
BKPIR: Keyword PIR for Private
Boolean Retrieval

Jie Song∗†‡, Zhen Xu∗B, Yan Zhang∗‡, Pengwei Zhan§, Mingxuan Li¶, Shuai Ma∥, Ru Xie∗‡

∗Institute of Information Engineering, Chinese Academy of Sciences
†Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College

‡School of Cyber Security, University of Chinese Academy of Sciences
§Sangfor Technologies Inc.

¶School of Criminal Investigation, People’s Public Security University of China
∥SKLCCSE Lab, Beihang University

songjie@scpolicec.edu.cn, {xuzhen, zhangyan, xieru}@iie.ac.cn, zhanpengwei@sangfor.com.cn,
limingxuan@ppsuc.edu.cn, mashuai@buaa.edu.cn

Abstract—Keyword Private Information Retrieval (Keyword
PIR) enables users to retrieve data associated with specific
keywords from a database while keeping their queries private.
However, existing Keyword PIR schemes struggle to support
the boolean retrieval model, which is essential for practical
applications that require logical combinations of terms. This
paper proposes a novel keyword PIR scheme leveraging ad-
vancements in homomorphic equality operations. It enables
privacy-preserving retrieval over databases with many-to-many
keyword-value mappings while supporting boolean operators for
expressive search logic. Importantly, this extension preserves the
core security guarantees of classical PIR. To the best of our
knowledge, this is the first work to integrate keyword PIR with
the boolean retrieval model.

Experimental evaluation shows that our scheme achieves a
communication cost reduction proportional to the total number of
values in the many-to-many keyword-value database, along with
aggregate query processing performance gains that scale linearly
with the number of values. These improvements enhance its
feasibility for real-world applications such as privacy-preserving
web search and patent retrieval.

I. INTRODUCTION

Private Information Retrieval (PIR) [1] is a cryptographic
method that allows users to query databases without revealing
their search terms. Keyword PIR [2], for instance, can retrieve
keywords while keeping them private, which is critical for
sensitive tasks like patent searches. However, to handle com-
plex search conditions in practical applications, keyword PIR
must support boolean operators to combine multiple keywords.
Without this capability, PIR cannot deliver the precise search
results needed for many real-world tasks.

BZhen Xu is the corresponding author.

Boolean retrieval [3], [4] is a classic model in information
retrieval, allowing users to form complex queries by com-
bining keywords with operators like AND, OR, and NOT.
This greatly improves the expressiveness and precision of
search results. One important application of boolean retrieval
in privacy-preserving contexts is web search, where users wish
to query search engines without revealing their interests. Web
search engines typically rely on an inverted index, where
each webpage contains multiple keywords, and each keyword
may be associated with multiple webpages, forming a many-
to-many relationship. To achieve both privacy and accuracy,
a keyword PIR scheme must effectively handle such many-
to-many mappings while supporting boolean logic to refine
search results. However, current keyword PIR [5]–[8] schemes
provide limited support for boolean retrieval. The challenge
arises from an implicit assumption that these schemes handle
databases with a one-to-one relationship between keywords
and values, where querying a keyword yields only a single
associated value rather than a set. Boolean retrievals, however,
are based on many-to-many relationships. As a result, existing
keyword PIR schemes struggle to handle these relationships,
complicating boolean operations and reducing their usefulness
in practical, real-world scenarios.

One intuitive approach to make keyword PIR applicable
to many-to-many databases is to replicate keywords across
multiple entries in a linear structure, associating each keyword
with different values. While this strategy might allow compat-
ibility with some existing keyword PIR schemes, it introduces
significant drawbacks, such as increased storage requirements
due to redundant keyword and value pairs and the generation
of multiple redundant response payloads, which may further
reduce efficiency or even malfunction.

To address the challenges of privacy-preserving boolean re-
trieval, we propose Many-to-Many Keyword PIR (MMKPIR)
and its extension, Boolean-enhanced Keyword PIR (BKPIR).
MMKPIR efficiently supports many-to-many keyword-value
relationships in keyword PIR, significantly reducing storage,
computation, and communication overhead. Building on this,

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230536
www.ndss-symposium.org

BKPIR enables logical combinations of queried keywords,
enhancing the expressiveness of private search. Together, these
schemes make privacy-preserving boolean retrieval practical
for real-world database settings.

The main contributions of this paper are as follows:
• We identify the limitations of existing keyword PIR

schemes in handling many-to-many relationships and pro-
pose MMKPIR, which efficiently supports such retrievals.
MMKPIR reduces response communication costs by up
to a factor of m and achieves speedups proportional to
m under the same database scale, where m denotes the
total number of distinct values;

• MMKPIR supports extremely large keyword domains at
low cost, enabling the use of standardized hash func-
tions for on-the-fly keyword encoding without requiring
pre-negotiated mappings. This design supports arbitrary-
length keywords, eliminates coordination overhead, and
ensures practical keyword scalability;

• We further propose BKPIR, an extension of MMKPIR
that supports expressive boolean queries. BKPIR enables
a complete set of logical operators over keywords while
maintaining performance comparable to MMKPIR. To
the best of our knowledge, it is the first keyword PIR
scheme that supports private boolean retrieval;

• Both MMKPIR and BKPIR are single-server, single-
round PIR protocols that maintain fixed query com-
munication, support large keyword domains, and offer
low preprocessing overhead—making them practical for
dynamic, real-world database.

II. BACKGROUND AND RELATED WORK

A. Boolean Retrieval

Boolean retrieval [3], [4] enables flexible keyword-based
search by combining search terms with boolean operators:
AND (∧), OR (∨), and NOT (¬). This retrieval model allows
users to express complex information needs using logical
conditions.

Formally, consider a set of keywords KW =
{kw1, . . . , kwn} and a set of documents V = {v1, . . . , vm},
where each document contains a subset of keywords from
KW . In this model, a keyword kwi ∈ KW may appear
in multiple documents vj ∈ V , and each document vj
may contain multiple keywords, resulting a many-to-many
relationship between keywords and documents. A boolean
query Q is composed of keywords connected by logical
operators. A document satisfies Q if it fulfills all specified
logical conditions.

For example, consider an inverted index mapping key-
words to documents: kw1 → {v1, v3, v5}, kw2 →
{v2, v3, v6}, kw3 → {v4, v5, v6}, the boolean query Q =
(kw1 ∨ kw2) ∧ ¬kw3 retrieves documents that contain either
kw1 or kw2, but not kw3. The result is: ({v1, v3, v5} ∪
{v2, v3, v6}) \ {v4, v5, v6} = {v1, v2, v3}. This demonstrates
how boolean operators refine retrieval by including or exclud-
ing documents based on keyword presence, making this model
effective for structured search tasks.

B. Keyword PIR under Different Relational Structures

Keyword PIR. In a keyword PIR protocol, a client retrieves
the value linked to a keyword from a server database without
revealing the keyword. Given a query Q(kwi), the server can-
not distinguish it from any other Q(kwj) with non-negligible
probability.

Data relationship. Let DB(n,m) denote a keyword-value
database used in boolean retrieval, where n = |KW | and
m = |V | are the numbers of distinct keywords and values, re-
spectively. The database defines a mapping f : KW → P(V),
where each keyword kw ∈ KW is associated with a subset
of values f(kw) ⊆ V . We categorize the structure of f into
four typical relationship types:

• One-to-one: Each keyword maps to a single value, and
the mapping is injective, i.e., |f(kw)| = 1 and f(kwi) ̸=
f(kwj) for kwi ̸= kwj . The query complexity is O(n), as
the retrieval operates over a linear structure. All keyword
PIR schemes support this setting.

• Many-to-one: Multiple keywords map to the same value,
but each keyword still maps to exactly one value, i.e.,
|f(kw)| = 1, without injectivity. Retrieval remains
straightforward with complexity O(n), but duplicate val-
ues may appear across different keywords.

• One-to-many: Each keyword maps to a subset of values,
and different keywords are associated with disjoint sub-
sets, i.e., f(kwi) ∩ f(kwj) = ∅ for all kwi ̸= kwj . A
query retrieves all values in f(kw), with a complexity
of O(m), since the response size grows with the number
of possible values. Most existing schemes (e.g., [6]–[9])
assume one-to-one or many-to-one mappings and fail
in this setting—either by encountering conflicts or by
returning only a single matching value. Modifying the
response mechanism in [5] to output ciphertexts based
on the products of selection vectors and payloads (in-
stead of their sum) can ensure correctness, but increases
communication overhead and risks structural leakage.

• Many-to-many: Keywords may map to arbitrary subsets
of values, allowing overlaps, i.e., no constraint is imposed
on f . This general structure induces a worst-case retrieval
complexity of O(n · m), as all combinations between
n keywords and m values may need to be evaluated.
Even adaptable schemes like CwPIR [5] face scalability
issues in this setting—challenges include database storage
expansion (from size n up to n · m), duplicate value
returns across queries, and the risk of privacy leakage
due to structure-preserving encodings.

To support efficient and private retrieval over such general
relationship structures, we first introduce the Many-to-Many
Keyword PIR (MMKPIR) scheme in Section IV, and extend it
with boolean operator support to form the Boolean-Enhanced
Keyword PIR (BKPIR) protocol in Section V.

C. Searchable Encryption

Keyword PIR shares similarities with Searchable Encryp-
tion (SE) techniques [10]–[12], which allow users to search

2

over encrypted databases. A special class of structured SE
schemes supports boolean queries using multiple keywords
and logical operators [13]–[16]. However, SE schemes may
leak search and access patterns [17]–[19], unless mitigated
by techniques such as forward/backward privacy or Oblivious
RAM (ORAM) [20], [21]. These mechanisms significantly
increase complexity: clients must manage stateful trapdoors,
perform re-encryption during updates, and often bear the
encryption workload for both data and index.

In contrast, PIR—particularly computational PIR—operates
over plaintext databases while offering stronger protection of
user access and query patterns. Queries are stateless, support
a single round of interaction, and impose minimal burden
on clients. PIR can also support dynamic databases without
requiring client-side coordination during updates.

Existing SE schemes face significant challenges in simulta-
neously achieving single-round queries, strong access/search
pattern privacy, forward/backward privacy, and low client-side
complexity. These trade-offs highlight fundamental distinc-
tions between SE and PIR: SE prioritizes data confidentiality
with structured query capabilities, while PIR emphasizes query
privacy with minimal leakage and client burden.

D. Labeled PSI

Labeled PSI [22], [23] extends the standard Private Set
Intersection (PSI) protocol [24], which enables two parties
to compute the intersection of their private sets without
revealing additional information. In Labeled PSI, each item
in the sender’s set is associated with a label, and the receiver
obtains the labels corresponding to the intersection elements.
Functionally, this can be viewed as a form of multi-query PIR,
where the receiver privately retrieves multiple keywords along
with their associated labels, without revealing the queried
keywords.

While labeled PSI resembles PIR, its homomorphic evalua-
tion of a high-degree polynomial that interpolates the payloads
makes its database preprocessing stage highly time-consuming
for large payloads, limiting its suitability for frequently up-
dated databases. Additionally, due to the uniqueness of the
interpolating polynomial, labeled PSI is constrained to one-
to-one databases.

E. State-of-the-art keyword PIR

Recent advances in PIR have led to significant efficiency
gains. SimplePIR [25] achieves sublinear communication and
high throughput via dummy subsets. KsPIR [26] boosts
FHE-based PIR throughput by over 10× through parallelism
and batched evaluations. Piano [27] further reduces server-
side computation using a lightweight design with sublinear
complexity. While these protocols excel in index-based PIR
settings, they do not natively support keyword-based queries,
and adapting them for keyword retrieval remains non-trivial.

CwPIR [5] was the first PIR scheme to use constant-weight
coding for equality operations, reducing the multiplicative
depth required for equality circuits to a practical level. Due to
its straightforward design—generating selection vectors based

on equality operations and obtaining results by multiplying
these vectors with the payload inner products—CwPIR is
workable for linear structures where keywords and values are
repeated, as is common in many-to-many relationships. With
appropriate modifications to the response method, CwPIR can
support retrieval in these settings, although it is not highly
efficient.

SparsePIR [6] is a method for building keyword PIR from a
standard PIR. Its core technique involves encoding key-value
pairs as functions of multiple database entries. Similar to many
multi-query PIR schemes [28]–[30], SparsePIR encodes the
database as a hypercube and uses homomorphic encryption
and multi-dimensional query vectors for efficient querying.
However, due to SparsePIR’s use of hash functions to partition
and encode the database, each keyword corresponds to a row
in a matrix within a partition. This can lead to issues when
the same keyword is associated with multiple values. As a
result, SparsePIR cannot handle many-to-many relationships,
as it may only return one value or encounter conflicts during
the decoding process.

Oblivious Ciphertext Compression [8] is a technique that
allows a server to compress ciphertexts without learning
their plaintexts, while the client knows which ciphertexts
encrypt zeroes. This technique uses additive homomorphism
and random linear systems to achieve near-optimal lossless
compression. It significantly reduces communication overhead
in batch (keyword) PIR [6] and labeled PSI [23]. However,
this technique does not fundamentally alter the underlying
principles of the PIR and labeled PSI schemes it builds upon,
meaning that the limitations of [6] and [23] in handling many-
to-many relationships remain unresolved.

PIRANA [7], which builds on CwPIR [5] and batch code
[31], incorporates constant-weight equality operators and batch
processing to support multi-query, achieving greater efficiency
than predecessors. However, PIRANA does not natively sup-
port keyword queries and requires integration with labeled
PSI to do so. Consequently, LPSI-PIRANA, which supports
keyword queries, inherits the shortcomings of labeled PSI and
is limited to one-to-one databases.

Therefore, in the evaluation section VII, we selected CwPIR
as the baseline for comparison, as it is currently the state-of-
the-art keyword PIR scheme that can support many-to-many
retrieval.

III. PRELIMINARIES

A. Homomorphic Encryption

Homomorphic Encryption (HE) allows computation over
encrypted data, producing ciphertexts that decrypt to the
correct results of the corresponding plaintext operations. HE-
based PIR is a well-established direction [29], [30], [32]–
[34], where users send encrypted queries to a server, which
homomorphically computes the result and returns encrypted
responses—enabling single-server deployment and reducing
communication costs.

Fully homomorphic encryption. A homomorphic encryp-
tion scheme that supports both addition and multiplication is

3

known as Fully Homomorphic Encryption (FHE). FHE for
arbitrary computation depths is expensive. To achieve a trade-
off between computation depth and cost, leveled FHE (also
known as Somewhat Homomorphic Encryption) schemes with
fixed computation depths are commonly employed in practice.
Typical leveled FHE schemes include FV [35], BGV [36], and
CKKS [37].

Most leveled FHE schemes are based on a hard lattice
problem called Learning With Errors(LWE) or its ring variant
(RLWE) [38], [39]. Let L = Z[x]/(xN +1) be the polynomial
ring, where N is the polynomial modulus degree, a power of
2. A plaintext message is encoded in Lt = Zt[x]/(x

N + 1),
where t is the plaintext modulus. The ciphertext is an array
of polynomials in Lg = Zg[x]/(x

N +1), where g is the coef-
ficient modulus that affects how much noise a ciphertext can
contain. The growth of noise during homomorphic operations
is constrained by N and g, which determine the scheme’s
security level and computation depth.

Single instruction multiple data operation. Modern lev-
eled FHE schemes (FV, BGV, CKKS) support Single In-
struction Multiple Data (SIMD) operations [40], which al-
low encrypting a vector of values into a single ciphertext.
Homomorphic operations are then performed slot-wise across
these vector elements, enabling efficient parallel computation.
A ciphertext encodes up to N slots, where N is the polynomial
modulus degree. Supported SIMD operations include homo-
morphic addition and multiplication (ciphertext-ciphertext and
ciphertext-plaintext), negation, and cyclic rotation of slots.
These operations allow element-wise computation across all
slots without additional cost.

In this paper, we adopt a SIMD-based leveled HE scheme
HE to encode many-to-many keyword-value relationships as a
one-to-one structure within SIMD slots. This design improves
computation efficiency and facilitates PIR on complex rela-
tional data.

The SIMD homomorphic operation primitives used are:
• CtCtAdd(c1, c2): Adds two ciphertexts slot-wise and

returns the encrypted sum;
• CtPtAdd(c,p): Adds a ciphertext and a plaintext slot-

wise, returning the encrypted result;
• CtCtMul(c1, c2): Multiplies two ciphertexts slot-wise

and returns the encrypted product;
• CtPtMul(c,p): Multiplies a ciphertext and a plaintext

slot-wise, returning the encrypted product;
• CtRotate(c, l): Cyclically rotates the encrypted vector

in c by l slots;
• CtNegate(c): Returns the ciphertext of the slot-wise

negation.
Except for multiplication operations, most of the above

(addition, negation, rotation) incur minimal noise growth,
ensuring the ciphertext remains decryptable after multiple
operations.

B. Constant-weight Code

Constant-weight encoding. Constant-weight codes are bi-
nary vectors of fixed Hamming weight, meaning each code-

word contains exactly k ones in a binary string of length
w. A constant-weight code with parameters w and k is
denoted as CW(w, k). The number of distinct such codewords
is

(
w
k

)
, which determines the maximum number of values

that can be uniquely represented. This number defines the
codeword domain size h, i.e., the total number of distinct
values encodable by the code. To ensure h encodable values,
the condition

(
w
k

)
≥ h must be satisfied.

Given parameters w and h, the smallest feasible k is selected
such that all values in {1, . . . , h} can be uniquely mapped.
The encoding function CWEncode(h,w, k), described in
Algorithm 1, produces a constant-weight vector y ∈ {0, 1}w
representing the input.

Algorithm 1 Function CWEncode(h,w, k)
Input: h,w, k ∈ N with

(
w
k

)
≥ h

1: y ← 0w

2: for w′ = w − 1, w − 2, . . . , 0 do
3: if h ≥

(
w′

k

)
then

4: y[w′] = 1

5: h = h−
(
w′

k

)
6: k = k − 1
7: end if
8: if k = 0 then
9: break

10: end if
11: end for
Output: y ∈ CW(w, k)

Constant-weight equality operator. CwPIR [5] is a key-
word PIR scheme based on constant-weight codes. They
propose a constant-weight equality operator to assess the
equality of two constant-weight codes within a homomorphic
encryption context. The basic idea is to multiply the bits of
value 1 in one constant-weight code with the corresponding
bits in the other constant-weight code, and then multiply all the
intermediate results. If the final result is 1, the two constant-
weight codes are deemed equal; otherwise, they differ. Alter-
natively, arithmetic methods, as demonstrated in Algorithm
2, are used for comparing two constant-weight codes over
a field with a multiplicative inverse of k!. The constant-
weight equality operator, which makes previously impractical
homomorphic equality checks feasible, is still in its early
stages of development.

Algorithm 2 Constant-weight Equality Operator
Input: a, b ∈ CW (w, k)

1: k′ ← 0 , eq ← 1
2: for i = 0 to w − 1 do
3: k′ ← k′ + a[i] · b[i]
4: end for
5: for i = 0 to k − 1 do
6: eq ← eq · (k′ − i)
7: end for
8: eq ← eq/k!

Output: eq ∈ {0, 1}

4

IV. KEYWORD PIR FOR MANY-TO-MANY RELATIONSHIPS

To implement keyword PIR on databases with many-to-
many relationships, we introduce the Many-to-Many Keyword
PIR (MMKPIR) scheme, which efficiently supports such rela-
tionships. In this section, we outline the design of this scheme.

A. Construction Overview

MMKPIR focuses on the foundational task of privately
retrieving values associated with a single keyword kw∗ from a
many-to-many database. Real-world applications often require
handling many-to-many databases DB = {(kwi, Vkwi)}ni=1,
where Vkwi ⊆ V is a set of values linked to kwi.

Existing keyword PIR schemes face two key limitations
in this setting, structural incompatibility and efficiency bot-
tlenecks. For example, linear database structures used in
prior work (e.g., [6]) cannot natively represent many-to-many
relationships, leading to conflicts when multiple values map to
the same keyword. Naive extensions (e.g., [5]) incur O(n ·m)
complexity due to redundant payload storage and processing.

To resolve these challenges, MMKPIR restructures the
original many-to-many database DB(n,m) into a keyword-
to-valueset mapping DBMMKPIR = {(yi,pi)}ni=1, where each
keyword kwi is encoded into a constant-weight codeword
yi ∈ {0, 1}w with Hamming weight k, and its associated
values Vkwi

⊆ V are encoded into a payload plaintext pi.

Fig. 1. Simple workflow of MMKPIR. Step 1: Convert DB(n,m) into
DBMMKPIR(n, n), where each row corresponds to a keyword and its value
set. Step 2: Encode all keywords kwi into constant-weight codewords yi,
represent each value set Vkwi

as a payload vector pi and pack it into an
RLWE plaintext. Step 3: The client encodes the query keyword into constant-
weight codeword and encrypts it into a ciphertext q̃, and sends it to the server.
Step 4: The server computes the selection mask and obtains the ciphertexts
(s̃1, . . . , s̃n). Step 5: Conduct homomorphic multiplication between the
selection ciphertext and the payload. Step 6: The server homomorphically
aggregates the product õi to obtain the corresponding payload r̃ for the
queried keyword and returns it to the client.

Inspired by BatchPIR’s bucketization approach [29],
MMKPIR groups each keyword with its value set into a linear
structure of n rows. This avoids the redundancy of storing
n × m entries while preserving the many-to-many mapping.
Each payload pi is encoded as an RLWE plaintext using
SIMD packing, allowing batch homomorphic operations over
the entire value set Vkwi . Figure 1 illustrates the workflow

of MMKPIR. This design achieves O(n) structural storage
complexity in RLWE plaintext rows, preserves O(1) response
size, and facilitates efficient SIMD parallelism.

B. Details of MMKPIR Protocol

Setup. This phase configures the database by converting the
many-to-many structure of n×m keyword-value pairs into a
keyword-valueset linear structure of size n.

Algorithm 3 Setup
Input: DB, w, k ∈ N

1: Initialize an empty temporary storage TMP
2: for each (kw, v) ∈ DB do
3: h← int of HashFunction(kw)
4: TMP [h].append(v)
5: end for
6: for each (h, Vkw) ∈ TMP do
7: y ← CWEncode(h,w, k)
8: y ← EncodeToPt(y)
9: DBMMKPIR[y] = Vkw

10: p← EncodeToPt(Vkw)
11: DBMMKPIR[y] = p
12: end for
Output: (y,p) ∈ DBMMKPIR

Choose integers w and k such that
(
w
k

)
≥ n. Typically, w

is set as the polynomial modulus degree N in our scheme.
Given the many-to-many database DB, each keyword in DB
is treated as a bucket, with its associated values stored within.
A hash function is chosen to compute the hash of each key-
word, which is then encoded as a constant-weight code. This
creates a new database, DBMMKPIR, where each keyword is
uniquely represented by a constant-weight code. Each code
maps to a value set Vkw, containing all values associated
with that keyword in the original DB. Algorithm 3 outlines
the specific steps in this process. Here, CWEncode(h,w, k)
implements Algorithm 1 to generate a constant-weight code,
while EncodeToPt() encodes a vector into an RLWE plain-
text.

It should be mentioned that the Setup stage mainly in-
volves modifying the database structure and encoding the
keywords and payloads, while the database remains in plain-
text. This means that if the database is initially structured as
DBMMKPIR, no structural transformation is needed; only the
encoding of the database is required.

Algorithm 4 QueryGen
Input: w, k ∈ N, kw∗

1: h← int of HashFunction(kw∗)
2: q ← CWEncode(h,w, k)
3: q̃ ← HE(EncodeToPt(q))

Output: q̃

QueryGen. This stage is executed on the client side, using
the same constant-weight coding scheme, parameters, and hash
function as the Setup stage to encode the queried keyword
into a CW (w, k) coding vector (as described in lines 1-2 of
Algorithm 4). The vector is then encoded and encrypted into
an RLWE ciphertext q̃. Additionally, the query vector can

5

be encrypted by symmetric-key encryption mode to reduce
the upload communication cost of the query vector [33].
Algorithm 4 provides a detailed overview of the process.

Response. In this stage, the query ciphertext is homomor-
phically compared against the constant-weight encodings of
all keywords in the database, producing a list of selection
ciphertexts s̃ of size n. For a matching keyword, the resulting
ciphertext encodes a vector of all 1s; otherwise, it encodes
a vector of 0s. Each selection ciphertext is then homomor-
phically multiplied with the corresponding value payload,
yielding a list of ciphertexts p̃, also of size n, where only
the ciphertext associated with the queried keyword contains a
valid payload; others encode all 0s. The final result ciphertext
r̃ is obtained by homomorphically aggregating the products
of s̃ and p̃, i.e., computing õi = s̃i · p̃i, then summing all õi.
The server returns r̃ to the client, who decrypts it to obtain
the query result.

Algorithm 5 outlines the detailed steps. Note that this is
a simplified baseline version. In practice, when m < N ,
ciphertext slots can be proportionally allocated based on
the maximum value set size to improve packing efficiency.
Specifically, if a keyword kw has d ∈ [1,m] values, each
value can occupy ⌊N/d⌋ slots. Assuming each slot holds a
payload of tb bits, the total capacity per ciphertext is N · tb.
When m > N , each value set requires ⌈m/N⌉ ciphertexts. For
simplicity, we assume m is a multiple of N when m ≥ N ,
and defer detailed handling to Section IV-C.

Algorithm 5 Response
Input: q̃, k, (y,p) ∈ DBMMKPIR, N , n

1: for each (y,p) ∈ DBMMKPIR do
2: ũ← CtPtMul(q̃,y)
3: l← 1
4: while l < N do
5: ˜tmp← CtRotate(ũ, l)
6: ũ′ ← CtCtAdd(ũ, ˜tmp)
7: l← l ∗ 2
8: end while
9: s̃← CtPtMul

(
k−1∏
i=0

CtCtMul
CtPtAdd(ũ′,−i), k!−1

)
10: õ← CtPtMul(s̃,p)

11: r̃ ←
n∑

i=1
CtCtAdd

õi

12: end for
Output: r̃

Lines 3–8 of Algorithm 5 perform cumulative slot-wise
addition of ciphertext ũ using ⌈log2 N⌉ calls to CtRotate
and CtCtAdd, yielding a ciphertext with identical cumulative
sums in each slot. Line 9 is the implementation of Algorithm
2, which subtracts vectors of length N and each element is
i ∈ [0, k − 1] from ũ. It then executes CtCtMul on the
resulting k vectors, followed by CtPtMul to multiply the
result with the multiplicative inverse of k! and get the selection
ciphertext s̃. Notably, large k may amplify ciphertext noise
during repeated multiplications, leading to potential decryption
errors. To mitigate this, a divide-and-conquer approach can
reduce multiplication depth to ⌈log2 k⌉.

C. MMKPIR with Large m and Payloads

The workflow of MMKPIR with large m and payloads
(hereafter referred to as MMKPIRL) largely mirrors that of
standard MMKPIR, with modifications limited to three compo-
nents: value set payload encoding during setup, inner product
between selection ciphertexts and payloads, and aggregation of
results during the response phase. The workflow is illustrated
in Figure 2.

Fig. 2. Workflow of MMKPIRL. Key adaptations from MMKPIR include:
Difference 1: When the number of values in a set exceeds m, or when the
total payload size (number of values × payload size) surpasses the capacity of
a single RLWE plaintext, multiple RLWE plaintexts are required. Specifically,
payloads from d values are partitioned across e plaintexts, utilizing e×N slots
for distributed storage. Difference 2: Since payloads are now represented as
lists rather than single plaintexts, the selection ciphertext interacts with these
payload lists via inner product computations. Difference 3: To reconcile lists
Õ of differing lengths during homomorphic aggregation, the framework pads
shorter lists with zero-encoded plaintexts until all lists match the maximum
length e∗. This process is detailed in line 5 of Algorithm 7. The final
aggregated result is a ciphertext list R̃ of length max(e∗).

Setup. Since each slot in a RLWE ciphertext has a finite
capacity for carrying payloads, certain retrieval tasks with
large payloads may not be feasible to be accommodated by a
single slot or ciphertext. Consequently, it becomes necessary
to adjust the encoding scheme of the database during the
setup stage to facilitate MMKPIR in retrieving content with
large payloads. Algorithm 6 outlines the encoding strategy for
databases with large m and payloads.

For each row (y, Vkw) in the DBMMKPIR derived from
executing lines 1-9 of Algorithm 3, an appropriate number of
RLWE plaintexts are allocated based on the payload size of
each value in Vkw. Specifically, the aggregate payload size of
the values in Vkw is divided by the maximal payload capacity
N ·tb of an RLWE plaintext, which tb is the bit length of each
slot, and this quotient is rounded up to ascertain the requisite
number of plaintexts e for the value set Vkw. d is the size of
the value set Vkw for each keyword. Let Vkw = {v1, . . . , vd}
denote the set of values associated with keyword kw, where
each vi is a value of predefined length. Initialize a payload
array [pl1, pl2, . . . , ple] of length e, segment the payload of
Vkw into e vectors pl of size N · tb, and encode these vectors

6

as RLWE plaintexts. The resulting DBMMKPIRL is encoding
each keyword’s associated value set Vkw in DBMMKPIR as
P = [p1, . . . ,pe], that is, (y, P) ∈ DBMMKPIRL.

Algorithm 6 Setup for Large m and Payloads
Input: DB, N, tb

1: DBMMKPIR ← Run lines 1-9 of Algorithm 3
2: Init E ← [] to store the required amount of plaintext for each

valueset
3: for each (y, Vkw) ∈ DBMMKPIR do
4: d← |Vkw|

5: e←
⌈

1
N·tb

d∑
i=1

|vi|
⌉

6: E.append(e)
7: Init [pl1, pl2, . . . , ple], |pl| = N · tb
8: Split V = [v1, . . . , vd] into pl1∥ . . . ∥ple
9: for i = 1, 2, . . . , e do

10: pi ← EncodeToPt(pli)
11: end for
12: P = [p1, . . . ,pe]
13: DBMMKPIRL[y] = P
14: end for
Output: (y, P) ∈ DBMMKPIRL , E

Response. In order to handle queries with large m and
payloads, we have adapted Algorithm 5 to develop Algorithm
7. For each entry (y, P) in DBMMKPIRL, executing the
equality operation as outlined in lines 2-9 of Algorithm 5 to
derive the selection ciphertext s̃, followed by CtPtMul with
the e plaintext payloads in P to get Õ. Due to the varying
number of RLWE plaintexts required for the payloads of each
entry in DBMMKPIRL, certain measures are necessary when
summing the response ciphertexts (as specified in lines 4-5)
to ensure that the length of the final returned ciphertext vector
R̃ is fixed and encapsulates all retrieved content.

Algorithm 7 Response for Large m and Payloads
Input: q̃, N , k ∈ N, n, E = [e1, . . . , en], (y, P) ∈ DBMMKPIRL

1: for each (y, P) ∈ DBMMKPIRL do
2: s̃← Run lines 2-9 of Algorithm 5
3: Õ ← CtPtMul(s̃, P)
4: for x = 1, 2, . . . ,max(E) do

5: R̃[x] =
n∑

i=1
CtCtAdd

{
Õi[x], if x ≤ ei
0, else

6: end for
7: end for

Output: R̃

Algorithm 7 shares the same selection mask computation
cost as Algorithm 5, since the input structure and equality
test remain unchanged. The main difference lies in the inner
product phase (lines 3–6), where each of the n selection
ciphertexts is applied to a list of e plaintexts, resulting in an
increased cost of O(ne) from the corresponding CtPtMul
and CtCtAdd operations.

MMKPIR efficiently retrieves multiple values per keyword,
but real-world applications often require combining results
across keywords using boolean logic. This motivates our
extension to Boolean-enhanced Keyword PIR (BKPIR).

V. BOOLEAN-ENHANCED KEYWORD PIR

Building on MMKPIR’s support for many-to-many
relationship, BKPIR introduces formal semantics for
boolean operators, enabling queries of the form:
Q = B(kw1, kw2, . . . , kwz), where B represents boolean
operators (AND/OR/NOT) applied to z keywords. BKPIR
preserves the efficiency and many-to-many retrieval
capabilities of MMKPIR while introducing formal semantics
for logical composition of query terms.

A. Setup for BKPIR

Understanding BKPIR becomes straightforward once
MMKPIR is grasped. During the Setup phase, the database
DB(n,m) is processed to generate a set VM (representing
the distinct values in DB). Similar to how MMKPIR reshapes
the keyword-value structure into DBMMKPIR, BKPIR re-
shapes DB into a keyword-valuemap structure, DBBKPIR =
{(yi,vmi)}ni=1. In this structure, yi represents constant-
weight code for kwi, each valuemap vmi ∈ {0, 1}m is a
multi-hot encoded vector representing values from VM , where
multi-hot encoding represents the presence of multiple values
in a document using a binary vector (e.g., [1, 0, 1] indicates
values 1 and 3 are present). Each vmi is packed into an
RLWE plaintext for SIMD operations. Algorithm 8 outlines
the BKPIR setup procedure, assuming m ≤ N for simplicity.

Algorithm 8 Setup for BKPIR
Input: DB, w, k ∈ N

1: VM ← []
2: for each (kw, v) ∈ DB do
3: if value /∈ VM then
4: VM.append(v)
5: end if
6: end for
7: (y, Vkw) ∈ DBMMKPIR ← Run lines 1-9 of Algorithm 3
8: for each (y, Vkw) ∈ DBMMKPIR do
9: vm← []

10: for each v ∈ VM do
11: if v ∈ Vkw then
12: vm.append(1)
13: else
14: vm.append(0)
15: end if
16: end for
17: DBBKPIR[y] = vm
18: pvm ← EncodeToPt(vm)
19: DBBKPIR[y] = pvm

20: end for
Output: (y,pvm) ∈ DBBKPIR, V M

When m > N , the valuemap VM of length m is divided
into f = ⌈m/N⌉ vectors, each of length N . These vectors are
then encoded into RLWE plaintexts using EncodeToPt. The
resulting database, DBBKPIRL, associates each keyword with
f such plaintexts, which are concatenated to form Pvm, rep-
resenting the complete valuemap for the keyword. Algorithm
9 provides the details.

7

Algorithm 9 Setup for BKPIR with large m

Input: DB, w, k ∈ N
1: vm, V M ← Run lines 1-17 of Algorithm 8
2: f ← ⌈m/N⌉
3: for each (y,vm) ∈ DBBKPIRL do
4: Split vm into vm′

1∥ . . . ∥vm′
f

5: for i = 1, 2, . . . , f do
6: pi ← EncodeToPt(vm′

i)
7: end for
8: Pvm ← [p1, . . . ,pf]
9: DBBKPIRL[y]← Pvm

10: end for
Output: (y, Pvm) ∈ DBBKPIRL, V M, f

B. BKPIR with Logical Operator AND

Response for BKPIR-AND. Once the database DBBKPIR

is set up, BKPIR enables advanced querying with logical
operators that combine multiple keywords. For instance, to
retrieve values associated with both keyword1 and keyword2,
two query ciphertexts, q̃1 and q̃2, are generated using Al-
gorithm 4. The server processes these ciphertexts using the
BKPIR response algorithm supporting the AND operator,
producing the response ciphertexts r̃AND. Details are provided
in Algorithm 10.

Note that queried keywords can be combined from different
databases, such as DBBKPIR1

and DBBKPIR2
, provided they

share the same valuemap VM . This functionality can also be
extended to more than two keywords and databases, though
for simplicity, this paper assumes all query keywords come
from the same DBBKPIR.

Algorithm 10 Response for BKPIR-AND
Input: q̃1, q̃2, DBBKPIR, N , k ∈ N, n, VM

1: for each (y,pvm) ∈ DBBKPIR do
2: r̃1 ← Run Algorithm 5 lines 2-11 (input q̃1)
3: r̃2 ← Run Algorithm 5 lines 2-11 (input q̃2)
4: r̃1 ∧ r̃2 ← CtCtMul(r̃1, r̃2)
5: p← EncodeToPt(VM)
6: r̃AND ← CtPtMul(r̃1 ∧ r̃2,p)
7: end for

Output: r̃AND

Algorithm 10 is derived from Algorithm 5 with minor
adjustments. In this version, parameters such as DBBKPIR,
along with the query ciphertexts q̃1 and q̃2, are input into
lines 2-11 of Algorithm 5, producing r̃1 and r̃2. These
ciphertexts correspond to the valuemaps for keyword1 and
keyword2, respectively. Since the valuemap employs a multi-
hot encoding, the CtCtMul operation on r̃1 and r̃2 results
in the ciphertext of the multi-hot encoded intersection of the
queried keywords. This represents the positions in VM where
values corresponding to both keyword1 AND keyword2 exist.
Finally, applying CtPtMul to r̃1∧ r̃2 and the payload RLWE
plaintext of VM yields the response ciphertext r̃AND.

Algorithm 10 doubles the selection cost of Algorithm 5 due
to two keyword queries, while maintaining the same O(n)
inner product cost, plus one extra CtCtMul for intersection.

Response for BKPIR-AND with Large m and Payloads.
BKPIR also supports queries where both m and the payload
are large. As described in Algorithm 9, the valuemap of length
m > N is encoded into f separate plaintexts. Similarly, the
payload for each value in VM is divided and encoded into the
corresponding number of payload plaintexts. The intersection
between the valuemaps for the queried keywords keyword1
and keyword2 is computed by performing CtCtMul on
their ciphertexts. Next, CtPtMul is applied between this
intersection and the payload plaintexts, producing a ciphertext
matrix R̃ that contains the matching data.

Algorithm 11 Response for BKPIR-AND with Large m and
Payloads
Input: q̃1, q̃2, N, k ∈ N, n, tb, V M,DBBKPIRL

1: f ← ⌈m/N⌉,m← |VM |, l← ⌈max(|v1|,...,|vm|)
tb

⌉
2: Init [V1, V2, . . . , Vf]: Reallocate VM = [v1, . . . , vm] into

[V1, . . . , Vf]
3: for i = 1, 2, . . . , f do
4: Init [PLi,1∥ . . . ∥PLi,l]: Split Vi’s payload into

[PLi,1∥ . . . ∥PLi,l]
5: for j = 1, 2, . . . , l do
6: Pi,j ← EncodeToPt(PLi,j)
7: end for
8: end for
9: for each (y, Pvm = [p1, . . . ,pf]) ∈ DBBKPIRL do

10: s̃1 ← Run Algorithm 5 lines 2-9 (input q̃1)
11: s̃2 ← Run Algorithm 5 lines 2-9 (input q̃2)
12: for i = 1, 2, . . . , f do
13: Õ1i,z ← CtPtMul(s̃1,pi) (z ∈ [1, n])

Õ2i,z ← CtPtMul(s̃2,pi) (z ∈ [1, n])
14: end for
15: end for
16: for i = 1, 2, . . . , f do
17: M̃1i ←

n∑
z=1

CtCtAdd
Õ1i,z , M̃2i ←

n∑
z=1

CtCtAdd
Õ2i,z

18: S̃i ← CtCtMul(M̃1i , M̃2i)
19: for j = 1, 2, . . . , l do
20: W̃i,j ← CtPtMul(S̃i, Pi,j)
21: end for
22: end for

23: R̃←

 W̃1,1 . . . W̃1,l

...
. . .

...
W̃f,1 . . . W̃f,l


Output: R̃

In Algorithm 11, the m values in VM are divided into
f = ⌈m/N⌉ vectors Vf , where each vector is of length
N (assuming, for simplicity, that m is a multiple of N).
Based on the largest payload size in VM , the payload of
each value in Vf is split into l = ⌈max(|v1|,...,|vm|)

tb
⌉ segments,

where l denotes the number of slots required for the value
with the largest payload. These segments, denoted as PLf,l,
are then encoded into RLWE plaintexts Pf,l for subsequent
computations. Unlike in Algorithm 7, each plaintext here
accommodates only one slot per element in VM to hold
its payload, requiring l plaintexts to store the largest value’s
payload. Therefore, the payload size of each value should be
as uniform as possible to minimize overhead.

8

For each entry in DBBKPIRL, the query ciphertexts q̃1
and q̃2 are used as inputs for the equality test, producing
ciphertexts s̃1 and s̃2, which are then multiplied with the
elements of the valuemap list [p1, . . . ,pf] using CtPtMul.
The results Õ1 and Õ2 contain the ciphertexts for the valuemap
entries that match the query criteria, while the other entries
remain as 0 ciphertexts. By separately summing Õ1 and Õ2

for all n entries, valid valuemap ciphertext vectors M̃1 and M̃2

are obtained. Performing CtCtMul on M̃1 and M̃2 produces a
selection ciphertext list S̃, which contains the ciphertext of the
intersection keyword1 ∧ keyword2. Subsequently, applying
CtPtMul to this valuemap and the payload plaintexts Pf,l

yields a ciphertext matrix R̃, which represents the response
for BKPIR queries where m > N and the maximum payload
size exceeds tb. The client can then decrypt these response
ciphertexts and reconstruct the queried data by concatenating
the non-zero data from slots with the same index f .

Compared to Algorithm 10, Algorithm 11 retains the same
selection complexity but incurs a higher inner product cost of
O(nf +nl), due to aggregation across n selection masks over
f valuemap segments and subsequent multiplications with l
payload segments.

C. BKPIR with Logical Operator NOT

To exclude a specific keyword3, from the query results, the
NOT logical operator is employed. The implementation of the
NOT operator in BKPIR follows a process similar to that of
the AND operator, with the main difference occurring during
the valuemap ciphertext calculation in the response stage,
as described in Algorithm 12. BKPIR-NOT achieves logical
negation by decrementing the ciphertext r̃ by 1 and applying
the CtNegate operation. A subsequent CtPtMul operation
between the negated valuemap ciphertext and the RLWE
plaintext of VM yields the result that excludes keyword3.

Algorithm 12 Response for BKPIR-NOT
Input: q̃3, DBBKPIR, N , k ∈ N, n, VM

1: for each (y,pvm) ∈ DBBKPIR do
2: r̃3 ← Run Algorithm 5 lines 2-11 (input q̃3)
3: ¬r̃3 ← CtNegate(CtPtAdd(r̃3,−1))
4: p← EncodeToPt(VM)
5: r̃NOT ← CtPtMul(¬r̃3,p)
6: end for

Output: r̃NOT

It should be highlighted that both the NOT and the forth-
coming OR operators in BKPIR are designed to accommodate
queries with large m and payloads. Their underlying principles
are similar to those of BKPIR-AND when dealing with large
m and payloads, and thus are not reiterated here.

D. BKPIR with Logical Operator OR

To support queries such as keyword4∨keyword5, BKPIR-
OR leverages an arithmetic construction of the OR operation.
Algorithm 13 details the implementation. BKPIR-OR begins
by applying a NOT operation on each keyword, achieved
by decrementing the ciphertext r̃ by 1 and applying the

CtNegate operation, thus negating the valuemap. The OR
operation is then performed by multiplying the two negated
valuemap ciphertexts using CtCtMul, followed by applying
a NOT operation to the result.

Algorithm 13 Response for BKPIR-OR
Input: q̃4, q̃5, DBBKPIR, N , k ∈ N, n, VM

1: for each (y,pvm) ∈ DBBKPIR do
2: r̃4 ← Run Algorithm 5 lines 2-11 (input q̃4)
3: r̃5 ← Run Algorithm 5 lines 2-11 (input q̃5)
4: r̃′

4 ← CtNegate(CtPtAdd(r̃4,−1))
5: r̃′

5 ← CtNegate(CtPtAdd(r̃5,−1))
6: r̃4 ∨ r̃5 ← CtNegate(CtPtAdd(CtCtMul(r̃′

4, r̃
′
5),−1))

7: p← EncodeToPt(VM)
8: r̃OR ← CtPtMul(r̃4 ∨ r̃5,p)
9: end for

Output: r̃OR

In summary, the logical AND, NOT, and OR operations on
the valuemap structure are realized through simple CtPtAdd,
CtNegate, and CtCtMul operations, enabling BKPIR to
flexibly set query criteria for private boolean retrievals.

VI. ANALYSIS

A. Security Analysis
Threat Model. Our PIR protocols are designed to ensure

strong privacy guarantees in the presence of an honest-but-
curious server, which may attempt to infer information from
the encrypted queries, intermediate computations or returned
ciphertexts. We analyze security from the perspectives of query
and response privacy under the RLWE assumption [38].

Query Privacy. In both MMKPIR and BKPIR protocols,
all keyword queries are encoded and encrypted under an
RLWE-based homomorphic encryption scheme. The structure
of the ciphertexts and the uniform evaluation of homomorphic
operations ensure that the server cannot distinguish between
queries for different keywords, even across multiple rounds.
For boolean queries in BKPIR, as long as the logical structure
of two queries is the same, their evaluation trace remains in-
distinguishable to the server. This achieves security analogous
to indistinguishability under chosen keyword or boolean query
attacks (IND-CKA/IND-CBQA), formal definitions and proofs
of which are given in Appendix A.

Response Privacy. In our schemes, all encrypted responses
are constructed from RLWE-based ciphertexts, which are
semantically secure under the RLWE assumption. In the base
MMKPIR and BKPIR protocols, each query response consists
of a single ciphertext. Due to the fixed dimension of RLWE
ciphertexts and the use of modulus switching to normalize
noise, response ciphertexts are indistinguishable.

Security of MMKPIRL and BKPIRL. MMKPIRL and
BKPIRL follow the same query construction and interaction
patterns as their respective base protocols MMKPIR and
BKPIR, inheriting their query privacy guarantees. That is,
query ciphertexts remain semantically secure and do not leak
the queried keyword.

To support large payloads and large m, both MMKPIRL
and BKPIRL return multi-ciphertext responses. To prevent

9

leakage from variable response sizes, MMKPIRL partitions
each value set into fixed-size plaintext chunks and pads all
responses to a common maximum length max(e∗), producing
a fixed-length ciphertext list. BKPIRL similarly returns a
fixed-size matrix based on the number of items m and the
maximum value size max(|v1|, . . . , |vm|). These normaliza-
tions ensure that response size and structure are independent
of the queried keyword and its associated values. These design
choices guarantee that ciphertext length and structure leak
no information, thereby preserving privacy. Since ciphertexts
remain semantically secure and the response pattern leaks
no information, MMKPIRL retains IND-CKA security and
BKPIRL preserves IND-CBQA security.

Symmetric Security. MMKPIR and BKPIR can be ex-
tended to symmetric PIR [41], protecting both query and
database privacy. A secure symmetric PIR must ensure query
indistinguishability between any two databases. However,
BKPIR’s multi-hot encoding may inadvertently expose struc-
tural information through payload ciphertexts, which return
either an encrypted value or zero. For applications requiring
dual privacy protection, our protocol can be extended to
achieve symmetric privacy. We describe this adaptation for
MMKPIR and BKPIR in Appendix B.

B. Correctness Analysis

The correctness of MMKPIR and BKPIR is primarily
influenced by the collision rate of the hash function, the
noise budget of ciphertexts, and the multiplicative depth of
homomorphic operations. The hash function offers the basis
for codewords in constant-weight code, and hash collisions can
result in incorrect retrieval. The likelihood of these collisions
depends on the hash distribution, the size of the keyword
domain, and the size of the codeword domain h. Assuming a
uniform hash distribution, the probability of a collision follows
the birthday paradox. As described in Algorithm 1, the size of
the codeword domain is determined by the parameters w and
k. When w = N is fixed, increasing k enlarges the codeword
domain, thus reducing the collision probability. Figure 3 shows
the relationship between k and codeword domain size, as well
as k and multiplication depth. When k is a power of 2, the
maximum codeword domain is achieved at the corresponding
multiplication depth.

Fig. 3. Codeword domain size (log2h) and multiplication depth vs k.

Notably, the use of hash functions in our protocol is not for
enhancing cryptographic security, but for enabling practical,

on-the-fly keyword encoding without pre-negotiated mappings.
For example, with w = N = 214 and k = 11, the codeword
domain reaches ≈ 2128, matching a 128-bit truncated SHA-3
hash. This allows standardized hash functions to be directly
used in both query and database processing, offering low
collision risk and eliminating coordination overhead.

Additionally, as shown in Algorithm 2, k influences the
multiplicative depth of homomorphic operations. A larger k
increases depth, potentially exceeding the ciphertext’s noise
budget and causing decryption failure. The noise budget itself
is determined by N , the plaintext modulus, and the coefficient
modulus. Hence, maintaining correctness requires balancing k,
N , and other RLWE parameters to ensure that the noise budget
supports the required computation depth.

C. Security and Correctness Under Database Dynamics

The design of MMKPIR and BKPIR prioritizes privacy-
preserving retrieval while allowing independent database evo-
lution (e.g., adding keywords or modifying value sets). These
updates are decoupled from query execution, ensuring security
and correctness remain intact as long as public parameters
remain stable.

Decoupling Updates from Protocol Execution. Database
updates, such as introducing a new keyword or modifying a
value set Vkw, occur exclusively in the preprocessing phase.
The server re-encodes affected entries using unchanged public
parameters, ensuring that homomorphic operations remain
consistent. Clients can query the latest database without al-
tering their algorithms, while the server processes queries
uniformly, preserving both efficiency and simplicity.

Security Under Updates. The security of MMKPIR
and BKPIR relies on IND-CKA and IND-CBQA security,
which holds as long as public parameters remain fixed. The
server, despite observing plaintext-encoded database elements
(constant-weight codewords yi, RLWE-packed payloads pi,
or valuemaps vmi), gains no advantage in reversing keyword
or value relationships due to RLWE’s cryptographic hardness.
Since all operations on queries and intermediate results occur
in the encrypted domain, updates introduce no new attack
vectors.

If parameter expansion is required (e.g., increasing w and
k for a larger keyword domain), a full re-encoding under new
parameters is necessary. While computationally expensive, this
maintains security, as each parameter set remains independent.
The server cannot leverage knowledge from one parameter set
to attack another, as the encoding schemes and ciphertexts are
mathematically disjoint.

Correctness Under Updates. Correctness is preserved if
new keywords are assigned unique constant-weight codewords
ynew via a collision-resistant hash function. Ensuring

(
w
k

)
≥

|KW | prevents codeword collisions and maintains accurate
value mappings. If new parameters satisfy these conditions,
correctness holds identically to the original protocol.

10

VII. EVALUATION

A. Experimental Setup

Implementation. We implement our schemes in C++ using
the Microsoft SEAL library (v4.0) [42] with the BFV ho-
momorphic encryption scheme. SHA-3 is used for keyword
hashing, with the resulting integers mapped into constant-
weight codewords. To reduce communication overhead, the
client encrypts query vectors in secret key mode, while the
server applies modulus switching on the response ciphertexts
to reduce their size without compromising the noise budget.

We run our experiments on an Ubuntu 22.04 virtual machine
using 4 CPU cores (with a base frequency of 3.6 GHz
and turbo frequency of 4.9 GHz) and 48 GB of memory.
Our implementation is single-threaded. All experiments were
repeated 5 times and the average results was taken.

Parameters. The degree of polynomial modulus N ∈
{213, 214, 215} , and the coefficient modulus uses the default
configuration in SEAL to achieve 128-bit security. In order to
obtain a higher noise budget in a freshly encrypted ciphertext
and a lower noise budget consumption in a homomorphic
multiplication, we choose t as a prime number as small as
possible, which is 65537. As for the plaintext, the maximum
bit size of each slot tb is set to 16-bit. For convenience,
in our experiment, the bit size of the value payload for
DBMMKPIRL and DBBKPIRL is multiple of tb, and m is a
multiple of N .

B. Benchmarking MMKPIR

Baseline. As discussed in Section II-E, CwPIR [5] is the
best available keyword PIR scheme capable of supporting
many-to-many relationships, although its efficiency is not opti-
mal. More recent schemes [6]–[8] provide higher efficiency in
one-to-one settings, but they are unable to function properly in
many-to-many settings due to fundamental design limitations.
Thus, we adopt CwPIR as the primary baseline for evaluating.

To ensure a fair comparison, we normalize the evaluation
by focusing on the number of keyword–value combinations,
the common retrieval unit across schemes. In CwPIR and
similar designs, each database row stores a single combination,
whereas in MMKPIR, each row holds multiple combinations
due to its ability to associate a keyword with multiple values.
Consequently, comparisons must account not just for the num-
ber of rows but for the total number of stored combinations
(n×m) and the volume of the values (also referred to as the
item size).

Performance of MMKPIR. The experimental results in
Table I show a linear relationship between the number of
database rows (n) and computation/communication costs. In
boolean models that typically use inverted indexes, where the
retrieval scale is defined as M = n × m, the complexity
of MMKPIR remains O(n). Given that m and n are often
of similar magnitude—with m typically larger in practice—it
follows that M ≈ n2. As a result, MMKPIR achieves sublinear
complexity with respect to M , specifically O(n) = O(

√
M).

In addition, we intentionally set N = m in this table to

TABLE I
PERFORMANCE OF MMKPIR. (k = 4, ITEM SIZE IS 2 BYTES.)

N
Combin.
(n × m)

DB Size
(MB)

Prep.
time(s)

Server
time(s)

Query
com.(KB)

Resp.
com.(KB)

213
128×213 2 0.18 15.90

211 100256×213 4 0.38 32.02
512×213 8 0.73 63.56

214
128×214 4 0.61 91.71

891 218256×214 8 1.30 213.46
512×214 16 2.39 375.86

215
128×215 8 2.10 533.81

3615 482256×215 16 4.03 1076.83
512×215 32 8.37 2166.67

maximize SIMD slot utilization—when m is divisible by N ,
payload packing becomes more efficient, and each ciphertext
can be fully utilized without padding overhead.

The choice of the polynomial modulus N represents a
trade-off between functionality and efficiency. A larger N
increases the ciphertext capacity, allowing more slots for value
packing and a higher noise budget for deeper homomorphic
multiplication. In our setting, this enables support for larger
k and codeword spaces (see Figure 3) and more complex
boolean logic over BKPIR (as evaluated in Table VI. For
instance, a higher noise budget can accommodate a greater
number of multiplication layers, which in turn supports larger
codeword sizes and more expressive query capabilities. How-
ever, increasing N also incurs higher computational cost and
communication overhead, as ciphertext sizes and operation
times scale accordingly. Thus, we select N values that balance
between acceptable performance and the desired retrieval
expressiveness.

Notably, the communication costs reported throughout this
paper refer to raw ciphertext sizes exchanged during a query
round, and are independent of specific network conditions.
Since all our proposed protocols support single-round query
execution, their performance remains relatively robust to vari-
ations in latency or bandwidth.

TABLE II
COMPARISON OF PERFORMANCE IN SINGLE ROW DATABASES.

N
Prep. time(s) Server time(s) Query com.(KB) Resp. com.(KB)

CwPIR MMKPIR CwPIR MMKPIR CwPIR MMKPIR CwPIR MMKPIR

213 0.04 0.001 0.41 0.14 216 211 103 100
214 0.04 0.004 2.26 0.82 913 891 224 218
215 0.05 0.014 12.81 4.11 3702 3615 493 482

Compare MMKPIR with Baseline. MMKPIR natively
supports many-to-many retrieval and inverted index queries
using an O(n) SIMD-parallel structure, which structurally
distinguishes it from CwPIR’s row-wise design that requires
n × m rows to support n keywords each mapping to m
values. This structural difference underlies the asymptotic and
empirical performance gap.

To ensure comparability, we first compare MMKPIR and
CwPIR in a single-row setting with n = 1. With a database

11

size of 16 KB, k = 4, an item size of 2 bytes for MMKPIR,
and m = 213, the results in Table II demonstrate that
MMKPIR achieves roughly 3× lower total runtime (prepro-
cessing time + server time) and 3.5×–40× faster preprocessing
than CwPIR. However, it is important to note that MMKPIR
retrieves all m values associated with the keyword in a single
query, while CwPIR retrieves only one value per query. Thus,
to retrieve the complete set of m values for the same keyword,
CwPIR requires m queries—multiplying its effective cost by
a factor of m.

To further validate this scalability, we compare both
schemes under increasing n ∈ {128, 256, 512} and fixed
m = 216, with a constant database size of 128 MB. Our ex-
perimental results reveal fundamental efficiency advantages in
MMKPIRL’s architecture. As shown in Table III, MMKPIRL
achieves preprocessing times of (9.58, 19.04, 37.07) seconds
and total runtimes of (29.81, 61.18, 120.14) seconds. In
comparison, CwPIR’s preprocessing times are (84.63, 167.67,
339.13) seconds, and total runtimes are (96.47, 192.89, 389.72)
seconds. This translates to approximately 8.9× speedup in pre-
processing and 3.2× speedup in total runtime for MMKPIRL.
Based on this structural difference, we extrapolate the effective
speedup as 3.2×m. For example, in the setting with m = 216,
this results in a theoretical 3.2× 216 = 209, 715× speedup.

TABLE III
COMPARE CWPIR WITH MMKPIRL.

Combin.
(n × m)

DB Size
(MB)

Prep.
time(s)

Server
time(s)

Query
com.(KB)

Resp.
com.(KB)

M
M

K
PI

R
L

(N
=2

1
3

,k
=4

) 128×216

16 1.23 17.23

211

805
32 2.40 17.88 1610
64 4.82 18.68 3220
128 9.58 20.23 6441

256×216

32 2.36 33.82

211

805
64 4.71 34.79 1610
128 9.46 36.63 3220
256 19.04 42.14 6442

512×216

64 4.50 64.71

211

805
128 9.09 68.66 1610
256 18.28 73.41 3221
512 37.07 83.07 6441

C
w

PI
R

(N
=2

1
3

,k
=4

)

128×1

16 10.92 9.03

216

721
32 21.88 9.30 1339
64 42.51 10.43 2678
128 84.63 11.84 5358

256×1

32 20.81 17.30

216

721
64 42.86 18.01 1339
128 84.21 20.22 2678
256 167.67 25.22 5362

512×1

64 41.83 34.08

216

721
128 84.47 36.92 1340
256 169.47 40.02 2679
512 339.13 50.59 5359

On the other hand, the performance gap persists even when
preprocessing costs are fully amortized over repeated queries
in stable database environments. MMKPIRL demonstrates
server times of (20.23, 42.14, 83.07) seconds, whereas CwPIR
achieves (11.84, 25.22, 50.59) seconds. Although MMKPIRL
exhibits approximately 0.6× the per-row efficiency of CwPIR
in server time, this does not imply inferiority. Considering
MMKPIRL’s structural advantage in handling query keyword-

value combinations, it theoretically achieves a speedup factor
of approximately 0.6 × 216 = 39, 321× in server time
compared to CwPIR.

This is consistent with the linear scaling behavior reported
in Table 7 of [5], which confirms that CwPIR’s cost grows
nearly linearly with the number of combinations. We empha-
size that this extrapolation serves as a theoretical projection,
not a direct experimental result. In practice, as supported by
Table 7 and Table 13 in [5], CwPIR becomes computationally
impractical under large n × m settings, e.g., 128 × 216. In
contrast, MMKPIR remains practical.

In addition, Table II and Table III show MMKPIR’s
server time improves in single-row but degrades in multi-row
databases. This occurs because CwPIR employs oblivious ex-
pansion [29], whose expansion time scales with the codeword
size w—independent of database scale—whereas MMKPIRL
fixes w = N , the cost increases linearly with the row count.
Consequently, keyword length does not affect MMKPIR’s
performance, but CwPIR requires fixed bit-length keywords
due to its design constraints. We therefore standardized on
16-bit keywords throughout the tests.

In terms of communication, MMKPIR(L) uses a fixed-
size query encapsulated in a single ciphertext, independent
of the database size or keyword domain. In contrast, Cw-
PIR’s query size grows with the keyword domain, scaling as
O(k

√
k!|S| + k). On the response side, MMKPIR(L) aggre-

gates the payloads row-wise, and returns a small, fixed-length
vector of ciphertexts per row, determined by the maximum
item size. This is significantly more efficient than CwPIR,
which may return up to n × m ciphertexts in many-to-many
scenarios, one per combination. As a result, MMKPIR(L)
achieves substantial communication savings, especially when
the item size is small and multiple values can be packed into
a single ciphertext.

C. Benchmarking BKPIR

Performance of BKPIR. BKPIR is a variant of the
MMKPIR scheme, introducing an additional inner product
computation between the selection vector and the valuemap
before calculating the payload inner product. This adjustment
allows for logical operations between multiple queries. For
single-keyword retrieval, BKPIR requires only one additional
CtPtMul operation compared to MMKPIR. Since CtPtMul
operations are very fast, this extra step has a negligible impact
on performance. As a result, the server-side computational
performance of BKPIR and MMKPIR is nearly identical.
Therefore, the evaluation results for MMKPIR in Table II and
Table III are also applicable to BKPIR for single-keyword
retrieval (represented as BKPIR-Single).

Table IV provides a detailed breakdown of the database
preprocessing time, server time, and communication overhead
for BKPIR under various combinations (n ×m) with k = 4,
N = 213, and an item size of 2 bytes. The performance of
BKPIR-NOT is nearly identical to BKPIR-Single, as it only
adds lightweight CtPtAdd and CtNegate operations.

12

TABLE IV
PERFORMANCE OF BKPIR WITH k = 4, N = 213 AND ITEM SIZE IS 2 BYTES.

Combinations Prep.
Time (s)

Server Run Time (s) Query
com.(KB)

Resp.
com.(KB)

(n × m) Selection Vector Logical Operation Inner
Product Total

ALL NOT AND OR NOT AND OR ALL NOT AND OR ALL ALL

128
× 213

0.002 16.36 32.84
0.0002 0.028 0.029 0.006

16.37 32.87 32.87
211 100256 0.002 32.60 65.53 32.60 65.56 65.57

512 0.002 64.73 130.12 64.74 130.16 130.16

128
× 214

0.004 16.36 32.84
0.0005 0.057 0.059 0.013

16.37 32.91 32.91
211 201256 0.004 32.60 65.53 32.61 65.60 65.60

512 0.004 64.73 130.12 64.74 130.19 130.19

128
× 215

0.008 16.36 32.84
0.0010 0.108 0.119 0.026

16.39 32.97 32.98
211 402256 0.009 32.60 65.53 32.62 65.66 65.57

512 0.009 64.73 130.12 64.76 130.26 130.27

128
× 216

0.018 16.36 32.84
0.0019 0.221 0.239 0.050

16.41 33.11 33.12
211 805256 0.018 32.60 65.53 32.65 65.80 65.82

512 0.018 64.73 130.12 64.78 130.39 130.41

The results indicate that both the database preprocessing
time and the size of the selection vector increase linearly with
n. The time spent computing the selection vector represents
the most significant portion of the total server time and is
primarily influenced by the parameters N and k. Table V
demonstrates how different values of N and k impact server
time, particularly for selection vector computation, with an
item size of 2 bytes, n = 128, and m = 213.

TABLE V
SERVER RUNTIME UNDER DIFFERENT N AND k.

k
N = 213 N = 214 N = 215

MMKPIR BKPIR-Single MMKPIR BKPIR-Single MMKPIR BKPIR-Single

2 11.10 11.32 65.36 65.89 411.35 410.15
4 16.64 16.36 91.15 91.11 534.69 535.91
8 - - 143.49 142.71 775.61 775.13

16 - - 248.38 249.51 1280.22 1278.90

Logical Operation Evaluation. BKPIR achieves functional
completeness by supporting logical operators such as AND,
OR, and NOT, enabling flexible boolean keyword retrieval.
However, like other RLWE-based PIR schemes, BKPIR faces
inherent limitations in computational efficiency and noise bud-
get. Each homomorphic operation introduces additional noise,
and decryption fails once the accumulated noise exceeds the
permissible bound. While bootstrapping techniques [43]–[45]
could in theory refresh ciphertexts and enable arbitrarily deep
logic circuits, their computational cost remains prohibitively
high for practical use.

To explore the practical limits of logic support under re-
alistic conditions (i.e., without bootstrapping), we evaluated
BKPIR under various (N, k) configurations and m = N , each
item occupies 2 bytes. The parameter N controls the RLWE
ciphertext size and thus the initial noise budget: increasing
N results in larger ciphertexts and higher overhead, but also
allows for more complex computation due to a greater noise
margin. Meanwhile, the parameter k affecting how much bud-
get is consumed before any logical operation can be applied.

In each test setting, we first determine the initial noise
budget and measure the noise consumption incurred by key-
word selection and inner-product computation. The difference
represents the remaining budget available for logic gates. We
then benchmark the noise cost of applying repeated logical
operations over the same ciphertexts and record the maximum
number of gates executable before decryption fails. This is re-
ported in the “Max Ops” column in Table VI. For consistency,
we report per-operation noise consumption using OR gates as
a reference. Though OR operations are theoretically slightly
more expensive than AND (involving additional negations and
additions), our empirical results indicate that the difference is
negligible. Therefore, the “Max Ops” count applies equally
to AND and OR in practice. NOT operations, on the other
hand, introduce minimal noise and can effectively be applied
an unlimited number of times.

TABLE VI
LOGICAL OPERATION CAPACITY AND NOISE BUDGET

N
Init.

Budget(bits) k
Sel+IP
Budget

Per-Op
Budget

Max
Ops

Per-Op
Latency

213 153

[1,2] 92

28

2

0.03s[3,4] 118 1
[5,8] - -
[9,16] - -

214 368

[1,2] 93

29

9

0.14s[3,4] 122 8
[5,8] 153 7
[9,16] 182 6

215 804

[1,2] 94

30

23

0.71s[3,4] 126 22
[5,8] 157 21
[9,16] 187 20

In addition to noise-related limits, we also profile the
computational cost of logical operations. Table VI reports
the average latency per logic gate evaluated in isolation.
Results show that logic gates themselves incur very little
overhead—ranging from 0.03 to 0.71 seconds per operation

13

depending on N . This confirms that logical composition is
not the primary performance bottleneck. Rather, the overall
latency is dominated by the number of keywords involved
in a boolean expression, since each keyword incurs a costly
selection mask computation (as reflected in Algorithm 10 and
Algorithm 11). Therefore, the true scalability constraint lies
not in the number of logic gates, but in the number of distinct
keywords participating in the expression.

D. Benchmarking under Large m and Payloads

We evaluated the variation in response communication
overhead for BKPIR under different settings. The response
communication volume of BKPIR depends on both m and the
item size. Increasing m raises the value of f , leading to more
ciphertexts and greater communication volume. Similarly, a
larger item size increases l, also resulting in more ciphertexts.
For both BKPIR and MMKPIR, query communication volume
remains constant at one ciphertext, regardless of the number of
keywords or database size. Importantly, the response commu-
nication volume is unaffected by n, even for very large values
of n. Figure 4 illustrates the relationship between response
communication costs, m, and item size under different N
settings.

Fig. 4. Response Communication vs (a) m (b-d) item size.

BKPIR reshapes the database into a valuemap form, requir-
ing only a single encoding of the payload, unlike MMKPIR,
which needs to encode the valueset for each keyword. This
makes BKPIR more efficient during the database preparation
phase, especially for large m and payloads. Table VII com-
pares MMKPIR and BKPIR for a single-row database with
very large m and item sizes.

The response communication cost is directly influenced by
the number of response ciphertexts, as their size remains con-
stant once parameters like the polynomial modulus degree and
coefficient modulus are set. Thus, the number of ciphertexts
becomes the main factor determining communication cost.

In this context, e =
⌈

1
N ·tb

∑d
i=1 |vi|

⌉
represents the number

of ciphertexts required to store the payload in MMKPIRL,
f = ⌈m/N⌉ and l = ⌈max(|v1|, . . . , |vm|)/tb⌉ define the size

TABLE VII
PERFORMANCE UNDER LARGE m AND PAYLOADS

(n = 1, N = 213, k = 4)

Method Prep.
Time(s)

Server time(s) Query
com.(KB)

Resp.
com.(KB)Selection

Vector
Logical

Operation
Inner

Product Total

(m=214, item size is 4 bytes, row payload is 64KB, e = f × l = 2× 2)

MMKPIRL 0.004 0.13 - 0.02 0.15

211 402BKPIRL-AND 0.005 0.31 0.04 0.02 0.37
BKPIRL-OR 0.005 0.31 0.05 0.02 0.38

BKPIRL-NOT 0.005 0.15 0.0005 0.02 0.17

(m=216, item size is 16 bytes, row payload is 1MB, e = f × l = 8× 8)

MMKPIRL 0.08 0.12 - 0.32 0.44

211 6442BKPIRL-AND 0.07 0.42 0.16 0.27 0.85
BKPIRL-OR 0.07 0.42 0.22 0.27 0.91

BKPIRL-NOT 0.07 0.20 0.002 0.27 0.47

(m=218, itemsize is 64 bytes, row payload is 16MB, e = f × l = 32× 32)

MMKPIRL 1.14 0.13 - 4.45 4.58

211 103073BKPIRL-AND 1.16 0.82 0.82 4.01 5.65
BKPIRL-OR 1.16 0.82 0.95 4.01 5.78

BKPIRL-NOT 1.16 0.39 0.008 4.01 4.41

(m=220, item size is 256 bytes, row payload is 256MB, e = f × l = 128× 128)

MMKPIRL 19.83 0.11 - 74.07 74.18

211 1649193BKPIRL-AND 19.43 2.49 3.6 64.54 70.63
BKPIRL-OR 19.43 2.49 3.78 64.54 70.81

BKPIRL-NOT 19.43 1.24 0.03 64.54 65.81

of the response ciphertext matrix in BKPIRL. Here, f denotes
the number of ciphertexts that need to be allocated for m
values, and l indicates the number of ciphertexts needed to
store the payload based on the size of each value. Assuming
the valueset size is m and each vi is of equal size, then e = f ·l.

Table VIII compares the asymptotic cost of major
homomorphic operations—including CtCtMul, CtPtMul,
CtRotate—as well as the multiplicative depth and number of
response ciphertexts for CwPIR, MMKPIRL (Algorithm 7),
and a single-keyword query version of BKPIRL. Specifically,
the BKPIRL-Single row corresponds to a simplified version
of Algorithm 11 that handles single-keyword queries without
logical operations.

TABLE VIII
ASYMPTOTIC COMPLEXITY OF CWPIR, MMKPIRL,AND BKPIRL IN

LARGE MANY-TO-MANY DATABASES

Method CtCtMul CtPtMul CtRotate Depth Resp. cts.

CwPIR nmk nm ·
⌈

l
N

⌉
w ⌈log2 k⌉ nm ·

⌈
l
N

⌉
MMKPIRL nk ne nlog2N ⌈log2k⌉ e

BKPIRL-Single nk nf + nl nlog2N ⌈log2k⌉ f · l

It should be noted that while the original CwPIR returns⌈
l
N

⌉
ciphertexts in response, adapting it for a many-to-many

database retrieval necessitates returning all n×m ciphertexts
to the client without aggregation to ensure correctness. Con-
sequently, the total number of response ciphertexts becomes
nm ·

⌈
l
N

⌉
.

14

VIII. CONCLUSION

In this work, we present MMKPIR, an efficient keyword
PIR scheme tailored for many-to-many relationships, address-
ing limitations in prior works. Compared to existing state-of-
the-art schemes, MMKPIR achieves significantly lower com-
munication and computation overhead under the same database
scale. Building on this, we propose BKPIR, the first keyword
PIR scheme to support expressive boolean queries while
maintaining performance comparable to MMKPIR. Together,
these schemes advance practical privacy-preserving search by
supporting large keyword domains, dynamic databases, and
boolean logic in a single-server, single-round setting. They
hold promise for real-world applications such as private web
search and confidential patent retrieval. Future work may
explore further optimizations and broader integration into
privacy-preserving search frameworks.

ACKNOWLEDGMENT

This work was supported by the National Key Re-
search and Development Program of China under Grant
2023YFB3106302. The authors are grateful to the anonymous
reviewers for their valuable comments.

REFERENCES

[1] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-
mation retrieval,” in Proceedings of IEEE 36th Annual Foundations of
Computer Science, Oct. 1995, pp. 41–50.

[2] B. Chor, N. Gilboa, and M. Naor, “Private information retrieval by
keywords,” 1997.

[3] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[4] G. Salton and M. McGill, Introduction to modern information retrieval.
New York, NY: McGraw-Hill, 1983.

[5] R. A. Mahdavi and F. Kerschbaum, “Constant-weight {PIR}: Single-
round Keyword {PIR} via Constant-weight Equality Operators,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 1723–
1740.

[6] S. Patel, J. Y. Seo, and K. Yeo, “{Don’t} be dense: Efficient keyword
{PIR} for sparse databases,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 3853–3870.

[7] J. Liu, J. Li, D. Wu, and K. Ren, “Pirana: Faster multi-query pir
via constant-weight codes,” in 2024 IEEE Symposium on Security and
Privacy (SP). IEEE, 2024, pp. 4315–4330.

[8] A. Bienstock, S. Patel, J. Y. Seo, and K. Yeo, “Batch PIR and labeled
PSI with oblivious ciphertext compression,” in 33rd USENIX Security
Symposium (USENIX Security 24), Aug. 2024, pp. 5949–5966.

[9] J. Groth, A. Kiayias, and H. Lipmaa, “Multi-query Computationally-
Private Information Retrieval with Constant Communication Rate,” in
Public Key Cryptography – PKC 2010, ser. Lecture Notes in Computer
Science, P. Q. Nguyen and D. Pointcheval, Eds. Berlin, Heidelberg:
Springer, 2010, pp. 107–123.

[10] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceeding 2000 IEEE Symposium on Security
and Privacy. S&P 2000, May 2000, pp. 44–55.

[11] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
Key Encryption with Keyword Search,” in Advances in Cryptology -
EUROCRYPT 2004, ser. Lecture Notes in Computer Science, C. Cachin
and J. L. Camenisch, Eds. Berlin, Heidelberg: Springer, 2004, pp.
506–522.

[12] N. Wang, W. Zhou, J. Wang, Y. Guo, J. Fu, and J. Liu, “Secure and
efficient similarity retrieval in cloud computing based on homomorphic
encryption,” IEEE Transactions on Information Forensics and Security,
2024.

[13] P. Golle, J. Staddon, and B. Waters, “Secure Conjunctive Keyword
Search over Encrypted Data,” in Applied Cryptography and Network Se-
curity, ser. Lecture Notes in Computer Science, M. Jakobsson, M. Yung,
and J. Zhou, Eds. Berlin, Heidelberg: Springer, 2004, pp. 31–45.

[14] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
“Highly-Scalable Searchable Symmetric Encryption with Support for
Boolean Queries,” in Advances in Cryptology – CRYPTO 2013, ser.
Lecture Notes in Computer Science, R. Canetti and J. A. Garay, Eds.
Berlin, Heidelberg: Springer, 2013, pp. 353–373.

[15] T. Moataz and A. Shikfa, “Boolean symmetric searchable encryption,”
in Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security, 2013, pp. 265–276.

[16] B. Ferreira, B. Portela, T. Oliveira, G. Borges, H. Domingos, and
J. Leitão, “Boolean searchable symmetric encryption with filters on
trusted hardware,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 19, no. 2, pp. 1307–1319, 2020.

[17] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: ramification, attack and mitigation.” in Ndss,
vol. 20. Citeseer, 2012, p. 12.

[18] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-Abuse Attacks
Against Searchable Encryption,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’15. New York, NY, USA: Association for Computing Machinery,
Oct. 2015, pp. 668–679.

[19] S. Oya and F. Kerschbaum, “Hiding the access pattern is not enough:
Exploiting search pattern leakage in searchable encryption,” in 30th
USENIX security symposium (USENIX Security 21), 2021, pp. 127–142.

[20] P. Rizomiliotis and S. Gritzalis, “ORAM Based Forward Privacy
Preserving Dynamic Searchable Symmetric Encryption Schemes,” in
Proceedings of the 2015 ACM Workshop on Cloud Computing Security
Workshop, ser. CCSW ’15. New York, NY, USA: Association for
Computing Machinery, Oct. 2015, pp. 65–76.

[21] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: Efficient Obliv-
ious RAM in Two Rounds with Applications to Searchable Encryption,”
in Advances in Cryptology – CRYPTO 2016, ser. Lecture Notes in
Computer Science, M. Robshaw and J. Katz, Eds. Berlin, Heidelberg:
Springer, 2016, pp. 563–592.

[22] H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled PSI from Fully
Homomorphic Encryption with Malicious Security,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA: Association for
Computing Machinery, Oct. 2018, pp. 1223–1237.

[23] K. Cong, R. C. Moreno, M. B. da Gama, W. Dai, I. Iliashenko, K. Laine,
and M. Rosenberg, “Labeled PSI from Homomorphic Encryption with
Reduced Computation and Communication,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’21. New York, NY, USA: Association for Computing
Machinery, Nov. 2021, pp. 1135–1150.

[24] H. Chen, K. Laine, and P. Rindal, “Fast Private Set Intersection from
Homomorphic Encryption,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: Association for Computing Machinery, Oct. 2017,
pp. 1243–1255.

[25] L. Ren, M. H. Mughees, and I. Sun, “Simple and practical amortized
sublinear private information retrieval using dummy subsets,” in Pro-
ceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, 2024, pp. 1420–1433.

[26] M. Luo, F.-H. Liu, and H. Wang, “Faster fhe-based single-server private
information retrieval,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, 2024, pp.
1405–1419.

[27] M. Zhou, A. Park, W. Zheng, and E. Shi, “Piano: extremely simple,
single-server pir with sublinear server computation,” in 2024 IEEE
Symposium on Security and Privacy (SP). IEEE, 2024, pp. 4296–4314.

[28] M. H. Mughees and L. Ren, “Vectorized Batch Private Information
Retrieval,” in 2023 IEEE Symposium on Security and Privacy (SP), May
2023, pp. 437–452.

[29] S. Angel, H. Chen, K. Laine, and S. Setty, “PIR with Compressed
Queries and Amortized Query Processing,” in 2018 IEEE Symposium
on Security and Privacy (SP), May 2018, pp. 962–979.

[30] C. Aguilar Melchor, J. Barrier, L. Fousse, and M.-O. Killijian, “XPIR
: Private Information Retrieval for Everyone,” Proceedings on Privacy
Enhancing Technologies, vol. avril 2016, pp. 155–174, Apr. 2016.

[31] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes
and their applications,” in Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, 2004, pp. 262–271.

[32] M. H. Mughees, H. Chen, and L. Ren, “OnionPIR: Response Efficient
Single-Server PIR,” in Proceedings of the 2021 ACM SIGSAC Confer-

15

ence on Computer and Communications Security, ser. CCS ’21. New
York, NY, USA: Association for Computing Machinery, Nov. 2021, pp.
2292–2306.

[33] A. Ali, T. Lepoint, S. Patel, M. Raykova, P. Schoppmann, K. Seth, and
K. Yeo, “{Communication–Computation} Trade-offs in {PIR},” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 1811–
1828.

[34] S. J. Menon and D. J. Wu, “SPIRAL: Fast, High-Rate Single-Server
PIR via FHE Composition,” in 2022 IEEE Symposium on Security and
Privacy (SP), May 2022, pp. 930–947.

[35] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

[36] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[37] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic Encryption
for Arithmetic of Approximate Numbers,” in Advances in Cryptology –
ASIACRYPT 2017, ser. Lecture Notes in Computer Science, T. Takagi
and T. Peyrin, Eds. Cham: Springer International Publishing, 2017, pp.
409–437.

[38] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learn-
ing with errors over rings,” in Advances in Cryptology–EUROCRYPT
2010: 29th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, French Riviera, May 30–June 3,
2010. Proceedings 29. Springer, 2010, pp. 1–23.

[39] Z. Brakerski and V. Vaikuntanathan, “Fully Homomorphic Encryption
from Ring-LWE and Security for Key Dependent Messages,” in Ad-
vances in Cryptology – CRYPTO 2011, ser. Lecture Notes in Computer
Science, P. Rogaway, Ed. Berlin, Heidelberg: Springer, 2011, pp. 505–
524.

[40] N. P. Smart and F. Vercauteren, “Fully homomorphic simd operations,”
Designs, codes and cryptography, vol. 71, pp. 57–81, 2014.

[41] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting Data
Privacy in Private Information Retrieval Schemes,” Journal of Computer
and System Sciences, vol. 60, no. 3, pp. 592–629, Jun. 2000.

[42] “Microsoft SEAL (release 4.0),” https://github.com/Microsoft/SEAL,
Mar. 2022, microsoft Research, Redmond, WA.

[43] C. Gentry, A fully homomorphic encryption scheme. Stanford university,
2009.

[44] R. Geelen and F. Vercauteren, “Bootstrapping for bgv and bfv revisited,”
Journal of Cryptology, vol. 36, no. 2, p. 12, 2023.

[45] A. Kim, M. Deryabin, J. Eom, R. Choi, Y. Lee, W. Ghang, and
D. Yoo, “General bootstrapping approach for rlwe-based homomorphic
encryption,” IEEE Transactions on Computers, 2023.

APPENDIX A
SECURITY PROOFS

Definition 1 (IND-CKA): A keyword PIR protocol is IND-
CKA secure (indistinguishable under chosen keyword attack)
if for all probabilistic polynomial-time (PPT) adversaries A,
and for any two keywords kw0, kw1, it holds that:

|Pr[A(View(kw0)) = 1]− Pr[A(View(kw1)) = 1]| ≤ negl(λ),

where λ is the security parameter, View(kw) contains all
encrypted queries, homomorphic computation traces, and re-
sponse ciphertexts generated during protocol execution for
keyword kw.

Definition 2 (IND-CBQA): A PIR protocol supporting
boolean keyword queries is IND-CBQA secure (indistinguish-
able under chosen boolean query attack) if, for any PPT
adversary A, and for any two boolean queries:

Q0 = B(kw
(0)
1 , . . . , kw(0)

z), Q1 = B(kw
(1)
1 , . . . , kw(1)

z),

with the same logical structure B, it holds that:

|Pr[A(View(Q0)) = 1]− Pr[A(View(Q1)) = 1]| ≤ negl(λ).

Theorem 1: Assuming the RLWE problem is hard,
MMKPIR is IND-CKA secure.

Proof of Theorem 1. Construct a sequence of hybrid games:
Game 0: Real protocol execution with query kwb.
Game 1: Replace query ciphertexts q̃b with fresh RLWE

encryptions under the same noise distribution. Indistinguisha-
bility follows from RLWE-based IND-CPA security.

Game 2: Replace equality test results with RLWE ci-
phertexts encrypting random bits (0/1) under the appropriate
noise level for their position in the computation graph. This
preserves distributional equivalence as per RLWE error prop-
agation.

Game 3: Replace the final response ciphertexts with random
ciphertexts of the same dimension and noise level, which
remain indistinguishable under RLWE-based encryption.

Game 4: Switch kwb to kw1−b. The computational indis-
tinguishability between adjacent games implies that any non-
negligible distinguishing advantage by the adversary would
yield an efficient algorithm for solving RLWE, thereby com-
pleting the proof.

Theorem 2: Assuming the RLWE problem is hard, BKPIR
is IND-CBQA secure.

Proof of Theorem 2. Extend the hybrid argument with
boolean operator preservation:

Game 0: Real execution of boolean query Qb.
Game 1: Replace all keyword ciphertexts {q̃(b)

j } with
fresh RLWE encryptions, maintaining consistent noise growth
across logical operations.

Game 2: For each boolean operation, replace intermediate
results with properly noised RLWE ciphertexts encrypting
either:

• The real computed bit, when following the correct com-
putation path

• A random bit with matching noise distribution, when on
dummy paths

Game 3: Replace the final response ciphertexts with random
ciphertexts of the same dimension and noise level.

Game 4: Switch Qb to Q1−b. Structural equivalence of
boolean circuits and noise consistency maintain indistinguisha-
bility.

The argument reduces boolean query distinguishability to
RLWE hardness.

APPENDIX B
SYMMETRIC SECURITY EXTENSIONS

The basic MMKPIR and BKPIR protocols can be extended
to achieve symmetric PIR security as defined by Gertner et
al. [41], which ensures privacy for both the client query and the
database content. We describe how to adapt BKPIR to satisfy
this stronger privacy notion, focusing on key challenges and
corresponding countermeasures.

16

https://github.com/Microsoft/SEAL

Two databases DB and DB′ with m entries per record are
structurally equivalent if:

∀i ∈ [m] : DB[∗, i] = DB′[∗, i]∨
(
DB[∗, i] = ⊥ ∧DB′[∗, i] = ⊥

)
.

A protocol achieves symmetric security if for any PPT
adversary A:∣∣Pr[A(View(DB)) = 1]− Pr[A(View(DB′)) = 1]

∣∣ ≤ negl(λ),

denoted as View(DB)
c
≈ View(DB′) under the RLWE as-

sumption.
However, the baseline BKPIR protocol may leak structural

information due to its use of multi-hot encoding. Specifically,
the response

r =

m∑
i=1

maski · Enc(vi),

where maski ∈ {0, 1}, allows the server to distinguish between
Enc(vi) and encryptions of zero. This leakage arises because
the presence of a non-zero ciphertext magnitude indicates that
vi ̸= ⊥.

To mitigate this leakage, the following countermeasures can
be implemented:

First, introduce uniform response obfuscation. Each re-
sponse is padded with an encryption of zero using fresh noise:

r∗ = r + Enc(0; ηobfs),

where ηobfs is a noise bound that matches or exceeds the
maximum noise level ηmax across all valid ciphertexts. This
ensures that all responses are statistically indistinguishable
in magnitude. This countermeasure incurs minimal computa-
tional overhead, requiring only a single ciphertext addition per
query and slightly increasing noise growth.

Second, inject random placeholder entries into the database
to obscure the true distribution of values. Specifically, Expand
the database to m′ = m+∆m entries with:

DB′ = DB ∪
{
(kw

(j)
ph ,Enc(0))

}∆m

j=1
,

where ∆m = ω(log λ) ensures dummy entries dominate
adversarial advantage. This introduces ⌈∆m/N⌉ additional
plaintext rows and ciphertext-plaintext multiplications per row,
resulting in moderate overhead.

Third, apply periodic randomization to the value map. After
every K = poly(λ) queries, the server permutes the value
mapping:

VM′ = π(VM), π ∈R Sm′ ,

using a cryptographically secure permutation π. This prevents
the server from associating specific ciphertext positions with
query patterns over time. This incurs an amortized preprocess-
ing cost equivalent to re-encoding and shuffling m′ entries
every K queries.

Theorem 3: Let the underlying encryption scheme be
RLWE-based with noise parameter ηobfs ≥ ηmax. Then, the
modified BKPIR protocol satisfies View(DB)

c
≈ View(DB′)

for structurally equivalent databases.

Proof Sketch. Construct a sequence of hybrid games to argue
indistinguishability: (1) Replace real responses with padded
ones r∗, which are indistinguishable due to RLWE; (2) Re-
place dummy entries with real entries incrementally, noting
that all are encrypted and indistinguishable; (3) Apply per-
mutations to the value map and argue that pseudorandomness
hides any correlation. Each hybrid transition is indistinguish-
able under standard RLWE-based security assumptions.

APPENDIX C
ARTIFACT APPENDIX

A. Description & Requirements

This artifact provides the reference implementation of the
MMKPIR and BKPIR protocols proposed in our paper. The
implementation includes:

• Core protocol implementation in C++ using Microsoft
SEAL for homomorphic encryption.

• Scripts to reproduce results for MMKPIR and BKPIR in
Tables I–VII.

1) How to access: The artifact is publicly available at https:
//github.com/gimmehug/bkpir. The repository contains build
instructions, experiment scripts, and a detailed README.
We have also uploaded the artifact package to the Zenodo
repository at https://doi.org/10.5281/zenodo.16962425.

2) Hardware dependencies: The implementation has no
specialized hardware requirements. For optimal performance
during large-scale experiments (particularly Table III and
IV with large keyword-value combinations), we recommend
64GB RAM for stable execution.

3) Software dependencies:

• OS: Ubuntu 20.04+ recommended
• C++ compiler: g++ ≥ 6.0
• CMake: ≥ 3.13
• Microsoft SEAL ≥ 4.0

4) Benchmarks: All experiments use synthetic data gener-
ated in-memory. No external datasets are required.

B. Artifact Installation & Configuration

The artifact requires standard development tools and follows
conventional build processes: install prerequisite packages
using the system package manager, build and install Microsoft
SEAL following official documentation, configure the build
environment using CMake, and compile the source code.

Detailed, step-by-step installation instructions are provided
in the repository’s README file.

C. Experiment Workflow

Scripts for reproducing Tables I–VII are located in the
scripts/ directory. Each script sets parameters, runs the
protocol, and outputs CSV files with performance results.

17

https://github.com/gimmehug/bkpir
https://github.com/gimmehug/bkpir
https://doi.org/10.5281/zenodo.16962425

D. Major Claims

• (C1): MMKPIR supports native n × m keyword-value
mappings using O(n) structure by packing m values per
ciphertext row. This enables scalable support for many-to-
many inverted index structures with sublinear communi-
cation complexity. Demonstrated in E1–E3 (Tables I–III).

• (C2): BKPIR extends MMKPIR to support boolean key-
word combinations (AND/OR/NOT) with complete log-
ical expressiveness. It is the first PIR construction to
natively support boolean retrieval logic. Logical opera-
tions introduce only small additional cost (milliseconds).
Demonstrated in E4 and E7 (Tables IV and VII).

• (C3): MMKPIR and BKPIR show comparable perfor-
mance in single-keyword settings, indicating that boolean
support in BKPIR introduces negligible overhead when
unused. Demonstrated in E5 and E7 (Tables V and VII).

• (C4): BKPIR supports up to 23 boolean logic depth (e.g.,
nested AND/OR) under practical parameter settings, with
tunable noise growth and latency tradeoffs. Demonstrated
in E6 (Table VI).

E. Evaluation

We provide shell scripts to reproduce all tables in our paper.
Each script is located under the scripts/ directory and
automatically runs the corresponding experiment.

1) Experiment E1: MMKPIR Single-keyword Retrieval: [5
human-minutes + 2 compute-hours]

[How to, Preparation & Execution]: Refer to the README
file.

[Result]: This script runs the MMKPIR protocol un-
der varying (N,n,m) parameters and saves output as
results/table1.csv.

2) Experiment E2: Microbenchmark on Single-row
Database: [5 human-minutes + 5 compute-minutes]

[How to, Preparation & Execution]: Refer to the README
file.

[Result]: Shows microbenchmark under a single-row
database and saves output as a CSV file.

3) Experiment E3: MMKPIR Scalability: [5 human-
minutes + 40 compute-minutes]

[How to, Preparation & Execution]: Refer to the README
file.

[Result]: This script evaluates MMKPIR under growing
(n,m) while fixing k and N , and stores results in a CSV
file.

4) Experiment E4: BKPIR Boolean Query Performance:
[5 human-minutes + 2 compute-hours]

[How to, Preparation & Execution]: Refer to the README
file.

[Result]: CSV file demonstrating latency and communica-
tion costs for BKPIR. See Table IV.

5) Experiment E5: MMKPIR and BKPIR(Single-keyword)
Test: [5 human-minutes + 4 compute-hours]

[How to, Preparation & Execution]: Refer to the README
file.

[Result]: CSV file demonstrating latency of MMKPIR and
BKPIR (with a single keyword input) under varying N and k.

6) Experiment E6: Noise Budget, Logic Depth, and Boolean
Circuit Latency: [5 human-minutes + 20 compute-minutes]

[How to, Preparation & Execution]: Refer to the README
file.

[Result]: CSV file with noise budget, cost per logic gate,
and maximum supported logic depth under different N and k.

7) Experiment E7: Item Number and Payload Size Scaling:
[5 human-minutes + 20 compute-minutes]

[How to, Preparation & Execution]: Refer to the README
file.

[Result]: CSV file with communication and runtime cost of
MMKPIRL and BKPIRL at expanded item counts and size.

F. Customization

The implementation supports extensive configuration, users
can customize key parameters such as:

• Polynomial modulus degree (N): 213, 214 and 215

• Number of keywords (-n) (recommended: ≤ 512 for
64GB RAM)

• Number of items (-m) (should be a multiple of N for
better packing)

• Hamming weight (-k) (typical range: 2–16)
• Item size (-il) (recommended: multiple of 2 bytes) and

keyword length (-kl) (flexible)

G. Notes

All experimental scripts are self-contained. For large-scale
runs (e.g., Table III-IV), ensure adequate memory is available.
Execution logs are saved for all script runs.

18

	Introduction
	Background and Related Work
	Boolean Retrieval
	Keyword PIR under Different Relational Structures
	Searchable Encryption
	Labeled PSI
	State-of-the-art keyword PIR

	Preliminaries
	Homomorphic Encryption
	Constant-weight Code

	Keyword PIR for Many-to-many Relationships
	Construction Overview
	Details of MMKPIR Protocol
	MMKPIR with Large m and Payloads

	Boolean-enhanced Keyword PIR
	Setup for BKPIR
	BKPIR with Logical Operator AND
	BKPIR with Logical Operator NOT
	BKPIR with Logical Operator OR

	Analysis
	Security Analysis
	Correctness Analysis
	Security and Correctness Under Database Dynamics

	Evaluation
	Experimental Setup
	Benchmarking MMKPIR
	Benchmarking BKPIR
	Benchmarking under Large m and Payloads

	Conclusion
	References
	Appendix A: Security Proofs
	Appendix B: Symmetric Security Extensions
	Appendix C: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment E1: MMKPIR Single-keyword Retrieval
	Experiment E2: Microbenchmark on Single-row Database
	Experiment E3: MMKPIR Scalability
	Experiment E4: BKPIR Boolean Query Performance
	Experiment E5: MMKPIR and BKPIR(Single-keyword) Test
	Experiment E6: Noise Budget, Logic Depth, and Boolean Circuit Latency
	Experiment E7: Item Number and Payload Size Scaling

	Customization
	Notes

