Light into Darkness: Demystifying Profit Strategies
Throughout the MEV Bot Lifecycle

Feng Luof, Zihao Lif, Wenxuan Luof, Zheyuan Het, Xiapu Luo™ |
Zuchao Maf, Shuwei Song? and Ting Chen™

TThe Hong Kong Polytechnic University
iUniversity of Electronic Science and Technology of China

Abstract—Due to the transparency of permissionless block-
chain, opportunistic traders can extract Maximal Extractable
Value by competing for profit opportunities and making the
process never stop by creating MEV bots. However, this be-
havior undermines the consensus security and efficiency of
the blockchain system. Therefore, understanding the behavior
strategies of MEYV bots is crucial to protect against their harm.
Unfortunately, existing work focuses on macro-measurements of
the MEV market, and the specific types and distributions of MEV
bot strategies remain unknown. In this paper, we conduct the first
systematic study of MEV bot profitability strategies by developing
APOLLO, a tool to analyze fine-grained strategies throughout the
entire lifecycle of bots. Our large-scale analysis of 2,052 MEV
bots yields many new insights. In particular, we first introduce 20
code-level strategies employed by bots in the wild, take the first
step towards smart contract de-obfuscation to discover strategies
hidden in obfuscated bot code, and discover five specific types of
transactions that bring profit opportunities to MEV bots.

I. INTRODUCTION

DeFi has revolutionized the finance industry with the total
locked-in value of over 79.3B USD [1]. The operation of DeFi
relies on smart contracts, and transactions broadcasted on the
permissionless blockchain are publicly visible on the global
P2P network [2], [3], [4]. Therefore, once a user sends a
profitable transaction, opportunistic traders can prioritize their
transactions by increasing the transaction fee, appropriating
the trading opportunity, and earning additional revenue from
it, which is known as MEV [5], [6], [7], [8], [9].

Competition among MEV extractors undermines the fair-
ness and security of the blockchain. First, competitors vie
for an advantage by competitively raising transaction fees,
leading to a gas war that implicates normal users [10]. Second,
MEYV causes users or liquidity providers to suffer unexpected
asset losses, damaging blockchain economic security [9]. Fur-
thermore, MEV competition incentivizes financially rational
miners to fork the chain, thus deteriorating the blockchain
consensus security [6]. Notably, MEV extractors, in pursuit of
higher revenues, deploy MEV bots on the chain. These bots

¥ The corresponding authors.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230506
www.ndss-symposium.org

\ 3.21M USD

Arbitrage-Sandwich Arbitrage Arbitrage-Liquidation
74 bots 1,283 bots 53 bots
11.20M USD 30.22M USD 3.92M USD
Sandwich Liquidation
605 bots 291 bots
13.67M USD 11.08M USD
Sandwich-Liquidation Arbitrage-Sandwich-Liquidation
4 bots 4 bots

3.21M USD

J

Fig. 1. MEV bot statistics

perpetually seek opportunities and execute MEV transactions
during their lifecycle. This means that the impacts of MEV
are ever-present, and the bot’s high-frequency transactions ex-
acerbate network and block congestion, causing considerable
time delays for other transactions [6], [8].

There are already a number of studies on MEV. Some
researchers have dissected the rationale for different types
of MEV and performed quantitative analyses to evaluate the
tangible risks that MEV poses [8], [11], [12], [13], [14]. In
addition, researchers have proposed methods to detect MEV
behavior and contributed methods to mitigate the impact
of individual MEV types, providing critical insights to the
blockchain community [15], [5], [16].

Despite substantial studies on the macro MEV behavior, the
detailed strategies MEV bots employ remain unknown. MEV
bots use sophisticated, hard-to-detect lifecycle strategies that
undermine blockchain fairness to profit. Demystifying these
strategies is crucial as: (1) aids developers in understanding
every action of MEV strategies that could harm blockchain se-
curity in the wild, guiding for building defensive measures; (2)
reveals areas in the DeFi ecosystem that exploitable for profit
and require enhancement; @ helps users understand what
types of transactions expose value and become targets for bots.

In this paper, we conduct the first systematic study of fine-
grained strategies for MEV bots on Ethereum. We conceptu-
alize bots’ entire lifecycle and divide it into birth-running-
death phases. We then define 11 types of strategies spanning
the bot lifecycle, encompassing bot owners’ diverse tactics and
designs. Specifically, in the birth phase, bot owners can inject
code-level strategies S;,q4. into the bot, including embedding
business logic strategies Sjogic, Using obfuscation techniques
to prevent reverse analysis, and using gas optimization strate-
gies Syq to reduce operating costs, and then deploy the bot
to the blockchain. In the running phase, the bot identifies

profitable token exchange paths by analyzing tokens and token
pairs, and performs opportunity discovery by focusing on
catalyst transactions that may yield opportunities. For these op-
portunities, the bot determines the source of initial funding and
the distribution of eventual profits, forming the outline logic. It
then sets specific parameters for the MEV extraction behavior
by balancing risk and profit, and designing the transaction’s
calldata and value fields. The transaction is initiated and
executed through mempool broadcasting or the builder service.
The death phase concludes the lifecycle, occurring when a bot
is decommissioned and ceases transaction activities.

To comprehensively analyze MEV bots, we design
APOLLO, the first tool combining contract code and transac-
tions to analyze bot’s code strategies S.,qe and transaction
incoming strategies S;,. Implementing such a tool is non-
trivial. First, we lack knowledge about Sj.4;. because there
is no ground truth to reveal specific strategy types. To gain
knowledge, manual inspection is inevitably involved to dis-
cover unknown strategies. To reduce manual effort, we use
feature extraction techniques to capture semantic features of
unknown strategies and employ iterative clustering to facilitate
the discovery of new strategy types. Second, due to the
importance of profitability, MEV bot owners likely protect
their bots from Sj,4i. leakage using obfuscation techniques.
The challenge of smart contract de-obfuscation is significant
and has previously relied on manual analysis. To address this,
we take the first step towards contract de-obfuscation. We
design an EVM opcode-based Markov transition matrix and
use a CNN to automatically analyze obfuscated bot bytecode.

Third, identifying catalyst transactions that bring opportu-
nities for MEV bots is an unknown causal analysis problem.
Lack of prior knowledge hinders the design of deterministic
detection patterns. Therefore, we design a semi-automated
prior knowledge harvesting process, which first analyzes his-
torical transactions potentially related to MEV activities using
association rule learning (ARL), and then manually analyzes
the relationships between historical and MEV transactions
with the assistance of ARL-generated rules. We find that large
transactions, transactions involving new altcoins, same sender
transactions following failed transactions, transactions lacking
execution chain check, and transactions with excessive gas
prices can act as MEV catalysts. Based on the knowledge,
we design targeted detection algorithms for these five types of
transactions to automatically detect catalyst transactions.

To unveil the strategies applied by the MEV bots running
in the chain, we use APOLLO to analyze 2,052 MEV bots.
As shown in Fig. 1, these bots consist of 1,283 arbitrage,
605 sandwich, and 291 liquidation bots, which made a total
of 2,516,236 transactions and a total of 40M USD profit.
By analyzing them, we gained a lot of novel insights. For
example, 16.3% (334) of bots employ obfuscation to protect
their code logic from disclosure. 24.7% (506) of bots incor-
porate Sj,gic that perform critical parameter calculations and
strategy choices during trade execution, while 75.3% (1546) of
bots only function as execution agents, relying on invocation
transactions initiated by the off-chain program that contain the

full behavioural logic. In addition, MEV bots can reduce the

execution cost to improve profitability through methods such

as gas optimisation as well as calldata compression.
In summary, this paper makes four contributions.

o Comprehensive MEV bot analysis. We propose APOLLO, a
tool for systematically analyzing MEV bot strategies based
on contracts and transactions. It reveals the strategic details
employed by wild bots that threaten blockchain security.

o Contract de-obfuscation analysis. We propose a new method
based on the opcode Markov transition matrix to analyze
strategies of obfuscated bots.

o New study on catalyst transaction. We design an ARL-
based process to analyze which transactions present profit
opportunities to the MEV bot and discover five types of
catalyst transactions with exploitation risks.

o New insights. We conduct a large-scale analysis of 2,052
MEYV bots. This analysis uncovers the various bot strategies,
yields many new insights, and provides relevant mitigation
suggestions, enhancing the DeFi ecosystem security. We
release materials of our work in https:/github.com/sec-
study-dev/apollo or future research.

II. BACKGROUND
A. Smart Contract and Transaction

Smart contracts are programs that define a set of execution
logic and are deployed to the blockchain after being compiled
into bytecode [17], [18]. Smart contracts automatically execute
according to predefined logic when triggered by a transaction,
and transaction fees are charged based on the executed in-
structions [19], [20]. Transactions pass the target call function
and required parameters through the calldata field, and pass
the amount of native currency (e.g., ETH on Ethereum) to be
transferred to the recipient through the value field [21], [22].

B. Decentralized Finance

AMM. Automated Market Maker exchanges are peer-to-peer
trading platforms that enable users to exchange cryptocurren-
cies without involving a third party. AMMs maintain liquidity
pools containing at least two assets and use specific computa-
tional models to automate trades within these pools [5], [23].
Slippage. It is the discrepancy between the expected and actual
price when trading in AMM. The expected price is determined
based on blockchain state at the time of transaction initiation.
There is a delay between transaction initiation and execution,
during which slippage can occur if the related blockchain state
changes due to other transactions [5]. Therefore, traders typi-
cally set slippage protection for transactions to determine the
maximum acceptable slippage and avoid bad execution prices.
Lending. It allows borrowers to collateralize their deposits to
borrow loanable assets [5]. Lending platforms usually require
over-collateralization, where the value of the collateral exceeds
the assets lent by the borrower [12]. If the value of the
collateral decreases and the collateralization ratio (the value
of the collateral relative to the debt) falls below a specified
threshold, the platform can liquidate the collateral and sell it
at a discount to repay the debt [8].

https://github.com/sec-study-dev/apollo
https://github.com/sec-study-dev/apollo

C. Maximal Extractable Value

MEV is the additional revenue that speculative traders
earn from DeFi by strategically adjusting the gas price to
manipulate the order of transactions [5].

Arbitrage. It profits from changes in market prices by simul-
taneously buying and selling assets in AMMs [13].
Sandwiches. Traders can continuously monitor the blockchain
to find the victim’s pending trades 7y, and then wrap Ty in
two adversarial transactions 7147 and T45. T4 frontruns Ty
to buy the asset at a low price, and T4 backruns Ty to sell
the same asset at a higher price to profit from 73 [8].
Liquidation. It is a way for liquidators to make a profit by
buying collateral below market price on a lending [12].
Proposer-Builder Separation (PBS). PBS is a scheme that
emerged after Ethereum transitioned from Proof-of-Work to
Proof-of-Stake, in which the roles of the proposer (usually the
validator) and the builder are separated [24]. The builder is
responsible for building the sequence of transactions to create
block proposals and submitting them to the validator, who
is responsible for submitting those blocks to the blockchain.
Transaction initiators can send bundles containing their own
transactions as well as other transactions from the Ethereum
mempool to one or more block builders. In addition, a trans-
action initiator can also submit transactions directly through
the mempool without going through a specific builder [24].

D. Smart Contract Obfuscation

Deployers can obfuscate contracts to protect intellectual
property rights or avoid attacks due to business logic leaks.
There are many works devoted to contract obfuscation [26],
[25], [27], [28], and the obfuscation techniques they involve
include the following categories: (1) Control flow obfuscation
(CFO): Alter or complicate the control flow of a program
to make it more difficult to trace or reconstruct the exe-
cution flow. (2) Data flow obfuscation (DFO): Modify the
data domains and structures of a program, including variable
storage and coding obfuscation, combining or splitting variable
obfuscation, and order adjustment obfuscation. (3) Layout ob-
fuscation (LO): Remove irrelevant information from a program
or replace class and method names. 4) Code complexity
(CC): Add redundant and meaningless code. Table I shows the
obfuscation techniques used by existing open source tools.

III. MEV BOT AND STRATEGIES TAXONOMY

MEV bots are on-chain programs that identify profitable
opportunities and execute trades automatically. Existing re-
search identifies two attack surfaces where bots discover
opportunities: (D current block state spiocr and (2) mempool
state Sypempool- FOT D, bots directly monitor the Sp;oc, and
discover exploitable opportunities based on token data. For

TABLE I
EXISTING OBFUSCATION TOOLS
Tool Techniques Object
BiAn [25] CFO, DFO, LO Source code
BOSC [26] CFO, DFO, CC Bytecode
Eshield [27] CFO Bytecode
Evmcodegen [28] CFO, DFO, CC Bytecode

———— =

I »,r Blockchain
e S

Gas . —
. 0x608060405 (= o
optimization
04608060405 ‘

0608060405

Overall logic

—
@.9%0 & &

26004361061
00a75...

Bytecode

0xf643ab8954
0xf643ahR954 MEV bot |
0xf643ab895

|
Self- aciasnezats3 | _ Opportunities discovery || Logic construction)
protection 495abcf... —_—emee == 777717777

de . e m——m—————— ~——— Y —
Brieco “Birth Stage

[Owner
@ @ . abandonment

Bot

| Token Pair Transaction| Initial — Profits

funds allocation

P
transactions | call function funds

——

Packmg bundle Submit

oo s

|

|

|

|

X I

Mempool Builder |
|

|

|

|
|
o
——
|
L

| call parameter

Validators
Transaction initiation

data tradoff

|

|

|

|

| call Risk
Profit decrease |
l

Death Stage Running Stage

Fig. 2. The lifecycle of MEV bots.

(), bots monitor the Smempool>» Which allows the bot to predict
future opportunities since pending transactions, once executed,
change the block state and may spawn new opportunities. For
an opportunity O, the bot can identify a token exchange path
{Ty — paiy T Tpon — pay T, } involving n tokens and profit
through multiple strategies. The bot’s gain from O as Eq.1.

)= R(T)E(T)

Revenue

P(O?SCOdE7StIE *F(O)E(ETH) (1)

—_—
Cost

where S.,qe is a set of code-level strategies, which are
logics implemented by the bot owner within the contract
code and run on-chain during transaction execution. Sy, is a
set of transaction-level strategies, which are execution logics
formulated by the bot owner off-chain that are passed to and
guide the bot’s actions through transactions. R(T;) is the
amount of change in the balance of token T;. E(T;) is the
exchange rate of token 7; to USD. I is the transaction fee
cost. E(ETH) is the exchange rate of Ether. We further define
E[P(O)|/A[P(O)] as the expected/actual gain from O.
Our goal. Comprehensive analysis of the strategies Scoq. and
Stz adopted by the MEV bots exposes how the on-chain bots
discover the opportunity O and how they profit from it.

To achieve this goal, we divide the entire lifecycle of MEV
bots into three stages of birth, running, and death as shown in
Fig. 2, and deeply analyze the strategies of each stage. MEV
bots are written into S.,q. and deployed to the blockchain
in the birth stage, execute MEV transactions based on Sc,qe
within the contract and incoming .Sy, from transactions in the
running stage, and are abandoned to stop activities in the death
stage. For bots, on-chain logic is determined by the Scoqe
within the contract during transaction execution, so it can be
obtained by analyzing the bot contract. Off-chain logic is not
in the contract and is defined off-chain and passed in via Sy,
so it can be obtained by analyzing transaction behavior.

A. Birth Stage

Contracts, once deployed to the blockchain, are immutable,
prompting deployers to inject all code-level strategies Scode
into the bot code before deployment. S.,qe is of two primary
types: business logic strategies Sjo4ic related to MEV extrac-
tion and gas optimisation strategies Sgqs to reduce cost.

@ S1: Business logic strategies. Slogic €Xists in bot contract
bytecode, and anyone can access it due to the blockchain’s
transparency. Attackers can analyze the bot’s Sj,4;c from the
bytecode and perform targeted attacks, causing huge damage
to the bot. On April 3, 2023, multiple MEV bots were attacked
and lost more than $25M [29]. Therefore, cautious developers
use contract obfuscation to prevent Sy, leaks [26], [25].
@ S2: Gas optimization. As shown in Eq. 1, the cost of MEV
bots comes from the transaction fee, which is impacted by
the instructions involved in the contract execution. Therefore,
optimizing gas directly enhances the bot’s profitability by re-
placing the original instruction sequence with an anti-sequence
that performs the same function but requires less gas.

B. Running Stage

This stage is the main working stage of MEV bots, which
executes transactions according to established logic. We fur-
ther divide the stage into four sub-stages: opportunities dis-
covery, logic construction, parameters setting, and transaction
execution, for a more detailed analysis based on different
periods of the bot’s workflow.

1) Opportunities discovery: MEV bots monitor block state
and mempool state to identify exploitable opportunities. We
first define the concept of catalyst transaction.

Definition 1 (Catalyst Transaction): A transaction 7 is a
catalyst transaction for MEV bots if its execution can create
opportunity O, and based on the tokens affected by 7 can find
the suitable strategies S.,qe U S, such that the opportunity O
has an expected profit E[P(O)] > 0.

Due to the transparency of the blockchain, MEV bots can
identify pending transactions predicted to be catalyst transac-
tions from the mempool [30] and perform the corresponding
token exchange operation. Thus, we analyze the opportunity
discovery strategy from the following two perspectives.
© S3: Identify profitable exchange paths. An exchange path
consists of tokens and token pairs. All tokens and associated
pairs form a complex network, with multiple paths between
any two tokens. MEV bots need to identify the appropriate
combination of tokens to maximize profits.

@ S4: Search for catalyst transactions If bots identify a
catalyst 7 that brings an opportunity, they can predict an
exchange path faster based on tokens associated with 7.

2) Logic Construction: After determining the token path,
MEV bots perfect the overall execution logic. This logic
outlines the expected profit process, including the investment
of initial funds, the allocation of profits in the final phase.
@ S5: Initial funds. Initial funding is the token investment
required for MEV bot to perform MEV transactions. In
blockchain, there are two sources of initial funding. First, it
is provided by the bot owner. Second, it is borrowed through
flashloan and returned after the transaction is completed.

@ S6: Profits allocation. Depending on the role, profit
destinations in MEV transactions can be categorized into five
types: MEV bot, transaction sender, builder, validator, and
other addresses. Other addresses may include those used by
the bot owner to hold funds and those of professional MEV

bot code providers, who offer ready-to-use code to the public,
enabling participants without expertise to extract MEV and
take a proportional cut of the profits.

3) Parameters Setting: After the overall logic, the action
details can be clarified by injecting specific parameters.

@ S7: Risk tradeoff. MEV extraction is a prospective be-
havior, as the reserves of all tokens, real-time exchange rates,
and transaction formulas in AMMs are publicly visible. Addi-
tionally, the transaction fee for executing an MEV transaction
can be estimated in advance using the eth_estimateGas
RPC method. Thus, for an opportunity O, the MEV bot can
accurately calculate the theoretically optimal source token
investment OT} that will yield the maximum expected profit
max(E[P(O)]) in the current state. However, the MEV bot
may not select the optimal investment OTj due to risk man-
agement. For example, in a sandwich transaction, OT; might
cause the victim transaction V,,, to trigger slippage protection
due to excessive losses, leading to the failure of the transaction.
Therefore, the actual input RTj of the MEV bot may differ
from OTy. We refer to the difference between RTy and OTj
as the bot’s trade-off between profit and risk, reflecting the
MEYV bot’s consideration of transaction success.

@ S8: Calldata. A transaction’s calldata contains the param-
eters passed to the bot by the transaction initiator, and calldata
length affects the transaction fee. Specifically, processing each
non-zero byte of calldata requires 16 gas, and each zero byte
requires 4 gas [31]. Therefore, professional developers com-
press calldata to reduce costs. For example, each parameter
in Ethereum is passed in a 32-byte format, and parameters
less than 32 bytes are padded with zeros. Therefore, calldata
length can be reduced by eliminating redundant zeros.

© S9: Value. The value field in transactions is commonly
used to transfer ETH. However, we discover that some bots
use value to pass parameters instead of transferring ETH. By
carefully designing value and reading it as function parame-
ters at execution, the calldata can be further compressed.

4) Transactions Execution: Based on the overall logic

and specific parameters, MEV bots submit the transaction in
different ways to extract MEV.
@ S10: Builder distribution. For MEV bots, submitting
transactions via the mempool provides more autonomy and
avoids sharing profits with the builder. Submitting transactions
via the builder reduces the risk of malicious attacks because
transactions are not publicly exposed in the mempool. There-
fore, how to submit transactions is an important strategy.

C. Death Stage

Not all MEV bots are continuously active, and many are
currently inactive on the chain. For an MEV bot, the last
strategy that the owner makes for them is to discard them
under what circumstances.

m S11: Death. Given that MEV bots are profit-driven, it is
reasonable to assume that the reason for their abandonment is
a decline in profitability.

IV. APOLLO
A. Overview

As shown in Fig. 3, APOLLO inputs the transactions and
bytecodes of an MEV bot and then analyzes its strategies
(S1-11) across three stages. Notably, some strategies we aim
to analyze depend on real-time data, such as instantaneous
token prices and reserves. This prevents us from directly using
historical token data provided by data services as in prior
MEV measurement work [8], [15], as these services only
provide data for specific dates or blocks and not for any
time point. Therefore, we design algorithms that reproduce
historical token data at any given moment, allowing us to
replicate the conditions MEV bots faced in the past. Appendix
A show the detailed process and evaluation of the algorithm.
The results show that our algorithm can provide more detailed
and accurate historical data than existing data sources.

B. Birth Stage Strategy Analysis

@ S1: Business logic strategies. Since no current work
analyzes MEV bot business logic strategies Sjogic, there is
a lack of ground truth that reveals the specific type of Sjsgic.
To escape this dilemma, as shown in Fig. 3, for the input
bot bytecode, APOLLO first determines whether it is code-
obfuscated. Iterative learning is performed on unobfuscated
bots to mine refined strategy semantics and complement the
strategy knowledge in the process. Further, APOLLO analyzes
the obfuscated bots based on acquired knowledge.
e Obfuscation judgement. To determine whether bot is obfus-
cated, APOLLO first checks whether the inherent structure of
its bytecode has been modified, then analyzes whether control
flow and data flow are obfuscated. Detailed judgment steps
can be found in Appendix B.
e Unobfuscated bot analysis. APOLLO extracts the instruc-
tion sequences related to profit strategies and embeds the
strategy semantics into the vector space via word embedding.
These embeddings will be used to perform natural clustering
based on distinct strategy semantics through the clustering
algorithm, facilitating unknown strategy type identification.
- Bytecode slicing. Contracts usually contain many instructions
that are not related to profit strategies. These noises hinder the
model to understand the Sj,4i. semantics. To minimize noise
interference, APOLLO slices the bytecode by taint analysis,
keeping only the instructions that reflect the Sj,4i. semantics.
Specifically, APOLLO first simulates bytecode execution to
track the control and data flow [32]. To identify instructions
related to the profit strategy, APOLLO locates instructions that
indicate the token transfer behavior and identifies the transfer
amount and address involved as tainted data sources. In more
detail, there are two types of transfers in a contract: native
token transfers (e.g., ETH) and non-native token transfers (e.g.,
various tokens that follow the ERC protocol). For native token
transfers, it executes a CALL or CALLCODE instruction to get
the transfer amount, sender, and receiver from the stack. For
non-native token transfers, it uses the LOG instruction to record
the transfer event’s amount, sender, and receiver. We use the

amount, sender, and receiver as the taint source and perform a
backward taint analysis. Tracing the arguments and outputs
of all instructions involved in taint propagation to identify
instructions related to profit computation and distribution
strategies. For example, Fig. 4 illustrates a slicing process for
logic related to amount computation.

- Feature extraction. To enable the model to distinguish the
semantics of different unknown strategies, semantic features
represented by the instruction sequences in slices need to be
embedded into the vectors. For this, APOLLO uses representa-
tion learning, a method of automatically mining the intrinsic
features of the data, to perform feature capture. APOLLO uses
spatial pattern models, rather than time series models (e.g.,
LSTM, Transformer) for learning. Because the instructions in
a slice are arranged in the order of execution, the inherent
temporal properties of these instructions have been character-
ized as spatial sequential patterns. Spatial models outperform
time series models for such data by capturing both spatial and
temporal information [33]. Among spatial models, APOLLO
uses CNN because it demonstrates superior performance over
other models with limited datasets [34]. Given the limited
number of bots present in the wild, CNN was chosen to ensure
APOLLO’s performance under these constraints.

As shown in Fig. 3, the feature extraction consists of an
embedding, a CNN, and a fully connected (FC) layer. For input
slices, APOLLO uses skip-gram [35] embeddings to encode
the contextual relevance of the instructions in each slice and
transform them into initialization vectors. Given each initial
embedding, the CNN layer refines the embedding matrix by
stacking the multi-view convolutional and the max pooling
layer to aggregate instruction information. This network struc-
ture facilitates feature extraction as: 1) The convolution layer
that adaptively generates filters of different kernel sizes can ex-
tract the interactions between instructions in different windows
to enrich the captured semantic features. Each filter forms a
new embedding matrix. Concatenating these new embedding
matrices enables the characterization of more fine-grained
strategy semantics. 2) The max pooling layer aggregates local
features to highlight the most important ones.

To facilitate classification, the FC layer performs dimension-
ality reduction to output low-dimensional vectors. APOLLO
builds multi-label classifiers based on multilayer perceptron
(MLP) [36] and trains the model to perform classification. The
initial label used for classification is “unknown”, and APOLLO
assigns initial labels to unrecognizable samples. After discov-
ering new strategy types in each round of clustering analysis,
we extend the new strategy labels to the classifier to guide it
to perform more accurate classification.

- Iterative cluster learning. For S1, APOLLO is analyzed semi-
automatic iteratively. The clustering aims to create effective
groupings for code slices by clustering the corresponding
vectors. Focusing on each group minimizes the manual work
required to identify new strategy types and labels. For the clus-
tering model, we tested four candidates, Genieclust [37], DB-
SCAN [38], HDBSCAN [39], and K-Means [40]. Genieclust
was ultimately chosen for two reasons: 1) Unlike K-Means,

: r
AN P A‘% %> C\uster?: i

"Rn

Two-stage regression

i i i
= Profit ch: |
I o "a L. @090 Cluster 2 ‘ i Os3 Association type i @ss Os6 i rofit change analysis
! label 1/ eratve learning 0D Cluster 1 | ¢ . Type 1 1 <f_ . P ! a
N T S P! o of =1 By vpe2 i @@ @ ! do op
| g ¢ ~ D) i = ! ‘ o
| r not ? | | I !
i fati Type n
7 Ix1 " i o oy | Asschlatlfm rule B v i 1 et flow i !
i ! B Bemataougf! j | Transfer earning I i Flashloan i yad
| E i e Li e Toemgnrues | | detection | &y
i Sices | K om i Detection rules Catalyst Tx i VYNX I !
i ices | Feature ! i W & i i
\ vectors ! B m
i N = i i !
i i - metie ! !
! i i i
i
i
i
|

History loken data
\fwi ~ | Constraint
E . —
,‘ > solver

Price calculation

Function

Optimal
investmen

Optimal

Characterisation of

owner abandonment

and activation of bots

Analysis of

submission
methods

[\

profit

mechanism

5 -

Investment Profit

N

[[order control | fstructure modification]

Profit and gas
consumption analysis

i
|
|
i
i
jump table |
i
i
i
i
i

[Calldata compression|
analysis

e,
g
@su1

]
i
i
i
I
I
I
I
I
I
i
i
i
i
I
I
I
I
I
i
i
i
i
i
I
based compression |
I
I
I
i< Strategies in death

Analysis of value ‘

Builders Mempool

@ s10

@ilfll

Compare Q S8 [9]

Strategies in birth

’ % : MEV bot's contract O@ MEV bot’s transactions

@: Historical transactions

Strategies in running

ﬁ : Profit

: Activated bot : Abandoned bot

N

Fig. 3. Overview of APOLLO.

Genieclust does not require a fixed number of clusters to be
pre-specified for initialization. This makes APOLLO more ro-
bust in scenarios lacking knowledge about the type and number
of strategies. 2) Genieclust is more robust against noisy data
points compared to DBSCAN and HDBSCAN [41]. This can
help APOLLO distinguish semantic features more accurately to
discover unknown strategies. During manual validation, once
new strategy are discovered, the new labels are incorporated
into the CNN model, allowing it to iteratively optimize the
feature learning process for more accurate classification. In
each iteration, we manually analyze only the denser clusters
(i.e., more than 50% of the samples with similar patterns),
while the rest of the clusters move on to the next iteration. This
approach reduces unnecessary analysis costs, especially in the
early running stages of APOLLO, where insufficient strategy
knowledge may lead to inaccurate clustering.

e Obfuscated bot analysis. There is no current research
analyzing obfuscated contracts and the failure rate of existing
methods dealing with obfuscated contracts is close to 100%
[26]. Therefore, to identify strategies for obfuscated bots,
new methods need to be designed. We draw inspiration from
Java de-obfuscation work to address this challenge. Opcode-
based Markov transition matrices are widely used in Java
bytecode de-obfuscation and achieve significant results [42],
[43]. Compared to Java, Solidity opcodes are fewer in number
and more unambiguous in function, e.g., MLOAD in Solidity
is used to load data from memory, whereas LDC in Java can
load constants of various types such as numbers, strings, class
and method references, etc. Therefore, applying the opcode

e
DUPG «-- Put amount on the top of the stack | Taint source |
DUP8 <~ Put address on the top of the stack ‘L7 _* Tainteddata 7}

52_GAS_

[7 CALLk-- Locationpoint | [e

------ DUP2 (x)
PUSH100 oo GT (+, 00)
DUP2 SWAP1 DUP1 (%)

GT SHA3 Slicing ISZERO (%)
DUP1 SLOAD JUMPI (00da, *)
ISZERO DUP2 # DUP2 ()
PUSH2 00da LT LT (+, %)

JJumPr o |

Fig. 4. The process of slicing

Markov transition matrix for contract de-obfuscation makes
sense. Specifically, we design an EVM opcode-based Markov
transition matrix (EOMM), an instruction-level feature that
serves as a semantic feature of the contract. This semantic
feature is constructed using the transfer relationships among
opcodes. Fig. 5 shows the process of APOLLO analyzing the
obfuscated bots. It extracts the EOMM features from the
sequence of opcodes in the bytecode and then uses a CNN
to learn vector representations to detect the bot’s Sjogec.

- EOMM feature. Since code obfuscation does not change
the opcodes themselves, instruction-level EOMM features are
inherently resistant to techniques such as variable or function
name obfuscation [43]. Each opcode in Solidity corresponds
to an 8-bit hexadecimal number. The opcode sequence reflects
the contract’s behavior at runtime [44], so APOLLO extracts
the opcode sequence (Oy,...,0;,...,0,) from the bytecode,
where 7 represents the opcode number. The range of opcode
numbers is from 0x00 to Oxff, i.e., 256 positions. To char-
acterize the opcode collocation relationship, we construct a
256 x 256 Markov transition matrix as the EOMM as shown
in Fig. 5. P, ; = m:’é(gg]q) L denotes the probability of
transiting from opcocfé_zo to dpcode Jj» where ¢(i,7) denotes
the number of transitions from opcode ¢ to j.

- Classification. Since CNN efficiently processes matrix
data [34], we train a CNN to handle the EOMM and perform

Current opcode

-> 00 01 e ff

DUP1 P, P P 00
SWAP2 0,0 0,1 0,255 %
suB Pio P11 .| Passzss | 01 | %
SWAP1 : : : 8
RETURN : : : 8
: : : 8
@

| Pass,0 | Pass,1 | "'|P255.255| ff

bytecode EOMM

Fig. 5. Analysis process for obfuscated bots.

a multi-classification task. Since no usable training dataset
exists, we use currently available tools (cf. Table I) to obfus-
cate all 172 unobfuscated bots (§V-B-@). To generate diverse
training samples, we employed not only single obfuscation
methods from individual tools but also synergistic obfuscation,
combining different methods from various tools. This process
resulted in 4,216 obfuscated samples, which we labeled with
the Sjogic types. Afterward, the trained classifier is embedded
into APOLLO to identify Sj,4i. of obfuscated bots.

@ S2: Gas optimization. Gas optimization aims to replace
the original sequence with an anti-sequence that maintains the
same functionality but requires less gas. Unlike the straight-
forward task of performing gas optimization in the forward
direction, determining whether a contract is gas optimized in
reverse is challenging. This is because anti-sequences, such
as those in the compiler’s built-in optimizations, also appear
in the opcode streams of normal contracts, and no features
can distinguish them. Therefore, APOLLO focuses on 1) the
relationship between the profit and gas cost of MEV bots, and
2) function jump table optimizations that can be explicitly
identified, to serve as a lower bound for the analysis of S2.
e Profit and gas analysis. The average profit and gas cost
of each MEV bot are statistically analyzed to reflect the
relationship between profitability and gas control.

e Jump table optimisation. The bytecode entry has an in-
herent function jump table structure. When making a contract
call, pattern matching is attempted for each function selection
fragment in the jump table until it successfully matches a
function or reaches the end of the table. Each attempt costs
22 gas. There are currently two techniques for jump table
optimization: 1) Jump table order control. Arrange the function
selection fragments in correlation with the frequency of func-
tion calls, so frequently called functions are matched early in
the jump table. 2) Jump table structure modification. Replace
the original fragment with a less costly function selection frag-
ment. For example, {PUSH1 num, EQ, PUSH2 locator,
JUMPI} jumps to the corresponding location locator when
it matches the custom function number num, with an attempt
cost of 19 gas. Thus, APOLLO first checks the bytecode for
the existence of an inherent jump table structure and then
analyzes the jump table gas optimization in two steps. 1) For
bots with inherent structure, APOLLO counts the frequency
of all functions triggered in historical transactions based on
traces, then compares the order of these functions in the jump
table and calculates the gas cost required to call these functions
through the jump table. 2) For bots without an inherent struc-
ture, accurately identifying a custom jump table is challenging.
Therefore, APOLLO executes historical transactions opcode
by opcode and locates {PUSH1 0x00, CALLDATALOAD}, an
unchanging pattern used to find the target function from the
transaction calldata, indicating the start of the function jump
judgment. The transaction execution continues until the first
jump, where the target function is successfully matched and
jumped. We record the opcodes executed during this period
and calculate the gas cost of this function jumping process
based on EVM opcode pricing [45].

C. Running Stage Strategy Analysis

1) Opportunities discovery: This step analyses how MEV
bots identify suitable token exchange paths as well as look for
transactions that may bring them opportunities.
© S3: Identify profitable exchange paths. APOLLO analyzes
MEV bot strategies to identify profitable exchange paths by
examining their selection of tokens and token pairs. (1) For
token, APOLLO identifies token transfer events in MEV trans-
actions by parsing logs [8], [11], [14]. To capture MEV bots’
preferences for specific tokens, APOLLO collects the type
and percentage of tokens involved in each bot’s transactions.
Additionally, APOLLO records profits from transactions using
each token and collects the market capitalization of each token.
This data helps analyze the overall trend between asset size
and MEV profits. (2) For token pair, APOLLO first collects
the from and to addresses in token transfer events, excluding
EOA addresses and retaining only contract addresses. It then
gathers the relevant contract ABIs and identifies the token pairs
involved in the transaction by parsing the token transfer events.
@ S4: Search for catalyst transactions. Our goal of finding
catalyst transactions 7 is to reveal which transactions pro-
vide opportunities for MEV bots and are at risk of being
exploited. Intuitively, a “large” transaction that can “greatly”
alter the asset price is considered a 7 because the resulting
price difference can easily trigger a profit opportunity. This
empirical insight aligns with financial common sense and has
been supported by various studies and reports [8]. However,
no prior work has examined whether transactions with other
characteristics could also serve as 7. We aim to delve deeper
into this area to provide more insights.

It is a challenging task to detect unseen transactional re-
lationships from huge blockchain historical data, especially
when the analysis goal cannot be predefined. To address this
challenge, we design a semi-automatic process for developing
detection methods, as shown in Fig. 6, which consists of
two steps. (1) Association classification (AC), which uses
association rule learning (ARL) [46] to identify historical
transactions with different potential associations to MEV
transactions and classify transactions with similar potential
associations into the same cluster. (2) Cluster analysis and
detection algorithm design, which analyses each transaction
cluster manually, focusing only on relevant transactions to
discover new transactional relationships with minimal manual
effort, and designing the corresponding detection algorithms.
e Associative classification. It is a classification learning
method in data mining [46]. It first uses ARL, an unsuper-
vised machine learning, to generalize the hidden knowledge
(rules) among data, and then constructs classification models
(classifiers) after pruning useless and redundant rules. ARL
aims to mine the associations between different things in a
large database. Compared with other data mining methods
[46], ARL is more likely to find hidden associations, and
the rules learned by ARL are interpretable, which can help
us to perform transactional analyses in 2) and further reduce
manual work. By using all fields of a transaction as attributes

Historic data

Data preprocessing

<
Rule generation

-

DAC

Rule pruning

-

Classification

(@ Analyze and design
detection algorithms

Cluster 1

Cluster 2 Cluster i

P

&g»' [(Algorithm 1] [Algorithm 2 |- Algorithm i |

Fig. 6. The process of designing detection methods for S4.

to describe a transaction object, ARL can learn a set of rules
‘R from a historical transaction set H, and an MEV transaction
set M, where R contains multiple rules R. R is in the form of
R : X =Y, where X is a class of historical transactions in
H that satisfy a certain attribute feature, Y is a class of MEV
transactions in M that satisfy a certain attribute feature, and
there is a potential association between X and Y. Each rule
R represents an unknown potential relationship. Since ARL
may generate redundant rules, we remove useless rules through
a rule pruning process and retain only the high-confidence
rules. By applying rule R for classification, historical and
MEV transactions with the same potential relationship can
be aggregated into a cluster. The exact meaning of this
unknown underlying relationship can be known by analyzing
the transactions in this cluster. Each rule R in R generates a
cluster. Appendix C details the implemented data processing,
rule generation, rule pruning, and classification procedures.
Through this process, we obtain 5 clusters.

e Cluster analysis and detection algorithm design. We
manually analyze transaction clusters to discover new knowl-
edge to explain catalyst transactions. Our design rationale is
threefold. First, each cluster contains transaction groups with
similar relationships. Analyzing clusters directly is more effi-
cient than blindly exploring all historical transactions. Second,
although the classification results of AC have unavoidable false
positives, existing studies prove its false positives rate is lower
than that of traditional classifiers [46], which is enough to help
us effectively reduce the manual effort. Besides, we do not
use the results of AC as detection results but only based on
analyzing a cluster to discover a new unknown relationship
before designing a targeted detection algorithm.

Third, the pruning process narrows the range of attributes of
antecedent transactions, making it easier to focus on attributes
related to potential relationships and thus discover their signif-
icance. For instance, in a cluster of sandwich transactions, the
related rules indicate that the from and to addresses and the
tokens involved in the antecedent transaction, match those in
the subsequent victim transaction, but the transaction status
is failed. This suggests that the prior failed transaction may be
connected to the MEV transaction. Upon examining the error
messages of the failed transactions, we find they failed due
to an insufficient return amount. The return amount is a user-

defined parameter representing the minimum number of rev-
enue tokens minreturn that the user can accept. If the actual
revenue is lower than minreturn, the transaction is reverted.
Users set slippage protection by specifying minreturn, and
the level of slippage protection for a transaction is negatively
correlated with %, where amount is the amount
of tokens the user spends. By parsing the calldata of the
antecedent and victim transactions, we find that the %ﬁf%”
of the antecedent transaction is larger than victim transaction.
This can be explained psychologically: after a user’s profit
transaction fails due to slippage protection, they fear missing
opportunity and hastily initiate a same transaction except slip-
page. However, this behavior may provide a signal of slippage
failure to attackers focusing on historical failed transactions.

Overall, we find 5 types of catalyst transactions. 77: Trans-
actions from the same sender following a failed transaction.
T2: Transactions that lack execution chain check. Based on the
CHAINID instruction, the transaction can check the execution
environment blockchain ID (Ethereum mainnet ID is 1, and
testnet is other values). Since MEV bots usually judge a
pending transaction whether can be exploited by executing it
in advance on the testnet. Therefore, transactions involving the
execution chain check can be avoided from being inspected,
while lack of execution chain check can bring opportunities for
bots. 73: Transactions with excessively high gas prices. Users
usually set higher gas prices for high-profit transactions to be
confirmed quickly, but such transactions indicate to bots the
value of the transaction. 7;: Large transactions. This result
confirms previous empirical insights [8]. 75: Transactions
involving altcoins. Based on the characteristics of T we
found, we design targeted detection algorithms in APOLLO.
Appendix E provides a detailed description of algorithms.

2) Logic construction: This step introduces the initial fund-
ing of the MEV bot and the distribution of profits.
© S5: Initial funds. To analyze flashloan, for each MEV
transaction of a given MEV bot, APOLLO obtains a record
of token transfers in its internal transactions. According to
the principle of flashloan, if there is an internal transaction in
which the lending platform sends tokens to the bot and later the
bot sends tokens back to the lending platform, the transaction
uses a flashloan. Conversely, it means that the initial funding
came from the bot owner.
@ S6: Profits allocation. APOLLO uses the method proposed
by Wu et al. to construct the asset flow for each MEV trans-
action and obtain the address-token state graph [47]. It then
considers the address with increased assets as beneficiaries of
this MEV transaction.

3) Parameters setting: This step analyses the bot’s strate-
gies for controlling risk as well as using parameters.
@ S7: Risk tradeoff. Given an investment, the AMM auto-
matically calculates the revenue based on the token reserves
and predefined formulas. Predefined formulas of all AMMs
are public, and we can recover any historical token reserves
(§A). Thus, for an MEV transaction involving AMMs, we
can establish constraints based on the AMM'’s predefined
formula and solve for the theoretical optimal source token

investment OT{ and the theoretical maximum expected profit
max(E[P(O)]) at the time of the transaction. Appendix D
provides a detailed explanation and examples of constraint
establishment. APOLLO compares OTp, maz(E[P(O)]), to
the actual source token investment RTj, and the actual profit
R[P(O)] of the transactions to reflect the risk trade-off.
©® S8: Calldata. For each bot, APOLLO records the length
of calldata for their MEV bot transactions and uses it as a
metric to visualise the number of parameters. The relationship
between the average length of calldata and profit for each
MEYV bot is then counted.
© S9: Value. APOLLO identify S9 following these steps: (i)
Check if the value field in the transaction is nonzero and
record it as v. (ii) Retrieve the parameters of functions with
depth 1 called by the bots, storing them in list P. Also, store
the values of internal functions called within these functions in
list V. (iii) Compare v to each item in P and V. If V'matches
an item in P but does not match any item in V/, this indicates
that the bot uses value to pass function parameters.

4) Transaction execution: This step analyses the strategies
used by bots for transaction sending and submission.
@ S10: Builder distribution. We obtain all the builder
addresses from Etherscan [48] and EigenPhi [49], and identify
the distribution of each MEV bot’s transactions across different
builders through address comparison. For transactions that
do not involve a builder address, we assume that they are
submitted via mempool.

D. Death Stage Strategy Analysis

m S11: Death. APOLLO first identifies bots that have stopped
being active. If a MEV bot never trades again after a certain
point, we consider it abandoned. Then, for each abandoned
bot b, APOLLO analyses the profit changes over its lifetime
using a two-stage linear regression, a method commonly used
in economics to characterize user behavior through profit
changes [50]. APOLLO divides b’s lifecycle 9:1 into two
parts, and then regresses the profit change curves for each
of the two parts separately and records their slopes k; and
ko. Finally, it records the bots with k; < 0, k2 < 0 and
k1 < kg, which represents b’s overall profit over the lifecycle
has been decreasing and decreases more significantly before
being abandoned. Additionally, APOLLO groups bots based
on their calling addresses to find multiple bots controlled by
the same owner. The degree of overlap in the lifecycles of
these bots is examined to analyze the patterns of use and
abandonment of bots by each owner.

V. EMPIRICAL RESULTS AND EVALUATION

We implement APOLLO in 6,053 lines of Python code and
conduct experiments on a server with an Intel Xeon W-1290
CPU (3.2 GHz, 10 cores), and 128 GB memory to answer four
research questions: RQ1: What strategies are used by MEV
bots and what insights can we gain? (§V-B) RQ2: Accuracy of
APOLLO’s business logic strategy analysis? (§V-C) RQ3: How
do the optimal bot outperform other bots? (§V-D) RQ4: What
defense and mitigation recommendations are there? (§V-E)
RQS5: Time overhead of APOLLO? (§V-F)

A. Data collection

MEY bot. We use existing MEV detection methods to identify
arbitrage, sandwich, and liquidation transactions [15], [8], [7],
which are the most impactful MEVs [8], and categorize the
corresponding contracts into three types of bots based on
transaction type. In this process, we do not perform additional
filtering to ensure data fairness. By collecting data from Jan
2023 to Dec 2024, we collect 1,283 arbitrage, 605 sandwich,
and 291 liquidation bots (74 arb-sand, 53 arb-liq, 4 sand-liq,
4 arb-sand-liq bots). A total of 1,295,829 arbitrage, 1,209,139
sandwich, and 11,268 liquidation transactions.

Trace & Log. We use the debug.traceTransaction ()
[51] of the Ethereum archive node to collect transaction traces
and the eth_getLogs () [52] to collect historical logs.

B. RQI: Strategy analysis results

@ S1: Business logic strategies. APOLLO identifies 334
obfuscated bots (B,;) and 1,718 unobfuscated bots (Bunop)-
Compared to By, all of which have Sjgic, only 172 of
Bunov have Siogic. Bop’s average profit was 32.7% higher
than By,op’s. This shows that obfuscation can effectively
protect the bots’ profits. Overall, 506 (24.7%) bots have Sjo g,
indicating that most bots formulate detailed strategies off-
chain and pass the execution logic to bots via transactions.
Therefore, the bot contract does not have .Sj,4;. and only acts
as an execution agent. Although these bots cannot interact
with other contracts during runtime to obtain real-time data,
the transaction fees for executing data calculations within the
contract are correspondingly reduced. We compare the average
profits of (D bots without Sygic, @ Bop with Sjogic, and B
Bunob With Siogic, and find that (D profitability is lower than
@) but higher than (). Specifically, the average profits of arbi-
trage/sandwich/liquidation bots in () are 57.4%/42.5%/48.2%
lower than those of the corresponding types of bots in (D).
For Sjogic, we find 20 refinement types. Table II shows the
strategy distribution and the impact factor (IF). For a strategy
s. IF = average profit ma{gin 9f bots Wilh s which measures the
’ average profit margin of bots without s°
potential contribution of s to the profitability of the bot. Each
strategy except sg contributes to the profit margin. Although sg
cannot increase the profit margin, it can ensure that there will
be no negative profit by setting a minimum profit threshold.
We observe that for sender checks and recipient determination,
many MEV bots use more complex comparison methods such
as XOR/shift calculations (s11-S13, S16-S19) compared to reg-
ular contracts that typically use hard-coded or calldata direct
comparisons [53]. This is because bots typically manage larger
assets and prioritize security. Additionally, bots employ unique
strategies, such as identifying newly emerging token pairs on
AMMs to check for profit opportunities (s;), pre-calculating
reserves after token swaps to predict future gains (ss), sorting
token pairs by liquidity to prioritize checking high-liquidity
tokens (s3), and incorporating built-in thresholds to detect
price differences or avoid unprofitable transactions (sg, Sg)-
For B,y, flashloan is the most popular strategy, which allows
the bot to trade with more appropriate source token inputs
without regard to its asset limits. For B, ., hardcoded access

TABLE II
SUMMARY OF BUSINESS LOGIC STRATEGIES

No Description Bunob Boy IF
$1 Find new token pairs on AMMs 16/9.3% 42/12.6% 1.08
S92 Expect the reserve of the two tokens after a exchange x — y 45/26.1% 74/22.2% 1.15
s3 Sort the liquidity of token pairs in a fixed list in contracts 14/8.1% 36/10.8% 1.15
z S4 Interact with a decentralised oracle to get the prices of tokens on different exchanges, e.g., Chainlink 37/121.5% | 134/40.1% | 1.04
g S5 Interact with AMM’s contract to get token prices, e.g., Uniswap’s getPrice() 67/40.0% | 152/45.5% | 1.02
& S6 Built-in threshold x to determine if the difference between two prices of a token is greater than x 19/11.0% 45/13.5% 1.12
o s7 | Check whether the calldata of the transaction is a specific value 24/14.0% | 61/18.3% | 1.07
2| sg Built-in threshold «. If the actual profit is less than x% of the expected profit, the transaction is reversed 16/9.3% 71/21.3% 0.76
; S9 Profit recipient is hardcoded in the MEV bot contract 47127.3% 22/6.6% 1.04
) s10 | Profit recipient is specified by the calldata of the transaction 34/19.8% | 106/31.7% | 1.13
g S11 Profit recipient is calculated by bitwise XOR of two variables 12/7.0% 54/16.2% 1.11
:’; s12 | Profit recipient is determined by the return value of an external call 13/7.6% 37/11.1% 1.15
= s13 | Profit recipient is read from storage 12/7.0% 35/10.5% 1.09
z s14 | Set n ratios and transfer proportionally to n profit recipients 19/11.0% 43/12.9% 1.10
3 s15 | Check whether the transaction sender is a constant value 78/45.3% 20/6.0% 1.02
© S16 Check the transaction sender by XOR it with a constant value 23/13.4% 71/21.3% 1.14
s17 | Check the transaction sender by XOR it with an incoming parameter 13/7.6% 84/25.1% 1.12
s18 | Check the transaction sender by comparing it with the result of an XOR operation 17/9.9% 51/15.3% 1.09
s19 | Check the transaction sender by comparing it with the result of a shift operation 10/5.8% 57/17.1% 1.12
s20 | Interact with a lending platform for flash loans 56/32.6% | 205/61.8% | 1.19

Code without business logic strategy 1,546 0 -

Total [1718] 334 [-

control (s15) is most commonly used, in contrast to B,;’s
greater use of complex access control (si6-S19). According
to IF, the latter is more conducive to profitability because it is
more difficult to identify and prevent illegal account access.

Insight 1: Obfuscation is currently only used by a small minor-
ity of bots and can effectively guarantee the bot’s profitability.
For bot deployers, using off-chain strategies is more effective
than using code-level strategies without protection. Most re-
finement strategies help improve profitability, while sg is more
focused on avoiding negative gains and is more suitable for
bots that invest in robustness. Flashloan is the most effective
method for profitability and is the most popular with B,,. For
access control, Byyop prefer hard-coded methods, while B,y
prefer more complex methods based on XOR or shifting.

@ S2: Gas optimization. Fig. 7 shows the relationship
between average gas usage and profit for all bots. It shows
that most bots maintain a relatively balanced gas usage and
profit, while the more profitable bots exhibit significantly
lower gas usage. Conversely, bots with higher gas usage tend
to have very low profits. For jump table optimization, APOLLO
identifies 802 bots that use the jump table order control.
Among them, calls to functions at the top 30% of their function
selector accounted for over 78.4% of their total function calls.
In addition, modifications to the jump table structure are
observed in 103 bots, which use less than 0.1% of their total
gas usage for function selection. Among them, we observe a
new and most efficient modification as shown in Fig. 8. Instead
of using one left opcode sequence for each function, this

leq

Arbitrage
Sandwich
Liquidation

o

IS

N

X

Sl -

0.0 25

Average Profit (USD)

o

KX
5.0

X
7.5 10.0 125
Average Gas Used

15.0 17.5 20.0

1e6

Fig. 7. Relationship between average gas usage and profit

10

approach uses one right sequence to select from 16 functions.
Additionally, Fig. 7 shows that the number of high-profit
transactions is very low. Specifically, transactions yielding
profits over $1,000 account for only 0.014% of all transactions
and contribute 2.21% of total profits. This indicates that low-
profit strategies can compensate through trading volume and
generate higher overall returns than rare high-profit strategies.
Insight 2: Gas optimization can effectively increase profits.
32.1% of bots use jump table order control, which saves an
average of 118.4 gas per transaction compared to arranging
the jump table in the order of the functions in the contract.
For the 6,213,730 transactions involved in these 802 bots, a
total of 73,570,563 gas was saved, worth about $10,299 at
the Dec 2024 gas price. 4.1% of bots used the jump table
structure modification, and among them, we find the optimal
way shown in Fig. 8, for a bot with 16 functions, it reduces
deployment cost by 74.4% and execution cost by 90.9% at
most. High-frequency, low-profit strategies yield higher overall
returns than rare high-profit strategies.
© S3: Identify profitable exchange paths. Among the token
exchange paths of all bots, APOLLO identifies 5,264 tokens
involved in arbitrage bots, 28,071 tokens in sandwich bots, and
102 tokens in liquidation bots. Additionally, the results show
that transactions involving WETH/USDT/USDC/WBTC/DAI
account for 50.3% of all transactions. This indicates that sta-
blecoins pegged to USD and tokens pegged to BTC and ETH
are highly favored by bots. The average profit of transactions
not involving these tokens is 37.3% lower than those that do.
For token pairs, APOLLO identifies 10,934 token pairs
involved in arbitrage, 29,847 pairs in sandwich, and 321 pairs
in liquidation bots. According to previous research on path
search algorithms [54], a single transaction typically does not

DUP1 'Access locator by

p PUSH32 locatorx16 Access locator by
PUSH4 id ¥ 4-byte signature -
EQ

PUSH1 00 »~ SHR 1-bytecalldata
CALLDATALOAD PUSH?2 ffff

PUSH1 00 AND

BYTE JUMP

Deploy: 35,200 gas
Run: 352 gas

Deploy: 9,000 gas
PUSH2 locator Run: 32 gas
JUMPI

Fig. 8. Optimal jump table modification

TABLE III
CATALYST TRANSACTION STATISTICS

Arbitrage

I Sandwich [Li
T | T T2 T3 Ta
11,666 269 14677
9814 1064 14051
15256 8636 134726 12357 4559 14873 11743
P4 14739 9945 151351 12702 9315 15148 11,369

P1: Jan-Jun 2023, P2: Jul-Dec 2023, P3: Jan-Jun 2024, P4: Jul-Dec 2024.

0d |
Period A
Pl 13,971
P2 14,693 9,218
P3

8,923 123,142

140,107

11,042
12,286

112,922
122,859
134,217
130,744

419
403
451
533

339
298
327

involve more than 5 token pairs, as this would increase the
transaction fee cost. However, our results show that 94 (6.4%)
of bots have at least one transaction involving more than 10
token pairs. For example, the exchange path of transaction
0x4661 includes 40 token pairs, with small profits gained from
each token exchange, and a final profit of $30.

Insight 3: Token swaps using mainstream tokens are the pri-
mary means of MEV bots. Unlike prior research, we find that
the current bot can profit by executing long token exchange
paths and continuously accumulating small incomes.

@ S4: Search for catalyst transactions. APOLLO identifies a
total of 1,344,620 catalyst 7 that offer opportunities. Table I1I
shows each type of 7 over time. 74 is most likely to bring
opportunities to bots due to their influence on asset prices. 72
and T3 are also easy targets, as transactions lacking CHAINID-
based execution chain checks cannot avoid being inspected
by the bot on the testnet, and transactions with a high gas
price tell the bot of their high value. For arbitrage and
sandwich bots, 75 presents a considerable opportunity. This
indicates that bots actively monitors emerging altcoins for
opportunities. Notably, the opportunities identified by bots in
2024 created by 77 increased significantly compared to 2023.
This indicates that the same transaction initiated by a user
immediately after its failed trade is a relatively new 7 that
bots are paying increasing attention to. For example, after
the failure of transaction 0x5e10, the sender re-submits it as
0xf0d9, providing a significant opportunity for a bot to make
a profit of $12.9 by spending only $6.8 in costs, achieving
a profit rate of 190%. We compare the average profits of
bots that can identify 7 to those that cannot, and find that
the average profit of bots that can identify 71/73/T3/T4/T5 is
37.7%/20.2%/25.7%/24.4%/28.6% higher.

Insight 4: Bots that can identify opportunities in catalyst
earn 26.3% more than those that cannot. As a new catalyst,
T1 is gaining attention, suggesting that smarter bots will
monitor recent history of failed transactions in addition to the
previously known monitoring of block and mempool states.
Transactions that lack execute chain check and transactions
with a gas price set above the market average are at risk.
Users should exercise caution when trading in new altcoins.
@ S5: Initial funds. We detect 902 MEV bots using flashloan,
including 722 arbitrage, 95 sandwich, and 83 liquidation bots,
involving a total of 1,235,203 transactions. These transactions
contribute 56.1% of the total profit, indicating that a significant
number of MEV bots currently use flashloan for initial funding
and that this strategy is effective in generating profits.
Insight 5: Using flashloan for initial funding is a widely used
strategy and can bring significant benefits to the bot.

@ S6: Profits allocation. Table IV shows the profit distribu-
tion strategies adopted by the three types of bots across five

11

TABLE IV
BENEFICIARY DISTRIBUTION OF THREE TYPES OF BOTS

Profit
11.7%
5.1%
6.4%

Sandwich
192
38
215

Beneficiariy
Bot
Sender
Builder
Validator 729 206 132 75.4%

Other 183 29 17 1.4%

Overslap is because a bot can allocate profits to multiple beneficiaries.

Arbitrage
892
599

1,338

Liquidation
59
48
108

beneficiary types and the total amount of profit received by
each type of beneficiary. Overall, 1,143 (55.7%), 685 (33.4%),
1,661 (81.0%), 1,067 (52.0%), and 229 (11.2%) bots dis-
tributed profits to bots, transaction senders, builders, valida-
tors, and other addresses. The highest number of bots send
profits to builders, but by tracking the subsequent profits flow,
we find that builders pay 81.6% of their income to validators
competing for block creation. However, builder 0x229b only
paid 51.5%. It only built 1,175 (0.0005%) blocks but earned
2.34 ETH per block on average. In contrast, the top builder
Beaver built 58.4% blocks, paid 94.2% income to validators,
and earned only 0.06 ETH per block. After analysis, we find
that 0x229b bundle many MEV transactions into a block,
enabling it to offer far higher bids than other builders while
paying only a small portion of the income. For example, it
built four of six consecutive blocks starting from 20622179,
where 90.4% of the transactions were MEV transactions. This
means that within 48 seconds of these four blocks, only 28
normal user transactions could enter the blockchain.

Insight 6: Distributing profits to builders is a crucial strategy
for bots to distribute direct profit. However, 81.6% of the prof-
its earned by builders were paid to validators. Special builder
0x229b reduce the payment ratio to 51.5% by aggregating
many MEYV transactions into a single block, but this behavior
severely delays normal users’ transactions.

@ S7: Risk tradeoff. We find that 72.4% of the bots, and over
80% of their transactions, do not exchange tokens according
to the theoretically optimal input. Despite this, their average
profit is 25.9% higher than the bots choosing the theoreti-
cally optimal input. For example, Fig. 9 shows the arbitrage
bot 0x2490’s theoretical investment/profit, and its actual in-
vestment/profit, for transactions between Jan and Mar 2023.
Theoretical investments and profits are the best deterministic
values calculated based on the actual situation at the time.
However, as shown, except for a few instances, the bot does
not trade strictly according to the theoretical investment. We
examine the cases where the theoretical and actual inputs are
close and find that these transactions are typically stablecoin-
stablecoin swaps or mainstream coin-stablecoin swaps.
Insight 7: To guarantee a high success rate for transactions,
most bots do not strictly adhere to the theoretical optimal
investment strategy for token exchanges. However, for transac-
tions involving only stablecoin-stablecoin or mainstream coin-
stablecoin exchanges, bots will follow the theoretical optimal
investment, as the relative price stability of these assets allows
the bots to achieve profits close to the theoretical maximum
while maintaining a high success rate.

@ S8: Calldata. Fig. 10 shows the relationship between
average calldata length and profit for the different bots. Bots

https://etherscan.io/tx/0x46618c6f769dd76865516ec721e3204322ccd2208f530ba03ba54f057a182b1c
https://etherscan.io/tx/0x5e10ddb26018035f4174d44c15759030a327e08e4dbf8f63aa0d1ecbc0353df1
https://etherscan.io/tx/0xf0d939141e85fded068d6da9366d32cfe8231c8b77f5a4bf3971f48f89f1174c
https://etherscan.io/address/0x229b8325bb9ac04602898b7e8989998710235d5f
https://etherscan.io/address/0x229b8325bb9ac04602898b7e8989998710235d5f
https://etherscan.io/block/20622179
https://etherscan.io/address/0x24902AA0cf0000a08c0EA0b003B0c0bF600000E0

Investment
Profit

—200

0.0
2023-01-01 2023-01-15 2023-02-01 2023-02-15 2023-03-01
Nata

Fig. 9. Theoretical vs actual investment and profit

that rely on off-chain programs to formulate strategies St
obtain the required parameters directly from the calldata field
of the transaction. In contrast, bots with code-level Sj,g;.
include some parameters in the calldata field, while others
are calculated in the contract based on Sj,4:c. Consequently,
the calldata length for the latter type is naturally smaller than
for the former. We combine the results of the analyses in
S1 to observe bots with and without Sj,4;. separately. The
results show that for bots without Sj,4ic, those with higher
average calldata lengths tend to have lower profitability,
while bots with higher profitability usually exhibit relatively
shorter calldata lengths. This suggests that bots with high
profitability prioritize optimizing calldata length to reduce gas
consumption. For bots with Sj,4;., although they have shorter
calldata lengths, they are generally less profitable than bots
without Sj4gic, a finding consistent with the analyses in S1.

Insight 8: Reducing calldata length is an effective way to
increase profits, but it is not practical for bots with Siogic,
because the gas increase caused by executing Syogic is greater

than the gas saved by short calldata.
© S9: Value. A total of 5.6% (115) of MEV bots used the

strategy of using the value field for calldata compression.
Among these bots, 73.4% have higher average profits than
the average profit of all bots.

Insight 9: Using the value field in the transaction to pass
parameters is a new way to compress calldata and can improve
the profitability of the bot to a certain extent.

S10: Builder distribution. APOLLO identifies 1,084
(84.5%) arbitrage, 520 (85.9%) sandwich, and 235 (80.7%)
liquidation bots that chose to submit their transactions via
builders. Overall, out of 2,516,236 transactions, 1,224,353
transactions (88.4%) were submitted through 113 different
builders. This indicates that MEV bots are more likely to use
builders than to submit their transactions directly through the
mempool. After analysis, we find that builders with coopera-
tive agreements with validators are more effective in helping
bots submit transactions and, consequently, are more prevalent
among bots. For example, 22.7% of the bots chose Lido, which
operates as both a builder and validator, and 23.4% of trans-

led

Arbitrage
Sandwich
Liquidation

N IS o

Average Profit (USD)

o

}w:xzz.’::

0 1 2

Pe %Y

5 6

3 4
Average Call Data Lenth (Bit) ted

Fig. 10. MEV bot’s average calldata length and profit.

12

TABLE V
AVERAGE PROFIT MARGINS FOR DIFFERENT CONTROL PATTERNS

Pattern [© T @]
Average profit margin | 50.5% [512.8% | 1108.4% | 511.6%

actions were processed through Lido. Additionally, we find
that some builders collaborate with bots. For example, builder
0x3B received all transactions in August 2024 from bot 0x64,
and this bot only submitted transactions to 0x3B. Through this
collaboration, 0x3B earned 1,443 ETH in miner tips.

Insight 11: 84.1% of bots use builders because they reduce
the risk of transactions being exposed in the mempool. Some
builders cooperate with validators or bots to earn more profits.
Q S11: Death. APOLLO identifies 452 abandoned MEV
bots, of which 62.5% (182/291) arbitrage bots, 59.3% (86/145)
sandwich bots, and 93.3% (14/15) liquidation bots have sig-
nificantly reduced profits at the end of their lifecycle. After
analysis, we find that the parameters or contracts of these bots
become outdated, resulting in a decline in profitability.

For the patterns of using and abandoning bots by the same
owner, APOLLO reveals four types: (1) Single bot usage: 1,371
owners use only one bot from beginning to end. (2) Simul-
taneous multiple-bot operation: 560 owners operate multiple
bots simultaneously. (3) Sequential bot replacement: 83 owners
deprecate a bot after its income decreased and started a new
one. (4) Combined strategy: 4 owners employ both simulta-
neous multiple bot operation and sequential bot replacement
strategies. Table V shows the average profit margin of owners
in these four patterns. Obviously, (3 is the best strategy, as
it ensures continued profitability by abandoning a bot that is
no longer profitable and deploying a bot suitable for the new
environment. While pattern (4) intuitively has the advantage
of (3), the profit margin is unexpectedly lower. Our analysis
shows that owners using pattern (4) tend to abandon a bot only
after incurring a significant loss, rather than promptly when it
starts to decline, leading to a lower average profit margin.
Insight 12: Outdated parameters or strategies lead to lower
profits for MEV bots. At this point, they are usually abandoned.
Smarter owners will abandon bots in time and activate new,
upgraded bots to ensure their profits.

C. RQ2: Accuracy of Siogic analysis

To evaluate the effectiveness of the APOLLO analysis Sjogic,
we manually construct validation datasets for unobfuscated
bots B,no» and obfuscated bots B,,. For By,.op, We use
state-of-the-art decompilers (Gigahors [55], Slither [56], Rattle
[57]) to help decompile all bot bytecode with strategies into
readable form to ensure the correctness of strategy analysis.
For B, it is difficult to inspect all samples because manual
bytecode analysis is labor-intensive and cannot be assisted
by decompilers. Therefore, we construct a dataset with 800
samples by randomly selecting 20 positive and 20 negative
samples for each strategy. For each sample, we first identify
the function signatures involved in historical transactions, and
then use the EVM Debugger [58] to execute the transactions
opcode by opcode to inspect the strategy logic. Four authors
collaborated on this analysis to minimize human subjectivity.

https://etherscan.io/address/0x3Bee5122E2a2FbE11287aAfb0cB918e22aBB5436
https://etherscan.io/address/0x64545160d28fd0e309277c02d6d73b3923cc4bfa
https://etherscan.io/address/0x3Bee5122E2a2FbE11287aAfb0cB918e22aBB5436
https://etherscan.io/address/0x3Bee5122E2a2FbE11287aAfb0cB918e22aBB5436

trategy No.
—— s

—— su — S16
s7

—— Sg

S12 S17
—— S13

—4— S14

—— 515

Accuracy (%)

—— S8
S19
— S0

50

7
Iteration rounds

Fig. 11. The accuracy of clustering process

Adjusted Rand Index (ARI). The analysis of B,,,, Was an
iterative process, so we use the ARI to evaluate its performance
during the iteration process, which is an indicator of clustering
accuracy [59]. As shown in Fig. 11, for simpler strategies
such as hard-coded strategies (e.g., sy and Sg) and interactive
strategies (e.g., s1 and s4), complete identification can be
within fewer iteration rounds. More complex computational
strategies (e.g., s¢ and sg) and access control strategies (e.g.,
S17, S18, and s19) require more rounds. Overall, APOLLO can
accurately cluster all strategies within 8 iterations.

FP/FN Analysis. For B,,, we analyze APOLLO’s false posi-
tives (FP: incorrectly reported strategy types) and false nega-
tives (FN: missed strategies) based on the validation dataset.
Specifically, for strategy ss, it has 1 FP and 3 FNs. For sg,
it has 3 FPs and 4 FNs. For sg, it has 3 FPs and 5 FNs.
For sy3, it has 3 FNs. For s;g, it has 3 FPs and 4 FNs.
For sjg, it has 2 FPs and 6 FNs. For other strategy types,
APOLLO achieves zero FP/FN. After analyzing these FP and
FN, we find that all these bots contain incomplete instructions
in their bytecode. In EVM, an instruction consists of an opcode
and a fixed-length operand (if the opcode requires operands).
However, the incomplete instructions in these bots contain
only opcodes without operands or have incomplete operands.
When APOLLO encounters such instructions, it reads the
subsequent data to form a complete instruction, leading to
incorrect recognition of the subsequent opcode.

Ablation Study. To evaluate the effectiveness of our obfus-
cated bot analysis method and its core components (EOMM
feature and CNN model), we construct two comparisons: 1)
keeping the EOMM features and replacing CNN with LSTM
and Transformer. 2) Converting the bot bytecode into a serial-
ized feature vector and using CNN, LSTM, and Transformer
for classification. Table VI shows the comparison results of
different methods on the validation dataset. Obviously, the
EOMM-CNN used by APOLLO outperforms others in all
metrics. First, EOMM can characterize the transfer relation-
ship between opcodes that serialized vectors cannot capture,
extracting more semantic features from the context. Besides,
CNN is better at learning local features from matrix data than
LSTM and Transformer, and is more suitable for processing
the bytecode transfer relationship features in EOMM.

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT METHODS

Method
EOMM-CNN
EOMM-LSTM
EOMM-Transformer
Serialized feature-CNN
Serialized feature-LSTM
Serialized feature-Transformer

Recall
94.0%
82.8%
87.5%
67.5%
72.1%
72.9%

FI
95.8%
86.3%
89.4%
69.6%
74.4%
75.7%

Acc | Precision
95.4% 97.0%
858% | 902%
89.1% 91.3%
68.6% ‘ 71.8%
73.5% 76.8%
74.8% ‘ 78.8%

‘addLiquidity: 290K GROK

N

addLiquidity: 9.92 WETH
-
swap: 989K GROK

Back-running
removeliquidity:
865K GROK

g e
removeLiquidity:

4.2 WETH

Front-running

&
m

Jare 2 swap: 9.92 WETH

| [
! |
| W !
| ?:53
L i

Fig. 12. New sandwich strategy used by the optimal bot

D. RQ3: Case study

We analyze Jared, the highest-earning bot during its opera-
tional period. Jared is a sandwich-arbitrage bot that employs
obfuscation, preventing existing decompilers from analyzing
its bytecode. APOLLO successfully identifies the Sj,gic Within
it, including s1, So, Sg, Ss, Si0, and sig. After analysis,
Jared stands out from other bots by employing three unique
strategies. First, Jared is willing to pay higher transaction fees.
Overall, it allocates 92.9% of its revenue to transaction fees.
This indicates that Jared prioritizes transaction success rates
over profit margins, aiming to achieve total profit through
a high volume of successful transactions. When submitting
transactions, it did not concentrate on specific builders, with
transactions distributed across 23 different builders. Second,
holding a wider variety of tokens. Jared’s transactions involved
7,097 tokens, with a maximum of 824 tokens held simultane-
ously. In contrast, the second-ranked bot held a maximum of
103 tokens simultaneously. Additionally, Jared focuses more
on altcoins, using the s; to monitor newly emerging tokens in
real-time, enabling it to execute transactions involving a wider
range of tokens. Third, when altcoin prices rise, Jared not
only executes pure sandwich transactions but also purchases
the corresponding altcoins in the sandwich’s back-running
transactions and holds them. By selling them later when prices
reach higher points, it maximizes profits.

However, due to MEV competition and rapid development,
Jared became outdated and experienced a sharp decline in trad-
ing volume and profits starting Aug 7, 2024, dropping to zero
by Aug 14. The owner immediately abandons it and activates a
new bot Jared2. The new bot inherit Jared’s multi-token hold-
ing strategy but change the unbiased builder strategy, instead
concentrating 64.5% of transactions on Beaver, enabling it to
earn more transaction fees. We cannot conclusively state that
Jared2 colluded with Beaver, but an interesting finding is that
another bot, 0x27, which submitted 98.8% of its transactions
to Beaver, shares the same calldata with Jared2 (e.g., tx 0x75
and Oxda) and has already transferred 362 ETH to Beaver
during this process. This may indicate a potential connection
between Jared2 and Beaver. Additionally, Jared2 introduces a
more complex new sandwich strategy, as shown in Fig. 12.
Unlike the traditional sandwich, which only involves token
swaps, the new strategy first adds liquidity for both tokens
via front-running transactions, followed by token swaps. After
the victim transaction suffers losses, back-running transactions
remove liquidity for both tokens.

E. RQ4: Recommendations

Avoid captureable catalyst transactions. As 77 is increas-
ingly attracting the attention of bots, users should avoid
initiating the same token swap transaction immediately after a
failed transaction. In addition, for transactions requiring quick

13

https://etherscan.io/address/0x6b75d8af000000e20b7a7ddf000ba900b4009a80
https://etherscan.io/address/0x1f2f10d1c40777ae1da742455c65828ff36df387
https://etherscan.io/address/0x276bf434613bd8cb5c8b3282ec6445c9370e33fa
https://etherscan.io/tx/0x7541a39371d66c5e74610c2989e12303bd376e36ad9d6265156f3cf147f324fd
https://etherscan.io/tx/0xdaaa380d0e3c9e72933165ed74eac1d59bda3acdf0f2f80506bb378d9fa5ace8

confirmation, users should set a reasonable gas price, which
should not be significantly higher than the market average, to
avoid attracting bots. Users can use wallets with smart tips,
which can prompt the gas setting based on the current network
state. For transactions that do not require fast confirmations,
users can consider using DeFi with the Time Weighted Aver-
age Price (TWAP) algorithm to reduce the possibility of being
targeted by bots. By selecting a DeFi with an execution chain
check, users can prevent bots from checking their transactions
in advance on the testnet by using the CHAINID instruction.
Besides, users can consider splitting the transaction into multi-
ple small transactions when conducting large transactions. This
may increase the transaction fees to a certain extent, but it can
effectively balance the risk exposure of a single transaction.
Trading in token pairs with deep liquidity can reduce the
impact of a single transaction on the market price, lowering
the likelihood of sandwich attacks. Moreover, users can use
limit orders instead of market orders. Limit orders allow users
to set a fixed buy/sell price rather than executing transactions
at the current market price, thereby reducing losses due to
price fluctuations at the time of execution.

MEYV resistance development design. Developers can add
optional execution chain check functions to DeFi to ensure the
security of transactions for ordinary users who have turned on
this function while allowing researchers who have turned off
this function to execute transactions on the testnet. In addition,
wallet and Dapp developers can integrate MEV protection ser-
vices (e.g., Blocknative [60]) to send transactions to protected
RPC endpoints to protect their users’ transactions from being
exposed in the mempool. Another suggestion is to consider
adding a time lock to the protocol to limit high-frequency
trading by bots by storing the timestamp of each user’s last
transaction and rejecting frequently initiated transactions that
violate the time lock period. Moreover, developers can avoid
inexperienced users from making hasty and incorrect settings
by providing automatic slippage and gas recommendation
functions based on the current market status.

F. RQ5: Time overhead

To evaluate the practicality of APOLLO, we measured its
time overhead for analyzing MEV bots. Table VII shows the
time required to analyze bots with the minimum, maximum,
and median number of transactions in each of the three cate-
gories of bots, as well as the average number of transactions
per bot and the average time overhead for each category. The
results indicate a significant correlation between analysis time
and the number of MEV transactions. Bots with the fewest
transactions across the three categories take only 16.3-17.7s
to analyze, while those with the most transactions take 20.6
seconds to 20.3 hours. On average, it takes 2.6 min, 13.3 min,
and 17.2 seconds to analyze arbitrage, sandwich, and liquida-
tion bots, respectively. However, this average is skewed by a
few bots with an exceptionally high number of transactions,
as the distribution of bot transactions is significantly long-
tailed (the median being much lower than the mean). For
bots with median transaction numbers, APOLLO takes only

14

16.8s, 17.9s, and 16.4s to analyze arbitrage, sandwich, and
liquidation bots. This suggests that for most bots, APOLLO can
complete its analysis within several to dozens of seconds. In
our experiments, this held true for 83.5% of the bots analyzed.

VI. THREATS TO VALIDITY

Since no ground-truth exists on MEV bot strategies Siogic,
we manually analyze on-chain bots to summarize the strategy
knowledge. We design an iterative clustering learning pro-
cess to minimize manual work. However, this process is not
applicable to B,, because the model cannot naturally group
the obfuscated semantics. Therefore, we analyze B, and
summarize 20 refined Sj,gi.. Although we manually analyze
800 obfuscated samples when constructing the verification
dataset and don’t find any new strategy types, we cannot
guarantee that there are no other types of Sj,4:c in unchecked
Boy, which may lead to false negatives. In the future, we
will put more effort into more in-depth analyses to build
more comprehensive datasets to support future research. In
addition, the obfuscated train dataset was constructed based on
all published tools we can find. Therefore, the trained CNN can
only handle the obfuscation techniques used by these tools. If a
contract uses a new unpublished obfuscation technique, it may
cause APOLLO not to analyze it accurately. Besides, our de-
obfuscation is based on EVM opcode-based Markov transition
matrix, so APOLLO encounters problems with the few bots we
found in §V-C that use incomplete instruction obfuscation due
to subsequent opcode identification errors. This motivates our
future work on more general smart contract de-obfuscators.

VII. RELATED WORK

MEYV analysis. Daian et al. define the MEV concept [6].
Qin et al. are the first to comprehensively quantify MEV
regarding arbitrage, sandwich, and liquidation [8]. Zhou et al.
evaluate the impact of high-frequency MEV transactions and
potential countermeasures [11]. McLaughlin et al. conduct a
large-scale study of arbitrage from the perspectives of security,
stability, and economy [14]. Additionally, many studies quan-
titatively analyze the MEV market from various perspectives
and obtain meaningful results [12], [13]. Weintraub et al. [15]
and Li et al. [5] propose effective MEV detection methods.
Zhou et al. propose methods to mitigate MEV [16]. However,
these works analyze MEV from a high-level perspective, such
as market size and macro impact, and cannot identify the fine-
grained strategies of MEV bots, especially the strategy logic
embedded in the code and what kind of user transactions
would attract bots. In contrast, we analyze the strategies of
MEV bots at various stages of their lifecycle to provide more
detailed insights into current MEV behavior on the chain.

TABLE VII
TRANSACTION NUMBER AND TIME OVERHEAD
Tx numbers/oveahead Average tx | Average
MEV type Min Median Max numbers overhead
Arbitrage 1/16.5s 13/16.8s 36,945/2.9h 675.2 2.6m
Sandwich 1/17.7s ~ 11/179s 243,305/20.3h 1,559.9 13.3m
Liquaidation | 1/16.3s 3/16.4s 596/20.6s 16.4 17.2s

Smart contract obfuscation. To protect the business logic
of contracts, Zhang et al. designed control flow, data flow,
and layout obfuscation methods against the Solidity source
code to increase the complexity of contracts [25]. Yan et al.
designed four anti-patterns to modify the contract bytecode
to disrupt the contract control flow to protect contracts from
reverse engineering [27]. Yu et al. designed four obfuscation
techniques for contract bytecode, which effectively resisted
existing decompilers [26]. The above work successfully brings
anti-reversal capability to smart contracts and proves that it
is difficult to analyze the obfuscated contracts in the existing
work. To comprehensively analyse the strategies of MEV bots,
we take the first step towards contractual de-obfuscation.
Smart contract decompilation. There are already many
studies dedicated to the reverse engineering of smart contracts.
Vandal converts EVM bytecode into IR containing control
flow information and combines it with an extensible Datalog
specification for contract security analysis [61]. Mythril uses a
symbolic execution engine to generate a trace and based on it
to generate IR for decompilation [62]. Porosity can decompile
EVM bytecode into Solidity source code implemented in C++.
EthIR [63] is based on Oyente [32], which converts bytecode
into a rule-based representation to reason about the properties
of EVM bytecode at a high level. Gigahorse can decompile
contract bytecode into a high-level 3-address representation
that makes the implicit data and control flow information of
the bytecode more explicit [55]. However, these tools can
only analyse unobfuscated bytecode and fail with an almost
100% failure rate when applied to obfuscated bytecode [26].
In contrast to them, APOLLO is the first tool that can be used
to analyse obfuscated smart contract bytecode.

VIII. CONCLUSION

We conduct the first systematic study of 2,052 MEV bots
through the development of APOLLO, a tool for analysing
fine-grained strategies across the entire lifecycle of MEV bots.
Experimental results show that APOLLO is able to efficiently
identify 11 categories of strategies covering a wide range of
options for MEV bots. With its aid, we harvested many new
insights, especially the application of 20 refined code-level
strategies for unobfuscate/obfuscated bots and the analysis of
catalyst transactions that may present opportunities for bots
that have not yet appeared in existing studies.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their con-
structive comments. This work is partly supported by Hong
Kong RGC Projects (PolyU15224121, PolyU15231223), Na-
tional Natural Science Foundation of China (No. 62332004),
and Sichuan Provincial Natural Science Foundation for Dis-
tinguished Young Scholars (No. 2023NSFSC1963)

REFERENCES
[1] “Defillama,” https://defillama.com/, 2020.

[2] K. Yang, B. Yang, T. Wang, and Y. Zhou, “Zero-cerd: A self-blindable
anonymous authentication system based on blockchain,” CJE, 2023.

15

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]
(1]

(12]

[13]
[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]
27]

(28]
[29]

(30]
[31]

[32]

Z. He, Z. Li, A. Qiao, J. Li, F. Luo, S. Yang, G. Deng, S. Song,
X. Zhang, T. Chen et al., “Maat: Analyzing and optimizing overcharge
on blockchain storage,” in FAST, 2025.

D. Shi, X. Wang, M. Xu, L. Kou, and H. Cheng, “Ress: A reliable and
effcient storage scheme for bitcoin blockchain based on raptor code,”
CJE, 2023.

Z. Li, J. Li, Z. He, X. Luo, T. Wang, X. Ni, W. Yang, X. Chen, and
T. Chen, “Demystifying defi mev activities in flashbots bundle,” in CCS,
2023.

P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, 1. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges,
miner extractable value, and consensus instability,” in JEEE SP, 2020.
C. E Torres, R. Camino et al., “Frontrunner jones and the raiders of
the dark forest: An empirical study of frontrunning on the ethereum
blockchain,” in USENIX Security, 2021.

K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable
value: How dark is the forest?” in IEEE SP, 2022.

L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais, “On the just-
in-time discovery of profit-generating transactions in defi protocols,” in
IEEE SP, 2021.

K. Ko, T. Jeong, J. Woo, and J. W.-K. Hong, “An analysis of crypto gas
wars in ethereum,” in APNOMS, 2022.

L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-frequency
trading on decentralized on-chain exchanges,” in IEEE SP, 2021.

K. Qin, L. Zhou, P. Gamito, P. Jovanovic, and A. Gervais, “An empirical
study of defi liquidations: Incentives, risks, and instabilities,” in IMC,
2021.

Y. Wang, Y. Chen, H. Wu, L. Zhou, S. Deng, and R. Wattenhofer, “Cyclic
arbitrage in decentralized exchanges,” in WWW, 2022.

R. McLaughlin, C. Kruegel, and G. Vigna, “A large scale study of the
ethereum arbitrage ecosystem,” in USENIX Security, 2023.

B. Weintraub, C. F. Torres, C. Nita-Rotaru, and R. State, “A flash (bot)
in the pan: measuring maximal extractable value in private pools,” in
IMC, 2022.

L. Zhou, K. Qin, and A. Gervais, “A2mm: Mitigating frontrunning,
transaction reordering and consensus instability in decentralized ex-
changes,” arXiv, 2021.

G. Morello, M. Eshghie, S. Bobadilla, and M. Monperrus, “Disl: Fueling
research with a large dataset of solidity smart contracts,” arXiv, 2024.
F. Luo, R. Luo, T. Chen, A. Qiao, Z. He, S. Song, Y. Jiang, and
S. Li, “Scvhunter: Smart contract vulnerability detection based on
heterogeneous graph attention network,” in /CSE, 2024.

Z. He, Z. Li, J. Luo, E Luo, J. Duan, J. Li, S. Song, X. Luo, T. Chen,
and X. Zhang, “Auspex: Unveiling inconsistency bugs of transaction fee
mechanism in blockchain,” in USENIX Security, 2025.

F. Luo, H. Lin, Z. Li, X. Luo, R. Luo, Z. He, S. Song, T. Chen, and
W. Luo, “Towards automatic discovery of denial of service weaknesses
in blockchain resource models,” in CCS, 2024.

X. Liu, A. Belkhiri, M. Jin, Y. Li, and C. Artho, “Contractviz: Extending
eclipse trace compass for smart contract transaction analysis,” in SANER,
2025.

M. Eshghie and C. Artho, “Oracle-guided vulnerability diversity and
exploit synthesis of smart contracts using 1lms,” in ASE, 2024.

Z. Li, Z. He, X. Luo, T. Chen, and X. Zhang, “Unveiling financially
risky behaviors in ethereum erc20 token contracts,” CJE, 2025.
“Proposer-builder separation,” https://ethereum.org/en/roadmap/pbs/,
2022.

P. Zhang, Q. Yu, Y. Xiao, H. Dong, X. Luo, X. Wang, and M. Zhang,
“Bian: Smart contract source code obfuscation,” TSE, 2023.

Q. Yu, P. Zhang, H. Dong, Y. Xiao, and S. Ji, “Bytecode obfuscation
for smart contracts,” in APSEC, 2022.

W. Yan, J. Gao, Z. Wu, Y. Li, Z. Guan, Q. Li, and Z. Chen, “Eshield:
protect smart contracts against reverse engineering,” ser. ISSTA, 2020.
“evmcodegen,” https://github.com/ethereum/evmcodegen, 2018.

“Mev bot incident analysis,” https://www.certik.com/zh-CN/resources/
blog/mev-bot-incident-analysis, 2023.

J. Xu and B. Livshits, “The anatomy of a cryptocurrency {Pump-and-
Dump} scheme,” in USENIX Security, 2019.

G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, 2014.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in CCS, 2016.

https://defillama.com/
https://ethereum.org/en/roadmap/pbs/
https://github.com/ethereum/evmcodegen
https://www.certik.com/zh-CN/resources/blog/mev-bot-incident-analysis
https://www.certik.com/zh-CN/resources/blog/mev-bot-incident-analysis

[33]

[34]

(35]

[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]

[53]

[54]
[55]
[56]
[57]
[58]
[59]

[60]
[61]
[62]
[63]
[64]

[65]
[66]

[67]

P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, “Triplet
fingerprinting: More practical and portable website fingerprinting with
n-shot learning,” in CCS, 2019.

Z.Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: analysis, applications, and prospects,” IEEE transac-
tions on neural networks and learning systems, 2021.

L. Du, Y. Wang, G. Song, Z. Lu, and J. Wang, “Dynamic network
embedding: An extended approach for skip-gram based network em-
bedding.” in IJCAI 2018.

D. W. Ruck, S. K. Rogers, and M. Kabrisky, “Feature selection using a
multilayer perceptron,” Journal of neural network computing, 1990.
M. Gagolewski, “genieclust: Fast and robust hierarchical clustering,”
SoftwareX, 2021.

R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans-
actions on neural networks, 2005.

R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering
based on hierarchical density estimates,” in PAKDD, 2013.

A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, 2003.

Q. Song, H. Huang, X. Jia, Y. Xie, and J. Cao, “Silence false alarms:
Identifying anti-reentrancy patterns on ethereum to refine smart contract
reentrancy detection,” in NDSS, 2025.

Z. Ni, C. Wang, J. Tao, and Q. Zhang, “A de-obfuscation system based
on Markov models,” in CNSSE, 2022.

C. Gao, M. Cai, S. Yin, G. Huang, H. Li, W. Yuan, and X. Luo,
“Obfuscation-resilient android malware analysis based on complemen-
tary features,” TIFS, 2023.

Z. Ma, M. Jiang, F. Luo, X. Luo, and Y. Zhou, “Surviving in dark forest:
Towards evading the attacks from front-running bots in application
layer,” in USENIX Security, 2025.

“Opcodes for the evm,” https://ethereum.org/en/developers/docs/evm/
opcodes/, 2018.

B. Liu, Y. Ma, and C. K. Wong, “Improving an association rule based
classifier,” in PKDD, 2000.

S. Wu, Z. Yu, D. Wang, Y. Zhou, L. Wu, H. Wang, and X. Yuan,
“Defiranger: Detecting defi price manipulation attacks,” TDSC, 2023.
“Etherscan,” https://etherscan.io/, 2020.

“Eigenphi,” https://eigenphi.io/, 2022.

D. S. Lee and T. Lemieux, “Regression discontinuity designs in eco-
nomics,” Journal of economic literature, 2010.

“debug namespace,” https://geth.ethereum.org/docs/
interacting-with- geth/rpc/ns-debug, 2013.

“Json-rpc api,” https://ethereum.org/en/developers/docs/apis/json-rpc#
eth_protocolversion, 2013.

S. Yang, J. Chen, M. Huang, Z. Zheng, and Y. Huang, “Uncover the
premeditated attacks: Detecting exploitable reentrancy vulnerabilities by
identifying attacker contracts,” in /CSE, 2024.

K. Kulkarni, T. Diamandis, and T. Chitra, “Routing mev in constant
function market makers,” in WINE, 2023.

N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse: Thor-
ough, declarative decompilation of smart contracts,” in ICSE, 2019.

J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in WETSEB, 2019.

“Rattle: Evm binary static analysis framework,” https://github.com/
crytic/rattle, 2022.

“Evm debugger,” https://github.com/0Ox0abd/Dbgereum, 2021.

M. M. Gosgens, A. Tikhonov, and L. Prokhorenkova, “Systematic anal-
ysis of cluster similarity indices: How to validate validation measures,”
in ICML, 2021.

“Mev protection,” https://docs.blocknative.com/mev-protection, 2024.
L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” arXiv, 2018.

“Mythril: Security analysis tool for evm bytecode,” https://github.com/
ConsenSys/mythril, 2022.

E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey, “Ethir: A
framework for high-level analysis of ethereum bytecode,” in ATVA, 2018.
Z. He, Z. Liao, F. Luo, D. Liu, T. Chen, and Z. Li, “Tokencat: detect
flaw of authentication on erc20 tokens,” in /CC, 2022.

“moralis,” https://moralis.io/, 2020.

J. Ming, D. Xu, L. Wang, and D. Wu, “Loop: Logic-oriented opaque
predicate detection in obfuscated binary code,” in CCS, 2015.

R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in VLDB, 1994.

16

[68] C. Borgelt, “An implementation of the fp-growth algorithm,” in OSDM,
2005.

[69] M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li et al., “New algorithms
for fast discovery of association rules.” in KDD, 1997.

APPENDIX A
HISTORICAL DATA RECOVERY

The reason why tokens have a price is that they can be

exchanged for stablecoins in the AMM, and this exchange
rate determines the price of the token. As mentioned in §II, in
the AMM, the exchange rate between tokens is automatically
calculated based on the token reserves in the liquidity pool
(LP) according to a specific calculation model. Therefore, we
first recover the historical data of the token reserves and then
recover the historical data of the price based on it.
Token reserve recovery. The token reserve changes with each
swap transaction, and each swap operation in the AMM creates
a swap log that records the quantity relationship between the
two tokens [64]. We first obtain the complete log data from
the Archive node, and then filter out the swap logs related to
each AMM based on the topic field specific to each AMM. We
parse the logs to obtain the token data recorded in them, and
for each AMM, we trace its swap logs in chronological order
to calculate the token reserves after each historical transaction.
Token price recovery. For a token A, if there is a LP that
contains both A and stablecoins (USDT, USDC, etc.), then it
can be directly exchanged for stablecoins. If there is no LP
consisting of A and stablecoins, then A can be exchanged for
other tokens first and then indirectly exchanged for stablecoins.
In theory, as long as there is an exchange chain for any token
that can ultimately be exchanged for stablecoins, then the
price of this token can be derived. However, due to price
fluctuations, the longer the exchange chain, the more likely the
final result will be inaccurate. In addition, we also consider
the following exceptional cases:

o There may be multiple exchange chains for any given
token, and multiple prices may be calculated.

« Some newly created LPs do not have enough funds to
maintain normal exchanges.

o Since there are malicious tokens and LPs, the prices
calculated based on the exchange chains involving them
are likely to be inaccurate.

To achieve accurate price calculation, we construct a graph
of all tokens and LPs. In the graph, each node represents a
token. For any two tokens A and B, if there is a LP that
includes both A and B, then A and B are connected by two
directed edges A — B and B — A. We search for exchange
chains in the exchange graph according to the following rules
for token price calculation:

Any token can be the starting token of an exchange chain.
Except for the starting token, the tokens involved in
the exchange chain can only include stablecoins and
mainstream coins (such as WETH, WBTC, etc.).

The token at the end of the exchange chain must be a
stablecoin.

The length of the exchange chain is a maximum of 3.

https://ethereum.org/en/developers/docs/evm/opcodes/
https://ethereum.org/en/developers/docs/evm/opcodes/
https://etherscan.io/
https://eigenphi.io/
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug
https://ethereum.org/en/developers/docs/apis/json-rpc#eth_protocolversion
https://ethereum.org/en/developers/docs/apis/json-rpc#eth_protocolversion
https://github.com/crytic/rattle
https://github.com/crytic/rattle
https://github.com/0x0abd/Dbgereum
https://docs.blocknative.com/mev-protection
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://moralis.io/

—— Real-time

9.06 'y ---- Block granularity

©
o
=

Price (USD)
g
o
Q

©
o
1)

8.98

20 40 60

Timeline (s)

80 100 120

Fig. 13. Price comparison.

To evaluate the accuracy of our designed historical price
recovery algorithm, we monitored the real-time price of Pepe
(the most traded altcoin on Ethereum) and compared it with the
block-granularity price data provided by Moralis [65] and the
price calculated based on our method. Fig. 13 shows the results
from 14:19:59 to 14:22:59 on July 8, 2024. It is clear that the
price curve we recovered is more inaccordance with the real-
time price curve than the block-granularity price curve.

APPENDIX B
OBFUSCATION JUDGEMENT METHOD

Based on the existing knowledge of contract obfuscation
(§II-D), we design the following method to analyze whether
a bot is obfuscated.

Bytecode structure. Contract bytecode has inherent
structures. For example, a function jump table con-
tains multiple function select fragments, each consisting
of 5 opcodes {DUP1, PUSH4 id, EQ, PUSH2 locator,
JuMPI}, which are used to jump to the locator when the
function signature id is matched. However, obfuscation can
alter these inherent structures to interfere with jump analysis,
such as using the jump table shown in Fig. 8. Therefore, byte-
code with altered inherent structures is considered obfuscated.
- Control flow. We identify control flow obfuscated bytecode
in 3 steps. 1) Use Gigahors [55] and Slither [56] to construct a
control flow graph (CFG) of the bytecode. CFG construction
can fail due to timeout or fatal error [55], [26], the former
due to exceeding the tool’s preset analysis time or loops in the
basic block jumps. Therefore, we removed the analysis time
limit of the above tools and recorded each newly analyzed
jump location, stopping the analysis only if a loop persists at
a jump location or if there is a fatal error. Since jump loops
or fatal errors are often introduced by obfuscation (nested
calls due to code writing errors can also lead to jump loops,
but we do not believe that this error exists for MEV bots
running continuously in the chain), we consider bots that fail to
construct CFGs to be obfuscated. 2) For bots that successfully
construct CFGs, we perform symbolic execution. Bots are
considered obfuscated if there is unreachable dead code within
them. 3) Static symbolic execution struggles to identify false
branches introduced by control flow complexity using opaque
predicates [66]. Thus for bots that passed the previous step, we
execute all their historical transactions opcode by opcode. We
identify all conditional comparison opcodes in the transactions,

17

such as EQ, LT, GT, etc., and the associated branch jumping
opcodes JuMp and JumMPI. If there is a branch where the
conditions are always the same in all historical executions,
we consider it to have a false branch and to be obfuscated.

- Data flow. First, construct the data flow graph (DFG).
We track all storage accesses (SLOAD, SSTORE), memory
accesses (e.g., MLOAD, MSTORE, CALLDATALOAD, CODECOPY),
arithmetic operations (e.g., ADD, SUB, MUL), bitwise oper-
ations (e.g., OR, XOR, SHL, NOT), and hash computations
(keEccak256). Connect all access nodes for the same storage
slot or memory region to construct the DFG. Then, data flow
checks be performed to determine if data flow is obfuscated.
For example, if the first operand (slot) of SSTORE/SLOAD is ob-
tained from KECCAK256 calculation, it indicates dynamic stor-
age key calculation. If multiple consecutive arithmetic/bitwise
operations split and reassemble a variable, it indicates data
encoding obfuscation. If data recorded by LOG instructions
is processed by bitwise operations before being saved, it
indicates hidden log/event data obfuscation.

APPENDIX C
ASSOCIATION CLASSIFICATION PROCESS

Suppose A {a1,...,a,} is a set of attributes. An

object in the dataset can be described by a set of at-
tributes, i.e., the object obj follows the schema obj
{attry = aq,...,attry, = amn}, obj C A. D is the set of all
objects. ARL can learn a rule R form R : X = Y by frequent
attribute set mining, where object X is the antecedent, and
object Y is the consequent and predetermined goal. This rule
indicates an association between X and Y. sup(R) = P(X U
Y'|D), is the support of R, which denotes the probability that
both X and Y are included in D. con(R) = P(Y|X), is
the confidence of R, which denotes the probability that Y
occurs when X occurs. Given a minimum support threshold
minsup and a minimum confidence threshold mincon, ARL
can find the set of frequent attributes that meet the thresholds.
To analyze catalyst transactions, we take the following steps.
-1. Data preprocessing. We take all the fields in the transac-
tion as attributes and information about the tokens involved in
each transaction, and discretize the continuous values.
-II. Rule generation. At this stage, we test three common
ARL algorithms to discover rules, including Apriori [67], FP-
Growth [68], and Eclat [69], and finally chose FP-Growth for
two reasons. First, it is more efficient in handling large-scale
data in our problem. Second, FP-Growth generates a more
complete set of rules than the other algorithms so that we can
discover more types of unknown relationships [68].

For the two generated rules R : X7 = Y and Rs : X =
Y,if Xy ¢ X5 and Xy ¢ Xy, then Ry and R, represent
different types of associations. Otherwise, if X; C Xo, then
R, and R represent the same association and R; is referred
to as general rule w.r.t. Ry and Ry is referred to as specific
rule w.r.t. Rq.

-III. Rule pruning. The number of rules generated by ARL
that meet the threshold is huge, and redundant rules are un-
avoidable. Therefore, we remove useless noise by pruning the

rules. The rationale for our pruning is to consider only high-
confidence general rules and prune low-confidence specific
rules for the same association. More specifically, suppose there
are two rules R; and Ry, where R; is the general rule w.r.t.
Ry. We perform the following checks in turn and when either
constraint is satisfied, Ry will be pruned:

e con(R1) > con(Ry).

e con(R1) = con(Ryz), but sup(R1) > sup(R2).

e con(R1) = con(R2) and sup(R1) = sup(Rz2), but X1 C Xo.
-IV. Classification. We apply the obtained rule set to construct
the classifier. We denote a MEV transaction ¢x ;v and the
antecedent transaction tx,,; that is potentially associated with
it as a transaction group (txgnt,txarpyv). For each class of
MEYV behavior, the classifier identifies all transaction groups
and clusters those with the same potential relationship type
into the same cluster. Ultimately, we obtain five clusters.

APPENDIX D
RISK TRADEOFF

Based on the AMM formula and the token reserve, APOLLO
obtains OTy and maxz(E[P(O)]) by establishing constraints
and solving them. Specifically, take a three-hop arbitrage that
occurs between Uniswap V2, Balancer as an example, which
has the following three steps: 1) Uniswap V2: A — B,
2) Balancer: B — C, 3) Uniswap V2: C — A, for easy
differentiation, we use A to denote the source tokens and Ay
to denote the destination tokens. Each token LP maintained by
Uniswap V2 contains two tokens, which follow the constant
product z x y = k, where x and y are the reserves of the
two tokens in the LP, and £ is a constant. Therefore, for token
exchange x — y, the exchange formula for Uniswap V2 is:

[z + (1 —p)Az](y — Ay) = zy

where Az is the usage of token x, Ay is the income of token

y, and p is Uniswap V2’s fee, which is 0.3%. Each token LP
maintained by Balancer is capable of containing more than two
tokens, and each token has a different weight, which follows
the free pool formula [["_, V;''* = k, where V; denotes the
reserve of the i-th token in the LP, W; denotes the weight of
the i-th token, n is the total number of tokens in the LP, and
k is a constant. Therefore, for token exchange x — y, the
exchange formula for Balancer is:

[z + (1 — p)Az]™V (y — Ay)"™r = 2oy

where p is Balancer’s fee, which is specific to the LP and
ranges from 0.0001% to 10%. Therefore, for the above three-
hop arbitrage, APOLLO establishes the following constraints:

max(AAg — AAs)

such that:
[Auni + (1 - p)AAs}(Buni — AB) = AyniBuni,
[Boan + (1 = p)AB]" (Chan — AC)"C = (Byan)™? (Cran)™ €,
[Cuni + (1 = P)AC)(Alp; — AAG) = Cuni Ay,
AAs,AB,AC,AAy > 0,
AB < Byni, AC < Cpan, AAg < AL,
As < Acurrent-(¥)

where A, i, Bpan, and C,,,; are the initial reserves of the
corresponding tokens in the corresponding LPs, respectively,
and A, is the remaining reserve of token A in the Uniswap
LP after performing the token exchange A — B. A.yrrent 18
the total amount of tokens A available to the MEV bot. In
particular, constraint (*) needs to be established on the results
of the analysis of the flash loan strategy in S1 or SS. If an
MEYV bot can use the flash loans as initial funding, it does not
need to establish constraint (), as it does not have to consider
the investment quantity constraints. In contrast, bot that can
only be funded by the owner has to consider the actual number
of assets.

APPENDIX E
DETECTION ALGORITHM

For example, for 77, Algorithm 1 demonstrates the process
of identifying whether the victim transaction in a sandwich
transaction is a transaction that was re-initiated after a user’s
previous transaction failed. The algorithm receives a set of
sandwich transactions from an MEV bot and historical trans-
actions from the blockchain. For the victim transaction 7y, in
each sandwich transaction, the inputdata is decoded to obtain
the list of tokens involved in 73y as well as the minimum
revenue and number of tokens set by the user, and to identify
all failed transactions that execute revert in the 10 blocks
preceding Ty (Line 3-4). Then for the failed transaction tz
whose from and to are the same as Ty, the inputdata is
similarly decoded to obtain the list of tokens, the minimum
revenue and the number of tokens (Line 7-8). If tx and Ty
involve the same list of tokens and the slippage of tx is lower
than that of 7Ty, it indicates a large degree of correlation
between tx and Ty (Line 9-10). Finally, it outputs all identified
trades with increased slippage and sandwich transactions.

Algorithm 1: Detect transactions from the same sender
following a failed transaction

Input: sandwich, a set of sandwich transactions from a bot, and
history, blockchain history transactions
Output: A = [(tZsiippage, tTsan)], tTsiippage IS a transaction that
adds slippage hastily, and txsqn is a sandwich transaction

1 A<+

2 for each txsan; = (Ta,,Tv,Ta,)i € sandwich do

3 tokenListr,,, minReturny,,, amountr,, =
decodelnput(7Yy/)

4 block Range < 10

5 T = getRevertedTransaction(T'y, history, block Range)

6 for each tx € T do

7 if tx.from = Ty .from and tx.to = Ty .to then

8 tokenListiy, minReturniz, amountiy =

decodelnput(tx)
9 if tokenListi, = tokenListTV and

minReturngy
amountgy

A.append((tz, txsan))

minReturnmp,
Y then

amountr,

10 |
11 return A

	Introduction
	Background
	Smart Contract and Transaction
	Decentralized Finance
	Maximal Extractable Value
	Smart Contract Obfuscation

	MEV Bot and Strategies Taxonomy
	Birth Stage
	Running Stage
	Opportunities discovery
	Logic Construction
	Parameters Setting
	Transactions Execution

	Death Stage

	Apollo
	Overview
	Birth Stage Strategy Analysis
	Running Stage Strategy Analysis
	Opportunities discovery
	Logic construction
	Parameters setting
	Transaction execution

	Death Stage Strategy Analysis

	Empirical Results and Evaluation
	Data collection
	RQ1: Strategy analysis results
	RQ2: Accuracy of Slogic analysis
	RQ3: Case study
	RQ4: Recommendations
	RQ5: Time overhead

	THREATS TO VALIDITY
	Related Work
	Conclusion
	References
	Appendix A: Historical Data Recovery
	Appendix B: Obfuscation judgement method
	Appendix C: Association classification process
	Appendix D: Risk tradeoff
	Appendix E: Detection algorithm

