t+∆ then
18: send to pj candidate, candidate’s ancestors,

the VRF evaluation and proof included in the same
⟨INPUT⟩ message when candidate was proposed,

prepareQC , lock, lockedQC , all a-delivered blocks,
commitQC , and all received messages of view v

The communication complexity of the recovery protocol is
O(κn3+Ln2+ lnL), where L is the size of a block, κ is the
security parameter (i.e., length of the digital signature), and
l is the length of the longest chain led by candidate of an
awake replica.
Discussion. In our protocols, the leader of a view proposes
a new block without including the preceding blocks. We
assume that any replica missing the preceding blocks can fetch
them from other replicas. In practice, to ensure that all the
missing blocks can be fetched, we need to revise the recovery
mechanism so that replicas forward all received blocks to
the recovering replicas. Prior work such as MR [10] uses a
similar approach. Such a recovery mechanism may incur high
communication costs. It is still an open question whether a
more efficient approach can be obtained.

APPENDIX C
PROOF OF IMPOSSIBILITY RESULT

Theorem 1. In the partially synchronous model, any BFT
protocol cannot handle sleepy replicas under the n ≥ 3f + 1
assumption without the stable storage, where f is the number
of byzantine replicas and n is the total number of replicas.

Proof. Towards a contradiction, we assume that there exists
a partially synchronous BFT protocol that tolerates at least
one sleepy replica without the stable storage assumption. We
construct the strategy of the adversary as follows. First, let
one honest replica p1 sleep and wake up at a chosen time.
The other replicas remain awake throughout the execution.
Second, divide the awake honest replicas into two groups (each

of size f ) G1 and G2. Third, let there be a large network delay
between the two groups until GST.

We use Q1 to denote G1, all Byzantine replicas, and p1.
We use Q2 to denote G2 and all Byzantine replicas. It is not
difficult to see that |Q1| = 2f+1 and |Q2| = 2f . The quorum
size is 2f + 1.

We now describe an execution E1 of the protocol. The
adversary lets replicas in Q1 communicate with each other
with no network delay (while Q1 and Q2 have a large network
delay before GST). Without loss of generality, we assume a
block B1 is a-broadcast by a replica in Q1. Since |Q1| equals
the quorum size, all replicas in Q1 eventually a-deliver B1 at
some time t1. At time t2 where t1 < t2 < GST , p1 falls asleep
and immediately wakes up. Since no stable storage is assumed,
p1 does not hold any proof that B1 is a-delivered. Meanwhile,
replicas of Q2 begin executing the protocol at time t2. After
time t2, the adversary lets p1 communicate with Q2 with no
network delay but p1 and replicas in Q1 have a large delay.
Now, |Q1 \ {p1}| = 2f and |Q2 ∪ {p1}| = 2f + 1. Without
loss of generality, we assume a block B2 is a-broadcast by a
replica in Q2. As |Q2 ∪ {p1}| equals the quorum size, p1 has
to first a-deliver B1 before it can a-deliver B2, as otherwise
the safety property of the protocol is violated.

There exists another execution E2. In this execution, repli-
cas in Q2 begin executing the protocol at time t2. Again, let
p1 fall asleep and immediately wake up at t2. After that, the
adversary lets p1 communicate with replicas in Q2 with no
network delay (while Q1 \ {p1} and Q2 ∪ {p1} still have a
large network delay before GST). In this case, if B2 is a-
broadcast, p1 may choose to a-deliver B2.

It can be seen that E1 and E2 are indistinguishable for p1.
However, p1 needs to first a-deliver B1 before a-delivering
B2 in E1 for the protocol to be safe while p1 does not need
to a-deliver B1 in E2.

We would like to comment that even if we have a powerful
“recovery” protocol for p1 in E1, the protocol may still be
problematic. Indeed, as the number of honest replicas in Q1

is f , p1 cannot learn any proof that B1 is a-delivered. For
example, the adversary can simply let p1 communicate with
Byzantine replicas and replicas in Q2. Besides, if up to 2f+1
honest replicas fall asleep (as assumed in Ebb-and-Flow), it is
not clear to us how the quorum size (the number of messages
a recovering replica should wait for) should be determined for
the recovery protocol when no stable storage is involved.

APPENDIX D
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The artifact is available in a public Git
repository at https://github.com/Spongebob-bear/Koala-NDS
S-AE. All the scripts and source codes can also be accessed
via the stable URL: https://doi.org/10.5281/zenodo.16956543.

2) Hardware dependencies: The experiments can be run
on a single machine that simulates all servers and clients. The
recommended hardware specifications are:
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• CPU: 4 or more cores
• Memory: 16 GB or more
• Disk: 40 GB of free space (SSD recommended)

3) Software dependencies: The artifact can be tested on
Ubuntu Server 22.04 LTS. The following software is required:

• Go1.19.4 linux/amd64 or a higher version
• Python 3.10 or a higher version
• Standard build tools: git, wget, zip, unzip, psmisc

All dependencies can be installed using the system’s package
manager (apt) or downloaded from the internet. We have
provided the related commands in README.md.

4) Benchmarks: None.

B. Artifact Installation & Configuration

The installation process involves setting up the required
software dependencies, cloning the repository, and building
the project.

1. Install the software dependencies listed above using apt
and wget as detailed in the README.md file.

2. Git clone the repository:
git clone https://github.com/Spongebob-

bear/Koala-NDSS-AE.git

3. Enter the root directory of the project:
cd Koala-NDSS-AE

4. Switch to the stable version:
git checkout ndss-ae-2

5. Build the project:
./scripts/build offline.sh

Detailed commands are provided in the README.md file. After
a successful build, you will find the executables (server,
client, ecdsagen) in the root directory of the project.

C. Major Claims

• (C1): HotStuff-mSS achieves higher throughput and
lower latency compared to HotStuff that stores all con-
sensus parameters in stable storage, and achieves lower
throughput and higher latency compared to HotStuff that
stores no parameters in stable storage. This is validated by
experiment (E1), which reproduces the results described
in Figures 4a-4c, Section 6 of the paper.

• (C2): HotStuff without stable storage is vulnerable to a
double-spending attack. This is proven by the experiment
(E2), which reproduces the results described in Figure 5,
Appendix J of the paper.

• (C3): HotStuff-mSS can defend against the double-
spending attack. This is proven by the experiment (E3),
which reproduces the results described in Figure 6, Ap-
pendix J of the paper.

• (C4): Koala-2 can defend against the double-spending
attack. This is proven by the experiment (E4), which
reproduces the results described in Figure 7, Appendix
J of the paper.

D. Evaluation
We conduct four experiments: HotStuff with different stor-

age options (E1), the double-spending attack on HotStuff
without stable storage (E2), the double-spending attack on
HotStuff-mSS (E3), and the double-spending attack on Koala-
2 (E4). E1, E2, E3, and E4 are used to validate Claim C1, C2,
C3, and C4, respectively.

1) Experiment (E1): [HotStuff with different storage op-
tions] [10 human-minutes]: We assess latency and throughput
for HotStuff under three storage options, i.e., all consensus
parameters are stored in stable storage, minimum parameters
are stored (i.e., HotStuff-mSS), and no intermediate parameters
are stored.

[Notes on scaled-down experiments] The results reported in
Figure 4a-4c of our paper require access to the Amazon EC2.
In this artifact appendix, we present the procedure of scaled-
down experiments using a single machine, which launches four
server replicas and one client process.

[How to] Run the following script from the project’s root
directory.

For HotStuff that stores all parameters in stable storage:
./scripts/run experiment 1.sh 1 50

For HotStuff-mSS:
./scripts/run experiment 1.sh 2 30

For HotStuff that stores no parameters in stable storage:
./scripts/run experiment 1.sh 3 30

The first argument selects the specific sub-experiment. The
second argument specifies the duration (in seconds) the script
waits for the experiment to complete. The script will first set
up the correct configuration, start the 4 server processes, and
then launch the client. After starting the script, wait for some
time (i.e., the duration specified in the second argument). The
script will automatically terminate all processes and calculate
the average performance results.

[Results] The scripts will print the throughput and latency
of HotStuff at the final line. The following is expected to be
shown on the terminal:
[Output] Print the performance of the sleepy replica
throughput(tps):4643.004716981132,

latency(ms):698.544117647059↪→

Based on our tests on a machine with 4 vCPUs, 16 GB
RAM, and 40 GB SSD, the expected performance of HotStuff-
mSS relative to the baselines is as follows. Throughput should
be approximately 2.4x that of storing all consensus parameters,
and 64% that of storing no parameters. Latency should be
about 42% that of storing all parameters and 1.7x that of
storing no parameters.

On different hardware, the results are expected to vary. Vari-
ations in CPU or storage speed (e.g., using a mechanical disk
instead of an SSD) are expected to be the major factors that
affect the evaluation results. However, the trend is expected to
hold, which is sufficient to validate Claim C1.

2) Experiment (E2): [Attack on HotStuff without stable
storage] [5 human-minutes]: This experiment aims to repro-
duce the result shown in Figure 5 of the paper, showing that
HotStuff storing no consensus parameters in stable storage is
vulnerable to a double-spending attack.
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[How to] Run the following script from the project’s root
directory.

./scripts/run experiment 2 1.sh

[Results] The script will first show the setup and client
transaction submissions. The crucial part of the output is the
log from the sleepy replica (replica 2), which will be printed
on the terminal. The following sequence of events is expected
to be printed, which confirms a successful double-spending
attack.

First, the replica commits the first transaction
{From:0,To:1,Value:40} within a block of height 1
before going to sleep.
13:39:41 [!!!] Ready to output a value for height 2
...
13:39:41 {"View":0,"Height":1,"TXS":[...,{"ID":100,
"TX": {"From":"0","To":"1","Value":40"},...}]}
...
13:39:41 Falling asleep in sequence 5...

After waking up, the replica commits a conflicting trans-
action {From:0,To:2,Value:40} within a block of height
1.
13:39:41 sleepTime: 3000 ms
13:39:44 Wake up...
13:39:44 Start the recovery process.
13:39:44 recover to READY
13:39:46 [!!!] Ready to output a value for height 1
...
13:39:46 {"View":0,"Height":1,"TXS":[...,{"ID":100,
"TX":{"From":"0","To":"2","Value":40"},...}]}

This sequence demonstrates that the sleepy replica has
committed two conflicting blocks at the same height, thus the
double-spending attack is performed successfully. The output
log should align with Figure 5 in our paper, validating Claim
C2.

3) Experiment (E3): [Attack on HotStuff-mSS] [5 human-
minutes]: This experiment aims to reproduce the result shown
in Figure 6 of the paper, demonstrating that HotStuff-mSS can
defend against the double-spending attack.

[How to] Run the following script from the project’s root
directory.

./scripts/run experiment 2 2.sh

[Results] You should observe the following sequence of
events:

Before sleep, the sleepy replica commits the first transaction
{From:0,To:1,Value:40} within a block of height 1.
13:58:35 [!!!] Ready to output a value for height 2
...
13:58:35 {"View":0,"Height":1,"TXS":[...,{"ID":100,
"TX":{"From":"0","To":"1","Value":40"},...}}]}
...
13:58:35 Falling asleep in sequence 5...

After waking up, the replica knows it was in view 0 and
initiates a view change to view 1. The log after the recovery
shows that the blocks from view 0, including the one with the
first transaction {From:0,To:1,Value:40}, are included in
the ledger.
13:58:38 Wake up...
13:58:38 Start the recovery process.
13:58:38 recover to the view 1
13:58:38 Starting view change to view 1
...

13:58:45 [!!!] Ready to output a value for height 3
...
13:58:45 {"View":0,"Height":1,"TXS":[...,{"ID":100,
"TX":{"From":"0","To":"1","Value":40},...}]}

This sequence demonstrates that the double-spending attack
fails. The output log should align with Figure 6 in our paper,
validating Claim C3.

4) Experiment (E4): [Attack on Koala-2] [5 human-
minutes]: This experiment aims to reproduce the result shown
in Figure 7 of the paper, showing that Koala-2 can defend
against the double-spending attack.

[How to] Run the following script from the project’s root
directory.

./scripts/run experiment 2 3.sh

[Results] Following sequence of events is expected:
Before sleep, the sleepy replica commits the first transaction

{From:0,To:1,Value:40} within a block of height 1.
14:17:50 [!!!] Ready to output a value for height 2
...
14:17:50 {"View":0,"Height":1,"TXS":[...,{"ID":100,
"TX":{"From":"0","To":"1","Value":40},...}]}
...
14:17:50 Falling asleep in sequence 5...

After waking up, the replica wakes up and executes the
recovery protocol of Koala-2. The log shows the messages
received by the sleepy replica, such as ECHO1 and ECHO2
messages. The log after recovery shows that the blocks
from view 0, including the one with the first transaction
{From:0,To:1,Value:40}, are included in the ledger.
14:17:54 Wake up...
14:17:54 Start the recovery process.
14:17:54 receive a ECHO1 msg from replica 0
...
14:18:00 receive a TQC msg from replica 1 for view 0
14:18:00 Starting view change to view 1
...
14:18:10 receive a TQC msg from replica 5 for view 1
14:18:10 Starting view change to view 2
...
14:18:10 receive a ECHO2 msg from replica 4
...
14:18:10 recover to READY
...
14:18:10 [!!!] Ready to output a value for height 198
...
14:18:10 {"View":0,"Height":1,"TXS":[...,{"ID":100,
"TX":{"From":"0","To":"1","Value":40},...}]}

This sequence demonstrates that the double-spending attack
fails. The output log should align with Figure 7 in our paper,
validating Claim C4.
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