Enhancing Website Fingerprinting Attacks
against Traffic Drift

Xinhao Deng*T, Yixiang Zhang*, Qi Li*89, Zhuotao Liu*7, Yabo Wangi, Ke Xut89
*INSC, Tsinghua University fAnt Group IDCST, Tsinghua University
§State Key Laboratory of Internet Architecture, Tsinghua University
1IZhongguancun Laboratory
xinhaodeng.thu @ gmail.com, {zhangyix24, yb-wang22} @mails.tsinghua.edu.cn,
{qli01, zhuotaoliu, xuke} @tsinghua.edu.cn,

Abstract—Anonymous communication systems, e.g., Tor, are
vulnerable to various website fingerprinting (WF) attacks, which
analyze network traffic p atterns t o c ompromise u ser privacy.
In particular, sophisticated attacks employ deep learning (DL)
models to identify distinctive traffic p atterns a ssociated with
specific w ebsites, a llowing t he a dversary t o d etermine which
websites users have visited. However, these attacks are not
designed to handle traffic d rift,s uch a s ¢ hangesi n website
content and network conditions. Since traffic d rifti s common
in real-world, the effectiveness of these attacks diminishes sig-
nificantly i n r eal-world d eployment. To a ddress t his limitation,
we develop Proteus, the first adaptive WF attack framework to
effectively mitigate the impact of traffic d rift w hile maintaining
robust performance in real-world scenarios. The key design
rationale of Proteus is to continuously fine-tune the WF model
using only drifted traffic w ithout g round-truth 1 abels collected
while deploying the model, enabling the model to adapt to
complex traffic d rifti nn earr ealt ime. S pecifically, Proteus
aligns the feature distributions of original and drifted traffic by
minimizing the maximum mean discrepancy and thus enhances
model confidence b y o ptimizing t he e ntropy d istribution o f its
predictions. Furthermore, it utilizes a Gaussian mixture model
to obtain reliable pseudo labels, which are subsequently used in
supervised fine-tuning t o f urther e nhance i ts r obustness against
drifted traffic. N otably, P roteus c an b e s eamlessly integrated
with existing DL-based WF attacks to enhance their resilience
to traffic d rift. W e e valuate P roteus o n1 arge-scale datasets
containing over 350,000 real-world Tor browsing traces across
six traffic d rift s cenarios. T he results d emonstrate that Proteus
achieves an average 94.24% relative improvement in F1-score
over eight state-of-the-art WF attacks for identifying drifted
traffic.

I. INTRODUCTION

Website Fingerprinting (WF) attacks pose a significant
threat to anonymous communication systems such as Tor [1],
[2]. By analyzing network traffic p atterns, W F a ttacks can
infer which websites users visit, thereby compromising Tor’s
privacy guarantees and exposing sensitive browsing activi-
ties [3], [4]. Recently, deep learning (DL) techniques have
substantially improved the accuracy of these attacks [S]-[8].

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230059
www.ndss-symposium.org

Before launching a WF attack, the adversary needs to collect
Tor traffic labeled with the corresponding websites to train
the DL model. Through such training, the model captures
correlations between traffic patterns and website labels. As
a result, the trained DL model can effectively identify a user’s
Tor traffic, undermining their anonymity.

DL-based WF attacks achieve significant success under
controlled conditions. However, their performance degrades
substantially when traffic experiences drift [4], [6], [9], [10].
Traffic drift refers to changes in network traffic characteristics
over time, which can occur due to various factors such
as website content updates [9], changes in user browsing
behavior [11], Tor version updates [5], [12], or variations in
network conditions [6]. Consequently, traffic drift introduces
distributional discrepancies of traffic between the training and
deployment phases, resulting in diminished model perfor-
mance. Thus, traffic drift stands as a major barrier to the
practical application of WF attacks.

Prior research typically addressed traffic drift by periodi-
cally collecting newly labeled traffic to retrain DL models [1],
[31, [51, [7], [8], [11], [13]-[15]. Unfortunately, it is difficult
to collect and constitute large-scale labeled data, and thus
unable to timely adapt to traffic drift. To address this limitation,
recent studies use data augmentation and contrastive learning
to reduce dependence on large labeled datasets [4], [6]. Yet,
they still depend on labeled traffic that precisely reflects the
conditions of real-world deployment. As a result, when facing
traffic drift caused by unknown and unpredictable factors (such
as Tor version updates or user browsing behavior shifting),
these approaches become less effective.

In this paper, we present Proteus, an adaptive and re-
silient framework that enhances existing DL-based WF at-
tacks against traffic drift. Proteus continuously fine-tunes
the DL models using only traffic without ground-truth labels
collected between the client and the Tor entry node while
deploying these attacks, enabling them to adapt to various
types of traffic drift in near real time. It exploits relationships
between feature distributions of original and drifted traffic
generated from the same website so that it can align the drifted
traffic with the original traffic and attenuate traffic drift. In
particular, we design a three-step approach to achieve the
goal. First, Proteus employs a Gaussian kernel function to

map traffic features into a high-dimensional space where they
are linearly separable. Then it aligns the feature distributions
of original and drifted traffic by minimizing the Maximum
Mean Discrepancy (MMD). Second, Proteus reduces the
ambiguity of prediction by optimizing the entropy distribution
of the model outputs, thereby ensuring consistent predictions
for traffic exhibiting high feature similarity. Finally, Proteus
utilizes a Gaussian Mixture Model (GMM) to identify reliable
predictions and treat them as pseudo-labels. These pseudo-
labeled traces are subsequently used for supervised fine-tuning
to further enhance the model’s adaptability to drifted traffic.
We prototype Proteus and evaluate its performance using
large-scale datasets of over 300,000 real-world Tor traces
collected between March and December 2024. Our datasets
encompass traffic drift caused by various factors, including
changes in website content over time, different Tor ver-
sions, shifts in client browsing behavior, dynamic network
conditions, open-world scenarios, and the presence of the
WEF defense. Experimental results demonstrate that Proteus
significantly improves the performance of existing WF attacks
against drifted traffic. For instance, Proteus achieves the F1-
score of 82.27% under 270 days of real-world traffic drift,
whereas the Fl-scores of eight baselines remain below 60%.
Our primary contributions are as follows:

o We propose Proteus, an adaptive approach to enhance
WF attacks against diverse traffic drifts by consistently
fine-tuning the existing WF models during the deploy-
ment phase, allowing these models to adapt to various
traffic drifts in near real time.

« Proteus accomplishes this through two key mechanisms.
First, it aligns feature distributions and enhances pre-
diction confidence to maintain consistent classification
across both original and drifted traffic patterns associated
with the same website. Second, it employs the GMM to
generate reliable pseudo-labels, enabling supervised fine-
tuning to improve the model’s adaptability.

o We implement a functional prototype of Proteus and
conduct extensive evaluations across multiple drift sce-
narios to validate its effectiveness. We release the datasets
and source code of our work!.

The rest of this paper is structured as follows. Section II
provides the necessary background. Section III specifies the
threat model for Proteus, and Section IV presents our design
and its underlying principles. In Section V, we thoroughly
evaluate Proteus in multiple drift scenarios. Section VI dis-
cusses the implications and countermeasures. Sections VII and
VIII review related work and conclude this paper, respectively.
Section IX discusses the ethical considerations.

II. BACKGROUND

Website fingerprinting (WF) attacks compromise the
anonymity of Tor users by analyzing website patterns in
encrypted traffic. Traditional WF attacks rely on handcrafted

Thttps://github.com/Xinhao-Deng/Adaptive-WF-Attack

TABLE I: Comparison of WF attacks on handling traffic
drift. ¢/, X, and ¢ denote full, no, and partial mitigation,
respectively.

Attacks Traffic Drift Types
Client-Side' Server-Side? Network-Side®

AWF [3] X X X
DF [1] X X X
Tik-Tok [13] X X X
BAPM [14] X X X
ARES [5] X X X
RF [7] X X X
Var-CNN [16] X (7 4 X
TF [4] X (74 X
GANDALF [17] X (7 4 X
NetCLR [6] X (74 X
OnlineWF [9] X %4 "4
Proteus (4 v v

! Drift caused by user behavior or Tor version changes.
2 Drift caused by changes in website content.
3 Drift caused by varying network conditions.

features, which are vulnerable to specific obfuscation tech-
niques [18]-[20]. To overcome this weakness, recent WF
attacks employ deep learning (DL) models (e.g., CNNs and
Transformers) to automatically extract features, enabling ac-
curate and robust website identification [1], [3], [7], [8].
Advanced DL-based WF attacks perform well in several
challenging scenarios, including bypassing WF defenses [1],
[71, [8], [13], handling multi-tab obfuscated traffic [5], [14],
[15], and identifying fine-grained webpages [11]. However,
their performance degrades significantly when traffic drift
occurs [3], [5], [9], [12]. Table I presents a comparison of WF
attacks in handling traffic drift. Traffic drift can be categorized
into three major types: (i) client-side drift, caused by changes
in user browsing behavior or Tor versions [11], [12], (ii)
server-side drift, due to website content updates [9], [10],
and (iii) network-side drift, resulting from varying network
conditions [6], [8].

To mitigate the effects of traffic drift, some studies pe-
riodically collect new data and retrain models to maintain
performance [1], [3], [S5]. However, retraining deep learning
models is time-consuming due to the need for large-scale traf-
fic collection. As traffic drift consistently evolves in real-time,
periodic retraining is unable to address traffic drift promptly.
Therefore, the community has explored few-shot fine-tuning
methods, including enhancing model architecture [16], op-
timizing model training procedures [4], [6], and generating
synthetic traffic using GANs [17]. NetCLR [6], the state-
of-the-art attack in this category, utilizes data augmentation
and contrastive learning for model pre-training. NetCLR then
fine-tunes the model with only a small amount of labeled
drifted traffic. While these approaches reduce the overall
dependence of labeled data, they still require labeled traffic
that precisely reflects the conditions of real-world deployment.
Their effectiveness is further undermined when the drift is
caused by unknown client-side factors, such as changes in Tor

—)

O i
=0

Tor network Website
@ Adversary
W@ et ED oy @D
Unlabeled Model . .
traffic fine-tuning Identification

Fig. 1: The threat model of Proteus.

versions or variations in user browsing behavior.

Furthermore, recent works collect labeled traffic from Tor
exit nodes for model updates [9], [10]. For instance, On-
lineWF [9] builds on the TF attack [4] and adapts to traffic
drift in real time. It continuously updates website feature dis-
tributions using labeled traces from Tor exit nodes. However,
WF attacks are usually performed at the entry side of the Tor
network, whose traffic patterns significantly differ from those
at the exit. Furthermore, Tor users can deploy WF defenses
that obfuscate traffic at the entry node while leaving the exit
node traffic unaffected [21]-[23]. This further increases the
differences between entry and exit node traffic traces in real-
world scenarios. As a result, WF models trained on exit-node
data perform poorly when used to identify entry-node traffic.

Unlike prior works, Proteus aims to address the traffic drift
issue by eliminating the dependence on labeled traffic. Traffic
drift can occur due to various unpredictable factors, such as
changes in Tor versions or shifts in users’ browsing behaviors.
Therefore, it is difficult to obtain properly-labeled datasets that
can capture all possible drift patterns for retraining or fine-
tuning. To address this, Proteus fine-tunes WF models using
traffic without ground-truth labels collected between the client
and the Tor entry node. This traffic can match the drifted traffic
that needs to be identified in the actual attack phase. Therefore,
Proteus significantly enhances the robustness of WF attacks
against traffic drift.

III. THREAT MODEL

Figure 1 illustrates our threat model. We consider an adver-
sary aiming to de-anonymize a client’s online activities. The
adversary infers the websites visited by users through website
fingerprinting. The adversary could deploy traffic mirroring
points between the client and the Tor entry node to record the
client’s encrypted traffic. Potential adversaries include local
network administrators, Internet Service Providers (ISPs), and
Autonomous Systems (ASes). Note that the adversary cannot
directly decrypt the packets. Furthermore, we assume that the
client is capable of deploying WF defenses. WF defenses
disrupt the traffic patterns of various websites by padding
dummy packets and delaying packets [21]-[25].

Following prior studies [1], [3], [5], [7], [8], [11], our threat
model includes both closed-world and open-world scenarios.
In the closed-world scenario, Tor users visit only a limited
set of websites, enabling the adversary to pre-collect labeled
traffic from these websites (i.e., monitored websites) to train
models. In the open-world scenario, Tor users can browse
arbitrary websites, including those unknown to the adversary.
Therefore, the adversary can only collect traffic from a subset
of websites to train the models.

Unlike previous works [4], [6], [9], [10] that focus on a
single type of traffic drift, our threat model addresses multiple
types of traffic drift happening in real-world deployment.
Specifically, we consider traffic drift caused by changes on
the client side, server side, and network side. To handle these
traffic drifts, Proteus continuously fine-tunes the model using
traffic without ground-truth labels collected in the attack phase.
This mechanism enables Proteus to adapt to complex traffic
drift during the attack.

Note that Proteus is compatible with existing WF attacks
and can improve their robustness against traffic drift. For
example, an adversary may first perform supervised fine-
tuning on the WF model using labeled traffic exhibiting drift
from synthetic sources [6], [17] or Tor exit nodes [9]. Proteus
can then perform unsupervised fine-tuning using traffic without
ground-truth labels, which closely reflects the drifted traffic
patterns observed in practical deployment. This significantly
enhances the resilience of WF attacks against traffic drift
in real-world scenarios. In our study, combining supervised
fine-tuning with Proteus yields even better performance, as
detailed in Appendix V-G.

IV. DESIGN OF PROTEUS
A. Overview

In this paper, we propose Proteus, a novel WF attack
framework that fine-tunes WF models using drifted traffic
without ground-truth labels to achieve accurate WF perfor-
mance during the attack phase. Proteus can be seamlessly
integrated with existing DL-based WF attacks to effectively
enhance their performance against drifted traffic. The key
insight behind Proteus is that there are inherent relationships
between the original and drifted traffic from the same website.
By fine-tuning the WF model to capture these relationships,
Proteus achieves more robust WF attacks against drifted
traffic. Specifically, Proteus first analyzes the feature dis-
tributions of the original and drifted traffic, and then aligns
the two distributions by minimizing the Maximum Mean
Discrepancy (MMD). Next, Proteus calculates the entropy
distribution of the model’s predictions to measure output
uncertainty. Proteus optimizes the entropy distribution to
facilitate consistent predictions for original and drifted traffic
from the same website. Finally, Proteus utilizes a Gaussian
Mixture Model (GMM) to estimate the probability of correct
predictions for traces without ground-truth labels, selecting
reliable predictions as pseudo-labels. These pseudo-labeled
traces are used for supervised fine-tuning, further improving
the WF model’s ability to identify drifted traffic.

Weva

Original traffic

WAN-O

»

»

Feature Distribution Alignment

Model Confidence Enhancement

Adaptive Pseudo-Labeling

Drifted feat.

Original féat.

[Feature mapping J

WN-O

Drifted traffic

Trained model

»

O

Feature Space

O

o o 9
1 2 z 2
Zo Z L. d Z
° Minimize d
.Z 3 o o > 3
o distance d
& *zq

J

-

Prob.

Entropy

Prob.

Z

Optimize the entropy
distribution of model prediction

mm= Correct prediction

WAVAY

Probability analysis via
Gaussian mixture model

Prob.

Pseudo-labels
generation

Prediction
score WA~
> 095 |G N\~ E
Conﬁdence’ 0:?.1 a Supervised fine-tuning

-

Enhanced Model

Fig. 2: The overview of Proteus. Proteus can be integrated with existing DL-based WF attacks to enhance WF attacks against

traffic drift.

As shown in Figure 2, Proteus consists of three modules
designed to construct robust WF attacks against traffic drift,
including the feature distribution alignment module, the model
confidence enhancement module, and the adaptive pseudo-
labeling module.

Feature Distribution Alignment. The feature distribution
alignment module fine-tunes the model to minimize the dis-
tributional discrepancy between the original and drifted traffic
features. Specifically, Proteus utilizes a Gaussian kernel func-
tion to map the traffic features into a high-dimensional space.
This high-dimensional mapping enhances the separability of
feature distributions, enabling more accurate analysis of dis-
tributional discrepancies. By minimizing the MMD between
feature distributions, Proteus aligns the feature distributions
of the original and drifted traffic features. Furthermore, we
design a dynamic bandwidth Gaussian kernel that adaptively
adjusts its bandwidth based on the traffic feature distribution.
This design ensures effective feature distribution alignment
across diverse traffic drift scenarios. Details of this module
are described in Section IV-B.

Model Confidence Enhancement. This module mitigates
traffic drift by enhancing the model’s prediction confidence on
drifted traffic. Specifically, Proteus optimizes the entropy dis-
tribution of predictions to reduce output uncertainty, ensuring
consistent predictions for traffic with similar features. Bene-
fiting from the aligned feature distributions, the confidence-
enhanced model accurately links original traffic and drifted
traffic from the same website, enabling effective identification
of drifted traffic. We will describe the details of this module
in Section IV-C.

Adaptive Pseudo-Labeling. The adaptive pseudo-labeling
module utilizes reliable predictions as pseudo-labels to fa-
cilitate the model learning drifted traffic patterns through
supervised fine-tuning. Specifically, Proteus employs a GMM
to estimate the probability of each traffic being correctly
predicted. Predictions with high probabilities are assigned as
pseudo-labels, which are then used to fine-tune the WF model.
We will introduce the details of adaptive pseudo-labeling in

Section IV-D.

Note that Proteus introduces a novel end-to-end framework
for WF attacks that dynamically adapts online to evolving
traffic patterns while operating solely on traffic data without
requiring ground-truth labels during the attack phase. While
some components draw inspiration from computer vision and
related fields [26]-[31], Proteus fundamentally diverges from
prior works in its problem formulation and integration strategy.
Unlike existing approaches that assume static or single-factor
distribution shifts, Proteus is explicitly designed to handle
complex, multi-source traffic drift in real-world network envi-
ronments.

Furthermore, Proteus unifies these components into a task-
optimized pipeline that enables continuous online adaptation
throughout the attack process. As shown in Appendix V-I,
this integrated design significantly outperforms any standalone
component.

B. Feature Distribution Alignment

The feature distribution alignment module aims to minimize
differences in feature distributions between original traffic
and drifted traffic, thereby improving the performance of
WF attacks in traffic drift scenarios. The key insight arises
from the inherent relationship between original and drifted
traffic from the same website, which results in smaller feature
distances compared to traffic features from different websites.
Thus, fine-tuning the model to align feature distributions helps
capture the relationship between original and drifted traffic and
enhances identifying drifted traffic.

However, directly aligning the feature distributions of origi-
nal and drifted traffic poses significant challenges for two main
reasons: (i) The relationships between feature distributions are
complex, making it difficult to analyze and quantify their dif-
ferences. (ii) The causes of traffic drift in real-world scenarios
are highly diverse. As discussed in Section III, traffic drift can
result from changes in client browsing behavior, Tor versions,
website content, or network conditions. Different types of
traffic drift induce distinct changes in feature distributions.

Therefore, our design must remain effective across various
traffic drift scenarios.

To address these challenges, Proteus employs a Gaussian
kernel function to map traffic features into a high-dimensional
Reproducing Kernel Hilbert Space (RKHS) [32]. In this high-
dimensional space, traffic feature distributions that are origi-
nally complex or nonlinear become more linearly separable,
enabling precise measurement of the differences between the
feature distributions of original and drifted traffic. Based on
this embedding, Proteus fine-tunes the model parameters by
minimizing the Maximum Mean Discrepancy (MMD) [33].
MMD effectively computes the distance between different
feature distributions by comparing their mean embeddings
in the RKHS. By minimizing MMD, Proteus reduces the
differences between the feature distributions of original and
drifted traffic, thereby mitigating the impact of traffic drift on
model performance. To enhance adaptability to diverse traffic
drift scenarios, we design an adaptive bandwidth mechanism
for the Gaussian kernel function. This mechanism dynamically
adjusts the kernel bandwidth based on the observed traffic
feature distributions, enabling Proteus to maintain robustness
across various dynamic traffic drift scenarios. Proteus not
only achieves effective alignment of traffic feature distributions
but also maintains generalization across different traffic drift
scenarios.

Next, we describe the details of the feature distribution
alignment module. We input both the original traffic and
drifted traffic into the model, using the output of the layer
preceding the fully connected layer as the extracted traffic fea-
tures. Let the trained model extract feature sets 2, = {z/ N,
from the original traffic and 24 = {2}}}Z, from the drifted
traffic, where N and M represent the respective numbers of
traffic instances in these two domains. We map both feature
distributions into the high-dimensional Reproducing Kernel
Hilbert Space (RKHS) and compute the centroids of the two
feature distributions in the RKHS. The centroid of a feature
distribution is defined as the mean of features across all
dimensions. The optimization goal of fine-tuning the model
is to minimize the distance between these two centroids in the
RKHS, formulated as follows:

2
N

1 ‘ M ,
Li=s — 7)) — — z’ 1
1= sup N;¢(o) M;Gﬁ(d) N
where ¢ denotes the feature mapping function, and I is the
RKHS. We aim to find a mapping function ¢ that maximally
amplifies the differences between two distributions in the
original space when projected into the RKHS. This ensures
that the distributions become as linearly separable as possible
in the RKHS. To achieve this, we use a Gaussian kernel
function for feature mapping. The Gaussian kernel function
is defined as:

i 2
k(z',27) = exp (—ZZJ”>) 2

202

where o denotes the kernel bandwidth, which determines the
sensitivity of the Gaussian kernel to the distances between
features. The Gaussian kernel function maps features into a
high-dimensional space and computes the distance between
two features in that space. By leveraging the kernel trick [34],
there is no need to explicitly construct the mapping function.
We achieve feature distribution alignment by minimizing the
average distance between the features of original traffic and
drifted traffic computed using the Gaussian kernel function.

To prevent the model from converging to a trivial solution
where it outputs the same feature representation for all traffic
during fine-tuning, we simultaneously maximize the average
distance between features within the original traffic and within
the drifted traffic. This ensures that the intra-class variability
of traffic features is preserved while aligning the inter-class
distributions. Therefore, the loss in Equation 1 can be com-
puted using the Gaussian kernel function as follows:

1 X o] MM o
Lr=55 DD k@, z) + 55 > Y k(i)
i=1j=1 i=1 j=1
9 M ‘ 3
- NM ;;k(227zzl)

Different types of traffic drift result in significant differences
in the feature distribution of the drifted traffic. To enhance
the adaptability of Proteus to various traffic drift scenarios,
we design a dynamic bandwidth mechanism for the Gaussian
kernel function. This mechanism dynamically adjusts the
kernel bandwidth by analyzing the observed traffic feature
distribution in real-time and enables flexibility in handling
different types of traffic drift. The bandwidth is computed as
follows:

L, MM '
o= WZZIIZ@*Z&H? “)

i=1 j=1

The WF model leverages feature distribution alignment to
effectively learn the relationships between original and drifted
traffic. However, this may lead to the WF model forgetting
the knowledge necessary to distinguish traffic from different
websites. To address this issue, we augment the feature dis-
tribution alignment process with supervised fine-tuning based
on the original traffic. Proteus performs alignment at the level
of global traffic distributions rather than individual samples,
thereby maintaining site-level distinctions even under distribu-
tional drift. While many factors can substantially alter traffic
patterns, such alterations typically occur in a consistent manner
across different sites, enabling Proteus to achieve effective
adaptation through global alignment.

C. Model Confidence Enhancement

After feature distribution alignment, the original and drifted
traffic features of the same website exhibit similarities. How-
ever, deep learning models often lack confidence when predict-
ing the drifted traffic that was not seen during training, leading

@20 20 20
°;15 1 Day 0 151 [Day 14 115 [Day 30
%10 10F 110 i
2 5 5F 15
> I
&0 0 0
01 2 3 4 01 2 3 4 01 2 3 4
@20 20 20
°;15 [Day 90 151 [Day 150 115 = Day 270
%10 10F 110
E 5 5k 15
00 1 2 3 4 OO 1 2 3 4 00 1 2 3 4
Entropy Entropy Entropy

Fig. 3: The entropy distribution of prediction scores from the
WF model on real-world drifted traffic from 102 monitored
websites. As the degree of traffic drift increases over time, the
entropy of the model’s prediction scores gradually increases,
indicating a decrease in model confidence.

to misclassification. To address this, Proteus improves the
model’s confidence in identifying unknown traffic, ensuring
consistent predictions for traffic with similar features. Notably,
the model confidence enhancement module does not require
the collection of drifted traffic with website labels.

An intuitive approach to enhancing model confidence is
to maximize the softmax probabilities of the model output,
thereby increasing the probability of the predicted website cat-
egory. However, this method may significantly decline model
performance in practical applications, especially when the
website class distribution in traffic is imbalanced. Specifically,
maximizing the softmax probability leads the model to predict
all traffic as belonging to the most prevalent website class in
the traffic. This occurs because the method focuses solely on
the class with the highest predicted probability while neglect-
ing reasonable constraints on the probability distribution for
other classes, ultimately impairing the model’s generalization
capability and overall performance.

To address these challenges, we propose a model confi-
dence enhancement technique based on optimizing the entropy
distribution of model predictions. We leverage Shannon en-
tropy [35], a commonly used metric for measuring uncertainty.
Figure 3 illustrates the entropy distribution of WF model
predictions under traffic drift across different days in the
real world. We observe that as traffic drift increases, the
entropy distribution of model predictions undergoes significant
changes. This insight motivated us to fine-tune the model by
optimizing the entropy distribution to enhance its confidence
for drifted traffic, thereby mitigating the effects of traffic drift.
To prevent the model from predicting all traffic as belonging to
a single website, we design a batch-based diversity constraint
mechanism. Specifically, Proteus minimizes the entropy of
the predicted probabilities for all websites while maximizing
the entropy across all prediction results within a batch to
ensure diversity among the predicted websites.

Next, we introduce the design details of the model con-

fidence enhancement module. Let p; = {p;},pi%,...,pi"}
represent the softmax values output by the final layer of the
model, where p;* is the probability that the model classifies
the i-th unknown traffic as belonging to the k-th website. K is
the total number of monitored websites. Proteus can calculate
the entropy H (p;) as follows:

K
H(p:) = — Y _ pi*logpi*. 5)
k=1

Proteus fine-tunes the model parameters by minimizing the
average entropy of prediction probabilities across all instances
in a batch, enabling Proteus to make more confident and
accurate predictions for drifted traffic. Furthermore, Proteus
also maximizes the entropy of the average prediction results
across all instances in a batch, increasing the model’s diversity
in identifying traffic from different websites.

1 & 1 &
Ly= 2> Hps)~ H(5 Y py), 6)
i=1 j=1
where B is the number of instances in the batch.

Benefiting from the model confidence enhancement, Pro-
teus achieves more consistent predictions for both original
and drifted traffic of the same website, enabling more accurate
identification of drifted traffic.

D. Adaptive Pseudo-Labeling

The feature distribution alignment module and the model
confidence enhancement module improve model consistency
in identifying both original and drifted traffic from the same
website. However, during unsupervised model fine-tuning,
the model might lose critical knowledge essential for distin-
guishing traffic from different websites. This discriminative
ability stems from the knowledge gained by optimizing the
cross-entropy loss function using labeled traffic during model
training [1], [3], [5], [7]. Based on this observation, we
design the adaptive pseudo-labeling module to enhance the
WF model’s ability to distinguish between drifted traffic from
different websites by generating reliable pseudo-labels for traf-
fic without ground-truth labels and incorporating supervised
fine-tuning.

Pseudo-labeling is a technique where the model’s own
predictions are used as pseudo-labels for unannotated samples
to fine-tune the model. This approach is commonly applied
in semi-supervised and self-supervised learning [36], [37].
However, the WF model may generate incorrect predictions
for certain traffic, and the noise introduced by these pseudo-
labels could degrade performance. Therefore, ensuring the
high quality of pseudo-labels is critical for maintaining model
accuracy. Generating reliable pseudo-labels under Tor traffic
drift is particularly challenging. The reason is that the Tor
network experiences multiple types of traffic drift that evolve
dynamically over time. Each type of drift affects the model’s
predictions in different ways, and simply analyzing the predic-

tion confidence of individual traffic samples is not sufficient
to effectively filter out noise in the pseudo-labels.

To address these challenges, Proteus utilizes a Gaussian
Mixture Model (GMM) [38] to estimate the probability that
each traffic sample is correctly predicted, based on the en-
tropy distribution of model predictions. Proteus then filters
out pseudo-labels with low probabilities, ensuring the reli-
ability of the pseudo-labels. Specifically, the GMM utilizes
two Gaussian components to separately model the entropy
distributions of correctly and incorrectly predicted traffic. A
linear combination of these two components is then used to
fit the overall entropy distribution of all traffic. The GMM
accurately captures the model’s prediction entropy distribution
across different types of traffic drift, adaptively computing the
probability that each sample is correctly classified. This allows
Proteus to generate reliable pseudo-labels, making it robust
to the diverse and dynamic traffic drift scenarios.

Next, we describe the detailed design of the adaptive
pseudo-labeling module. Recall from Equation 5 that H(p;)
represents the entropy of the model’s prediction for the -
th traffic instance x;, quantifying the model’s uncertainty. To
ensure consistency across instances, we normalize the entropy
values for B unknown traffic instances in the batch, so that
the normalized entropy values fall within the range of 0 to 1:

H(pi) — min_H(p;)

~ 1<;<B
H(p;) = . (7)
@angH(pJ) - in, H(py)

We then use the GMM to fit the entropy distribution.
The GMM is a probabilistic model that combines multiple
Gaussian distributions. In this module, we use two Gaussian
components to separately represent the entropy distribution
of correctly predicted traffic and that of incorrectly predicted
traffic. The GMM models the overall entropy distribution as
a weighted mixture of these two Gaussian distributions as
follows:

P(H|0) = mN(H|p1,%1) + moN(H |pa, S2), ®)

where N, 7, u, > represent the probability density function,
weight, mean, and covariance, respectively. We update these
parameters using the Expectation-Maximization (EM) algo-
rithm [39] to fit the entropy distribution of the model pre-
dictions. After fitting the entropy distribution, we identify
the Gaussian component with the smaller mean, which corre-
sponds to the entropy distribution of correctly predicted traffic.
Let us assume that the Gaussian distribution with parameters
w1 and ¥; has the smaller mean. For a traffic instance x,
Proteus calculates the posterior probability that this traffic
belongs to the Gaussian distribution representing correctly
predicted traffic, i.e., the probability that this traffic is correctly
predicted.

mN(H ()|H1» 1)
ZJ 1 mN(H ()‘:u‘]’)

P(x) = ©)

Finally, we consider all predictions with probabilities above
a specified threshold as reliable pseudo-labels and use these
pseudo-labeled traffic instances to fine-tune the model in a
supervised manner. This process further improves the model’s
performance in identifying drifted traffic.

In summary, Proteus leverages a GMM-based approach to
adapt to different types of Tor traffic drift, generating reliable
pseudo-labels for traffic without ground-truth labels. By effec-
tively mitigating the impact of traffic drift, Proteus enhances
the performance of WF attacks against drifted traffic.

V. PERFORMANCE EVALUATION

In this section, we prototype Proteus and evaluate its
performance under various types of traffic drift.

A. Experimental Setup

Implementation. We prototype Proteus using PyTorch 2.0.1
and Python 3.8. The default WF model in Proteus is the
SOTA attack RF. By replacing the fine-tuned model, Proteus
can integrate with other DL-based WF attacks. All experiments
are accelerated using the NVIDIA GeForce RTX 4090 GPU
for model training and testing. Furthermore, we perform 5-
fold cross-validation and report the average values as the
experimental results.

Dataset. From March to December 2024 and from June to July
2025, we collected over 350,000 real-world Tor traffic traces
under various traffic drift scenarios. We randomly selected
102 monitored websites and 20,000 non-monitored websites
from the Tranco list [40]. Details of the dataset construction
are provided in Appendix A. Our datasets encompass six
categories of data.

e Dataset for Temporal Drift: To evaluate traffic drift
caused by changes in website content over time, we
periodically collected traffic from 102 monitored websites
over 9 months. In total, we collected over 140,000 real-
world traffic traces.

e Dataset for Tor Version Drift: To evaluate traffic drift due
to changes in the Tor client version, we used four major
versions: 0.4.8, 0.4.7, 0.4.6, and 0.4.5. We focus on Tor
versions rather than Tor Browser Bundle (TBB) versions
because TBB updates are more frequent. A total of over
100,000 real-world traffic traces were collected from 102
monitored websites.

e Dataset for Network Condition Drift: To evaluate traffic
drift caused by changes in network conditions, we fol-
lowed previous studies [12] and collected over 34,000
real-world traces for 102 monitored websites from Tor
clients located in five countries with varying network
conditions.

e Dataset for Browsing Behavior Drift: To simulate sce-
narios where clients visit subpages unknown to the ad-
versary, we evaluated traffic drift caused by changes in
client browsing behaviors. We collected over 20,000 real-
world traces for 17,739 subpages across 102 monitored
websites.

TABLE II: Comparison of input features and model structures
across various WF attacks.

Attack | Input feature | Model structure
AWF Packet direction sequence CNN
DF Packet direction sequence CNN
BAPM Packet direction sequence Transformer
ARES Packet direction sequence Transformer
RF Traffic aggregated features CNN
NetCLR Packet direction sequence CNN
Holmes Traffic aggregated features CNN
Tik-Tok Packet direction and CNN
timestamp sequences
Var-CNN Packet dll‘?CthH, timestamp, CNN
and size sequences
UAF Packet direction and CNN
timestamp sequences

o Open-World Dataset: To evaluate traffic drift in the open-
world setting, we considered both changes in website con-
tent and users browsing non-monitored websites unknown
to the adversary. We collected over 160,000 real-world
traffic traces from 102 monitored websites and 20,000
non-monitored websites.

o Dataset with WF Defense: To evaluate the robustness of
Proteus under defense mechanisms, we selected three
obfuscation techniques: WTF-PAD [21], obfs4 [41], and
Front [22]. We generated a simulated dataset for WTF-
PAD and collected real-world datasets for obfs4 and Front
deployments, comprising over 200,000 obfuscated traffic
traces in total.

Baselines. For a thorough comparison, we use ten state-
of-the-art WF attacks as baselines: AWF [3], DF [1], Tik-
Tok [13], Var-CNN [16], BAPM [14], ARES [5], RF [7],
NetCLR [6], Holmes [8] and UAF [42]. All baseline models,
except UAF, rely on labeled data and cannot be fine-tuned
using unlabeled drift traffic. 'We implemented all baseline
models using the official source code. To ensure fairness,
we tuned each model’s parameters to match or exceed the
performance reported in their respective original papers. Ta-
ble II summarizes the input features and model architectures
of baselines. Among baselines with identical input features
and architectures, models with larger parameter sizes tend
to exhibit more substantial accuracy improvements when en-
hanced with Proteus. Moreover, baselines that incorporate
traffic aggregation features (e.g., RF) benefit more significantly
from Proteus integration. This effect can be attributed to the
higher stability of aggregated traffic features under dynamic
traffic variations [7], which allows Proteus to exploit these
features more effectively and deliver stronger performance
gains.

Metrics. We follow prior arts [1], [3], [5], [7], [8] and select
4 metrics that are widely used to evaluate the performance of
WF attacks, i.e., Accuracy, Precision, Recall, and F1-score.

= 100 —| 100
x
- Day 14 80
= —— Day 30 60
3 —— Day 90 40
'8 Day 150
9 20 .
=} Day 270 —— Browsing subpages

0 0

0 5 10 15 0 5 10 15

Energy distance
(a) Temporal drift

Energy distance
(b) Behavior drift

USA UV

25 2.1 b
UK{ 2.4 2.0 NN
SG JP USA DE UK
(d) Network condition drift

0.4.5 0.4.6 0.4.7 0.4.8
(c) Tor version drift

Fig. 4: Traffic drift quantification across different scenarios
using energy distance.

B. Drift Quantification Analysis

To quantitatively evaluate the extent of traffic drift in our
experiments, we utilize the energy distance metric [43], a
statistically rigorous measure widely used to assess similarity
between probability distributions. This metric is particularly
well-suited for detecting and quantifying concept drift [44]
because of its high sensitivity to distributional changes and
robustness in high-dimensional spaces.

Energy distance measures the discrepancy between two
distributions by comparing the average pairwise distances
both across and within distributions. Formally, given two
probability distributions P and @, with samples {z;}/, ~ P
and {y;}7_; ~ Q, the energy distance D (P, () is defined
as:

Dp(P,Q) = 2E[|z —y|] - E[l|z —2'[] - Eflly - y/ll}, (10)

where || - || denotes the Euclidean distance. A larger energy
distance indicates a greater divergence between the two dis-
tributions, making it a reliable metric for quantifying shifts in
traffic patterns.

Figure 4 presents the quantified results of traffic drift under
various scenarios. In the cases involving temporal page updates
and subpage visits, the degree of drift varies significantly
across websites. To capture this variation, we plot the cumu-
lative distribution functions (CDFs) of energy distances for
all monitored websites under both temporal and behavioral
drift conditions. As shown in Figure 4(a), temporal drift
increases progressively over time. Specifically, for the top 20%
of websites most affected by drift, the minimum observed
energy distances are 0.39 on Day 14, 0.91 on Day 30, 3.19 on
Day 90, 4.69 on Day 150, and 5.68 on Day 270. Figure 4(b)
demonstrates that user behaviors involving subpage visits lead
to more pronounced drift compared to browsing limited to
the homepage. In this behavioral drift scenario, over 40% of
websites exhibit energy distances exceeding 5.4, indicating

= - wo/ Proteus

—O— w/ Proteus

100 90
- 80
S
& D\n s 70
g 80 AN 60 ~<
8 ‘El-\ n\
8 ~qa ~ - ﬂ\\
< \\‘D ~0| 50 g
600430 90 150 270%012 30 90 150 270 14 30 90 150 270 *°12 30 90 150 270
Time (days) Time (days) Time (days) Time (days)
(a) RF (b) ARES () Tik-Tok (d) DF

Fig. 5: Evaluating the accuracy of robust WF attacks under temporal traffic drift.

TABLE III: Comparison with prior arts under temporal drift, where P, R, F1 represent Precision (%), Recall (%), and F1-score

(%).
| Day 14 | Day 30 | Day 90 | Day 150 | Day 270

R R F1 | P R F1 | P R Fl | P R Fl | P R Fl
AWF 5036 49.29 4884 | 4642 46.05 4536 | 3828 39.09 3749 | 33.12 33.63 3221 | 2940 30.07 28.64
BAPM 64.62 62.83 62.08 | 58.89 57.33 56.28 | 48.48 48778 46.75 | 44.28 4392 41.89 | 38.38 38.30 35.98
ARES 7136 69.07 68.82 | 66.74 6472 64.17 | 5653 5596 54.05 | 49.06 49.21 4743 | 46.04 4551 4348
DF 7330 72.10 7194 | 67.12 6649 6579 | 5591 57.17 5524 | 50.11 5049 4891 | 4547 46.69 4448
NetCLR 7378 7293 7271 | 6827 6747 6692 | 56.99 5794 5581 | 49.29 50.82 49.03 | 4472 46.80 43.92
Tik-Tok 7898 7835 77.89 | 73.46 7325 7236 | 62.01 63.08 60.87 | 53.89 5490 5256 | 48.70 4947 46.58
Var-CNN | 81.23 7993 79.77 | 7620 7476 7430 | 65.03 6543 63.14 | 5743 58.14 5568 | 52.79 5349 50.84
RF 88.46 8799 87.63 | 8292 82.15 81.62 | 73.83 73.85 72.02 | 68.07 68.13 66.25 | 61.00 62.81 59.57
Proteus 92,53 9259 9253 | 91.21 91.23 91.18 | 90.67 90.77 90.65 | 86.15 86.82 86.32 | 81.90 83.21 82.27

substantial deviations in traffic patterns.

For drift caused by Tor version changes and network
condition variations, the impacts are relatively uniform across
websites. Therefore, we calculate the average energy distance
across all monitored websites. As shown in Figure 4(c), larger
differences between Tor versions result in more severe traffic
drift. For example, the distance between Tor 0.4.5 and 0.4.6 is
5.6, while it increases to 8.8 between Tor 0.4.5 and 0.4.8.
Figure 4(d) presents the impact of network condition drift
caused by clients located in different geographical regions.
Although network variability also contributes to traffic drift,
its overall magnitude is lower compared to the other scenarios.

In summary, the traffic patterns observed across all four
scenarios demonstrate substantial drift, thereby providing a
robust basis for comprehensively evaluating the effectiveness
of Proteus.

C. Performance under Traffic Drift

We evaluate the effectiveness of Proteus in enhancing WF
attacks under four types of traffic drift: evolving website
content, different Tor versions, varying network conditions,
and changes in user browsing patterns.

Temporal Drift. One of the primary causes of temporal drift
in Tor traffic is the continuous change in website content
over time. Figure 5 illustrates the accuracy of four robust WF
attacks (i.e., RF, ARES, Tik-Tok, and DF) against temporally
drifting traffic. Existing robust WF attacks primarily target
obfuscated traffic under WF defenses or multi-tab browsing.
However, these attacks are not robust against drifted traffic. For

example, after a temporal drift of 270 days, the accuracies of
RF, ARES, Tik-Tok, and DF decrease by 28.45%, 35.41%,
37.36%, and 36.83%, respectively. Proteus integrates with
these WF attacks and improves their performance by fine-
tuning model parameters using traffic without ground-truth
labels collected during the attack phase. As shown in Figure 5,
Proteus improves the accuracies of RF, ARES, Tik-Tok,
and DF on traffic with a 270-day temporal drift by 31.84%,
46.40%, 34.87%, and 28.74%, respectively.

We further compared Proteus with all baselines. Table III
presents the Precision, Recall, and Fl-score of WF attacks
under temporal drift. We observe that Proteus achieves the
best performance for drifted traffic. Compared to the baselines,
Proteus increases the Fl-score by an average of 33.65%
at Day 14, 43.30% at Day 30, 70.09% at Day 90, 84.25%
at Day 150, and 95.44% at Day 270, respectively. As drift
time increases, the advantage of Proteus over the baselines
gradually increases.

Tor Version Drift. Next, we evaluate the performance of
WF attacks under Tor version drift. Following the setup in
prior studies [1], [3], [5], WF models are trained on traffic
collected using Tor version 0.4.8, the latest version at the
time of data collection. The trained models are evaluated on
traffic collected using Tor versions 0.4.5, 0.4.6, and 0.4.7.
Figure 6 shows the F1-scores of eight deep learning-based WF
attacks under Tor version drift, as well as their performance
when combined with Proteus. We observe that a larger
difference between the Tor versions used for training and
evaluation leads to greater performance degradation in WF

[Z—1 wo/ Proteus

=1 w/ Proteus

80 80 90 190
X
o 60[160} 170 170
o
- N Vﬁ 407ﬁ SOVﬁ |
il
LL'
20 0.4.5 0.4.6 0.4.7 20 . 0.4.6 0.4 30 . 0.4.6 0.4 30 . 0.4.6 0.4.7
Tor version Tor version Tor version Tor version
(a) AWF (b) BAPM (c) NetCLR (d) DF
§ 90} 190} 190 190
g 70} 170} 170 170
(&}
E"-’ 50} 150} 150 150
305045 046 047 9 045 046 047 0 045 046 047 0 045 046
Tor version Tor version Tor version Tor version
(e) ARES (f) Tik-Tok (g) Var-CNN (h) RF

Fig. 6: Evaluation of eight WF attacks in terms of Fl-score under traffic drift caused by Tor version differences. The WF
model is trained on traffic collected using Tor version 0.4.8 and evaluated on traffic from Tor versions 0.4.5, 0.4.6, and 0.4.7.

Z1 wo/ Proteus

i

ANE BP‘?‘:A P»Y‘?’S % @ ’LC\’ X\{{o

=1 w/ Proteus
100

90
80
70
60
50

Fl-score (%)

(‘,ﬂﬂ <

Fig. 7: The Fl-score of eight WF attacks under traffic drift
caused by Tor version differences. The model is trained using
traffic from Tor versions 0.4.8, 0.4.7, and 0.4.6, and tested on
traffic from version 0.4.5.

models. For example, when trained on traffic from Tor 0.4.8,
the NetCLR model achieves accuracies of 40.85%, 55.86%,
and 71.37% on traffic from Tor versions 0.4.5, 0.4.6, and
0.4.7, respectively. This performance degradation is mainly
due to the data augmentation strategy of NetCLR, which
is effective only for certain types of traffic drift. It does
not sufficiently address differences caused by changes in the
Tor version. Integrating Proteus with existing WF attacks
results in significant performance improvements across all
eight models. As shown in Figure 6(h), for drifted traffic from
Tor versions 0.4.5, 0.4.6, and 0.4.7, Proteus improves the
Fl-score of the RF attack by 39.60%, 16.62%, and 9.85%,
respectively.

Furthermore, we consider a potential mitigation strategy in
which the adversary collects traffic from multiple Tor versions
to train the model. Figure 7 shows the F1-score results when
the model is trained on a mixture of traffic from Tor versions
0.4.8, 0.4.7, and 0.4.6, and evaluated on traffic from version
0.4.5. Proteus still significantly improves the performance of

10

TABLE 1V: The Fl-score of WF attacks under different
network environments. We use traffic collected from clients
in five countries with varying network environments, including
Singapore (SG), Japan (JP), the United States (USA), Germany
(DE), and the United Kingdom (UK).

SG JP USA DE UK

AWF w/o Proteus 52.15 43.78 4321 30.63 32.59
w/ Proteus 54.25 46.87 4496 31.59 35.87

BAPM w/o Proteus 66.01 57.10 53.23 3826 39.61
w/ Proteus 68.64 5848 56.29 44.98 48.82

ARES w/o Proteus 7296 66.48 62.87 4375 46.19
w/ Proteus 80.27 74.25 70.95 58.83 65.35

DF w/o Proteus 7624 68.58 63.94 46.67 50.14
w/ Proteus 78.10 73.03 69.22 56.18 61.87

NetCLR w/o Proteus 7825 7176 68.13 46.66 49.76
w/ Proteus 7891 73.07 68.76 57.58 60.23

Tik-Tok w/o Proteus 8136 74.74 7461 5134 50.25
w/ Proteus 8449 8195 7940 67.40 70.08

Var-CNN w/o Proteus 78.59 74.42 73.00 45.80 47.11
w/ Proteus 84.38 81.57 81.69 66.10 69.89

RF w/o Proteus 88.87 87.45 83.10 20.85 17.38
w/ Proteus 90.63 9098 92.64 81.66 84.60

WEF attacks on drifted traffic. For example, Proteus increases
the Fl-score of AWF, BAPM, ARES, DF, NetCLR, Tik-
Tok, Var-CNN, and RF by 22.15%, 23.33%, 24.96%, 24.63%,
24.84%, 20.47%, 18.45%, and 16.77%, respectively. While
increasing the diversity of training data helps mitigate traffic
drift, the Tor version used by the client remains unknown to
the attacker. Even when the client’s Tor version differs from
the one used for training, Proteus continues to enhance the
robustness of WF models against traffic drift.

Network Condition Drift. Existing WF attacks [1], [5], [7]
train and evaluate models using traffic under identical network
conditions, which is impractical. To evaluate the impact of
network condition drift, we followed the setting of the pre-
vious work [12] and collected real-world Tor traffic for 102
monitored websites using clients deployed in various countries
during the same period. Specifically, we collected Tor traffic
from clients located in Singapore (SG), Japan (JP), the United
States (USA), Germany (DE), and the United Kingdom (UK)
to simulate Tor users in various geographical locations. Due
to differences in the geographical distribution of Tor nodes,
Tor clients in different regions typically experience significant
variations in network conditions.

As shown in Table IV, we train models using traffic col-
lected in SG and evaluate the Fl-score of WF attacks using
traffic collected in SG, JP, USA, DE, and UK, respectively.
We observe that under network condition drift, the F1-scores
of existing WF attacks significantly decreased, with RF ex-
periencing the largest decline. For example, for drifted traffic
collected in DE and UK, the Fl-scores of RF decreased by
76.5% and 80.44%, respectively. The decline in performance is
attributed to the dependence of RF on hyperparameter settings
(e.g., the time slot used in feature extraction), which limit the
effectiveness of RF to specific network conditions.

When Proteus is integrated with existing WF attacks,
all attacks demonstrate significant improvements in the F1-
score across various network conditions. For instance, for
drifted traffic collected from the UK, Proteus improves the
Fl-score of AWF, BAPM, ARES, DF, NetCLR, Tik-Tok,
Var-CNN, and RF by 10.06%, 23.25%, 41.48%, 23.39%,
21.04%, 39.46%, 48.35%, and 386.77%, respectively. Proteus
provides greater performance enhancements for WF attacks
with larger model parameters, as models with more parameters
have stronger data fitting capabilities and can better adapt to
complex traffic drift. The effectiveness of Proteus arises from
its ability to adapt to drifted traffic under different network
conditions without requiring website labels. Unlike existing
attacks that maintain fixed model parameters during the attack
phase, Proteus fine-tunes the model using traffic without
ground-truth labels during the attack phase, thereby enhancing
the performance of WF attacks on unknown drifted traffic.
Browsing Behavior Drift. We further evaluate the perfor-
mance of WF attacks under client browsing behavior drift.
Previous works [1], [3], [6], [7] assume that clients only visit
the homepage of websites, which is unrealistic. This paper
considers a more realistic browsing behavior drift scenario,
where the adversary does not have prior knowledge of the
client’s browsing behavior. As shown in Table V, existing
WF attacks experience a significant decline in performance
under client browsing behavior drift. For example, when the
client visits subpages unknown to the adversary, the Fl-score
of baselines decreases by an average of 57.32%.

Even in realistic and challenging browsing behavior drift
scenarios, Proteus can still enhance the performance of
existing WF attacks on drifted traffic. We combine Proteus
with the SOTA attack RF to achieve optimal performance

11

TABLE V: Comparison with prior arts in browsing behavior
drift scenarios, where P, R, F1 represent Precision (%), Recall
(%), and F1-score (%).

\ Homepage \ Subpages

B R Fl | P R Fl
AWF 5474 5374 53.04 | 22.18 22.87 21.68
BAPM 70.29 65.68 6538 | 29.98 27.67 25.96
ARES 7536 7328 7277 | 31.87 31.96 29.87
DF 7773 77.11 7672 | 32.12 33,56 31.36
NetCLR | 78.66 77.58 77.27 | 34.10 3550 33.58
Tik-Tok 83.48 82.00 81.82 | 36.07 36.66 34.56
Var-CNN | 85.08 83.60 83.59 | 39.58 39.19 37.24
RF 89.85 89.21 89.00 | 48.79 46.74 44.76
Proteus | 91.28 9140 91.18 | 5532 56.32 55.24

under browsing behavior drift. Compared to the baselines,
Proteus improves Precision, Recall, and Fl-score by an
average of 69.58%, 71.47%, and 78.35%, respectively. Pro-
teus significantly enhances the consistency of WF models in
identifying traffic from different subpages of the same website
by aligning traffic feature distributions and boosting model
confidence, thereby still enhancing existing WF attacks under
client browsing behavior drift.

TABLE VI: Fl-score comparison of Proteus with UAF and
Holmes across various drift scenarios.

\Day 0—270 Tor 0.4.8—0.4.5 SG—DE Homepage— Subpage

UAF 50.31 51.15 57.33 36.50
Holmes 54.31 55.62 29.43 38.82
Proteus 82.27 88.28 81.66 55.24

Comparison with Drift Adaptation Baselines. We further
compare Proteus with two representative drift adaptation
baselines: Holmes [8] and UAF [42]. Holmes leverages su-
pervised contrastive learning to capture the spatial distribution
of website traffic, enhancing its adaptability to varying traffic
patterns. In contrast, UAF employs an unsupervised approach
that integrates multiple feature representations and combines
models trained under diverse scenarios to address traffic drift
during WF attacks.

Table VI shows the Fl-score comparison of Proteus with
Holmes and UAF. Based on the drift quantification anal-
ysis in Section V-B, we select four experimental settings
with the most significant drift, including temporal drift from
Day 0 to Day 270, version drift from Tor 0.4.8 to 0.4.5,
network environment drift from clients located in Singapore
(SG) to clients in Germany (DE), and behavioral drift from
homepage browsing to subpage browsing. The experimental
results demonstrate that Proteus consistently outperforms
both baselines across all drift settings, achieving average F1-
score improvements of 82.5% over Holmes and 57.45% over
UAF. This significant performance gain can be attributed to the
unified design of Proteus, which jointly incorporates feature
alignment, confidence augmentation, and pseudo-labeling to
enable robust adaptation to complex traffic drift. In contrast,

TABLE VII: Evaluating the Fl-score of WF attacks under the
temporal drift in the open world.

14 30 90 150 270

AWF w/o Proteus 4630 4434 3561 31.02 26.52
w/ Proteus 49.35 45.56 40.08 34.42 30.27

BAPM w/o Proteus 59.74 5470 4491 40.00 33.63
w/ Proteus 64.72 61.00 5591 4570 45.16

ARES w/o Proteus 67.88 63.73 5096 40.95 26.42
w/ Proteus 76.97 7531 68.85 62.59 54.99

DF w/o Proteus 67.85 6293 5041 40.50 2592
w/ Proteus 75.08 70.56 6391 57.00 51.25

NetCLR wlo Proteus 71.94 66.28 5450 46.06 32.81
w/ Proteus 73.34 68.10 61.03 53.66 46.66

Tik-Tok w/o Proteus 7541 7024 5843 50.88 37.86
w/ Proteus 81.17 77.78 7276 65.51 59.81

Var-CNN wlo Proteus 7853 73.16 6045 4733 26.49
w/ Proteus 83.04 79.79 72.84 65.82 56.83

RE w/o Proteus 8597 79.88 68.54 60.59 36.83
w/ Proteus 88.23 8498 8297 79.15 73.94

both baselines show limited generalization capabilities, per-
forming effectively only under conditions with relatively minor
drift.

D. Open-World Evaluations

Next, we evaluate the performance of Proteus in the open-
world scenario. In the open-world scenario, Tor users can
browse non-monitored websites unknown to the adversary.
We randomly selected 20,000 non-monitored websites from
the Tranco list, and collected Tor traffic from 102 monitored
websites and 20,000 non-monitored websites from March to
December 2024. Table VII shows the evaluation of the F1-
score for WF attacks under temporal drift in the open-world
scenario. To analyze the enhancement effect of Proteus on
existing WF attacks in the open-world scenario, we evaluate
the Fl-score of WF attacks with and without Proteus inte-
gration on day 14, day 30, day 90, day 150, and day 270.
We observe that Proteus enhances all baselines in identifying
drifted traffic in the open-world scenario. For instance, for
traffic with the 270-day drift, Proteus improves the F1-score
of AWF, BAPM, ARES, DF, NetCLR, Tik-Tok, Var-CNN,
and RF by 14.14%, 34.28%, 108.14%, 97.72%, 42.21%,
57.98%, 114.53%, and 100.76%, respectively. Compared to
the closed-world scenario, Proteus exhibits a more significant
enhancement of WF attacks in the open-world scenario. The
reason is that Proteus can adapt to various traffic drifts in the
open-world scenario, such as traffic drifts caused by changes
in website content and the emergence of new non-monitored
websites.

In summary, during the attack phase, Proteus fine-tunes
the model parameters using traffic from non-monitored web-
sites. This enables adaptation to traffic drift from websites
unknown to the adversary, thereby significantly enhancing the
performance of WF attacks in the open-world scenario.

12

TABLE VIII: Fl-scores of WF attack performance on multi-
tab browsing traffic under different traffic overlap ratios.

| 20% 40% 60% 80%

RF 5129 50.81 49.54 4852

RF w/ MMD 5821 57.00 56.60 54.67
RF w/ Proteus | 81.11 78.97 76.78 73.62

E. Evaluating Proteus under Defenses

We further evaluate Proteus under several WF defenses, in-
cluding WTF-PAD [21], obfs4 [41], and Front [22]. The WTF-
PAD defense mitigates traffic analysis by inserting dummy
packets to obfuscate burst patterns. The variant of WTF-PAD
has been deployed in Tor based on circuit padding [45]. As
shown in Figure 8, we evaluate the Fl-score of four robust
WF attacks in identifying temporal-drifted traffic under the
WTF-PAD defense. We observe that Proteus still enhances
WF attacks even under the WTF-PAD defense. For instance,
for 270-day drifted traffic, Proteus improves the F1-score of
RF, ARES, Tik-Tok, and DF by 56.29%, 39.90%, 30.59%,
and 15.36%, respectively.

We next evaluate the performance of Proteus on obfus-
cated traffic without adversarial training. Obfs4, the default
pluggable transport in the Tor network, is widely used to
obfuscate traffic and enable users to circumvent traffic cen-
sorship imposed by ISPs or governmental entities. We use
clean traffic as training data and evaluate WF attacks on the
traffic obfuscated by obfs4. As shown in Figure 9(a), Proteus
achieves an average improvement of 66.48% in F1-score over
existing WF attacks under obfs4 obfuscation, demonstrating
strong adaptability to unseen obfuscation strategies.

We further examine Front, a WF defense mechanism that
introduces dummy packet padding during the initial phase
of page loading. Compared to the WTF-PAD defense, Front
provides stronger obfuscation while incurring lower bandwidth
overhead. We implemented a real-world deployment of Front
based on the WFDefProxy framework [46] to assess the
performance of Proteus under realistic defense conditions. To
emulate practical attack scenarios, we designed a challenging
experimental setting where the adversary trains the WF model
on simulated Front traffic but is tested on traffic collected
from the real-world Front deployment. In this setting, the
defense implementation details remain unknown to the ad-
versary, causing a significant traffic distribution drift between
training and testing data. As shown in Figure 9(b), Proteus
outperforms four baseline methods, achieving an average F1-
score improvement of 48.1%, indicating its robustness under
real-world deployments of Front defense.

Note that the robustness of WF attacks against defenses
in prior works has primarily stemmed from improvements in
feature extraction [7], [8], [13] and model architectures [1],
[5]. In contrast, Proteus does not modify these components
in existing WF attacks. Instead, Proteus only fine-tunes
the model parameters to enhance the identification of drifted
traffic, remaining effective even under WF defenses.

= - wo/ Proteus

—O— w/ Proteus

£ 80 M 60t 60 50
) S
) oo 45} 45 40
7 60 Tl o
— o -~ S<o-
L, ~ql 30l ~~al 30 €] 30 O-- -
40 14 30 90 150 270 14 30 90 150 270 14 30 90 150 270 14 30 90 150 270
Time (days) Time (days) Time (days) Time (days)
(a) RF (b) ARES (c) Tik-Tok (d) DF

Fig. 8: Evaluating the F1-score of robust WF attacks in identifying temporal-drifted traffic under the WTF-PAD defense.

[wo/ Proteus E—=] w/ Proteus

80
60

~

o

%40 40

o ol 1 A o0

RF ARES Tik-Tok DF RF ARES Tik-Tok DF
(a) Obfs4 defense (b) Front defense

Fig. 9: The F1-score of robust WF attacks under the obfs4 and
Front defenses.

F. Evaluating Proteus in Multi-Tab Browsing

We next evaluate the performance of Proteus in handling
multi-tab traffic scenarios. Following prior studies [5], [14],
[15], we simulate multi-tab browsing behavior to generate the
required traffic data. Specifically, traffic traces are randomly
sampled from both monitored and non-monitored websites and
subsequently combined to produce streams that exhibit multi-
tab characteristics. To capture varying levels of traffic overlap,
we configure multiple overlap ratios and merge traffic traces
based on packet timestamps. Two datasets are constructed to
assess the impact of temporal drift and multi-tab browsing:
one from Day 0, used for training the WF models, and another
from Day 270, used for model testing. This setup allows us to
comprehensively evaluate the robustness of Proteus against
the dual challenges of long-term distribution drift and traffic
heterogeneity.

As shown in Table VIII, Proteus consistently enhances the
performance of the RF attack model, even under conditions
of substantial heterogeneity and temporal drift. For example,
with an 80% traffic overlap ratio, Proteus achieves a 51.73%
relative improvement in F1-score compared to the baseline RF
attack. Moreover, when compared to an RF model augmented
solely with the MMD module, Proteus demonstrates superior
overall performance. This improvement can be attributed to
the synergistic interaction among its three modules: (i) MMD
facilitates robust feature alignment; (ii) the aligned features
enable the generation of reliable pseudo-labels; and (iii) these
high-quality pseudo-labels further mitigate the risk of mis-
alignment during feature alignment. Through iterative fine-

13

TABLE IX: Compared with the Fl-score of NetCLR fine-
tuned with labeled drifted traffic.

0 30 90 150 270

Base 75777 66.92 5581 49.03 43.92
Supervised fine-tuning ~ 75.77 67.87 6233 5496 56.79
Proteus 75777 7058 63.05 56.16 52.71
Supervised fine-tuning 75 77 9405 7171 6107 63.40

combined with Proteus

tuning, Proteus empowers WF models to sustain strong attack
efficacy, even in the presence of heterogeneous concept drift.

G. Comparison with Supervised Fine-tuning

In this section, we compare Proteus with supervised fine-
tuning. Following the default settings of NetCLR, we sample
drifted traffic with website labels to fine-tune the pre-trained
NetCLR model. As shown in Table IX, NetCLR with super-
vised fine-tuning achieves a higher Fl-score than the base
model under temporal drift. We observe that for short-term
drifted traffic, Proteus outperforms supervised fine-tuning.
For example, on days 30, 90, and 150, Proteus achieves
the 3.99%, 1.16%, and 2.18% improvement in Fl-score over
supervised fine-tuning, respectively. However, for longer-term
drifted traffic, supervised fine-tuning has the advantage over
Proteus. Despite this, collecting labeled drifted traffic for
supervised fine-tuning is impractical, as certain forms of traffic
drift remain unknown to the adversary. The adversary can only
collect drifted traffic without ground-truth labels during the
attack phase.

Proteus can be combined with supervised fine-tuning to
further boost performance. Specifically, we first fine-tune the
model with labeled drifted traffic and then fine-tune the model
with traffic without ground-truth labels collected during the
attack phase. When combined with supervised fine-tuning,
Proteus improves the Fl-score of the base model for drifted
traffic on days 30, 90, 150, and 270 by 10.61%, 28.49%,
24.56%, and 44.35%, respectively.

H. Impact of the Scale of Unannotated Traffic

In Figure 10, we evaluate the impact of the scale of
unannotated traffic on Proteus. Specifically, we evaluate the

=F: wo/ Proteus =—O=— w/ Proteus

~ 80 80
S

P

Q

& 70 70

=

3

< F-0-g-oF-o-10 |p-%p-o-o-0-g

60 xr

5 10 20 30 40 60 80
of Instances per Website

40 50 60 70 80 90 100
of Websites

Fig. 10: Evaluating the impact of unannotated traffic scale on
Proteus.

TABLE X: Ablation analysis of Proteus.

Precision Recall F1-score

Base 61.00 62.81 59.57

Featurg distribution 6516 6312 65.51
alignment

Model confidence 77.11 7702 76.74

enhancement
Adaptive 7686 7997 76.01
pseudo-labeling
Proteus 81.90 83.21 82.27

accuracy of Proteus combined with RF using 270-day drifted
traffic. As shown in Figure 10(a), we first analyze the impact
of the number of websites in the unannotated traffic. In real-
world scenarios, the adversary may only collect partial traffic
from certain websites over a short period. Our findings indicate
that as the number of websites included in the unannotated
dataset increases, the enhancement effect of Proteus becomes
more pronounced. For example, when the unannotated dataset
contains traffic from 40 and 100 websites, Proteus boosts
the accuracy of RF by 3.71% and 29.88%, respectively. Next,
we analyze the impact of the number of traffic instances per
website in Figure 10(b). Similarly, as the number of instances
per website increases, Proteus shows a greater improvement.
Specifically, when the number of instances per website rises
from 5 to 80, Proteus ’s enhancement of the accuracy of RF
grows from 11.72% to 28.81%.

Overall, Proteus is able to enhance the performance of
WF attacks even when the unannotated traffic contains limited
websites or traffic traces. As the scale of the unannotated
traffic increases, the effectiveness of Proteus in strengthening
existing WF attacks also improves. In particular, attackers can
further boost performance not only by continuously collecting
more unannotated traffic during the attack phase, but also by
leveraging control over Tor entry or relay nodes to gather
additional unannotated traffic.

1. Ablation Analysis

Next, we perform the ablation analysis of Proteus. Specif-
ically, we evaluate the performance of Proteus on 270-day
drifted traffic. Table X shows the ablation results for the
three core modules of Proteus. We observe that the feature

14

[0 wo/ Proteus

Ll

P»\N? 3P~?V‘ Py\‘?»s ¥ e‘CLY\rg \\Argo C\’Qﬂ s

=1 w/ Proteus

l\.) w

Latency (ms)

(=)

Fig. 11: Comparison of website identification latency with and
without Proteus integration.

distribution alignment module, model confidence enhancement
module, and adaptive pseudo-labeling module individually
improve the Fl-score of RF by 9.97%, 28.82%, and 27.60%,
respectively. Thus, all three modules contribute to the perfor-
mance of Proteus. When the three modules are combined,
Proteus achieves the optimal F1 score of 82.27%, represent-
ing a 38.11% improvement over the base model.

J. Latency Analysis

In Figure 11, we illustrate the latency analysis of DL-
based WF attacks with and without integration of Proteus. All
experiments were conducted using an NVIDIA GeForce RTX
4090 GPU to accelerate the fine-tuning and inference of deep
learning models. Initially, we measure the latency required
to identify a single traffic trace for the existing WF attacks.
Next, we integrate Proteus with these attacks, calculating
the latency for model fine-tuning once, as well as website
identification. The total latency is then divided by the number
of traffic traces to determine the average latency. Our findings
show that integrating Proteus increases the average latency
by 1.5 milliseconds across the eight WF attacks. Furthermore,
larger model parameter sizes correlate with higher fine-tuning
latencies. For example, the latency increases by 2.25 mil-
liseconds for ARES and 2.36 milliseconds for Var-CNN. In
practice, the adversary could identify websites first, followed
by fine-tuning the model with Proteus to improve the attack
performance on future drifted traffic. In this scenario, Proteus
would not affect the latency of website identification during
WEF attacks.

VI. DISCUSSION

Implications of Proteus. Proteus introduces a continuously
evolving framework for WF attacks that leverages traffic with-
out ground-truth labels during the attack phase, significantly
enhancing the effectiveness of WF attacks against real-world
drifted traffic. The adversary can further strengthen Proteus
by collecting additional unannotated real-world traffic traces,
potentially by controlling middle nodes in the Tor network.
Furthermore, experimental results in Section V-G demonstrate
that the adversary can combine Proteus with supervised fine-
tuning to improve its performance. For instance, the adversary
can collect a small amount of labeled synthetic [6] or exit-node
traces [9] to achieve supervised fine-tuning.

Limitations of Proteus. First, Proteus requires continuous
fine-tuning of the model, which increases computational over-
head. Second, we evaluated Proteus on multiple common
scenarios of traffic drift observed in real-world scenarios. To
the best of our knowledge, this paper represents the most
comprehensive evaluation of Tor traffic drift types to date.
However, the effectiveness of Proteus against more complex
traffic drift (e.g., substantial updates to website templates and
content) has not yet been validated. Finally, experimental
results in Section V-H show that the scale of unannotated
traffic impacts the enhancement effect of Proteus. The more
unannotated traffic available, the stronger the enhancement
effect of Proteus. In cases where unannotated traffic is lim-
ited, the adversary could collect additional traffic to enhance
Proteus, such as unannotated traffic from controlled Tor entry
nodes or middle nodes.

Countermeasure against Proteus. The effectiveness of Pro-
teus depends on the inherent relationship between original
traffic and drifted traffic from the same website, which is
captured during the model fine-tuning process. A potential
countermeasure is to apply adversarial machine learning tech-
niques [47], specifically by generating adversarial samples that
disrupt the model’s ability to learn this relationship. We will
explore this design in future work.

VII. RELATED WORK

WF Attacks against Traffic Drift. DL-based WF attacks have
demonstrated exceptional performance under controlled con-
ditions [1], [3], [5]-[8], [11], [13], [15], [16]. However, their
effectiveness significantly declines in real-world scenarios due
to traffic drift. Early studies periodically collected large-scale
labeled traffic datasets for model retraining [1], [3], [5], which
is impractical. Few-shot fine-tuning [4], [6], [17] eliminated
the reliance on large labeled traffic but failed to address the
diverse traffic drift encountered in real-world scenarios. Online
adaptation methods [9], [10] using real-world traces are more
practical. OnlineWF [9] collected labeled traffic from exit
nodes of the Tor network to train and update the model.
However, WF attacks typically target the entry side of the Tor
network, where traffic patterns differ greatly from those at the
exit. Furthermore, Tor users can use WF defenses that hide
traffic patterns at the entry node but do not affect exit traffic.
Different from previous works, Proteus leverages real-world
traces without ground-truth labels collected during the attack
phase to fine-tune the model, enabling it to adapt to diverse
traffic drift in real-world scenarios.

Unsupervised Domain Adaptation. Unsupervised Domain
Adaptation (UDA) techniques leverage unannotated samples to
fine-tune models for adapting to drifted samples, which have
been extensively studied in the field of computer vision [48],
[49]. UDA improves the generalization of DL models to
images from different domains by employing methods such
as domain alignment [50] or self-training [51]. In the field
of cybersecurity, Thirumuruganathan et al. [52] utilized self-
training techniques to fine-tune the model with unlabeled

15

data, enhancing model performance across various drift sce-
narios. In contrast, Proteus fine-tunes the model using the
continuously accumulating traffic without ground-truth labels
collected during the attack phase. It utilizes various adaptive
techniques to ensure effectiveness across multiple Tor traffic
drift scenarios.

VIII. CONCLUSION

In this paper, we propose Proteus, a WF attack framework
that adapts to real-world traffic drift by fine-tuning models
with traffic without ground-truth labels. Proteus improves the
consistency of WF model predictions for both original and
drifted traffic from the same website by aligning feature dis-
tributions and optimizing entropy distributions. Furthermore,
Proteus uses a Gaussian mixture model to generate reliable
pseudo-labels, further fine-tuning the model to enhance attack
performance. We evaluate Proteus across various traffic drift
scenarios, and the experimental results demonstrate significant
improvements in WF attack performance against drifted traffic.

IX. ETHICS CONSIDERATIONS

Similar to previous studies [1], [3], [5], our research
fully adheres to the guidelines of the Tor Research Safety
Board [53]. Regarding the data collection process, all traf-
fic was collected exclusively from locally initiated browsing
sessions and did not involve any real-world Tor user traffic.
Furthermore, we continuously monitored bandwidth consump-
tion during data collection, which averaged 3.52 Mbps. Given
that the average bandwidth of the Tor network in 2024 exceeds
250 Gbps [54], our data collection did not interfere with the
normal operation of the Tor network.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable com-
ments. This work is supported in part by the National Natural
Science Foundation of China (NSFC) under Grant 62132011,
62472247, 62425201, and the Ant Group Postdoctoral Pro-
gramme. Qi Li is the corresponding author of this paper.

REFERENCES

[1] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 1928-1943.

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Naval Research Lab Washington DC, Tech.
Rep., 2004.

V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in NDSS,
2018.

P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, “Triplet
fingerprinting: More practical and portable website fingerprinting with
n-shot learning,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 1131-1148.

X. Deng, Q. Yin, Z. Liu, X. Zhao, Q. Li, M. Xu, K. Xu, and J. Wu,
“Robust multi-tab website fingerprinting attacks in the wild,” in 2023
IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 2023, pp. 1005-1022.

A. Bahramali, A. Bozorgi, and A. Houmansadr, “Realistic website
fingerprinting by augmenting network traces,” in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications
Security, 2023, pp. 1035-1049.

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

M. Shen, K. Ji, Z. Gao, Q. Li, L. Zhu, and K. Xu, “Subverting
website fingerprinting defenses with robust traffic representation,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
607-624.

X. Deng, Q. Li, and K. Xu, “Robust and reliable early-stage website
fingerprinting attacks via spatial-temporal distribution analysis,” in Pro-
ceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, 2024, pp. 1997-2011.

G. Cherubin, R. Jansen, and C. Troncoso, “Online website fingerprinting:
Evaluating website fingerprinting attacks on tor in the real world,” in 315t
USENIX Security Symposium (USENIX Security 22), 2022, pp. 753-770.
R. Jansen, R. Wails, and A. Johnson, “Repositioning real-world website
fingerprinting on tor,” in Proceedings of the 23rd Workshop on Privacy
in the Electronic Society, 2023, pp. 124-140.

X. Zhao, X. Deng, Q. Li, Y. Liu, Z. Liu, K. Sun, and K. Xu, “Towards
fine-grained webpage fingerprinting at scale,” in Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications
Security, 2024, pp. 423-436.

M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
2014, pp. 263-274.

M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara, and
M. Wright, “Tik-tok: The utility of packet timing in website finger-
printing attacks,” Proceedings on Privacy Enhancing Technologies,
vol. 3, pp. 5-24, 2020.

Z. Guan, G. Xiong, G. Gou, Z. Li, M. Cui, and C. Liu, “Bapm: Block
attention profiling model for multi-tab website fingerprinting attacks on
tor,” in Annual Computer Security Applications Conference, 2021, pp.
248-259.

Z.Jin, T. Lu, S. Luo, and J. Shang, “Transformer-based model for multi-
tab website fingerprinting attack,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, 2023,
pp. 1050-1064.

S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-cnn: A data-efficient
website fingerprinting attack based on deep learning,” Proceedings on
Privacy Enhancing Technologies, vol. 4, pp. 292-310, 2019.

S. E. Oh, N. Mathews, M. S. Rahman, M. Wright, and N. Hopper,
“Gandalf: Gan for data-limited fingerprinting,” Proceedings on Privacy
Enhancing Technologies, vol. 2021, no. 2, 2021.

T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in 23rd
USENIX Security Symposium, 2014, pp. 143-157.

A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at internet scale.” in NDSS, 2016.
J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website
fingerprinting technique,” in 25th USENIX Security Symposium, 2016,
pp. 1187-1203.

M. Judrez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Wtf-
pad: toward an efficient website fingerprinting defense for tor,” CoRR,
abs/1512.00524, 2015.

J. Gong and T. Wang, “Zero-delay lightweight defenses against website
fingerprinting,” in 29th USENIX Security Symposium, 2020, pp. 717-
734.

J. Gong, W. Zhang, C. Zhang, and T. Wang, “Surakav: generating
realistic traces for a strong website fingerprinting defense,” in 2022 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2022, pp. 1558-1573.
T. Wang and I. Goldberg, “Walkie-talkie: An efficient defense against
passive website fingerprinting attacks,” in 26th USENIX Security Sym-
posium, 2017, pp. 1375-1390.

J. K. Holland and N. Hopper, “Regulator: A straightforward website
fingerprinting defense,” Proceedings on Privacy Enhancing Technolo-
gies, vol. 2022, no. 2, pp. 344-362, 2022.

S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation
via transfer component analysis,” IEEE transactions on neural networks,
vol. 22, no. 2, pp. 199-210, 2010.

M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” in International conference on
machine learning. PMLR, 2015, pp. 97-105.

Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy
minimization,” Advances in neural information processing systems,
vol. 17, 2004.

16

[29]

[30]
(31]
[32]

[33]

[34]

[35]

[36]

(37]

(38]
[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

X. Wu, Q. Zhou, Z. Yang, C. Zhao, L. J. Latecki et al., “Entropy
minimization vs. diversity maximization for domain adaptation,” arXiv
preprint arXiv:2002.01690, 2020.

Y. Li, L. Guo, and Y. Ge, “Pseudo labels for unsupervised domain
adaptation: A review,” Electronics, vol. 12, no. 15, p. 3325, 2023.

S. Chhabra, H. Venkateswara, and B. Li, “Domain adaptation using
pseudo labels,” arXiv preprint arXiv:2402.06809, 2024.

A. Berlinet and C. Thomas-Agnan, Reproducing kernel Hilbert spaces
in probability and statistics. Springer Science & Business Media, 2011.
G. K. Dziugaite, D. M. Roy, and Z. Ghahramani, “Training generative
neural networks via maximum mean discrepancy optimization,” arXiv
preprint arXiv:1505.03906, 2015.

B. Scholkopf, “The kernel trick for distances,” Advances in neural
information processing systems, vol. 13, 2000.

C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379-423, 1948.

E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness,
“Pseudo-labeling and confirmation bias in deep semi-supervised learn-
ing,” in 2020 International joint conference on neural networks (IJCNN).
IEEE, 2020, pp. 1-8.

D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Workshop on challenges
in representation learning, ICML, vol. 3, no. 2. Atlanta, 2013, p. 896.
D. A. Reynolds et al., “Gaussian mixture models.” Encyclopedia of
biometrics, vol. 741, no. 659-663, 2009.

T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal
processing magazine, vol. 13, no. 6, pp. 47-60, 1996.

V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski,
and W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” in Proceedings of the 26th Annual Network and
Distributed System Security Symposium, ser. NDSS 2019, Feb. 2019.
Y. Angel, “The obfs4 protocol: Specification and implementation,” https:
//gitweb.torproject.org/pluggable-transports/obfs4.git, 2015, accessed:
2025-07-25.

G. Zhang, J. Cao, M. Xu, and X. Deng, “Unsupervised and adaptive
tor website fingerprinting,” in International Conference on Security and
Privacy in Communication Systems. Springer, 2023, pp. 209-229.

G. J. Székely and M. L. Rizzo, “Energy statistics: A class of statistics
based on distances,” Journal of statistical planning and inference, vol.
143, no. 8, pp. 1249-1272, 2013.

A. S. Iwashita and J. P. Papa, “An overview on concept drift learning,”
IEEE access, vol. 7, pp. 1532-1547, 2018.

(2023) Circuit-level padding. [Online]. Available: https://spec.torproject.
org/padding-spec/circuit-level-padding.html

J. Gong, W. Zhang, C. Zhang, and T. Wang, “Wfdefproxy: Modu-
larly implementing and empirically evaluating website fingerprinting
defenses,” arXiv preprint arXiv:2111.12629, 2021.

B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
2154-2156.

X. Liu, C. Yoo, F. Xing, H. Oh, G. El Fakhri, J.-W. Kang, J. Woo et al.,
“Deep unsupervised domain adaptation: A review of recent advances
and perspectives,” APSIPA Transactions on Signal and Information
Processing, vol. 11, no. 1, 2022.

G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann, “Contrastive
adaptation network for unsupervised domain adaptation,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 4893-4902.

G. Wei, C. Lan, W. Zeng, and Z. Chen, “Metaalign: Coordinating domain
alignment and classification for unsupervised domain adaptation,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 16 643-16 653.

Y. Zou, Z. Yu, B. Kumar, and J. Wang, “Unsupervised domain adaptation
for semantic segmentation via class-balanced self-training,” in Proceed-
ings of the European conference on computer vision (ECCV), 2018, pp.
289-305.

S. Thirumuruganathan, F. Deniz, I. Khalil, T. Yu, M. Nabeel, and
M. Ouzzani, “Detecting and mitigating sampling bias in cybersecurity
with unlabeled data,” in 33rd USENIX Security Symposium (USENIX
Security 24), 2024, pp. 1741-1758.

“Research safety board,” 2024, accessed: December 29, 2024. [Online].
Available: https://research.torproject.org/safetyboard/

https://gitweb.torproject.org/pluggable-transports/obfs4.git
https://gitweb.torproject.org/pluggable-transports/obfs4.git
https://spec.torproject.org/padding-spec/circuit-level-padding.html
https://spec.torproject.org/padding-spec/circuit-level-padding.html
https://research.torproject.org/safetyboard/

[54] K. Loesing, S. J. Murdoch, and R. Dingledine, “A case study on
measuring statistical data in the Tor anonymity network,” in Proceedings
of the Workshop on Ethics in Computer Security Research (WECSR
2010), ser. LNCS. Springer, January 2010.

G. Acar, M. Juarez, and individual contributors, “tor-browser-selenium
- tor browser automation with selenium,” https://github.com/webfp/
tor-browser-selenium, 2023.

“Selenium: a browser automation framework and ecosystem.” 2021.
[Online]. Available: https://github.com/SeleniumHQ/selenium

X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 227-238.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i
still see you: Why efficient traffic analysis countermeasures fail,” in 2012
IEEE symposium on security and privacy. 1EEE, 2012, pp. 332-346.
X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion
sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society, 2014, pp. 121-130.

W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter, J. Filter,
T. Engel, K. Wehrle, and A. Panchenko, “Trafficsliver: Fighting website
fingerprinting attacks with traffic splitting,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
2020, pp. 1971-1985.

N. Mathews, J. K. Holland, S. E. Oh, M. S. Rahman, N. Hopper, and
M. Wright, “Sok: A critical evaluation of efficient website fingerprinting
defenses,” in 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 2023, pp. 969-986.

[55]

[56]

(571

[58]
[59]

[60]

[61]

APPENDIX A
DATA COLLECTION

Most prior WF studies focused solely on traffic drift caused
by changes in website content over time [4], [6]. As discussed
in Section II, Tor traffic drift encompasses client-side drift,
server-side drift, and network-side drift. To comprehensively
evaluate the effectiveness of Proteus, we collected real-
world Tor traffic across various drift scenarios from March
to December 2024 and from June to July 2025. Specifi-
cally, we extended the tor-browser-selenium tool [55] and
implemented automated Tor traffic collection based on the
Selenium framework [56]. We configured the default Tor
Browser Bundle (TBB) version as 12.0.10 and the Tor version
as 0.4.8.

Our data collection tool was deployed on 40 different cloud
servers located in Singapore, Japan, the United States, Ger-
many, and the United Kingdom. Following prior research [1],
[5], we set the browsing time for each session to 200 seconds
to ensure full page loads. To filter out traffic from pages that
failed to load, we captured screenshots after the page load and
utilized a CNN-based image classification model to identify
failed page loads. In total, our dataset contains over 300,000
real-world Tor traces, encompassing six traffic drift scenarios.
The details of each dataset are described below.

Dataset for Temporal Drift. To evaluate traffic drift caused
by changes in website content over time, we continuously
collected traffic from 102 monitored websites between March
2024 and December 2024. These monitored websites were
selected from the top 120 websites of the Tranco list [40]
generated on March 2024%. We began collecting traffic to
train the model on March 13 (i.e., day 0), and subsequently
collected real-world drifted traffic on day 14, day 30, day

2 Available at https://tranco-list.eu/list/ YXX7G.

17

90, day 150, and day 270. After data cleaning, 102 websites
remained consistently accessible over the 9 months. These
websites were selected as monitored websites, resulting in
142,067 traces collected. Note that we collected this dataset
using cloud servers deployed in Singapore, with the client’s
Tor version set to 0.4.8.

Dataset for Tor Version Drift. Tor supports multiple versions
simultaneously, and adversaries lack prior knowledge of the
specific Tor version used by clients. Therefore, the Tor version
used by clients may differ from the version used by adversaries
to train the WF models. We selected four major stable Tor
versions from the past three years: 0.4.8, 0.4.7, 0.4.6, and
0.4.5. Notably, our focus is on Tor versions rather than Tor
browser bundle (TBB) versions. The reason is that TBB
updates occur more frequently. In July 2024, we used 20
servers deployed in Singapore to collect traffic for the 102
monitored websites under these four Tor versions. In total, we
collected 100,162 traces for the Tor version drift.

Dataset for Network Condition Drift. Previous research [6]
has shown that changes in network conditions can degrade the
performance of WF attacks. To evaluate traffic drift resulting
from real-world variations in network conditions, we collected
traffic from clients located in five different countries. Due to
the varying density of Tor nodes across different regions, Tor
clients in different countries encounter significantly different
network conditions. Specifically, in December 2024, traffic
was collected from clients in Singapore, Japan, the United
States, Germany, and the United Kingdom during visits to
102 monitored websites. This collection yielded a dataset
comprising 34,700 real-world traces.

Dataset for Browsing Behavior Drift. Most WF attacks
assume that clients only visit website homepages, which is
unrealistic. WF attacks trained solely on homepage traffic
experience a significant performance drop when identifying
subpage traffic [5], [11]. WF attacks targeting subpages as-
sume that the adversary has prior knowledge of client browsing
behavior [11]. However, most websites contain a large number
of subpages, and clients may visit subpages unknown to the
adversary. This dynamic browsing behavior results in traffic
drift. To efficiently collect subpage traffic for monitored web-
sites, we first crawl all subpage URLs for the 102 monitored
websites. Irrelevant domains were filtered out based on the
root domain. In November 2024, we randomly collected 200
real-world subpage traffic traces for each monitored website.
Open-World Dataset. We considered temporal drift in Tor
traffic in the open-world scenario. Specifically, we ran-
domly selected 20,000 websites from the Tranco list as non-
monitored websites. Note that non-monitored websites do not
overlap with monitored websites. From March to December
2024, we collected traffic for these non-monitored websites
and incorporated it into the original time-drift dataset, thereby
building the open-world dataset.

Dataset with WF Defense. In recent years, WF defenses have
been extensively studied [21]-[24], [57]-[60]. WF defenses
disrupt the effectiveness of WF attacks by padding dummy
packets or delaying packets. However, most defenses introduce

https://github.com/webfp/tor-browser-selenium
https://github.com/webfp/tor-browser-selenium
https://github.com/SeleniumHQ/selenium

significant overhead, which can cause Tor relay malfunctions,
making them impractical for deployment [61]. Following prior
arts [1], [5], [7], [8], [13], we evaluated the robustness of
Proteus against obfuscated traffic using three representative
defenses: WTF-PAD [21], obfs4 [41], and Front [22].

WTEF-PAD leverages adaptive padding to obfuscate burst
intervals in Tor traffic without introducing additional delays.
Using the authors’ official scripts, we simulated WTF-PAD to
generate a dataset for analyzing temporal drift under this de-
fense. Obfs4, the default pluggable transport in Tor, is designed
to help users bypass censorship imposed by ISPs or govern-
ments. To collect obfs4-obfuscated traffic, we selected nine
globally distributed obfs4 bridges and configured 40 clients in
Singapore to rotate bridges for each website visit. We collected
27,487 traces under obfs4 obfuscation. Front, another WF
defense mechanism, injects dummy packets during the initial
stage of page loading. Compared to WTF-PAD, Front achieves
stronger obfuscation with lower communication overhead. We
implemented Front using the WFDefProxy framework [40],
deploying 40 cloud servers as Tor clients and 10 servers as Tor
bridges. This deployment produced 29,776 obfuscated traces
in July 2025.

18

	Introduction
	Background
	Threat Model
	Design of Proteus
	Overview
	Feature Distribution Alignment
	Model Confidence Enhancement
	Adaptive Pseudo-Labeling

	Performance Evaluation
	Experimental Setup
	Drift Quantification Analysis
	Performance under Traffic Drift
	Open-World Evaluations
	Evaluating Proteus under Defenses
	Evaluating Proteus in Multi-Tab Browsing
	Comparison with Supervised Fine-tuning
	Impact of the Scale of Unannotated Traffic
	Ablation Analysis
	Latency Analysis

	Discussion
	Related Work
	Conclusion
	Ethics Considerations
	References
	Appendix A: Data Collection

