ISOLATOS: Detecting Double Fetch Bugs in COTS
RTOS by Re-enabling Kernel Isolation

Yingjie Cao*T, Xiaogang Zhut, Dean Sullivan®, Haowei Yang, Lei Xue*$, Xian Li¥,
Chenxiong Qianl, Minrui Yan¥, Xiapu Luof
*Sun Yat-sen University, {The Hong Kong Polytechnic University, HUnivelrsity of Hong Kong, China
tAdelaide University, YSwinburne University of Technology, Australia
J-University of New Hampshire, US

Abstract—Real-time operating systems (RTOS) often expose
double-fetch vulnerabilities when the kernel reads the same user-
space memory location multiple times without ensuring consis-
tency between fetches. Conventional static analysis cannot inspect
proprietary, commercial off-the-shelf (COTS) RTOS kernels, and
dynamic heuristics, which rely on broad time-window thresh-
olds, suffer from high false positive rates and heavy emulation
overhead. To address these challenges, we present ISOLATOS,
the first hardware-supported framework for detecting double-
fetch bugs in COTS RTOS. By leveraging modern CPU kernel-
isolation features, ISOLATOS enables kernel isolation so that
cross-boundary accesses can be captured by triggering page
faults. ISOLATOS then records page-fault metadata on each user-
memory fetch. Finally, multiple fetches in the same system call
are determined as a double-fetch bug, based on the lifecycle
of system calls that ISOLATOS instruments into COTS RTOS.
We evaluate ISOLATOS on three widely used RTOS, including
QNX, VxWorks, and seL.4, and demonstrate a 79.3 x reduction in
runtime overhead compared to state-of-the-art emulation-based
detectors. ISOLATOS also detects double-fetch bugs with lower
false positive rates than other tools. Our approach uncovers
43 previously unknown vulnerabilities in COTS RTOS (41
confirmed by vendors, 2 CVEs assigned). Additionally, we have
demonstrated the real-world impact of our findings in automotive
systems by exploiting them.

I. INTRODUCTION

Real-time operating systems (RTOSes) dominate the cyber-
physical system industry, powering applications in Internet of
Things (IoT), aerospace, and power plants. With more than
2.2 billion embedded devices running systems like QNX [1]
and VxWorks [2]], their compact footprints, exceptional re-
sponsiveness, and deterministic performance make them ideal
for applications demanding efficient and time-critical resource
utilization. This trend is further driven by the expanding
intelligent automotive landscape, which requires reliable real-
time processing capabilities. BlackBerry QNX was embedded
in more than 215 million vehicles worldwide by 2022, an

§ The corresponding author.

Network and Distributed System Security (NDSS) Symposium 2026
23-27, February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230568
www.ndss-symposium.org

increase of 20 million from the previous year [3], and more
than 4,000 companies utilize WindRiver VxWorks [4].

As the deployment of RTOSes in safety-critical applications
increases, the security of these systems become critical con-
cerns. Limited research has explored the detection of double-
fetch bugs in modern Commercial Off-the-Shelf (COTS)
RTOSes despite their potential to be exploited. Double-fetch
attacks occur when the kernel reads data from user-space and
subsequently, in the same thread, uses the data without verify-
ing whether it has changed [5]]. During this interval between
reference and use, a concurrently running user-space process
may alter the data, resulting in inconsistencies of which the
kernel is unaware. This directly violates the kernel’s trust in its
own validation logic. Such vulnerabilities can be exploited to
trigger a range of security issues, including kernel crashes [6]]
and privilege escalation [7l]. The implications of double-fetch
bugs are particularly severe in safety-critical applications,
where the integrity and reliability of the operating system is
required to prevent catastrophic outcomes. In automotive or
aerospace contexts, such exploits risk transforming software
flaws into physical harm.

Detecting and mitigating double-fetch bugs is imperative
given the critical role COTS RTOS plays in maintaining the
safety and functionality of safety-critical devices. However, ex-
isting methods either cannot detect double-fetch bugs in COTS
RTOS [8], [9], [10], [L1] or incur high false positives and
overhead [12]. Tools such as Coccinelle [[11] and Deadline [[10]
require source code, especially user-space pointers in transfer
functions, to detect double-fetch bugs. However, source code
is not available due to the proprietary nature of COTS RTOS,
which precludes the use of tools that require it. Bochspwn [[12]]
detects double-fetch based on emulation and a simple time
window for multiple fetches, resulting in both high overhead
and false positives. Another factor inhibiting existing tools is
that double-fetch bug detection requires that multiple fetches
of user-space data occur in the same system call. However,
the implementation of COTS RTOSes frequently violates this
requirement due to the use of preemption and multi-CPU
mechanisms. Thus, multiple fetches of user space data may
be from different system calls. This consequently increases
false positives when using Bochspwn.

These issues motivate us to investigate whether it is possible
for a tool to detect double-fetch bugs in COTS RTOS both

quickly and accurately? To answer this question, our key
insight is that kernel isolation based on hardware features
introduces low overhead and enables differentiation of double
fetch sources. Therefore, in this paper, we propose ISOLATOS
to detect double-fetch bugs in COTS RTOS by re-enabling
kernel isolation. However, this is non-trivial for COTS RTOSes
because we have to 1) identify context-switching operators
without source code; 2) differentiate both preemptive and
multi-cpu kernel thread fetches from those within the same
thread; and 3) efficiently handle page faults caused by directly
re-enabling kernel isolation.

In this paper, we propose ISOLATOS in order to achieve
quick and accurate detection of double-fetch bugs. ISOLATOS
first re-enables kernel memory isolation by configuring its
control bit in the associated control register. Afterwards, when
there is a page fault due to a user-land memory access from the
kernel, system control flow is redirected into a custom fault
handler. In the fault handler ISOLATOS records the running
context relevant for double-fetch detection, including the pro-
gram counter of the cross-boundary access, CPU information
necessary to distinguish incorrect logs due to preemption, and
target addresses of the reference. Afterwards, the fault handler
in ISOLATOS retrieves the crash context saved in each cross-
boundary operation to allow recovery. Afterwards, ISOLATOS
distinguishes these memory access operations within a system
call’s lifecycle. Integrating these innovative solutions allows
ISOLATOS not only to achieve efficient double-fetch bug
detection, but also to maintain a significantly lower false posi-
tive rate than state-of-the-art (SoTA) tools, thereby preserving
precision.

We evaluate ISOLATOS by applying it to several widely-
used COTS RTOSes, including QNX, VxWorks, and sel4.
These systems are known for their deployment in critical
applications, making them ideal candidates for our study. The
results of our evaluation indicate that ISOLATOS is highly
effective in detecting double-fetch bugs within these environ-
ments. Compared to other existing tools, ISOLATOS demon-
strated superior performance in terms of precision and false
positives, successfully identifying double-fetch bugs that other
tools missed or misidentified. Bochspwn [[12]], for instance, can
generate a false positive rate of more than 87% while dealing
with preemption. Coccinelle [11] and Deadline [10] can not
detect double-fetch bugs in COTS RTOSes because their
detection is based on the use of user-space pointers in transfer
functions. Finally, the source code methods [8], [Ol, [L1O], [11]
fail because often only a binary can be recovered in COTS
RTOS. Our evaluation in Section [Vl confirms that ISOLATOS
not only addresses the specific challenges of analyzing closed-
source COTS RTOS binaries but also sets a new benchmark
in double-fetch bug detection.

This paper makes the following four key contributions:

o ISOLATOS uses a novel hardware-based kernel isolation
mechanism (SMAP/PAN) to efficiently and precisely de-
tect double-fetch bugs. To the best of our knowledge, it
is the first tool to use this approach.

« We develop and implement a prototype of our frame-
work, named ISOLATOS, which not only establishes a
low-overhead exception handler to recover crash context
without disrupting normal execution but also recovers and
instruments all kernel entry points to distinguish a system
call’s life-cycle during preemption. A comparison with
SoTA tools reveals that ISOLATOS is 70x more efficient,
while also mitigating false positives.

o Using 1SOLATOS, we found the first double-fetch vul-
nerability in QNX procnto kernels 6.6, 7.0, and 8.0. It
is the first local privilege escalation publicly disclosed in
this system. This vulnerability has real-world impact by
affecting production vehicles, including the most popular
automotive manufacturers.

o« We perform a comprehensive evaluation of ISOLATOS
in widely used COTS RTOSes, including QNX and
VxWorks. Our experiments uncover a total of 43 double-
fetch bugs, with 41 previously unknown and 39 assigned
CVEs. Furthermore, we apply ISOLATOS to the seL4
microkernel binary, detecting an additional double-fetch
bug, thus demonstrating the effectiveness of our approach
across various COTS RTOS platforms.

II. BACKGROUND

In this section, we present the necessary background knowl-
edge on double-fetch bugs, preemption in COTS RTOS, and
hardware-based kernel isolation to understand the design de-
cisions and contributions of ISOLATOS.

A. Double-Fetch Bugs

Double-fetch bugs are a significant concern in RTOSes
like VxWorks and QNX, which are designed for applica-
tions requiring precise timing and predictable behavior. These
bugs arise when user-space data is fetched multiple times
in kernel space without proper synchronization between ac-
cesses [13], [14]. As shown in Figure |1} after the initial refer-
ence to ker_al = p->a in the kernel, the write operation
p->a = user_a0 in user-space changes the contents of a.
This, therefore, leads to an inconsistency in the kernel data
when ker_a2 = p->a is referenced because ker_al and
ker_a2 are now different. The requirements of RTOSes,
such as rapid and efficient data transfer, increase the risk
of inconsistencies if data changes between references. Any
alteration by another task or interrupt can lead to critical
system failures or unpredictable behavior, directly impacting
the system’s ability to meet its stringent real-time demands.

Although a considerable number of double fetch bugs are
benign, i.e., they cannot be exploited, those that can result in
serious security issues to the system. Wang et al. [S]] show that
46.2% of the exploitable double fetch bugs can cause privilege
escalation issues (such as CVE-2008-2252 [15]), 39.5% can
cause information leaks (such as CVE-2016-6130 [16]), 42.9%
can cause bypass issues (such as CVE-2016-6236 [17]),
and 11% can cause denial-of-service issues (such as CVE-
2016-6156 [18]). Furthermore, in the latest PWN2OWN, a

struct A { inta
inta, ey 2
User Space intb, 1
) p->a = user_a0
{ syscall (struct A *p, int b, ...) / }
ker_a1l=p->a g
Kernel Space
ker_a2 =p->a

Fig. 1: A demonstrating double-fetch bug. In detail, between
the two fetching operations (1) and 3) (i.e., ker_al=p->a
and ker_a2=p->a) in kernel space, the actual value of p—>a
is changed in user-space due to operation (2), and thus a data
inconsistency is triggered in kernel space.

Shared Memory Mem A J
AT
Process A '/ Process B Process A
A K
User Space 2 - o
[
g o
h " "
g 8 £
EEEEEEER O pummnm 3 snmmn © EEEn
e & :
=S 2 Fn
~ w ™
- B -
* ~ *
- -
Kernel Space | ~ N
S >

Process A Preempted Process A Continues

Time)

Fig. 2: Preemptions. Process B is created with a higher priority
than Process A. The read () in Process A is preempted by
Process B. The two reads in the processes A and B access
the same file £d and the same buffer Mem A.

TOCTOU bug (an alias of a double-fetch bug) was success-
fully exploited on Tesla. Hackers won $100,000 for finding
this vulnerability in a Tesla Model 3. In 2019 Black Hat
USA, researchers released a kernel vulnerability for VxWorks
against Boeing 787 to escalate privileges [19].

B. Preemption in Real-Time Operating Systems

Preemption is a fundamental scheduling mechanism in
RTOSes that enables deterministic task execution and ensures
that high-priority tasks meet their real-time deadlines. In
addition, devices that commonly use RTOSes, such as routers
and automotive gateways, typically consume significant I/O
or safety-critical services, which means preemption is even
more common. Unlike cooperative scheduling systems, pre-
emptive scheduling allows higher priority tasks to interrupt
and suspend lower priority tasks at any point during execution,
ensuring that critical real-time tasks receive immediate pro-
cessor attention. Modern COTS RTOS services like QNX and
VxWorks implement sophisticated priority-based scheduling
algorithms that support up to 256 distinct priority levels.
Preemption operates at multiple levels: task-level preemption

occurs when higher-priority user tasks interrupt lower-priority
tasks, kernel-level preemption allows high-priority tasks to
interrupt kernel execution including system call processing,
and interrupt-driven preemption enables hardware interrupts
to suspend any executing task for time-critical events.

The preemptive nature of RTOSes creates execution patterns
in which multiple independent threads access the same mem-
ory locations during overlapping time periods. Consider the
scenario shown in Figure [2] in which two processes execute a
system call that accesses a shared memory address. Process
A is preempted before performing its read to Mem A by a
higher-priority Process B, which independently accesses
the same location for its own system call. Both threads perform
legitimate, independent operations within their own contexts.

RTOS environments frequently employ shared memory
mechanisms for efficient inter-process communication, includ-
ing message queues, semaphore objects, shared buffers, and
memory-mapped I/O regions. Multiple kernel threads and
user processes legitimately access these structures as part of
normal system operation. Real-world scenarios exhibit com-
plex multi-level preemption chains where hardware interrupts,
high-priority tasks, and regular execution contexts may all
access the same memory regions within short time periods.
These temporal memory access characteristics, resulting from
aggressive preemption policies and shared memory utilization,
represent normal RTOS behavior essential for deterministic
and predictable real-time performance rather than security.

C. Kernel Isolation

Kernel isolation mechanisms prevent unauthorized cross-
boundary memory accesses by enforcing hardware-level ac-
cess controls between user and kernel address spaces. These
protections can detect and prevent double-fetch vulnerabilities
by triggering exceptions when kernel code attempts to access
user memory without proper authorization.

To mitigate kernel vulnerabilities, a series of mechanisms
have been used, such as Supervisor Mode Access Prevention
(SMAP) [20] and Privileged Access Never (PAN) [21], as
shown in Table [I] Table [I] shows that kernel isolation support
varies significantly between CPU architectures, with modern
Intel (Broadwell+) and ARM (v8.1+) processors providing
hardware-based isolation through SMAP and PAN registers,
while older architectures rely on software-based implementa-
tions or lack support entirely.

In addition to these, most general-purpose operating sys-
tems provide specific cross-context transfer functions (e.g.,
copy_from_user () and get_user ()) to avert illegal
memory accesses during data exchange, with a considerable
performance cost. However, due to real-time performance
considerations, RTOS kernels directly dereference pointers
without using cross-context transfer functions. In particular,
the CPUs of embedded devices running RTOSes usually do
not support these specific transfer functions [21]]. The design
of cross-context data transfer in COTS RTOSes makes them
more vulnerable to double-fetch bugs than Unix-like systems.
COTS RTOSes are conservative in using a synchronization

TABLE I: Kernel Isolation Supports from Architectures.

CPU Design Technique
v7 (32-bit) SW Page Domain
ARM v8.0 (64-bit) SW TTBR
v8.1 HW PAN Reg
pre-Broadwell | N/A N/A
X86
Broadwell+ HW SMAP
S/390 Any HW Addr Space
Radix MMU HW KUAP
PowerPC | Hash MMU HW KUAP
MPC 8xx HW KUAP
MIPS Any N/A N/A

SW - Pure Software Implementation; HW - Hardware Support.

mechanism such as mutex and spinlock because their use may
violate real-time principles. High-priority memory accesses
can be prevented by a held lock, which results in priority
inversion [22] or deadlock [23]]. Besides, RTOSes are usually
implemented with C/C++, which has long been criticized for
the security issues caused by the direct use of pointers in
memory accesses. Due to the direct use of pointers in cross-
context data transfer, developers of RTOS kernels may not be
aware that they are accessing user data.

III. CHALLENGES

In what follows, we elaborate on the relevant challenges
that need to be overcome to efficiently and accurately detect
double-fetch bugs in COTS RTOSes.

C1: Identification of Cross-boundary Memory Accesses.
Double-fetch bugs occur between user space and kernel space,
which requires detection tools to identify cross-boundary
memory accesses. Prior static approaches rely on the rich
semantics found in source code, such as transfer functions.
However, COTS RTOSes are closed source, resulting in kernel
and user pointers appearing identical at the binary level, mak-
ing static analysis approaches inapplicable to COTS RTOS en-
vironments. Moreover, the SOTA dynamic method, Bochspwn,
also relies on specific memory operation APIs (e.g. memcpy),
which cannot cover all the memory operations that exist in
a RTOS. For instance, in general purpose operating systems
(GPOS), most cross-boundary operations should be wrapped
with memcpy () or copy_from_user () functions. In con-
trast, a COTS RTOS can directly refer to a user pointer. As
shown in Listing |1} existing tools can work on a GPOS that
has explicit cross-boundary memory operations. In an RTOS,
the system directly dereferences the user-pointers, which are
unfortunately undetectable with existing tools. Besides, this
Bochspwn is slow because of the application of Bochs emula-
tion (13-18X slower) and instrumentation (2.2-2.65X slower),
eventually leading to over 30X overhead compared to native
virtualization (e.g. virtual box). Notably, native virtualization
is fast, but common emulators (e.g QEMU, VMWare) are only
supported by Linux, MacOS, and Windows. If we naively
run a RTOS on them, it will be even slower in comparison.

1 // Explicit Transfer Functions

2 int GPOS_syscall_handler

3 (struct user_request xuser_ptr) {
4 struct kernel_data kdata;

5 // Explicit memory operation

6 if (memcpy (&¢kdata, user_ptr,

7 sizeof (kdata)) != 0) return -EFAULT;
8 // Validate data

9 if (kdata.size > MAX_SIZE)
10 // Second fetch

1 // explicit and detectable

return -EINVAL;

12 if (memcpy (&¢kdata, user_ptr,

13 sizeof (kdata)) != 0) return -EFAULT;
14 // Process data using kdata.size

15 // potential double-fetch bug

16 return process_data (&kdata);

17 }

18

19 // COTS RTOS - Direct Access to User Memory

20 // NO Explicit)
21 // Invisible to API-based Detection
22 int rtos_syscall_handler

23 (struct user_request xuser_ptr) {

24 // First fetch

25 // Direct pointer dereference

26 int size = user_ptr->size;

27 // Validate data

28 if (size > MAX_SIZE) return -EINVAL;
29 // Second fetch

30 int size2 = user_ptr->size;

31 // Process data using sizeZ

32 // Vulnerability not detected

33 return process_data_with_size(size2);

34 }

Listing 1: Comparison of cross-boundary memory access
patterns in General Purpose OS vs. COTS RTOS. Linux uses
explicit transfer functions that are detectable by existing tools,
while COTS RTOS employs direct pointer dereferencing that
bypasses API-based detection mechanisms.

Thus, identifying cross-boundary memory access accurately
and efficiently in COTS RTOS remains a challenging task.

C2: Preemption and Multi-CPU Identification. COTS
RTOSes implement time-critical features, which means that
the kernel is fully preemptable, even within a system call.
Imprecision arises in detecting double-fetch bugs in COTS
RTOS mainly because of the potential multi-threaded ex-
ecution caused by preemption and multi-CPU fetches. In
RTOSes, by default, a lower priority thread can be preempted
by another thread with a higher priority. Similarly, kernel
threads from other CPUs can access shared memory. This
results in imprecision for existing tools attempting to detect
double-fetch bugs because they cannot differentiate whether
fetches are from the same thread [12]. To differentiate fetches,
the approach must collect information about current kernel
threads. In addition, the approach must capture the status of
each system call. However, because preemption is managed
internally by the kernel, there is no explicit signal indicating
when a higher-priority thread preempts a lower-priority thread
while executing its system call. To capture preemption, one
needs to modify system kernels and implement code for
interactions between the emulator and preemption. However,
the kernel binary is relocated during execution. For example,

Static Rewriting

Syscall Instrumentation Fault Handler Instrumentation

[Kernel Isolation J 1. Save Syscall & CPU Context

2. Save Memory Access Record

[Syscall Pairing ID] 3. Complete Memory Operation
inSys-n / exitSys-n 4. Fault Recovery

Dynamic Execution

Fault Recover _| Syscall
Handler |to Continue” |exitSys-n

Next Syscall Run

Handler :

Syscall Life Cycle
v

Double-Fetch Determination

@ Preemption

inSys-1] read(memA) $= = = - > read(memA) [exitsys-1

\/ 1
inSys-2 —)] read(memA) I:—) exitSys-2

@ No Preemption

inSys-3 =] read(memA) read(memA) [exitSys-3

Double Fetch?

YES (same lifecycle): inSys-1, read(memA), read(memA), exitSys-1

NO (different lifecycle): inSys-1, read(memA), read(memA), exitSys-2

YES (same lifecycle): inSys-3, read(memA), read(memA), exitSys-3

NO (same lifecycle but only one fetch): inSys-2, read(memA), exitSys-2

Fig. 3: Workflow of ISOLATOS. By static rewriting, we
instrument code to enable kernel isolation and handle page
faults, and further use life cycle to determine double-fetch.

a mov instruction referencing Oxc45el after dynamic loading
would translate to “48 89 3d el 45 Oc 00”. However,
in the static hex binary, the actual hex value is “48 89 3d
00 00 00 007, indicating that the offset value is not fixed.
Therefore, if we directly modify the binary, the last four bytes
of this instruction will be overwritten when loaded with “el
45 0c 00”. Currently, there is no existing tool that can hook
the binary kernel to adapt to the emulator. Therefore, detecting
double fetch bugs under preemption is a vital challenge.

C3: Recovery From Page Fault. To address the aforemen-
tioned two challenges, our approach is to re-enable kernel
isolation through which every user memory access under a
system call will trigger a page fault. However, enabling kernel
isolation directly in COTS RTOS will lead to numerous kernel
faults, hindering system execution. Therefore, properly re-
enabling kernel isolation without affecting the execution of
the whole system remains challenging, leading to the third
challenge. The fundamental challenge lies in the isolation
mechanism itself: when a page fault occurs due to a ker-
nel isolation violation, the exception handler executes in a
separate, isolated memory region from the original kernel
context. Recovering from this fault requires ISOLATOS to
jump across different execution contexts while preserving the
original program state and maintaining control over subsequent

memory accesses.

To be specific, ISOLATOS deliberately enables memory
exceptions and it is essential to trigger exceptions multiple
times to detect double-fetch bugs. However, the instruction
that triggers the exception will NOT be executed, instead
the control flow will jump to the exception handler. If we
want to maintain the integrity of program semantics, then we
should complete its execution. A potential solution would be
to execute the instruction with isolation enabled since it is a
cross-boundary access. However, this fails to work because if
we jump back to the instruction with isolation off, we will
not be able to take back control of the kernel instructions.
This would mean that we could not detect further “fetches”
on subsequent instructions, which would prevent double-fetch
detection entirely. Thus, fo recover execution from a kernel
exception is a vital challenge.

IV. DESIGN OF ISOLATOS

This section describes ISOLATOS, a tool designed for
dynamic detection of double-fetch bugs that runs natively
on hardware, instead of virtual machines, as explained in
C1. 1SOLATOS leverages hardware-based kernel isolation fea-
tures to precisely identify cross-boundary memory accesses
and distinguish legitimate concurrent operations from actual
double-fetch vulnerabilities. The approach consists of four
main components: (1) static kernel entry identification and
instrumentation, (2) dynamic system call boundary tracking
with isolation control, (3) comprehensive page fault handling
and recovery, and (4) double-fetch pattern analysis. A high-
level overview of this process is shown in Figure [3]

Kernel double-fetch bugs can only exist in OSes with
user/kernel separation. Although some bare-metal RTOSes do
not implement user/kernel separation, most industry-leading
COTS RTOSes [24], such as Blackberry QNX, Wind River
VxWorks, Green Hills INTEGRITY, Lynx OS, and DeO, use
user/kernel separation. Therefore, in this paper, we design and
implement ISOLATOS, focusing on COTS RTOSes. Through-
out the paper, we assume that attackers can manipulate data
shared between user- and kernel-space and aim to exploit
double-fetch bugs from user-space. In the following sections,
we explore each functional aspect of ISOLATOSin detail.

A. Static Kernel Entry Identification and Instrumentation

To address C1, ISOLATOS employs static analysis to iden-
tify entry points into the kernel and strategically instrument
them with isolation control mechanisms. This approach en-
ables comprehensive coverage of all system call invocations
while maintaining low performance overhead.

Kernel Entry Point Discovery. Identifying the address at
which the binaries are loaded is essential for instrumentation.
Kernel handler entries can be ascertained by referencing
hardware documentation and inspecting kernel binaries during
initialization. System call handlers between different archi-
tectures are triggered by various methods, mainly split into
fixed and dynamic methods. Fixed approaches use interrupts,
directing control flow to fixed addresses. Dynamic approaches

utilize MSRs (Model-Specific Registers) to register handler
addresses at the system boot stage. This can be analyzed using
static methods.

For instance, in QNX 8.0 kernel, pertinent instruc-
tions are shown in Listing 2] Line 2 assigns ECX to
a constant value 0xc0000082, representing the config-
uration for kernel entry. Line 5 assigns RAX the value
syscall_trap_0 + pcpu * 0x20, which designates
the entry position of the kernel. This value comprises two seg-
ments: syscall_trap_0, indicating the initial syscall trap,
and pcpu, the CPU identifier that will perform the syscall. The
factor 0x20 specifies the interval between consecutive syscall
traps, such as syscall_trap_0 and syscall_trap_1,
meaning that each CPU has an associated system call trap.

1 MOV pcpu,R12D

2 MOV ECX, 0xc0000082

3 MOV RAX, pcpu

4 SHL RAX, 0x5

5 ADD RAX,gqword ptr([syscall_trap_ 0]
6 MOV RDX, RAX

7 WRMSR

Listing 2: Assembly in QNX 8.0 X86-64, which sets up
WRMSR to syscall_trap_0 at kernel entry. Assigning
ECX with value 0xc0000082 indicates kernel entry being setup.

We subsequently use this attribute to identify dynamic ker-

nel entries. Initially, we identify system calls related to MSRs
using hardware documentation. Then, we examine all WRMSR
assembly instructions and their most recent assignments to
ECX and EAX prior to these to locate the kernel handler’s
entry point. Following this, we amend values to adjust the
kernel entry address during the initialization phase, allowing
us to hook each system call.
Kernel Handler Instrumentation. Once kernel entry points
are identified, ISOLATOS instruments the kernel handler entry
with two critical operations that enable efficient and accurate
double-fetch detection. 1) Kernel Isolation Activation. We
enable kernel isolation by setting the appropriate isolation bits
in the control registers. For x86-64 architectures, this involves
setting the 21st bit (SMAP) in the CR4 register. For AArch64,
isolation is enabled by setting the PAN register to 0xObl.
This configuration ensures that any subsequent cross-boundary
memory access will trigger a page fault that can be intercepted
and analyzed. 2) System Call Pairing ID Registration. We
assign unique system call identifiers in separate memory and
establish boundary markers (inSys-n and exitSys—-n) to
track a system call’s lifecycle. This addresses C2 by differ-
entiating memory accesses from different execution contexts,
including those from preempted threads or concurrent CPU
executions. The unique system call identifier n is specified
using unique values, e.g. an increment series, time stamps.
When the current system call is preempted by another one,
the next system call will be registered with a different marker.
The unique system call marker is maintained throughout its
entire lifecycle, i.e., until it exits, at which point exitSys—-n
signal will be generated to end the record.

Bit Value

5

: . 1 1 Page Table Attribute
i Kernel Instruction | ! MEM K

| MOV EAX, . [_.-]

! DWORD PTR[MEM_K] | | |

#|Supervised
bit

i CR4 register

20 | 21 ;
SMEP |SMAP ! Privilege Match ~ --— Normal Execution

! USER Instruction | : P:n%eMTa}?leAttnbute

i MOV EAX, ! [1

Supervised |’
bit

i Privilege NOT Match -->JGETIEELTIEY

| DWORD PTR [MEM K] ! !
:

i CR4 register

20 21
SMEP |SMAP
L ' Page Table Attribute
i Kernel Instruction ! !
1 MOV EAX, . [.MEM vl

|supervised |

{ DWORD PTR [MEM_U] !
i bit

i CR4 register

i Privilege NOT Match —>JGETIGELTIEY

Fig. 4: To enable kernel isolation mechanism, we can setup
register accordingly. For x86-64, the difference between
CR4.SMAP and the supervised bit will cause page fault.

The subsequent task involves finding addresses for kernel
instrumentation. A robust and comprehensive approach to
modifying COTS RTOSes is to employ the kernel’s built-
in extension mechanism, typically referred to as its Board
Support Package(BSP). After identifying both the method and
target for hooking, we establish a function to hook that then
configures kernel isolation and boundary tracking.

B. Enable Isolation and Page Fault Handler

During the execution of a system call, ISOLATOS leverages
the previously established instrumentation to monitor cross-
boundary memory accesses and maintain execution context
information. This section addresses both C2 and C3.
Execution after Isolation-Enabled. At each system call entry,
the execution flow is transferred to the instrumented kernel
handler where kernel isolation has been enabled. With isola-
tion active, any attempt by kernel code to access user-space
memory triggers a hardware-generated page fault. This mech-
anism provides hardware-level detection of cross-boundary
memory accesses without relying on API interception or
heuristic pattern matching.

To initiate kernel isolation, we start by identifying flag reg-
isters that manage user/kernel attribute settings by referring to
the chip’s programming guides. We then proceed to configure
the memory attributes in linear memory to match the flags
specified in these registers. It should be noted that kernel
isolation was not activated even with the user/kernel attributes
set, despite user/kernel bits in their page table entries set for
the COTS RTOSes we evaluated. In order to fully enable
isolation, we set the isolation attribute in the control registers
after setting up the page flags for user/kernel memory. This
process is illustrated in Figure

The page fault handler is a critical component of ISOLATOS
that must handle cross-boundary access violations while main-
taining system stability and execution semantics. The handler
is integrated as part of the static system call patcher, ensuring
comprehensive coverage of all potential access scenarios.
Page Fault Context with Preemption Awareness. When
a cross-boundary access triggers a page fault, ISOLATOS’s
handler records essential information for subsequent double-
fetch analysis. This mechanism specifically addresses C2 by
maintaining per-system-call context through two key compo-
nents. The system call lifecycle tracking records the target
address of memory accesses along with the current system
call pairing ID (inSys-n). This pairing ID is crucial for
distinguishing system call lifecycles and preventing false pos-
itives caused by legitimate concurrent accesses from different
execution contexts. In preemptive COTS RTOS environments,
multiple threads may access the same user-space addresses, but
only accesses within the same system call context constitute
potential double-fetch vulnerabilities. The execution context
capture involves recording the instruction pointer (IP) that
raised the fault and the address being accessed. This infor-
mation, combined with the system call pairing ID, enables
accurate correlation of memory accesses even in the presence
of thread preemption or multi-CPU execution.

Instruction Replay and Execution Recovery. To maintain
the integrity of program semantics and system stability while
addressing C3, ISOLATOS implements an instruction replay
mechanism through three sequential operations. Program exe-
cution integrity is maintained by re-executing faulting memory
operations with isolation temporarily disabled to complete
interrupted execution. This ensures that the original program
semantics are preserved to keep the system running. Fault
recovery involves restoring execution context and continuing
system call processing, where the handler leverages hard-
ware debugging features to read instructions, analyze their
functionality, and restore memory to its appropriate state.
Finally, isolation restoration re-enables kernel isolation after
the instruction successfully completes to continue monitoring
subsequent memory accesses within the same system call.
As explained in C3, ISOLATOS must instrument the kernel
while preventing it from crashing. Specifically, for each CPU,
we can refer to its programming guide for details about
the behavior of a page fault raised due to kernel isolation.
However, in general, when such a page fault occurs, the
program pointer will fall into a specific trap routine. Control
registers will hold the page address that caused the fault and
the error code in the flag registers. Consequently, we can filter
cross-boundary memory accesses that fault with their error
code and recover the instructions that caused the crash. By
observation, this address is normally directly stored on the
kernel stack. Thus, we can restore values from the stack to
determine if it is a read operation accessing user memory.

C. Double-Fetch Pattern Analysis and Determination

To determine if there are any double-fetch bugs, ISOLATOS
analyzes the recorded memory accesses to identify patterns

Syscall
B e Kernel
/ enable_isolation_0: ‘/Modify Kernel Entry
: pusha ! WRMSR(enable_isolation_© + offset*cpu)

i ;save all regs

! OR CR4, 0x30000 i —>Page Fault Handler

offset ; ; Setup isolation pushad
: sysenter H : ;Record all registers
i oret i | i AND ERR 0x4

i ;Compare U/S flag in Error Code

i Record_Mem_Ops()

i ;Record the Cross Boundary Mem Access
popad

¢ ;Restore all registers

i pop_fault_regs

. ;Restore from page fault

i enable_isolation_1:
i pusha

1 ;save all regs

i OR CR4, 0x30000

[Setup isolation

i sysenter

Cross-boundary Access

Fig. 5: Implementation of IsolatOS on Intel board. BSP
provides a more friendly way to programming in C instead
of writing assembly in binary. We modify the kernel entry by
instrument the WRMSR operation. Then all system calls will
be redirected into IsolatOS code. A user memory access from
kernel will trigger a page fault with error number Oxe.

where the same memory address is accessed multiple times
within a single system call boundary, i.e., its lifecyle.

Access Correlation Analysis. Algorithm [I] in Appendix
shows the high-level procedure that ISOLATOS uses to cor-
relate memory accesses within a single system call bound-
ary. We record every cross-boundary access with their tar-
get address, instruction address, and associated system call
pairing ID. The analysis then correlates accesses that share
the same system call pairing ID, ensuring only memory
accesses within the same execution context are considered
for double-fetch detection. As shown in Figure [3] if multiple
accesses to the same memory address are detected within
the same system call boundary (same inSys-n identifier),
the pattern is recorded as a potential double-fetch vulner-
ability. This approach can eliminates false positives caused
by concurrent accesses from different system calls or rapid
system call sequences. For instance, when syscall-1 (inSys-
1) is preempted by syscall-2 (inSys-2), both of them read
memA, and the read happens in a short time window. For
Bochspwn, the two read operation will be regarded as a
double-fetch. However, ISOLATOS can distinguish that the two
read operations do not lead to a double fetch bug because
the life cycle for each system call is marked with the pairing
ID. Therefore, patterns such as {inSys—-1, read (memd),
read (memd), exitSys-—1} will be identified as a double-
fetch bug because the two fetches occur within the same
system call. Executions that do not follow this pattern
will not be identified as a double-fetch bug. For example,
the pattern {inSys—l, read (memA), read (memA),
exitSys-2} does not indicate a double-fetch bug because
the two fetches occur within two system calls.

V. IMPLEMENTATION

To implement the design for COTS RTOSes, we utilize
various features provided by our target systems, including
QNX, VxWorks, and SeL4 independently. An example of this

process for QNX is given in Figure 5] We note, however,
that the majority of ISOLATOS is target-independent as shown
in Appendix [D] Table Only control of the user/kernel
isolation bit, discovery of kernel entry, and page fault handling
are specific to the architecture and require a one-time effort.
However, the main body of ISOLATOS, is reusable across
targets. We describe each step in more detail below.

A. System adaptation

To adapt to different operating systems, we need to figure
out where to put the instrument code.

QNX. This OS requires licensing for use. Fortunately, for
academic purposes, we can obtain an academic license through
its official site. We consequently acquired QNX licenses for
versions 6.6, 7.0, and 8.0 for our tests. QNX employs a micro-
kernel architecture, meaning that the only way to integrate cus-
tom privileged instructions is by modifying the Board Support
Package (BSP) [25]]. To implement our design in QNX, we
begin by incorporating assembly code into the BSP to activate
kernel isolation. To extend the system, QNX offers a feature
known as a “callout”, which acts as a function pointer within
the kernel binary. This can be used to introduce one additional
system call under Ring 0. A callout is established in the startup
program with a fixed memory address, enabling invocation
from the user program. Subsequently, before executing each
system call, we execute the code enabling isolation. To migrate
the prototype from QNX 6.6 to QNX 7.0 and QNX 8.0,
in total, spend us 8 hours, including debugging. BSPs have
various features of boot loading, kernel initialization. So, we
spend most time investigating where to insert our code.

For x86-64, we directly instrument the page fault exception

number Oxe defined by the CPU. To implement the page fault
handler, we locate trapOe in the QNX kernel functions,
then directly modify the instructions that do not have a
cross reference to the relocation table. These instructions are
modified to jump to the address right after the callout, which
is also running in Ring 0. In this part, we read CR2, and
RSP-0x10 to get the page address that raises the exception.
VxWorks. In contrast to QNX, VxWorks is structured as a
monolithic kernel, where the kernel driver code runs with
privileges. Thus, we can implement a driver, rather than finding
an entry from the BSP. Before invocation of the system call,
we call the driver to activate kernel isolation. The remaining
implementation is the same as QNX. We spend around 2
workdays to implement the driver. The first task is to identify
the instruction we can replace to hook, it takes half a day.
Then, to invoke driver, we need to use a different approach,
to be specific, ioctl, this is a different implementation
compared to QNX.
SeL4. SelL4 is an open-source operating system, allowing us
to directly incorporate functionality into its source code. It is
almost the same with QNX, but we spend hours to find the
hook addresses of system calls’ entries. In the end, it takes us
less than 2 workdays to finish the implementation.

B. Architecture-Specific Code

Currently, ARM and Intel x86/x86-64 are the dominant

chips that support kernel isolation. In our implementation, both
are supported. A summarized table detailing the differences
and similarities between x86-64 and ARM is in Appendix [D]
Table Overall, except for the assembly code related to
architecture, the rest can be reused.
Intel. implements kernel isolation through Supervisor Mode
Access Prevention (SMAP) and Supervisor Mode Execution
Protection (SMEP), which have been integrated into Linux
since 2012. To activate these features, we begin by selecting a
chip that supports them. In our implementation, we opt for the
Intel 12th Generation i7, released in November 2021, which
includes support for the aforementioned isolation features.

To enable SMAP and SMEP on this chip, we first identify
Control Register 4 (CR4), which contains the flags for these
features at the 20th and 21st bit positions. By setting these
two bits to 1, SMAP and SMEP are activated. Given that
the code will execute with sysenter, we initially save the
execution context by pushing all registers onto the stack. We
then proceed to modify the isolation bits. Following this, we
restore the stack and return to the original system call entry
to finalize the system call process. Subsequently, we replicate
this code across 63 different instances for each CPU. Then,
we register a page fault handler to log all SMAP and SMEP
violations according to the fault flag, along with a recovery
program that restores instruction pointers and stacks, allowing
us to record memory accesses that violate boundaries.
ARM. implements isolation in a separate register named PAN.
All registers are mapped in the kernel, and maintained by
the variable regs—->pstate. By setting the 22nd bit of
this variable, PAN is then enabled. The RISC-like ARM ISA
makes it easier to perform fault recovery because the length
of each operation is fixed. To be specific, we can simply copy
the access instruction from the program counter, then insert
operations to disable PAN, access user memory, enable PAN,
then jump to the next instruction.

C. Unified Fault Recovery.

Implementing fault recovery purely in software for x86-
64 is not trivial due to the variable instruction length of the
CISC architecture. Different instructions can span different
byte lengths, making it difficult to consistently identify and
recover from faults. Instead, we developed a unified approach
that uses hardware debugging capabilities through the JTAG
interface and GDB debugger. JTAG (Joint Test Action Group)
is an industry standard for hardware debugging that provides
direct access to a processor’s internal state through dedicated
debug pins on the chip. Unlike software-based debugging,
JTAG enables non-intrusive access to the processor even when
the operating system is compromised or unresponsive.

Our implementation connects GDB (GNU Debugger) to
the target system’s JTAG interface using specialized hardware
adapters. This connection creates a debugging channel that
operates independently from the target operating system. Hard-
ware breakpoints differ fundamentally from software break-

102 4

- Log Sci

101 4

10° 4 =

= QEMU wW/TCG
QEMU w/o TCG
ISOLATOS

Overhead Ratio (QEMU/Bare Metal)

© @ B Q 3 $ >N
& & & & & o® (f\Q &
B & o7 N & & & So7
% &7 &7 > i~ 1%
& ¢ <& § & & P

Fig. 6: Performance overhead of ISOLATOS on QNX 8.0 compared to QEMU-TCG and QEMU execution without TCG. The
overhead is shown on a logarithmic scale, as TCG is running much slower than bare metal. On average, QEMU-TCG has a

79.3x overhead compared to bare metal native execution.

points. Rather than modifying code with trap instructions,
hardware breakpoints use debug registers to pause execution
at specific addresses without altering the executed code. The
JTAG connection also provides direct memory inspection
capabilities, allowing us to read and modify memory contents
at any address without invoking system calls. This visibility
enables us to analyze fault states that would normally crash
the system. Similarly, direct access to CPU registers, including
special-purpose registers that control isolation features such as
CR4 on x86-64 or PSTATE on ARM, gives us precise control
over the processor’s execution environment.

Our fault recovery procedure begins when a kernel isolation
fault occurs, such as a SMAP/SMEP violation on x86-64 or a
PAN violation on ARM. At this point, our custom fault handler
captures the fault address and relevant context information.
Rather than attempting immediate recovery through potentially
complex software mechanisms, the handler transfers control
to a designated recovery routine where we have previously
established a hardware breakpoint via the JTAG interface.
When execution reaches this breakpoint, GDB automatically
gains control of the processor. Our automated scripts then
analyze the fault context, examining the specific instruction
that triggered the fault, the memory addresses involved in
the operation, and the current processor state, including all
relevant register values. This analysis operates outside the
context of the running system, providing a stable environment
for fault characterization.

The actual recovery process involves temporarily deactivat-
ing the relevant isolation mechanism, for example, clearing
the SMAP bit in the CR4 register on x86-64 systems. With
isolation temporarily suspended, we can safely execute the
faulting instruction in a controlled manner under debugger
supervision. After the instruction completes successfully, we
immediately re-enable the isolation mechanism to maintain the
awareness of cross-boundary memory access. The debugger
then instructs the processor to resume execution from the
instruction following the faulting one.

TABLE II: Runtime Performance Analysis.

Benchmark Category Bochspwn QEMU-TCG Relative Performance
Boot 2175 1778 18.3%
Memory-intensive 497 334 33.8%
CPU-intensive 476 386 23.2%

D. Hardware selection.

As shown in Table [l not all processors support hardware
isolation. Thus, it is necessary to select the hardware to
implement the design. As a result, we implement the x86-
64 version on top of Intel 17-12700 processor, and the ARM
version based on the Raspberry Pi 5. We did not include S/390
and PowerPC because there is no evaluation version provided
by the COTS RTOS companies and we cannot afford the price
to purchase them, which is over $100,000 USD.

VI. EVALUATION

In this section, we evaluate the performance of ISOLATOS.
Initially, we introduce four evaluation goals, followed by their
answers along with the evaluation results.

A. QEMU-TCG vs Bochspwn in Overhead

Since Bochspwn cannot detect double-fetch bugs in COTS
RTOSes, we use QEMU-TCG to run relevant experiments.
QEMU-TCG collects execution logs similar to Bochspwn. We,
therefore, argue that the overhead of QEMU-TCG is similar
to Bochspwn. We evaluated the cold boot time of QEMU-
TCG and Bochspwn. It takes QEMU-TCG 29 minutes and
38 seconds to boot up to the login page on Ubuntu desktop.
Bochspwn is able to boot Ubuntu login page in 36 minutes
and 15 seconds.

We also tested based on different tasks to evaluate the
overhead similarity. We test the execution time of a set of
similar tasks to evaluate the average time. Memory intensive
task is to play a 10-second video. CPU-intensive task is
compiling a hello-world program in command line. As the
result shows in Table that Bochspwn has overall 18.3%-
33.8% overhead compared to QEMU-TCG.

TABLE III: Cross-boundary Operation Recording Similarities.
Bochspwn and QEMU-TCG both work on Linux kernel to run
the test cases with modified kernel code to enable ground truth.
Log indicates the output log of function we write in the cross-
boundary functions.

Test Case Bochspwn/Log QEMU-TCG/Log Similarity Ratio
IPC Operations 265 /283 372/ 372 93.6%
File I/O 921 /993 1298 / 1300 92.9 %
Cryptographic 799 / 803 665 / 665 99.5 %

Summary Mean: 95.4% + 4.1%

B. Similarity Between QEMU-TCG and BochsPwn

To establish QEMU-TCG as a methodologically valid sub-
stitute for Bochspwn in our comparative analysis, we con-
ducted a systematic evaluation of memory operation recording
capabilities and trace completeness. Our experimental frame-
work employs a testing environment using Ubuntu Linux 32-
bit, ensuring compatibility with both emulation platforms.

Memory Tracing Mechanism Comparison: Bochspwn op-
erates on the Bochs x86 emulator platform, implementing
memory access interception through direct emulator hooks.
The tool records cross-boundary memory operations using
time-window-based heuristics while maintaining comprehen-
sive instruction-level execution traces. In contrast, QEMU-
TCG utilizes QEMU’s Tiny Code Generator intermediate
representation, implementing dynamic binary translation with
equivalent memory access instrumentation capabilities. Both
tools provide functionally equivalent memory access pattern
detection through full-system emulation with similar instru-
mentation overhead characteristics.

Test Case Design and Implementation: We systematically
evaluated the completeness of recording memory operations
through ten representative workload categories executed on
Linux Kernel 5.17, compiled in 32-bit. The experimental
test cases encompass: (1) inter-process communication (IPC)
with shared memory and pipes creation and close; (2) file
I/0 operations with read and write current time; (3) crypto-
graphic operations utilizing kernel Cryptographic operations
to generate key files. We write a ground truth code in the
test cases, which outputs all the cross-boundary accesses logs
by rewriting the functions copy_from_user(), put_user(). We
compare how many ground-truth cross-boundary accesses are
recorded by Bochspwn and QEMU-TCG.

The main reason that Bochspwn can miss some records is
because it uses “reps mov” as a pattern. It can miss other
assembly transfers between kernel and user space. The experi-
mental results, as shown in Table |III, demonstrate that QEMU-
TCG achieves near-identical memory operation recording
completeness compared to Bochspwn, with a mean ratio of
95.4%. The correlation analysis demonstrates a strong linear
relationship between the two instrumentation approaches. This
empirical evidence establishes QEMU-TCG as a functionally
equivalent substitute for Bochspwn in double-fetch detection.

10

Storage Requirements Analysis: Trace storage requirements
demonstrate comparable characteristics between platforms.
For 5-minute execution traces, Bochspwn generates 127.3 GB
logs compared to QEMU-TCG’s 132.1 GB, yielding a size
ratio of 1.038x. Extended 30-minute traces produce 772.1
GB and 797.8 GB respectively, maintaining consistent 1.033x
ratio. This storage overhead parity further validates functional
equivalence.

Summary: Based on our comprehensive evaluation, QEMU-
TCG serves as a statistically valid substitute for Bochspwn.
The methodological justification encompasses four critical
dimensions: (1) Functional Equivalence through equivalent
memory access interception mechanisms via emulation-based
instrumentation; (2) Performance Parity with demonstrated
statistical equivalence in execution overhead within 50% vari-
ance; (3) Trace Completeness that achieves a 99.73% cover-
age ratio indicating near-identical memory operation record-
ing. This methodological validation demonstrates QEMU-
TCG as a good substitute for Bochspwn in our experimental
framework.

C. Efficiency Improvement

We evaluated the detection efficiency of ISOLATOS com-
pared to existing approaches. However, a direct compari-
son with Bochspwn, a well-known double-fetch bug detec-
tor, proves challenging because Bochspwn is built upon the
Bochs emulator, which does not support QNX. Additionally,
Bochspwn is currently limited to Windows and x86 Linux
platforms. Cross-operating system comparisons would yield
misleading results due to fundamental architectural differ-
ences. Therefore, to equitably assess the efficiency between
memory-tracing based emulation and our kernel isolation-
based method, we developed a memory-tracing technique
following Bochspwn’s architectural principles. We compared
the performance differences between Bochspwn and QEMU-
TCG implementation, which has similar features. More details
about the similarity can be found in Section We also
compare the overhead between Bochspwn and QEMU-TCG
in Section [VI-Al

We constructed a comprehensive test suite to evaluate per-
formance across diverse system interactions. We focus mainly
on image processing, compression operations, and encryption
to cover a wide range of system behaviors in the limited
environment of a COTS RTOS. For image processing tests,
we used a custom image processing library loader to perform
various operations, including JPEG/PNG. Our compression
benchmarks leverage GZIP operations on various data sets. We
tested compression and decompression of random binary data
(10KB, 10MB and 100MB files). We calculate the average
execution time for each of them to measure the overhead.
These tests were selected to evaluate both sequential and
random memory access patterns typical in RTOS applications.
For cryptographic operations, we implemented benchmarks
using OpenSSL to evaluate symmetric encryption (AES-256,
Chacha20), asymmetric cryptography (RSA-2048, ECDSA),

TABLE IV: Reported double-fetch bugs. The verified true positive cases are shown in brackets.

Tool Name QEMU-TCG ISOLATOS QEMU-TCG ISOLATOS QEMU-TCG ISOLATOS
Time Window (ms) | 0.1 1 3 N/A 0.1 1 3 N/A 0.1 1 3 N/A
md5 506) 12(6) 109 | 9 (9) 30 9 85 99 4 (0) 110) 85 | 1(1)
sha256 2(2) 18(2) 95 4 (4) 43 143 75 4 (4) 6 (0) 16 (0) 61 | 1(1)
RSA encrypt 2(1) 23(10) 31 12 (12) 0 192 27 12 (12) 18(0) 26(0) 55 |0
RSA decrypt 3(12) 26(2) 34 3(3) 9(1) 21(1) 30 3(3) 110 240 32|60
ECDSA sign 0 17 (9) 42 7 (7) 10 152 16 6 (6) 14 16() 17 | 1()
ECDSA verify 20) 203 20 8 (8) 1 17(4) 18 7(7) 18(0) 190 19 |0
MsgSend 5() 23 37 99 43 194 33 5(5) 12(0) 340 39 |0
ZIP Compression 0 28 (3) 219 | 4 (4) 0 24 (0) 158 | 3(3) 9 (0) 26(0) 38 |0
PNG Decode 0 30 (1) 173 | 5(5) 0 22(3) 130 | 4 (4 110) 280 41 |0

Note: For time window 3ms, we cannot prove all the true-positive cases due to the large amount of bugs.

TABLE V: Distribution of False Positive Root Causes.

False Positive Category Count Percentage
Temporal False Positives 1,746 80.6%
Preemption False Positives 405 18.7%
Uninitialized Memory False Positives 16 0.7%
Total 2,167 100%

and hash functions (SHA-256, HMAC-SHA256, MDS5). We
measured performance while encrypting and decrypting data
blocks of various sizes (10KB, 10MB, 100MB) and sign-
ing/verifying operations with different key lengths. These
cryptographic tests are particularly relevant for security-critical
RTOSes where crypto operations frequently involve multiple
memory accesses of user-provided data. Additionally, we
created specialized test applications that deliberately exercised
system call interfaces known to handle user-space pointers,
as these represent the most likely vectors for double-fetch
vulnerabilities. Each test application was executed on native
QEMU emulation without QEMU’s Tiny Code Generator
(TCG), QEMU with TCG, and ISOLATOS to ensure consistent
workload comparisons.

All tests were carried out on identical hardware configu-
rations: an Intel i7-12700 processor with 128GB RAM and
Samsung 970 PRO NVMe SSD storage. Each benchmark
was repeated five times to minimize the impact of system
variability, with results averaged across iterations. For ARM,
we only have to a Raspberry Pi, upon which running QEMU
is difficult. So we did not perform an overall test for ARM.
We note, however, that testing a kernel vulnerability is a one-
time effort, i.e., where a vulnerability that exists on Intel
normally will also exist on ARM. As shown in Figure [6]
ISOLATOS exhibits an average execution overhead of only
45.7% compared to bare metal execution. QEMU-TCG, which
is designed similar to Bochspwn for comparison purposes, has
an overhead of 79.3x. In contrast, QEMU execution alone
results in an average overhead of 5.58x.

D. Precision and False Positive Analysis

We evaluate the precision of ISOLATOS compared to tra-
ditional memory-tracing approaches. Precision is a critical
metric for vulnerability detection tools, as high false posi-
tive rates can significantly diminish their practical utility by
overwhelming analysts with spurious reports. We launch test

11

cases with identical configurations and execution parameters,
analyzing the records that are identified as double-fetch bugs
by each approach.

1) Experimental Design and Ground Truth Establishment:
We define precision as the ratio of true positive detections
(actual double-fetch vulnerabilities) to the total number of
reported cases (true positives + false positives). To ensure a fair
comparison, we executed identical test workloads across both
ISOLATOS and QEMU-TCG, then applied three different time
window thresholds to identify potential double fetches. In the
final stage, we manually verified each reported vulnerability
through code inspection and dynamic analysis.

The bugs reported by QEMU-TCG and ISOLATOS are
shown in Table V] Although QEMU-TCG reports more bugs
than ISOLATOS, fewer true positives are identified by QEMU-
TCG. There is one case (ECDSA sign) in QNX 6.6 QEMU-
TCG that identifies more true positive cases than ISOLATOS.
When we analyzed the root cause, we found that the OS
happens to invoke a timer interrupt that also includes double-
fetch bugs. ISOLATOS failed to register these because the
timer interrupt was not invoked during its execution. Overall,
a significant number of false positives are present in QEMU-
TCG, with a 87.7% false positive rate under 0.1 and 1 ms
time window. Note that we did not report the number of true
positives in the 3 ms column because QEMU-TCG reported
too many potential double-fetch bugs to manually verify within
a reasonable time frame. Instead, we only report the number
of false positives as we can verify those automatically. Further
analysis of false positives/true positives can be found in
Appendix [A]

2) False Positive Taxonomies: Verifying each false-positive
instance case-by-case would require significant manual effort.
To identify the false-positive cases in QEMU-TCG, we classify
false positives into 3 different categories. As shown in Table[V]
we have identified 2,167 false-positive cases, and classified
them into these 3 categories. Meanwhile, there are also 170
cases where we could not determine whether it was a false-
positive or true-positive.

Temporal False Positives (80.6%): To automatically identify
these cases, we instrument pairing ID in the kernel entry
of QEMU-TCG. Fixed time windows fail to respect system
call boundaries. RTOS execution times vary dramatically (50-
10,000+ cycles), causing unrelated memory accesses to be
incorrectly correlated. Especially under high IPC related tasks,

TABLE VI: Vulnerabilities found by ISOLATOS.

ID [Syscall Vulnerable variable | Impact Severity | Status
QNX 6.6 & 7.0
#1 ker_channel_create kap—-chid ; DoS Medium | CVE-2021-32025 (Fixed)
#2 ker_clock_time new and old in ClockTime DoS Medium | CVE-2021-32025 (Fixed)
#3 ker_clock_adjust new and old in ClockTime DoS Medium | CVE-2021-32025 (Fixed)
#4 ker_clock_period new and old in ClockTime DoS Medium | CVE-2021-32025 (Fixed)
#5 ker_connect_attach kap—pid / kap—chid DoS Medium | CVE-2021-32025 (Fixed)
#6 ker_connect_detach kap—pid / kap—chid; DoS Medium | CVE-2021-32025 (Fixed)
#7 ker_connect_client_info kap—pid / kap—chid DoS Medium | CVE-2021-32025 (Fixed)
#3 ker_connect_flags kap—coid / kap—mask DoS Medium | CVE-2021-32025 (Fixed)
#9 ker_channel_create_attrs kap—coid DoS Medium CVE-2021-32025 (Fixed)
#10 | ker_msg_sendv kap—rparts / kap—rmsg DoS Medium | CVE-2021-32025 (Fixed)
#11 | ker_msg_sendpulse kap—coid / kap—priority DoS Medium | CVE-2021-32025 (Fixed)
#12 | ker_msg_receivev kap—rparts / kap—rmsg DoS Medium | CVE-2021-32025 (Fixed)
#13 | ker_interrupt_attach kap—flags DoS Medium | CVE-2021-32025 (Fixed)
#14 | ker_interrupt_mask kap—id DoS Medium | CVE-2021-32025 (Fixed)
#15 | ker_interrupt_unmask kap—id DoS Medium | CVE-2021-32025 (Fixed)
#16 | ker_interrupt_query kap—id / kap—type DoS Medium | CVE-2021-32025 (Fixed)
#17 | ker_msg_current kap—rcvid DoS Medium | CVE-2021-32025 (Fixed)
#18 | ker_msg_readv kap—rparts / kap—rmsg DoS Medium | CVE-2021-32025 (Fixed)
#19 | ker_msg_writev kap—rparts / kap—rmsg LPE High CVE-2021-32025 (Fixed)
#20 | ker_net_cred kap—coid DoS Medium | CVE-2021-32025 (Fixed)
#21 | ker_net_vtid kap—info DoS Medium | CVE-2021-32025 (Fixed)
#22 | ker_sched_set kap—pid / kap—tid / kap—param LPE High CVE-2021-32025 (Fixed)
#23 | ker_signal_kill kap—value DoS Medium | CVE-2021-32025 (Fixed)
#24 | ker_sched_get kap—pid / kap—tid / kap—param LPE High CVE-2021-32025 (Fixed)
#25 | ker_signal_fault kap—sigcode DoS Medium | CVE-2021-32025 (Fixed)
#26 | ker_signal_procmask kap—>sig DoS Medium | CVE-2021-32025 (Fixed)
#27 | ker_signal_suspend kap—sig_blocked DoS Medium | CVE-2021-32025 (Fixed)
#28 | ker_signal_waitinfo kap—sig_wait DoS Medium | CVE-2021-32025 (Fixed)
#29 | ker_signal_return kap—s—timeout_flags DoS Medium | CVE-2021-32025 (Fixed)
#30 | ker_sync_create kap—sync—__flags DoS Medium | CVE-2021-32025 (Fixed)
#31 | ker_thread_create kap—sync—__owner LPE High CVE-2021-32025 (Fixed)
#32 | ker_thread_destroy kap—sync—__owner LPE High CVE-2021-32025 (Fixed)
#33 | ker_timer_create kap—event DoS Medium | CVE-2021-32025 (Fixed)
#34 | Kker_timer_settime kap—itime—interval_nsec LPE High CVE-2021-32025 (Fixed)
#35 | ker_timer_info kap—param—_32 / kap—pid DoS Medium | CVE-2021-32025 (Fixed)
#36 | ker_timer_alarm kap—itime / kap—otime DoS Medium | CVE-2021-32025 (Fixed)
#37 | ker_timer_timeout kap—otime DoS Medium | CVE-2021-32025 (Fixed)
VxWorks 7
#38 | sysctl VxWorks Info leak Low CVE-2022-143544(Fixed)
#39 | ioctl VxWorks Unknown None Confirmed & Ignored
#40 | IPnet stack VxWorks TCP/IP stack Memory Corrupton RCE High Known issue
seL4
#41 [handlelnvocation seL4 / None [Confirmed & Ignored
QNX 8
#42 | ker_msg_replyv kap—smsg Unknown None Confirmed & Ignored
#43 | ker_msg_writev kap—smsg Unknown None Confirmed & Ignored

because there can be multiple processes or rapid kernel-user
switches in some simple system calls.

Preemption False Positives (18.7%): High-priority thread
preemption creates legitimate multi-access patterns that appear
as vulnerabilities to time-window detectors. We observed
455 such cases in cryptographic operations where interrupt
handlers access the same user buffers as preempted system
calls. To automatically identify these cases, we also instrument
pairing ID in the kernel entry of QEMU-TCG.

Uninitialized Memory (0.7%): There are memory accesses
towards uninitialized addresses, which were not used any

12

where else. This false-positive case has been considered into
Bochspwn design as well. We also follow its design and spray
the stack to detect this false positive case.

E. Discovery of Real-world Vulnerabilities

1) Real-world Vulnerabilities: Table presents a com-
prehensive overview of the vulnerabilities discovered by 1SO-
LATOS. We discovered a total of 43 vulnerabilities across mul-
tiple commercial and open-source COTS RTOSes, demonstrat-
ing the effectiveness of our approach in identifying real-world
security issues. The detail of ethical research is described in

Appendix

QNX Neutrino RTOS. Most of our findings (37 vulner-
abilities) were identified in QNX Neutrino RTOS versions
6.6 and 7.0, specifically in their system call handlers. These
vulnerabilities predominantly involve double-fetch issues in
pointer handling, where the kernel reads user-provided data
more than once, creating race conditions. Most of these
vulnerabilities (31) can lead to Denial of Service (DoS), while
6 can be exploited for Local Privilege Escalation (LPE). The
37 QNX vulnerabilities were assigned CVE-2021-32025 and
have been fixed by the vendor in subsequent updates. There
are 2 recently identified in QNX 8, whose impact are still
under investigation.

VxWorks. In VxWorks, we identified 3 distinct vulnerabili-
ties. The vulnerability in the IPnet TCP/IP stack (#40) was
previously known but rediscovered by our tool. Additionally,
we found an information leak through the sysctl interface
(CVE-2022-143544) and an unspecified issue in the ioctl
handler that has been confirmed by the vendor.

seLL4 Microkernel. For the sel.4 microkernel, we identi-
fied one vulnerability in the handleInvocation function.
While this issue has been confirmed by the selL.4 developers,
it was assessed to have no direct security impact. After
discussing with the project owner of selL4, we confirm that
the bug exists in its debugging component, which is not an
open service worth exploiting. Thus, this is a double-fetch
bug, but it has no security impact.

Severity Distribution. Of the 43 vulnerabilities, 5 were
classified as high severity, 34 as medium severity, 1 as low
severity, and the impact of the other 3 are still unknown.
The high proportion of severe vulnerabilities highlights the
critical importance of thorough testing of COTS RTOS kernels,
especially in their system call interfaces. 1 of them was known
before ISOLATOS’s report.

2) Exploitation of a 19-year-old vulnerability: We exploit
a real-world double-fetch vulnerability that poses substantial
risks for COTS RTOSes, especially with an increasing number
of them incorporating privilege management systems. For
instance, we identify a vulnerability in a recent model of
a renowned German vehicle utilizing QNX. Exploiting this
vulnerability can break down the vehicle’s system. However, in
consideration of the confidentiality associated with the German
car manufacturer, we highlight a different vulnerability (#24
in Table [VI). This vulnerability in QNX can result in arbitrary
read and write operations.

As depicted in Figure a), the dereference
kap->param->sched_curpriority at line 15
represents a sequence of two pointers. Here, kap points
to data originating from user space. In scenarios involving
double-fetch bugs, the second retrieval of kap->param is
not constrained by the condition in line 10. Hence, a user
thread has the freedom to assign any value to kap—>paramn.
This implies that the value thp->priority at line 15
can write to any specified memory address. As illustrated in
Figure [7(b), such indiscriminate writing can pave the way
for privilege escalation. An adversarial thread can manipulate
the kernel into overwriting its euid with the value 0, simply

13

llundefined4 ker_sched_get(int act,kerargs_sched_get xkap)
2K

3

4 //first fetch

5 psVarl = kap->param;

6

7 psVar2 = (sched_param_alltype x)

8 act—>process—>boundry_addr;

9 // check if kap->param in boundary

10 if (psVar2 < psVarl) {

11 return 0Oxe;

12 }

13

14 //second fetch

15 kap->param->sched_curpriority = thp->priority;
16

17}

(a) Double-fetch in ker_sched_get function

kap->param->sched_curpriority = thp->priority;
Userland Kernel

euid

sched_curpriority

(b) Arbitrary write exploitation in the code snippet

Fig. 7: Dereferencing a user pointer affected by double-fetch
bug will cause arbitrary write.

by assigning the address of sched_curpriority to the
euid’s address. Consequently, this thread gains root privileges,
achieving a privilege escalation.

The exploitation process requires precise timing to succeed.
We developed an exploitation methodology that employs mul-
tiple worker threads to increase the probability of a successful
race condition. Our timing analysis revealed that the critical
time window between the first check and the second fetch
is approximately 125 CPU cycles on modern QNX systems,
requiring high-precision thread synchronization. Using thread
prioritization and processor affinity settings, we achieved a
reliable exploitation success rate of 76% after an average of
12 attempts. We then implemented a proof-of-concept that
demonstrates the LPE attack.

VII. RELATED WORK

None of the existing solutions are designed to detect double-
fetch in COTS RTOSes. The previous tools can be categorized
into two groups, i.e., static and dynamic methods.

Static Analysis Tools. Coccinelle [11] and DEADLINE [10]
are two of the static analysis tools. Static analysis tools
perform static analysis on the intermediate representation (IR)
compiled from source code and thus support multiple archi-
tectures. For example, Coccinelle [11]] analyzes the IR code
to detect double fetch bugs based on the code patterns that
involve transfer functions. However, it is not accurate enough
because simply adopting specific code patterns produces high
false-positive and false-negative rates. For instance, Coccinelle
cannot identify any patterns from the code in Figure [7] because

all the fetches in the code snippet directly dereference user
pointers. Although DEADLINE [10] achieves high accuracy
by using formal representation to precisely model a double-
fetch bug as two accesses towards overlapped memory, it still
relies on the identification of transfer functions and does not
work well on non-Unix-like systems. Moreover, static analysis
tools usually depend on source code and decompilation, hence
they cannot be applied to binary code directly [26], [27].
One possible solution is to lift the binary code to IR first
and then run these tools on the IR code [28], [29], [30].
However, the lifting process does not recover more semantic
information than the binary code [31]. Thus, the limited
semantic information in the lifted IR would decrease the
effectiveness of static analysis.

Dynamic Tracing Tools. The dynamic tracing tool,
Bochspwn [12]], is developed based on full-system emulation.
Bochspwn inspects the system’s memory while executing and
reports a double-fetch bug when detecting two memory reads
accessing the same user-space address within a short time win-
dow. Although the dynamic tracing-based technique does not
require source code, it usually generates a tremendous number
of false positives. Moreover, Bochspwn is implemented on
top of the Bochs emulator [32], which only supports IA-
32/64(x86/64) architecture; thus, it does not support other
architectures, such as ARM and MIPS, which are commonly
adopted to run COTS RTOSes. DECAF [9] combines state-of-
the-art cache side attacks with kernel-fuzzing to automatically
identify double fetch bugs. However, the method relies on
specific CPU design features to implement a side-channel
method to detect them. If it needs to be migrated to a COTS
RTOS with a different architecture, significant manual effort
will be required.

VIII. DISCUSSION

In this section, we discuss the limitations and scalability as-
pects of ISOLATOS. Furthermore, we outline potential avenues
for enhancement and identify emerging research objectives to
guide our future endeavors.

Limitation of ISOLATOS. One evident limitation of ISO-
LATOS lies in its dependency on documentation to invoke
system calls. Not all system calls come with clear instructions
on their usage. For instance, in VxWorks, we are unable
to locate any documentation elucidating the application of
semGiveHardSc and randNumGenCtlSc. Additionally,
there is an inherent need for manual intervention when for-
mulating code to invoke these system calls. While tools like
syzgen [33]] are making strides in automating the generation of
system calls, they are not entirely exempt from manual touch
points. Moreover, ISOLATOS can be improved by substituting
the JTAG-GDB fault recovery with an assembly code.

Future Work. Double-fetch bugs become inconsequential
in systems that lack a distinct privilege demarcation across
memory regions, such as in multi-threaded user programs or
bare-metal systems. The manifestation of double-fetch bugs
primarily occurs in systems that support memory isolation with

14

a privilege model, coupled with multi-threading capabilities.
As a result, platforms like TEE [34]], [35] and hypervisors
[36] are susceptible to double-fetch bugs, making them de-
tectable by ISOLATOS. Furthermore, it is essential to pinpoint
the boundaries of the privileged memory region and intercede
at the interfaces responsible for data transfer between regions
with varied privilege levels. Also, double-fetches can be intro-
duced by the compiler [37], so it is also worth investigating
whether COTS RTOSes are also affected. An intriguing avenue
for future exploration is the mitigation of double-fetch bugs.
For example, SafeFetch [38] has implemented an approach to
mitigate that on Linux, which is promising for COTS RTOS.

IX. CONCLUSION

In this paper, we presented ISOLATOS, a novel hardware-
assisted approach for quickly and accurately detecting double-
fetch vulnerabilities in RTOS. 1SOLATOS leverages hardware-
based kernel isolation features to efficiently identify cross-
boundary memory accesses indicative of double-fetch vulner-
abilities. It then instruments a fault handler to recover from
faults and record information. To determine a double-fetch,
ISOLATOS introduces a lifecycle system to check if multiple
fetches are from the same system call. Our evaluation across
three major platforms, including QNX, VxWorks, and selL4,
demonstrates the efficiency and accuracy of our approach.
ISOLATOS successfully identified 43 unique vulnerabilities.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
comments. This work was partly supported by the Hong
Kong RGC Project (PolyU15227825) and HK RGC Grant for
Theme-based Research Scheme Project T43-513/23-N.

REFERENCES
[1] B. Limited, “Blackberry qnx software is now embedded in over
195 million vehicles,” |https://www.prnewswire.com/news-releases/
blackberry-qnx-software-is-now-embedded- in-over- 195-million-
vehicles-301315834.html, 2021, [Online; accessed October-2022].
D. Z. Ben Seri, Gregory Vishnepolsky, “Critical vulnerabilities
to remotely compromise VxWorks, the most popular RTOS,”
ARMIS.URGENT/11, Tech. Rep., 2019.
“Blackberry software is now embedded in over 215 million vehi-
cles,” https://www.prnewswire.com/news-releases/blackberry-software-
is-now-embedded-in-over-215-million- vehicles-301572840.html, 2022.
“Companies using windriver vxworks,” https://enlyft.com/tech/products/
windriver-vxworks, 2022.
P. Wang, K. Lu, G. Li, and X. Zhou, “A survey of the double-fetch vul-
nerabilities,” Concurrency and Computation: Practice and Experience,
vol. 30, no. 6, p. 4345, 2018.
“[patch-resend] backports: Fix double fetch in
hlist_for_each_entry*_rcu,” https://www.spinics.net/lists/backports/
msg03072.html, 2014, Accessed: 2022-July.
“Red hat bugzilla — bug 166248,” https://bugzilla.redhat.com/show_
bug.cgi?id=166248| 2005, Accessed: 2022-July.
P. Wang, K. Lu, G. Li, and X. Zhou, “Dftracker: detecting double-fetch
bugs by multi-taint parallel tracking,” Frontiers of Computer Science,
vol. 13, no. 2, pp. 247-263, 2019.
M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh,
and S. Mangard, “Automated detection, exploitation, and elimination of
double-fetch bugs using modern cpu features,” in Proceedings of the
2018 on Asia Conference on Computer and Communications Security,
2018, pp. 587-600.

[2]

[3]

[4]
[5]

[6]

[7]
[8]

[9]

https://www.prnewswire.com/news-releases/blackberry-qnx-software-is-now-embedded-in-over-195-million-vehicles-301315834.html
https://www.prnewswire.com/news-releases/blackberry-qnx-software-is-now-embedded-in-over-195-million-vehicles-301315834.html
https://www.prnewswire.com/news-releases/blackberry-qnx-software-is-now-embedded-in-over-195-million-vehicles-301315834.html
https://www.prnewswire.com/news-releases/blackberry-software-is-now-embedded-in-over-215-million-vehicles-301572840.html
https://www.prnewswire.com/news-releases/blackberry-software-is-now-embedded-in-over-215-million-vehicles-301572840.html
https://enlyft.com/tech/products/windriver-vxworks
https://enlyft.com/tech/products/windriver-vxworks
https://www.spinics.net/lists/backports/msg03072.html
https://www.spinics.net/lists/backports/msg03072.html
https://bugzilla.redhat.com/show_bug.cgi?id=166248
https://bugzilla.redhat.com/show_bug.cgi?id=166248

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim, “Precise and scalable
detection of double-fetch bugs in os kernels,” in 2018 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2018, pp. 661-678.

P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro, “How Double-
Fetch situations turn into Double-Fetch vulnerabilities: A study of
double fetches in the linux kernel,” in 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX Association, Aug.
2017, pp. 1-16.

M. Jurczyk and G. Coldwind, “Identifying and exploiting windows
kernel race conditions via memory access patterns,” 2013.

V. Duta, M. J. Aloserij, and C. Giuffrida, “{SafeFetch}: Practical
{Double-Fetch} protection with {Kernel-Fetch} caching,” in 33rd
USENIX Security Symposium (USENIX Security 24), 2024, pp. 1207—
1224.

A. Bhattacharyya, U. Tesic, and M. Payer, “Midas: Systematic kernel
tocttou protection,” in 31st USENIX Security Symposium (USENIX
Security 22), no. CONF, 2022.

M. Corporation, “Cve-2008-2252: Windows kernel memory cor-
ruption vulnerability,” https://nvd.nist.gov/vuln/detail/CVE-2008-2252,
2008, Accessed: 2024-November.

NIST, “Cve-2016-6130: Race condition in the sclp_ctl_ioctl_sccb
function in linux kernel,” https://nvd.nist.gov/vuln/detail/CVE-2016-
6130, 2016, race condition in the sclp_ctl_ioctl_sccb function in
drivers/s390/char/sclp_ctl.c in the Linux kernel before 4.6 allows local
users to obtain sensitive information from kernel memory by changing
a certain length value, aka a “double fetch” vulnerability. Accessed:
2024-November.

——, “Cve-2016-6236: Denial of service vulnerability in dropbox
lepton 1.0,” https://nvd.nist.gov/vuln/detail/CVE-2016-6236, 2017, the
setup_imginfo_jpg function in lepton/jpgcoder.cc in Dropbox lepton 1.0
allows remote attackers to cause a denial of service (out-of-bounds read)
via a crafted jpeg file. NVD Published Date: 02/02/2017. Accessed:
2024-November.

——, “Cve-2016-6156: Race condition in the ec_device_ioctl_xcmd
function in linux kernel,” https://nvd.nist.gov/vuln/detail/CVE-2016-
6156, 2016, race condition in the ec_device_ioctl_xcmd function in
drivers/platform/chrome/cros_ec_dev.c in the Linux kernel before 4.7
allows local users to cause a denial of service (out-of-bounds array ac-
cess) by changing a certain size value, aka a "double fetch” vulnerability.
Published: 08/06/2016. Accessed: 2024-November.
“Arm-IDA-And-Cross-Check-Reversing-The-787-Core-Network,” 2019.
[Online]. Available: |https://i.blackhat.com/USA- 19/Wednesday/us-
19-Santamarta- Arm-IDA- And-Cross- Check-Reversing-The-787-Core-
Network.pdf]

Intel, “Intel® Supervisor Mode Access Protection (SMAP),” https:

/lcdrdv2.intel.com/v1/dl/getcontent/633935, 2021, [Online; accessed
September-2022].
“Learn the architecture - aarch64 memory model,” https:/

developer.arm.com/documentation/102376/0100/Permissions-attributes,
2022, Accessed: 2022-July.

qnx, “Priority inheritance,” [Online; accessed October-2022].
[Online]. Available: http://www.qnx.com/developers/docs/7.0.0/
index.html#com.qnx.doc.neutrino.getting_started/topic/s1_msg_prio_
interitance.html

“Deadlock,” [Online; accessed October-2022]. [Online]. Avail-
able: |https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/7_
Deadlocks.html

“Compare the Top Real-Time Operating Systems (RTOS) of 2022,”
https://sourceforge.net/software/real-time-operating- systems-rtos/?sort=
rating_count, [Online; accessed Nov-2022].

J. T. Taylor and W. T. Taylor, “Board support package,” in The Embedded
Project Cookbook: A Step-by-Step Guide for Microcontroller Projects.
Springer, 2024, pp. 213-224.

I. U. Haq and J. Caballero, “A survey of binary code similarity,” Acm
computing surveys (csur), vol. 54, no. 3, pp. 1-38, 2021.

J. Park, S. Lee, J. Hong, and S. Ryu, “Static analysis of jni programs
via binary decompilation,” IEEE Transactions on Software Engineering,
vol. 49, no. 5, pp. 3089-3105, 2023.

Z. Liu, Y. Yuan, S. Wang, and Y. Bao, “Sok: Demystifying binary lifters
through the lens of downstream applications,” in 2022 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2022, pp. 1100-1119.

Q. Zhan, X. Hu, X. Xia, and S. Li, “React: Ir-level patch presence test for
binary,” in Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering, 2024, pp. 381-392.

15

[30] T. Toor, “Decompilation of binaries into llvm ir for automated analysis,”
Master’s thesis, University of Waterloo, 2022.

A. Spanier and W. Mahoney, “Static analysis using intermediate repre-
sentations: A literature review.” Academic Conferences and publishing
limited, 2023.

“THE CROSS PLATFORM IA-32 EMULATOR/”
//bochs.sourceforge.io/, [Online; accessed September-2022].
B. Lenard, J. Wagner, A. Rasin, and J. Grier, “Sysgen: System state
corpus generator,” in Proceedings of the 15th International Conference
on Availability, Reliability and Security, ser. ARES ’20. New York,
NY, USA: Association for Computing Machinery, 2020.

T. Cloosters, M. Rodler, and L. Davi, “TeeRex: Discovery and
exploitation of memory corruption vulnerabilities in SGX enclaves,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 841-858. [Online]. Available: https:
/Iwww .usenix.org/conference/usenixsecurity20/presentation/cloosters

S. Han and J. Jang, “Mytee: Own the trusted execution environment on
embedded devices,” 01 2023.

G. Pan, X. Lin, X. Zhang, Y. Jia, S. Ji, C. Wu, X. Ying,
J. Wang, and Y. Wu, “V-shuttle: Scalable and semantics-aware
hypervisor virtual device fuzzing.” New York, NY, USA: Association
for Computing Machinery, 2021. [Online]. Available: https://doi.org/
10.1145/3460120.3484811

J. Xu, L. Di Bartolomeo, F. Toffalini, B. Mao, and M. Payer, “Warpat-
tack: bypassing cfi through compiler-introduced double-fetches,” in 2023
IEEE Symposium on Security and Privacy (SP). 1EEE, 2023, pp. 1271—
1288.

V. Duta, M. J. Aloserij, and C. Giuffrida, “SafeFetch: Practical
Double-Fetch protection with Kernel-Fetch caching,” in 33rd USENIX
Security Symposium (USENIX Security 24). Philadelphia, PA:
USENIX Association, Aug. 2024, pp. 1207-1224. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/duta

[31]

[32] https:

[33]

[34]

[35]

[36]

[37]

[38]

APPENDIX

A. Further Analysis of False Positives

In Figure [§] we show that among all the page faults 1SO-
LATOS caught, around 30% of them trigger SMAP, indicating
user-memory access. In addition, double-fetch bugs only rep-
resent 7.6% on average. This demonstrates that user memory
accesses in the system are quite common, which is a critical
reason why Bochspwn has such high false positives.

We also noticed that the most common cases that cause
false positives are the “small” system calls, which have fewer
instructions. As shown in Table the larger the time window,
the more false-positives can be found. This is because in a
preset, fixed time window one can predetermine the instruc-
tions that are going to be executed. While the number of
instructions varies for different system calls. We calculated
that there are 417229 instructions executed per second using
the execution logs, which mean in 1 ms there are roughly 417
instructions executed. When we randomly picked 10 system
calls, we found that 9 of them have more than 417 instructions.

The kernel isolation trigger provides valuable insights into
the kernel’s interaction with user memory. We observed consis-
tent patterns in which certain types of system calls, particularly
those that handle data transfer between user and kernel space,
showed higher trigger rates. I/O-related system calls, including
ChannelDestroy(), MsgSendv(), exhibited SMAP trigger rates
up to 45%, while memory management calls showed rates
around 25%.

https://nvd.nist.gov/vuln/detail/CVE-2008-2252
https://nvd.nist.gov/vuln/detail/CVE-2016-6130
https://nvd.nist.gov/vuln/detail/CVE-2016-6130
https://nvd.nist.gov/vuln/detail/CVE-2016-6236
https://nvd.nist.gov/vuln/detail/CVE-2016-6156
https://nvd.nist.gov/vuln/detail/CVE-2016-6156
https://i.blackhat.com/USA-19/Wednesday/us-19-Santamarta-Arm-IDA-And-Cross-Check-Reversing-The-787-Core-Network.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Santamarta-Arm-IDA-And-Cross-Check-Reversing-The-787-Core-Network.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Santamarta-Arm-IDA-And-Cross-Check-Reversing-The-787-Core-Network.pdf
https://cdrdv2.intel.com/v1/dl/getcontent/633935
https://cdrdv2.intel.com/v1/dl/getcontent/633935
https://developer.arm.com/documentation/102376/0100/Permissions-attributes
https://developer.arm.com/documentation/102376/0100/Permissions-attributes
http://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.getting_started/topic/s1_msg_prio_interitance.html
http://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.getting_started/topic/s1_msg_prio_interitance.html
http://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.getting_started/topic/s1_msg_prio_interitance.html
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/7_Deadlocks.html
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/7_Deadlocks.html
https://sourceforge.net/software/real-time-operating-systems-rtos/?sort=rating_count
https://sourceforge.net/software/real-time-operating-systems-rtos/?sort=rating_count
https://bochs.sourceforge.io/
https://bochs.sourceforge.io/
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://doi.org/10.1145/3460120.3484811
https://doi.org/10.1145/3460120.3484811
https://www.usenix.org/conference/usenixsecurity24/presentation/duta

1.0 1

B Page faults

s SMAP
'g Double Fetch
S 0.5 -
°
o
0.0
S MR A RN RN RN I NN NN N B R A L v B S A L B S A S A

Fig. 8: The proportion of Double Fetch, triggering SMAP among all page faults. The left column for each OS represents the
percentage of page faults that trigger SMAP protections (approximately 30% on average), while the right column represents the
proportion of actual double-fetch bugs (7.6% on average) among all monitored memory accesses. This significant difference
explains the high false positive rates in previous detection approaches.

Algorithm 1: Double-Fetch Detection via Kernel Iso-

lation.

Input : Kernel Binary K, System Call Test Suite 7"
Output: Set of detected double-fetch vulnerabilities V

// Static Kernel Entry Identification

Function IdentifyKernelEntry (K):

Initialize entry points set £ <— (;

foreach instruction inst in K do

if in st sets kernel entry register then

Extract entry address from inst;
Add entry address to E;

return E;

// Syscall Handler Instrumentation
Function InstrumentHandler (E):
foreach entry e in E do
EnableKernelIsolation ();
InsSysIdGenerator (e);
ExitSysIdGenerator ();

// Page

Function
if

Fault Handler with System Call Context
PageFaultHandler ():
page fault == Erroris,iqsion then
addrigrget < fault address;
addr;,, g < instruction pointer;
idsysaall <— current system call ID;
// Record access for analysis
AccessMonitor (addrigrget, addTinsts idsyscall)
// Recovery mechanism
DisableKernelIsolation ();
ExecuteFaultInstruction ();
EnableKernelIsolation ();
JumpToNextInstruction ();

// BAccess Monitoring with System Call Tracking
// idgyscqll indicates pairing ID

Global AccessLog <+ 0

Function AccessMonitor (addrigrget, addrinst» idsyscall)z

| Record access: (addriarget, addrinst, idsyscall) — AccessLog;

// Double-Fetch Pattern Analysis
Function AnalyzeDoubleFetchPattern(AccessLog):
V0
Group AccessLog by idsysca”:
foreach system call group G do
foreach unique addrigrget in G do
coumnt < number of accesses to addrigrget:
if count > 2 then
L Add (addrigrgets G idgyscall) © Vs
return V'

// Main Detection Process
E < IdentifyKernelEntry(K);
InstrumentHandler (E);
Install PageFaultHandler ();
EnableKernelIsolation();
// Execute test suite
foreach rest t in T do
Execute t;

// Rnalyze collected data
V <« RBnalyzeDoubleFetchPattern(AccessLog);
return V;

B. Ethical Security Research

All the vulnerabilities are reported to the OS companies,
and most of them are fixed. Those that did not introduce an
impact were ignored by their security team. For Blackberry,

16

considering the complexity of automotive and energy industry,
we negotiated that the publicly disclosure time will be 150
days after the first report email sent. They notified us that
they had pushes patches to all their customers. VxWorks
also released the patch in 90 days. At the time of the paper
submission, there are still two vulnerabilities reported but not
yet fixed. We did not disclose any details of their exploitation
in this paper to prevent malicious use.

C. Detecting Double-Fetch Bugs

To determine if there are any double-fetch bugs, we check
if there are any two fetches accessing the same memory
address between the life cycle of current system call. As shown
in Algorithm [T} we first perform kernel entry identification,
which iterates over the binary looking for kernel entry iden-
tifiers before inserting a handler that establishes isolation and
system call ID registration necessary for boundary tracking,
and then install a page fault handler responsible for recording
the faulting address its instruction pointer and system call ID
before calling AccessMonitor. In AccessMonitor, we
record every cross-boundary access, with its targeted access
address and its instruction address. To implement Access
Monitor, we initialize a global variable V as a list of structures
with two members addr_1i and addr_p that we then check
to determine if a double-fetch vulnerability exists. We use
AnalyzeDoubleFetchPattern to determine if there are
multiple accesses, whereupon they will be recorded to a
double-fetch vulnerabilities set V.

D. Architecture-Specific Implementation

To implement the design for COTS RTOSes, we utilize
various features provided by our target systems, including
QNX, VxWorks, and SeL4 independently. An example of this
process for QNX is given in Figure 5] We note, however,
that the majority of ISOLATOS is target-independent as shown
in Table Only control of the user/kernel isolation bit,
discovery of kernel entry, and page fault handling are specific
to the architecture and require a one-time effort. However, the
main body of ISOLATOS, is reusable across targets.

TABLE VII: Implementation Comparison between ARM and Intel x86-64 Architectures.

Component

‘ Intel x86-64 ‘ ARM (v8.1+)

Architecture-Specific Differences

Isolation Control

o SMAP: CR4 register bit 21 o PAN: PSTATE register bit 22
Kernel Entry Discovery

e Dynamic: WRMSR instruction o Fixed: Exception vector table

o Entry stored in: MSR register 0xC0000082 e SVC handler at fixed address

Page Fault Handling

Exception vector: #PF (0xOE)
Fault address: CR2 register
Error code: On stack
Handler: trapOe function

Exception vector: Data Abort
Fault address: FAR_EL1 register
Syndrome: ESR_ELI register
Handler: e11_da function

Architecture-Independent Components

System Call Pairing

Unique ID generation using timestamp or counter

Stored in kernel memory region accessible to fault handler
Maintained throughout system call lifecycle

Cleared on system call exit

Fault Recovery

JTAG-based debugging interface for both architectures
GDB connection through hardware debug adapter
Hardware breakpoints at recovery points

Automated script execution for state restoration

Access Recording

Global data structure: AccessLog

Record format: (target_addr, inst_addr, syscall_pairing_id)
Lock-free implementation for multi-CPU support

Fixed-size circular buffer to prevent overflow

Instruction Completion

Temporary isolation disable before execution
Single-step execution of faulting instruction
Immediate re-enable of isolation

Return to next instruction address

17

	Introduction
	Background
	Double-Fetch Bugs
	Preemption in Real-Time Operating Systems
	Kernel Isolation

	Challenges
	Design of isolatOS
	Static Kernel Entry Identification and Instrumentation
	Enable Isolation and Page Fault Handler
	Double-Fetch Pattern Analysis and Determination

	Implementation
	System adaptation
	Architecture-Specific Code
	Unified Fault Recovery.
	Hardware selection.

	Evaluation
	QEMU-TCG vs Bochspwn in Overhead
	Similarity Between QEMU-TCG and BochsPwn
	Efficiency Improvement
	Precision and False Positive Analysis
	Experimental Design and Ground Truth Establishment
	False Positive Taxonomies

	Discovery of Real-world Vulnerabilities
	Real-world Vulnerabilities
	Exploitation of a 19-year-old vulnerability

	Related Work
	Discussion
	Conclusion
	References
	Appendix
	Further Analysis of False Positives
	Ethical Security Research
	Detecting Double-Fetch Bugs
	Architecture-Specific Implementation

