VulSCA: A Community-Level SCA Approach for
Accurate C/C++ Supply Chain Vulnerability
Analysis

Yutao Hu*'f, Chaofan Li*, Yueming Wwu* T8, Yifeng Cait, Deqing Zou* 1
*National Engineering Research Center for Big Data Technology and System
Services Computing Technology and System Lab, Hubei Engineering Research Center on Big Data Security
School of Cyber Science and Engineering, Huazhong University of Science and Technology, China
TJinyinhu Laboratory, China
IMOE Key Lab of HCST (PKU), School of Computer Science, Peking University, China
§Corresponding author

Abstract—With the widespread adoption of third-party Ii-
braries (TPLs) in C/C++ development, software supply chain
security has become critical. Existing C/C++ supply chain vul-
nerability analysis approaches have notable limitations. Some
focus exclusively on dependency identification, leading to false
positives (FPs), while others emphasize vulnerability detection
but ignore dependencies, requiring costly full-repository scans
that hinder rapid response to supply chain vulnerabilities. To
address this, we explore an appropriate granularity for accurate
dependency construction and vulnerability detection. We propose
a community-level software composition analysis (SCA) approach
that models the project’s call graph as a social network and
applies community detection. Dependencies between projects and
TPLs are then established through community similarity. For
vulnerability detection, we perform clone-based detection within
dependent communities to verify the existence of vulnerabilities,
and introduce a two-stage reachability analysis to determine
whether they can propagate to the target project. We implement
VulSCA, the first C/C++ SCA framework that integrates both
vulnerability detection and reachability analysis. Experimental
results show that VulSCA outperforms CENTRIS and OSSFP in
SCA with a 4-12% improvement in F1-score. In supply chain
vulnerability detection, it achieves 44-48% higher F1-scores
than version-based methods and 17-23% higher than code-based
methods. In terms of efficiency, VulSCA incurs lower overall
overhead than all code-based approaches. Furthermore, VulSCA
identifies 32 previously unpatched supply chain vulnerabilities
in widely used open-source projects, which have already been
reported to the respective vendors.

I. INTRODUCTION

Ensuring the security of the software supply chain has be-
come increasingly critical, particularly in C/C++ development
where third-party libraries (TPLs) are extensively adopted.
While software composition analysis (SCA) is essential for
component identification and dependency management, con-

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230613
www.ndss-symposium.org

structing accurate supply chains in C/C++ remains difficult
due to the diversity of TPL integration methods and the lack
of a standardized dependency management system. Unlike
conventional vulnerabilities, supply chain vulnerabilities can
propagate across projects and ecosystems, enabling attackers
to steal sensitive data or disrupt downstream operations. Thus,
achieving accurate and efficient detection of supply chain
vulnerabilities remains an urgent and unresolved challenge.
Existing approaches. Methods for detecting supply chain
vulnerabilities in C/C++ software can be broadly classified
into two categories: version-based and code-based [1]. (1)
Version-based methods (i.e., traditional SCA techniques) [2],
[3], [4], [5] identify dependencies by analyzing project-level
features. Once a dependency is detected, any known vulner-
abilities associated with the corresponding TPL version are
directly flagged as supply chain vulnerabilities. (2) Code-based
methods (i.e., clone-based vulnerability detection techniques)
[3], [6] search the target codebase against a database of
vulnerable code snippets. If a segment closely matches a
known vulnerable function, it is reported as a potential supply
chain risk. In practice, version-based methods focus solely on
dependency identification and overlook whether the vulnerable
code is truly present, whereas code-based methods emphasize
vulnerability detection but ignore dependency context.
Limitations of existing approaches. Most version-based
methods seek to improve SCA accuracy and efficiency by
designing project-level features and inferring dependencies
through feature similarity. However, these features are gen-
erally unrelated to vulnerability semantics. For example, OS-
SPolice [2] relies on directory structures, while CENTRIS [7]
leverages shared original functions across projects. As a result,
these methods often incur numerous false negatives (FNs) and
FPs in supply chain vulnerability detection.

Conversely, code-based approaches focus on improving
clone detection precision but lack pre-built dependency re-
lationships, which forces exhaustive repository scans. This
limitation reduces their responsiveness to newly disclosed
threats. Moreover, these methods merely confirm the presence

of vulnerable code without verifying its execution reachability,
leading to FPs.

Our Approach. To overcome the limitations of existing meth-
ods, we propose a new analysis granularity that not only accu-
rately captures project—-TPL dependencies but also effectively
supports supply chain vulnerability detection and reachability
analysis. Specifically, we model the project’s call graph as
a social network and introduce a semantic community-level
SCA approach tailored for C/C++ software.

We begin by extracting the project’s call graph and applying
community detection to cluster semantically related func-
tions into semantic communities. Compared with traditional
function- or file-level granularity, semantic communities better
reflect the modularity and logical organization of the code,
offering a more coherent unit for dependency and vulnerability
analysis. For each community, we extract two sets of features:
structure features that represent inter-function call relation-
ships, and code features that capture the textual and semantic
characteristics. We then assess project—-TPL dependencies by
measuring the similarity between their semantic communities.

To detect reachable supply chain vulnerabilities, we first
apply clone vulnerability detection within the identified de-
pendent communities to determine whether known vulnerable
code is actually reused in the project. However, even when
the vulnerable code is confirmed to exist, it remains uncer-
tain whether it is reachable, meaning whether the vulnerable
code can actually be executed during the project’s operation.
Inspired by prior work [8], we define a vulnerability as
reachable if it can be triggered from the project’s entry point.
Specifically, we construct a community-level call graph and
perform a two-stage reachability analysis: inter-community
analysis identifies vulnerable communities that are potentially
reachable, followed by intra-community analysis to determine
whether specific vulnerable functions are truly executable.
This layered strategy balances precision and scalability, mit-
igating the path explosion problem that typically occurs in
whole-project analysis.

Evaluation. We implement VulSCA, the first C/C++ SCA
method that integrates both supply chain vulnerability detec-
tion and reachability analysis. For evaluation, we construct a
ground truth dataset from real-world software dependencies
and reachable supply chain vulnerabilities. In the SCA task,
VulSCA achieves a 4—12% improvement in F1-score compared
with state-of-the-art C/C++ SCA tools, namely CENTRIS [7]
and OSSFP [3]. In the supply chain vulnerability detection
task, VulSCA incurs lower overhead than all code-based meth-
ods. It also surpasses version-based approaches (CENTRIS and
OSSFP) with a 44-48% gain in Fl-score, and code-based
approaches (Vuddy [4], Fire [5], and AntMan [9]) with a
17-23% gain. Finally, by analyzing widely used open-source
projects, VulSCA uncovered 32 previously unpatched supply
chain vulnerabilities, all of which have been responsibly
reported to vendors.
Contributions. This work makes the following contributions:
¢ We introduce a novel granularity, the semantic commu-
nity, for effective C/C++ SCA. By extracting call graphs,

performing community detection, and combining struc-
tural and code-level features, we identify dependencies
between projects and TPLs through community similarity.

e« We propose a community-based supply chain vulnera-
bility detection approach that first conducts vulnerability
existence analysis to locate potentially vulnerable com-
munities, and then performs inter- and intra-community
reachability analysis to determine vulnerabilities that may
pose real threats to the target project.

o We implement VulSCA!, the first C/C++ SCA method
that integrates both supply chain vulnerability detection
and reachability analysis.

« We conduct extensive experiments showing that VulSCA
consistently outperforms state-of-the-art tools. In the SCA
task, it surpasses OSSFP and CENTRIS with a 4-12%
improvement in Fl-score. In vulnerability detection, it
achieves a 17-48% Fl-score improvement over tradi-
tional methods.

II. BACKGROUND
A. Terminology Definition

This section defines the terminology used in this paper,
clarifying their roles and relationships across the techni-
cal workflow: from foundational components (i.e., TPL) to
identification (i.e., TPL detection), systematic analysis (i.e.,
SCA), and security assessment (i.e., supply chain vulnerability
detection).

e Third-Party Library (TPL). A TPL is a reusable soft-
ware component developed externally, typically open-source
and hosted on platforms such as GitHub. TPLs significantly
improve development efficiency but may introduce security
risks through vulnerability propagation.

o TPL Detection. TPL detection identifies the TPLs integrated
into a project, including their name, version, and location.
Detection methods vary depending on the reuse approach:
1) Standardized reuse via package managers enables identi-
fication by parsing dependency files such as pom.xml or
requirements.txt; 2) Non-standard reuse via source
code copying requires detection techniques such as code
comparison, feature extraction, or feature similarity analysis.
e Software Composition Analysis (SCA). SCA provides a
comprehensive inventory and evaluation of TPLs in a project to
assess security, license compliance, and quality. TPL detection
forms the foundation of SCA, directly influencing downstream
tasks such as license auditing and vulnerability tracking.

e Supply Chain Vulnerability Detection. This refers to
identifying N-day vulnerabilities introduced through TPLs due
to defects in TPL code. A project is considered vulnerable if
it invokes a vulnerable function within a TPL. This detection
relies heavily on the dependency graph constructed by SCA,
which narrows the analysis scope and accelerates security
response, as the graph can be pre-built and reused. When a
new TPL vulnerability is disclosed, affected projects can be
rapidly identified without scanning the entire codebase. For

Thttps://github.com/VulSCA/VulSCA

example, using a pre-built dependency graph, the number of
functions to analyze in the NGINX [10] project decreases from
130,000 to about 2,000, yielding nearly a 60-fold speed up.

B. Semantic Community Definition

To improve the efficiency and accuracy of SCA and vulner-
ability reachability analysis, we introduce semantic communi-
ties as the basic analysis unit.

o Community Detection. A core method in complex network
research used to discover densely linked node clusters [11].
Applied to function call graphs, it partitions functions into
groups with strong internal coupling and frequent interactions,
revealing modules.

e Semantic Community. A subgraph of functions that collab-
oratively implement specific functionality. Identified based on
call frequency and coupling strength, semantic communities
better reflect the code’s logical organization than traditional
function- or file-level granularity. While structurally similar
to subgraphs, semantic communities differ from subgraph
isomorphism or clone detection in several ways:

o Composition: Formed by structurally coupled and seman-
tically aggregated functions.

o Characteristics: Strong internal cohesion, clear boundaries
between communities, and high semantic consistency.

o Practical alignment: Their modular structure aligns nat-
urally with common software development practices, making
them an ideal unit for SCA.

In our work, semantic communities enhance dependency
detection accuracy and reduce call graph complexity, providing
a scalable foundation for vulnerability reachability analysis.

C. Motivation

Unlike languages that rely on package managers, C/C++
projects often integrate TPLs by directly copying source code.
This code-level reuse introduces unique challenges for SCA,
especially in supply chain vulnerability detection.

To illustrate the limitations of existing SCA techniques
in this context, we conduct a case study on SPlayer [12],
an open-source audio player containing approximately 7.49
million lines of code. We analyze SPlayer using our approach,
VulSCA, and compare its accuracy against representative
version-based and code-based methods.

As shown in Fig. 1 (top), SPlayer incorporates selected
functions from OpenSSL [13]. However, only a small subset
of these functions is actually invoked by the core logic, as
revealed by the function call graph. We use three representative
vulnerabilities (CVE, CVEs, and CVE3) to highlight detection
gaps. While CVE, affects a function that is executed by
SPlayer, CVE3 resides in a cloned but unreachable function,
and CVE, is located in a function that is not reused at all.
Code-based Approaches. These methods detect code clones
and report vulnerabilities in reused code as supply chain risks.
However, without reachability analysis, they often yield FPs.
For example, CVE3 is flagged even though the function is
unreachable. Through manual inspection, we identified 77
OpenSSL-related vulnerabilities in SPlayer, but only 25 are

False Positive

(b) Version-based approach

alse Po’:@

(c) VuIsCA

True Positive

Q‘—'cvs,,

False Positive

Reachable Semantic
Community

r__-| Unreachable Semantic

=== Community

Fig. 1. An Example of SPlayer Reusing OpenSSL

TABLE I
VULNERABILITY DETECTION RESULTS FOR SPlayer USING VulSCA,
VERSION-BASED, AND CODE-BASED APPROACHES

Group Method TP FP Precise Recall Fl-score
Version-based CENTRIS 14 245 0.05 0.56 0.10
OSSFP 13 38 0.25 0.52 0.34
Fire 22 50 0.31 0.88 0.45
Code-based Vuddy 21 31 0.40 0.84 0.55
Antman 20 22 0.48 0.80 0.69
VulSCA 19 3 0.86 0.76 0.81

actually executed. As shown in Table I, tools such as Vuddy
[4], Fire [5], and AntMan [9] achieve low precision (40%,
31%, and 48%, respectively), underscoring the need for vul-
nerability reachability analysis. While integrating function-
level reachability analysis could mitigate this issue, it is com-
putationally expensive: the large number of functions and the
complex call relationships in real-world projects lead to path
explosion. Moreover, code-based approaches require clone
detection across all functions of SPlayer, further reducing the
timeliness of security response.

Version-based Approaches. These tools analyze declared
dependencies without examining the actual code reused. As
a result, any known vulnerability in a dependent TPL is
conservatively reported, regardless of whether the vulnerable
function is present or invoked. In Fig.1 (b), both CVE; and
CVE3 are falsely reported. As shown in Table I, state-of-the-
art tools like CENTRIS [7] and OSSFP [3] yield low precision
(5% and 25%, respectively), due to their lack of vulnerability
existence and reachability analysis.

@ Semantic Community Extraction @ TPL Feature DB Construction

@ Software Composition Analysis

HEI
@ i Call Graph Construction i Structure Feature Extraction (=) Semantic Communlty TPL Reuse Identification
& - * Extraction i
BB Target Project . s Reused TPL
TPLs Community Partitioning Code Feature Extraction f Report
< TPL Feature © Supply Chain Vulnerability Detection
90 © Vulnerability Community DB Construction Library S
20|)] - Vulnerability Existence Vulnerability Reachability \

Vulnerability Metadata
Extraction

Vulnerability Community
Localization

ﬁ

Vulnerability :

Vulnerability
ommunity Libran

Analysis Analysis Supply Chain

Vulnerability

Fig. 2. High-level Workflow of VulSCA

QOur Approach: VulSCA. Existing SCA methods fail to
jointly perform vulnerability existence and reachability anal-
ysis, leading to high false-positive rates. To bridge this gap,
we propose VulSCA, which introduces a novel granularity for
SCA, semantic communities.

Each semantic community consists of a set of tightly cou-
pled functions that collaborate to implement a specific func-
tionality. For example, a “file-write” community might include
open_file(),write_file(),and close_file(),all
working together to perform file-writing. This granularity is
motivated by our observation that developers typically reuse
entire functional modules of a TPL rather than individual
functions [14]. VulSCA therefore defines such modules as
semantic communities. Accordingly, community-level depen-
dencies more directly reflect the reuse patterns of C/C++ TPLs
and provide effective support for SCA.

In addition, community-level analysis inherently offers ad-
vantages in supply-chain vulnerability detection. By analyzing
dependencies at the community-level, VulSCA performs: 1)
Vulnerability Existence Analysis: VulSCA determines whether
a TPL vulnerability actually resides within a reused commu-
nity. 2) Vulnerability Reachability Analysis: VulSCA conducts
both inter- and intra-community reachability analysis to avoid
the path-explosion problem inherent in function-level analysis.
As shown in Table I, VulSCA achieves 86% precision, signifi-
cantly reducing FPs and effectively bridging the gap between
C/C++ SCA and supply-chain vulnerability detection.

III. APPROACH

To bridge C/C++ SCA with supply chain vulnerability
detection, VulSCA defines a novel code analysis granularity,
referred to as semantic communities.

A. System Overview

Fig. 2 illustrates the overall workflow of VulSCA, which
consists of five stages. In analyzing TPLs, Stage 1 partitions
each TPL into semantic communities, and Stage 2 extracts
structure and code features from these communities to con-
struct the TPL feature library. For known vulnerabilities, Stage
3 associates each vulnerability with its corresponding semantic
community, forming the vulnerability community library. In
Stage 4, VulSCA analyzes the target project by extracting its
semantic community features and matching them against the
TPL feature library to identify reused TPLs and corresponding

communities. Finally, in Stage 5, VulSCA checks whether
any known vulnerable function exists in the project. It then
performs both inter- and intra-community reachability analysis
to evaluate whether these vulnerabilities can propagate into the
project’s core logic, thus reducing false positives.

B. Semantic Community Extraction

At this stage, VulSCA extracts the function call graph from
each TPL and groups functions into communities based on call
frequency and coupling strength. These semantic communities
consist of tightly related functions and typically correspond to
distinct functional modules.

1) Call Graph Construction

A semantic community is essentially a collection of func-

tions with strong semantic coupling and frequent interactions.
Its partitioning must rely on actual call relationships to ensure
functional cohesion. Therefore, we first construct a function
call graph for each project.
Call Graph Extraction. To make VulSCA resilient to minor
code changes and to suppress noise from irrelevant code, we
begin with source code normalization. After normalization,
we extract the call graph from the updated code to achieve
stable analysis. We use the static analysis tool Doxygen [15] to
parse and extract call graphs of TPLs. Since our analysis must
scale to large TPL databases and cannot afford compilation
overhead, Doxygen’s static parsing capability, which operates
without compilation, makes it an ideal choice.

In the resulting call graph, nodes represent functions and
edges denote call relationships. We also compute a textual
hash for each function to serve as its unique identifier.
Nested Dependency Elimination. C/C++ SCA is often com-
plicated by nested dependencies among TPLs [7], where two
distinct TPLs contain identical functions, causing the target
project to depend on both and introducing false positives.

To resolve this issue, we adopt a two-step strategy based
on function-creation timestamps and virtual node replace-
ment. First, following CENTRIS, we use function creation
timestamps to identify the canonical implementation: when
a function appears in multiple TPLs, the instance with the
earliest timestamp is retained as the original. Second, all non-
original duplicates are replaced with virfual nodes in the call
graph, eliminating redundancy while preserving the structural
integrity of call relationships. Although virtual nodes do not

TPL Feature Library

reL e y i1 Structure Feature Vector V 43

- . d : |NN|EN|DE|DI|RA|EC|Tr RE|AC|DG|BR|SC|WC| Z-sorce

’ : y Iy SOy

(TeL, p ilalalosla]ajaslofofajalalal]a | Y é

i i Code Feature Vector V. ;3 . E'{ structure__ Vsa3“Vss ‘:

| H | 2 | 3 | 5 | 9 |15|17|21|32|36|66|87|90| |--'r Similarity ||V g3 x ||[Vs3] |

i i - YR

i \Com,(Com,, Com,; i :I‘ ————————————————————— 1

: i i + X3
i1 Structure Feature Vector V 3 H e — <

f Vo = 1 H

L O O : |NN|EN|DE|DI|RA|EC|Tr RE|AC|DG|BR|SC|WC|___:_!: word _ VeawNVes |

i @ ! 4a|lalo3fl2])1las]lofolaf2]af[2]1 "1 similarity VeazUVez 1

i M E - = i

i O O r--<1 Code Feature Vector V. 3 I Nememeeee- - s

H [| 1

; O : |z|4|5|9|15|17|21|3z|36|65|87|90|...|--—"

| Target Project

@ Semantic Community Extraction

@ TPL Reuse Identification

Fig. 3. An Example of Semantic Community Extraction and Software Composition Analysis

represent the TPL’s core semantics, they still capture essential
syntactic structure for VulSCA’s analysis.

2) Community Partitioning

TPLs typically provide extensive functionality, but real-
world projects usually reuse only selected modules [14]. In
C/C++ development, developers often clone entire feature
units from TPLs, consisting of tightly coupled functions with
frequent inter-calls. To capture this, VulSCA partitions the
call graph into semantic communities, which are subgraphs
of related functions implementing distinct features, as shown
in Fig. 3. Compared with traditional function- or file-level
partitioning, this approach better reflects functional boundaries
and the modular structure of software.

For community partitioning, VulSCA models the call graph
as a social network, where functions are nodes and calls are
edges. By applying community detection algorithms, VulSCA
groups frequently interacting and tightly coupled functions
into cohesive modules (i.e., semantic communities). We con-
sider four widely used algorithms as candidates:

e Louvain Algorithm [16]: a greedy modularity optimization
method that iteratively relocates nodes to maximize modular-
ity, enabling fast detection in large networks.

o Infomap Algorithm [17]: formulates community detection
as optimal compression of random-walk trajectories, enabling
discovery of overlapping and hierarchical communities in
complex networks.

o Leiden Algorithm [18]: an improved Louvain method
that corrects community fragmentation, enhancing detection
accuracy while retaining high efficiency, suitable for large-
scale networks.

o Greedy Modularity Algorithm [19]: iteratively merges
community pairs with the greatest modularity gain; simple in
design but prone to local optima and less efficient on large
networks, often used as a baseline.

After partitioning the call graph into communities, VulSCA
filters out those unrelated to the project’s core functionality,
allowing SCA to focus on meaningful dependencies. As dis-

cussed in Section III-B1, some communities include virtual
nodes, which usually originate from TPLs and do not represent
the project’s original semantics. Our empirical analysis shows
that functions connected to these virtual nodes often invoke or
wrap third-party functionality rather than core project logic. To
reduce their impact, VulSCA discards communities in which
virtual nodes constitute more than 50% of the nodes. For
instance, a community containing only a virtual node and its
caller is excluded, since the caller merely integrates a TPL
feature instead of implementing original behavior. This filter-
ing step ensures that only semantically relevant communities
are preserved, thereby improving SCA accuracy.

C. TPL Feature DB Construction

At this stage, VulSCA extracts both structural and code
features from each semantic community to build a lightweight
TPL feature database. Structural features are derived from
social network properties, capturing function-call relationships
within the community and reflecting the organizational struc-
ture and logical flow of project features. Code features focus
on the textual representation of functions, providing detailed
insight into their concrete implementations.

1) Structure Feature Extraction

VulSCA extracts structural features by analyzing the function
call graph of each semantic community. To capture call logic
efficiently, we adopt social network properties. Based on the
performance evaluation of SNADroid [20], we select the 11
fastest properties (No. 1-11 in Table II), each requiring under
0.001s. We further include the number of weakly connected
components (WC), highlighted as important in SNADroid,
along with its counterpart, the number of strongly connected
components (SC), yielding 13 properties in total. These cover
node-level, global, and connectivity-related aspects. For undi-
rected properties, the community graph is treated as undi-
rected, and for node-level properties, we use the average value
across all nodes.

TABLE II
DETAILS OF COMMUNITY STRUCTURE FEATURES

No. Social Network Property Abbr. Description Feature Processing Time (s)
1 Number of Nodes NN The number of nodes in the network <0.001
2 Number of Edges NE The number of edges in the network <0.001
3 Density DE The density of the network <0.001
4 Diameter DI The maximum eccentricity of the network <0.001
5 Radius RA The minimum eccentricity of the network <0.001
6 Eccentricity EC The maximum distance from a node to other nodes <0.001
7 Reciprocity RE The ratio of bidirectional edges to all edges <0.001
8 Algebraic Connectivity AC The second smallest eigenvalue of the Laplacian matrix <0.001
9 Degree DG The number of edges connected to a node <0.001
10 Bridges BR The number of bridges in the network <0.001
11 Transitivity TR The fraction of closed triangles in the graph <0.001
12 Strongly Connected Components ~ SC ~ The number of strongly connected components in the network 0.009
13 Weakly Connected Components ~ WC The number of weakly connected components in the network 0.007

To account for scale differences among properties, we apply
Z-score normalization [21], which standardizes each property
relative to the mean and standard deviation. This produces a
1 x 13 structural feature vector, denoted V, (see “Structure
Feature Vector” in Fig. 3).

2) Code Feature Extraction

To complement structural metrics, VulSCA extracts text-
based features to assess code similarity. We tokenize each
function, aggregate tokens into a community-level vocabulary,
and apply one-hot encoding to generate the “Code Feature
Vector” V. (see Fig. 3), enabling efficient similarity compar-
isons. Finally, VulSCA constructs the TPL feature library. Each
semantic community is assigned a unique ID. The structural
and code feature vectors, V, and V., are linked to this ID
to support community similarity matching during SCA. For
vulnerability analysis, we also record the hash values of all
functions in each community. Thus, each entry in the library
contains information for one TPL, including its community
IDs and, for each ID, the associated feature vectors and
function hashes.

D. Vulnerability Community DB Construction

At this stage, VulSCA builds a community-level TPL vul-
nerability database to enable rapid identification of vulnerable
dependencies in SCA results. The construction process con-
sists of two steps: vulnerability community localization and
vulnerability metadata extraction.

1) Vulnerability Community Localization

Known vulnerabilities, such as those reported in the NVD
[22], are typically linked to commits that modify affected
functions, which can thus be represented as vulnerable func-
tions. VulSCA elevates the analysis granularity by mapping
each vulnerable function to its enclosing semantic community.
To achieve this, VulSCA computes a textual hash of each
vulnerable function’s source code as its unique identifier and
searches the function-hash lists of all semantic communities
for a match. The community containing the matching function
is then identified as the vulnerability community.

2) Vulnerability Metadata Extraction

After localization, VulSCA constructs a community-level
vulnerability database. Each identified vulnerability commu-

nity is assigned a unique ID, which is then mapped to a
standardized metadata unit encompassing all vulnerable func-
tions within that community. Specifically, each vulnerability
community ID corresponds to a hash set that stores the hash
values of all known vulnerable functions in the community.
This results in a structured entity where the community ID
serves as the key and the associated function-hash list serves
as the value. Such a standardized design provides a unified and
efficient foundation for subsequent vulnerability detection.

E. Software Composition Analysis

As shown in Fig. 3, the core principle of VulSCA’s SCA
is to infer dependencies by measuring the similarity between
semantic communities of the target project and those of TPLs.

1) Semantic Community Extraction

When a project community closely matches a TPL com-
munity, VulSCA links only these two communities rather than
associating the entire project with the TPL. In other words,
VulSCA performs community-level instead of project-level
SCA, thereby enabling more accurate supply-chain vulnera-
bility detection.

For the target project under analysis, VulSCA applies the
same procedure as for TPLs: it partitions the project’s call
graph into semantic communities and extracts their structural
and code features. The detailed steps are consistent with those
in Sections III-B2, III-C1, and III-C2.

2) TPL Reuse Identification

To identify dependencies between a project community
and a TPL community, VulSCA leverages both the Structure
Feature Vector (V) and the Code Feature Vector (V). Cosine
similarity is used to measure structural similarity of V, while
Jaccard similarity evaluates token-level similarity of V., as
shown in Fig. 3. The combination of these metrics determines
the overall semantic similarity between communities.

Because V. is typically high-dimensional due to the large
number of tokens in functions, evaluating it incurs higher
computational cost. To improve efficiency, VulSCA first com-
putes V, similarity and applies an early filtering strategy: if
Vs similarity falls below a threshold (0.5), the V. comparison
is skipped. Finally, VulSCA averages the Cosine and Jaccard
scores to assess overall similarity. If the combined score

TPL Feature Library

i

i

Clone i

~— iy |

— Vulnerability i

Detection i
» (% WP ... e > Com,s

Vulnerability E

H

Community Dataset

@ Vulnerability Existence Analysis

Vulnerability Community

2

Project

Inter-community
Reachability Analysis

S 2

Fig. 4. An Example of Supply Chain Vulnerability Detection

exceeds a threshold 6, a reuse relationship is established,
indicating that the target community depends on the TPL com-
munity. This community-level dependency further implies a
version-level dependency between the corresponding projects.

FE. Supply Chain Vulnerability Detection

At this stage, VulSCA first performs vulnerability exis-
tence analysis to determine whether known vulnerabilities
are present in the reused TPL communities. It then conducts
reachability analysis to assess whether these vulnerabilities
can propagate to the core logic of the target project, thereby
reducing false positives.

1) Vulnerability Existence Analysis

Projects may reuse only parts of a TPL, while vulnerabilities
lie outside the reused functions, leading to false positives. To
address this, VulSCA verifies whether the vulnerable code is
actually reused in the project.

As shown in Fig. 4, VulSCA retrieves the reused TPL com-
munity ID and queries the pre-built TPL vulnerability database
to locate matching vulnerable communities. It then extracts the
hash values and source code of the vulnerable functions in
those communities, forming a candidate vulnerability library
for the target project. Next, VulSCA applies clone vulnerability
detection only to the functions within the reused communi-
ties, avoiding full-project scans and significantly improving
efficiency.

By default, VulSCA employs hash matching for clone de-
tection, comparing function hashes to check whether any
reused function is identical to a known vulnerability. To handle
more complex clone scenarios, VulSCA can also integrate with
advanced detectors, such as Vuddy [4] for Type-II clones,
and Fire [5] and AntMan [9] for Type-III clones. In our
experiments (Table VII), we evaluated different configurations
(VulSCAvyaay, VulSCAFire, and VulSCAgnman)- The results show
that replacing hash matching with advanced clone detectors
substantially improves recall in vulnerability detection.

2) Vulnerability Reachability Analysis

VulSCA first identifies potential supply chain risks by locat-
ing known vulnerable functions within reused TPL communi-
ties. However, this does not indicate whether the vulnerabilities
can actually affect the project, which may lead to false
positives. Prior studies show that only reachable vulnerabilities
are likely to pose real threats [23].

To address this, VulSCA incorporates reachability analysis,
inspired by Younis et al. [8], to determine whether a path exists
from the project’s entry function to a vulnerable function. By
operating at the community level rather than the function level,
VulSCA avoids path explosion and improves efficiency. As
shown in Fig. 4, the process consists of two stages: inter-
community and intra-community reachability analysis.
Inter-Community Reachability Analysis. To mitigate the
path explosion problem, we first conduct a coarse-grained
analysis. Specifically, we check whether there exists a path
from the community containing the project’s entry function
(entry community) to the community containing the vulnerable
function (vulnerability community). If no path exists in the
community-level call graph, no path can exist in the function-
level call graph, making fine-grained analysis unnecessary.

To enable this, each semantic community is represented as a
node, with edges established based on inter-community func-
tion calls, forming a community-level call graph. As illustrated
in Fig. 4, the entry community is Com; (yellow node) and the
vulnerability community is Coms (blue node). On average,
each TPL in our library contains 3,522 functions grouped into
918 communities, a reduction that greatly decreases traversal
overhead and effectively alleviates path explosion.
Intra-Community Reachability Analysis. If a path exists
between the entry community and the vulnerability community
in the community-level call graph, VulSCA proceeds with fine-
grained reachability analysis inside the vulnerability commu-
nity. This step examines whether vulnerable functions can be
accessed from predecessor communities.

VulSCA verifies whether a vulnerable function is reachable
from any predecessor community along the identified path.

TABLE III
DETAILS OF SOME METRICS IN THE SCA DATASETS

Metric Abbr. Definition in SCA Task Definition in Vulnerability Detection Task
True Positive TP The number of correctly identified dependency relationships The number of correctly detected reachable supply chain vulnerabilities
False Positive FP The number of incorrectly identified dependency relationships The number of incorrectly detected reachable supply chain vulnerabilities
False Negative FN The number of missed dependency relationships The number of missed reachable supply chain vulnerabilities
Area Under the Precision-Recall Curve The area under the precision-recall curve -

AUPRC
Recall -
Precision
Fl-score

TP/(TP + FN)
TP/(TP + FP)
2*Precision*Recall/(Precision + Recall)

Specifically, we first identify the functions in the vulnerability
community that are connected to its predecessors. These
functions are treated as entry points to the vulnerability com-
munity (denoted Fenyy, shown as a purple node in the “Intra-
community Reachability Analysis” of Fig. 4). Subsequently,
VulSCA checks whether a path exists from any Finyy to the
vulnerable function Fy,; within the community’s call graph. If
such a path exists, the vulnerability is considered reachable.

Even in fine-grained analysis, VulSCA restricts computation
to the vulnerability community’s call graph, which is a sub-
graph of the project call graph. This targeted scope further
alleviates the path explosion problem often associated with
function-level reachability analysis. In summary, through this
two-stage reachability analysis, VulSCA determines whether
a supply chain vulnerability poses a real threat to the target
project, thereby reducing false positives.

IV. EXPERIMENT

In this section, our experiments focus on answering the
following Research Questions (RQs):
e RQ1: What is the optimal parameter configuration for
VulSCA to maximize its detection performance?
e RQ2: How does VulSCA perform in software composition
analysis compared to state-of-the-art C/C++ SCA tools?
e RQ3: How does VulSCA perform in supply chain vulnera-
bility detection compared to leading version-based and code-
based methods?
e RQ4: What are the time and memory overheads of VulSCA,
and how do they compare with existing tools in terms of
efficiency and scalability?

A. Experimental Settings

1) Dataset

To support our experiments and analysis, we construct two
related datasets. First, an SCA dataset is built by labeling high-
quality C/C++ projects and their third-party dependencies,
which serves to evaluate the SCA capability of VulSCA. On top
of this dataset, we further annotate all reachable vulnerabilities
to form a supply chain vulnerability dataset, which is used to
evaluate the effectiveness of vulnerability detection.
SCA Dataset Construction. We first collect high-quality
C/C++ repositories and manually label their TPL dependencies
as ground truth. Inspired by prior work [3], we observe that
such dependencies are typically stored in directories such as
/3rdparty, /deps, and /third_party, or documented
in files like Readme .md and Copyright.

e Step 1: Selecting Projects. To ensure quality, we select
the 100 most-starred C/C++ projects on GitHub, as star
count serves as a simple proxy for popularity and reliabil-
ity. After filtering out unsuitable repositories (e.g., header-
only libraries), we retain 80 valid projects and identify 484
associated TPLs. These projects span diverse domains such
as system tools, embedded software, network services, and
scientific computing frameworks.

o Step 2: Labeling Dependencies. TPLs are identified
through manual inspection of directory names and documenta-
tion, and validated by five experts with unanimous agreement.
Reused functions confirm their presence in the target project,
and we document the exact usage locations and version details
for both projects and TPLs. The final SCA dataset contains
564 repositories (80 targets + 484 TPLs) and 862 labeled
dependency relationships. The projects cover diverse domains
including game engines, databases, and multimedia tools, with
an average codebase size of 2.5 million lines of code.
Supply-Chain Vulnerabilities Dataset. We then identify and
annotate reachable supply chain vulnerabilities in the 80 target
projects (aligned with the SCA dataset) through the following
two steps:

e Step 1: Supply Chain Vulnerability Scanning. We collect
source files from typical TPL directories and use the Fire
dataset (built on PatchDB [24]) as the vulnerability source.
Five clone detection tools (i.e., hash, Vuddy [4], Fire [5],
ViScan [1], and AntMan [9]) are applied to identify Type-I to
Type-III clone vulnerabilities. After deduplication, we obtain
203 unique vulnerabilities.

o Step 2: Vulnerability Reachability Analysis. Following [8],
we analyze call graphs to determine whether each vulnerability
is reachable from an entry function. Nine security engineers,
divided into three groups, independently verify the results,
and only vulnerabilities confirmed by all three groups are
labeled as reachable. In total, 53 of the 203 vulnerabilities
are confirmed as reachable and serve as ground truth in our
vulnerability dataset.

2) Evaluation Metrics

Following prior Following prior works [25], [7], [5], [3], we
adopt a set of widely used metrics to evaluate the effectiveness
of VulSCA. As shown in Table III, these metrics are defined
separately for two tasks: the SCA task and the vulnerability
detection task. For SCA, the focus is on whether dependency
relationships between projects and TPLs are correctly iden-
tified, while for vulnerability detection, the focus shifts to
whether reachable supply chain vulnerabilities are correctly

recognized. Although the metrics share the same names (e.g.,
TP, FP, EN, Precision, Recall, and F1-score), their definitions
differ depending on the task. We also include Area Under
the Precision-Recall Curve (AUPRC), which provides a more
comprehensive assessment of the precision—recall trade-off in
SCA evaluation.

3) Baselines

To evaluate VulSCA, we select six representative baselines
for C/C++ projects: CENTRIS [7], OSSFP [3], VIScan [1],
Vuddy [4], Fire [5], and AntMan [9]. Among them, CENTRIS
and OSSFP are SCA tools that can also be applied to supply
chain vulnerability detection, while the others are vulnerabil-
ity detection tools without direct SCA support. Accordingly,
CENTRIS and OSSFP serve as baselines for the SCA task,
and all six methods serve as baselines for the vulnerability
detection task, since CENTRIS and OSSFP can determine
vulnerability presence via their SCA results.

e CENTRIS [7]: it addresses nested clones in TPLs by
deduplicating functions, keeping only the earliest version. It
then measures project similarity by the proportion of identical
functions to infer potential dependencies.

e OSSFP [3]: it reduces noise by filtering out duplicated,
trivial, and widely shared functions, treating the remainder as
core TPL functions. A project is considered dependent on a
TPL if it contains any of these core functions.

e VIScan [1]: it detects vulnerabilities at the version level
by applying SCA (CENTRIS by default) and then checking if
patch code changes appear in the TPL to reduce FPs. Since
its SCA results rely on external tools, VIScan is used only for
vulnerability detection, not SCA evaluation.

e Vuddy [4]: it normalizes functions and computes MD5
hashes for matching. It supports Type-I and Type-II clones, ef-
fectively detecting clones with identical structures or renamed
identifiers, but performs poorly on heavily modified code.

e Fire [5]: it extracts tokens from modified functions
and applies taint-path analysis to track data flow, enabling
the detection of structurally altered yet semantically similar
clones. It offers moderate support for Type-III clones.

e AntMan [9]: it constructs normalized function call graphs
and extracts inter-procedural code property clusters to generate
fine-grained vulnerability signatures. It handles complex Type-
IIT clones well and is particularly effective at identifying
significantly mutated vulnerabilities.

Hyperparameter tuning is applied to all baselines that
support threshold configuration, while CENTRIS, which does
not allow threshold adjustment, is evaluated with its default
settings. As noted in the OSSFP paper [3], the Fl-score, as
the harmonic mean of precision and recall, effectively captures
the trade-off between the two. Accordingly, we report the
configuration that yields the highest F1-score for each method
to ensure fair comparison. The detailed parameter settings of
the baselines are as follows:

CENTRIS deduplicates functions by retaining the earliest
version and infers dependencies when projects share >10%
identical functions. OSSFP filters out 50% of simple functions
and excludes common ones based on a 0.2 threshold, treat-

ing the remainder as core TPL functions. VIScan performs
vulnerability detection at the version level, using CENTRIS
for SCA results and checking whether patch code changes
appear in TPLs. Vuddy normalizes functions and applies MD5
hashing to detect Type-I and Type-II clones, but struggles with
heavily modified code. Fire extracts tokens and applies taint-
path analysis to detect semantically similar clones, filtering out
70% of functions via token analysis and 60% of the remainder
via AST filtering. AntMan builds normalized function call
graphs and code property clusters to generate vulnerability
signatures, concluding a vulnerability is reproduced when
matching vulnerability clusters exceed 70% while matching
fix clusters remain below 70%.

4) Implementation Details

We conducted the experiments on a standard server
equipped with 128 GB of RAM, an 8-core Intel Xeon CPU,
and an NVIDIA RTX A6000 GPU, running Ubuntu 20.04.
VulSCA integrates several TPLs to support its core functions.
It uses ctags [26] to extract functions, re [27] to normalize
code, and hashlib [28] to generate unique function hashes. The
call graph is constructed with Doxygen [15] and partitioned
into communities using Infomap [29] and NerworkX [30].
Finally, NetworkX performs reachability analysis to assess
vulnerability propagation.

B. RQI: Parameter Selection

In this section, we examine the optimal configuration of key
parameters in VulSCA, focusing on the choice of community
detection algorithm and the community similarity threshold 6.

1) Parameter Sharing Across Tasks

VulSCA performs two interdependent tasks: TPL reuse
identification and supply chain vulnerability detection. These
tasks are executed sequentially, with vulnerability detection
relying on the TPL communities identified in the first phase.
To maintain consistency, VulSCA adopts a unified parameter
configuration, specifically the community detection algorithm
and the threshold 6, for both tasks. Adjusting these parameters
not only influences the accuracy of TPL reuse identification but
also directly affects the effectiveness of vulnerability detection.

The community detection algorithm determines how pre-
cisely code is partitioned into communities, which in turn
shapes both dependency identification and vulnerability analy-
sis. The similarity threshold 6 controls whether a dependency
is established between a target project and a TPL community:
a higher threshold favors precision but risks missing valid
dependencies (increasing FNs), whereas a lower threshold
favors recall but may introduce spurious matches (increasing
FPs). Errors in dependency identification inevitably propagate
into the vulnerability detection stage, thereby affecting its
overall accuracy.

2) Community Detection Algorithm Selection

Following OSSFP’s observation that SCA performance is
best reflected by the overall Fl-score, we select the optimal
community detection algorithm for VulSCA based on its high-
est Fl-score. Specifically, we evaluate four algorithms (Lou-
vain [16], Leiden [18], Infomap [17], and Greedy Modularity

TABLE IV
VulSCA’S VULNERABILITY DETECTION PERFORMANCE AT DIFFERENT COMMUNITY SIMILARITY THRESHOLDS (6)

0 097 096 095 094 093 092 091 090 0.89 088 087 086 085 0.84
TP 7 15 19 20 20 20 20 21 21 25 25 25 25 25
FP 9 10 11 11 11 13 13 13 13 13 16 16 16 16
Fl-score 0.23 042 050 052 052 051 051 053 053 060 057 057 057 057
Precision 044 0.60 063 065 065 0.61 061 062 062 0.66 0.61 0.61 0.61 0.61
Recall 0.15 033 041 043 043 043 043 046 046 054 054 054 054 054
o7l = dependency identification while improving recall in vulnerabil-
B | - o e R ity detection, without introducing excessive FPs. We therefore
N 0.6 adopt # = 0.88 as the default threshold, following the same
805| . ¢ principle used by the baselines, where the parameter is selected
i - Infomap based on the highest Fl-score.
L 04 Louvain
0.3 Leiden Answer to RQI: VulSCA selects Infomap as the final
ool <~ T GreedyModularit community detection algorithm based on its performance
070 075 080 085 090 095 1.00 in SCA, with the community similarity threshold 0 set to

Community Similarity Threshold 8

Fig. 5. SCA Results of VulSCA under Varying Community Detection Methods

[19]), to partition the call graphs and build the TPL feature
repository. The target project’s call graph is partitioned using
the same algorithm. A similarity threshold 6 € [0.7,1] is
applied to determine whether a target community depends on
a TPL community.

As shown in Fig. 5, VulSCA achieves the best SCA per-
formance with Infomap, which is especially sensitive to com-
munity size and tends to cluster tightly related functions into
smaller, semantically coherent communities. This granularity
aligns well with SCA requirements, where clear semantics are
essential for accurate dependency identification. In contrast,
other algorithms often produce larger communities by group-
ing loosely related functions, introducing semantic noise that
hinders precise matching. Therefore, given Infomap’s clear
advantage in SCA, we adopt it as the default community
detection algorithm in VulSCA.

3) Community Similarity Threshold Selection

Although VuISCA using the Infomap demonstrates strong
and stable SCA performance across a wide threshold range
(0 € [0.83,0.97]), the threshold that achieves the highest F1-
score in SCA does not necessarily lead to optimal performance
in downstream vulnerability detection. This is because the F1-
scores of the two tasks are not necessarily positively corre-
lated. A high SCA F1-score may arise from high recall but low
precision, introducing false-positive dependencies that cause
the downstream detector to report non-existent vulnerabilities.
Conversely, high precision but low recall may result in missing
critical dependencies, leading to undetected vulnerabilities.

To address this, we focus on the stable interval 6 €
[0.83,0.97] and select the final threshold based on empirical
results from the vulnerability detection task. Within this range,
0 = 0.88 achieves the best trade-off. It maintains accurate

10

0.88 according to its vulnerability detection performance.

C. RQ2: SCA Comparative Experiments

This subsection evaluates VulSCA’s detection performance
for C/C++ SCA through comparative experiments. The exper-
iments use the SCA dataset described in Section IV-Al and
compare VulSCA with CENTRIS [7] and OSSFP [3].

According to Table V, VulSCA outperforms both CENTRIS
and OSSFP in overall detection capability (F1-Score), with
improvements of 4% and 12%, respectively. In terms of preci-
sion, VulSCA achieves the highest performance by leveraging
community-level similarity analysis, exceeding CENTRIS and
OSSFP by over 19%. For recall, VulSCA surpasses CENTRIS
but is slightly lower than OSSFP, due to its stricter criteria
for determining dependency communities, which prioritize
precision at the cost of partial recall. VulSCA also achieves
a higher AUPRC than OSSFP, demonstrating superior overall
performance across different parameter settings. Note that
CENTRIS is excluded from the AUPRC comparison in Table V
because its open-source implementation does not support
parameter tuning.

1) Comparison with OSSFP

VulSCA achieves significantly higher precision than OSSFP.
In practice, inconsistent version management in some TPLs
can lead to inaccurate timestamps, causing OSSFP to mis-
attribute core functions and generate FPs. To address this,
VulSCA introduces a virtual node substitution mechanism:
functions identified as non-original are replaced with vir-
tual nodes, and TPL identification is performed based on
community-level similarity. By jointly considering code text
and call graph structure, this method tolerates partially
misidentified virtual nodes and mitigates the limitations of
timestamp-based approaches in handling nested dependencies.
As a result, VulSCA offers improved precision and robustness
in complex real-world settings.

As for recall, OSSFP, a function-level SCA approach,
identifies dependencies whenever any core function from a

TPL appears in the target repository. Following the common
tuning strategy adopted by all tools, which selects parameters
to maximize the F1-score as described in the OSSFP paper [3],
VulSCA applies stricter community-level dependency criteria
to achieve higher precision, although this results in a slight
reduction in recall.

TABLE V
COMPARISON OF SCA EFFECTIVENESS AND EFFICIENCY BETWEEN
CENTRIS, OSSFP, AND VulSCA

SCA Method TP FP Precision Recall F1-Score AUPRC
CENTRIS 538 401 0.57 0.62 0.60 -
OSSFP 715 520 0.58 0.83 0.68 0.582
VulSCA 588 176 0.77 0.68 0.72 0.634

2) Comparison with CENTRIS

As shown in Table V, CENTRIS has 20% lower preci-
sion compared to VulSCA. CENTRIS detects dependencies
by assessing the similarity between two files after excluding
identical functions, based on the proportion of shared func-
tions. However, due to the impact of chaotic version control
on function-TPL assignments, this approach may result in
files being misattributed to the wrong TPL, leading to FPs.
In contrast, VulSCA, with its community-level dependency
detection, 1s more robust to such issues, which minimizes their
impact and results in higher precision.

Regarding recall, CENTRIS, as a file-level SCA method,
encounters difficulties when a file contains functions from
multiple TPLs, as the similarity between each TPL and the
file may be low, hindering effective dependency detection. In
contrast, VulSCA operates at the community-level, aiming to
group functions from the same TPL into the same community,
thereby strengthening their relationships. As a result, VulSCA
significantly reduces false negatives.

3) VulSCA False Positive Analysis

VulSCA achieves the highest SCA precision; however, as
shown in Table V, it still incurs 176 FPs. To investigate the
root causes, we manually examine all FPs and attribute each
to the responsible component and underlying technique within
VulSCA. The results of this analysis appear in Table VI.

e Input Dataset: Incomplete TPL coverage in the dataset
leads to 30 FPs, accounting for 17.04% of all cases. No
experimental dataset comprehensively covers all open-source
repositories. Consequently, when two projects depend on the
same TPL that is missing from the dataset, the SCA method
may incorrectly infer a dependency between them, producing
FPs. This limitation affects VulSCA as well as all baselines.
However, because all tools are evaluated on the same dataset,
the impact remains consistent and the comparison remains fair.
e Call Graph Construction: At this stage, complex nested
dependencies cause 94 FPs, accounting for 51.13% of all
cases. These errors stem from poorly maintained open-source
repositories or disorganized project structures, which generate
abnormal function creation timestamps. As a result, VulSCA
may misidentify the earliest defined function and incorrectly
attribute the original function to the wrong TPL, thereby

11

TPL Feature Library

TPL,
8\ (O

TPL Feature Library

Com,,

Target Project
False Positive Case (a)

Target Project
False Negative Case (b)

Fig. 6. FP and FN Cases in VulSCA’s SCA

reporting false dependencies. Timestamp anomalies also affect
OSSFP and CENTRIS; however, as discussed in the Compar-
ison with OSSFP section, VulSCA introduces the virtual-node
substitution mechanism, which helps mitigate this issue to
some extent.

e Community Partitioning: A total of 52 FPs, accounting
for 29.54% of all cases, were caused by community-level
granularity. Compared to function-level analysis, community-
level analysis is coarser. VulSCA considers both function code
and graph structure when evaluating community similarity,
which may lead to false dependencies between communities
with similar code and structure. For example, as shown in Fig.
6 (a), TPL,, originally creates functions F5 and F3, while TPL,,
modifies them slightly to create £ and Fj and introduces
a new function Fj that calls Fj and Fj. The target project
directly reuses F> and F3, creating a function F} to call them.
Due to the similarities in function code and graph structure
between community Comgy of the target project and Comg;
of TPL,, VulSCA mistakenly detects community Comg as
dependent on Comys.

4) VulSCA False Negative Analysis

VulSCA results in a total of 274 FNs. Their root causes are
identified through manual analysis, as outlined below.

e Call Graph Construction: In this module, the Call Graph
Extraction and Nested Dependency Elimination steps account
for 90 and 38 FNs, respectively.

The Call Graph Extraction step is limited by the capabilities
of static analysis tools, which may miss certain function call
relationships. As a result, VulSCA cannot accurately partition
communities based on the incomplete call graph, leading to
FNs. This issue accounts for 32.84% of all FNs.

The Nested Dependency Elimination step contributes
13.86% of the FNs. These errors arise from inaccurate times-
tamps, which affect all three SCA tools. When duplicate func-
tions are incorrectly recorded as created before the originals,
the dependency direction is reversed, causing the original
repository to be mistakenly identified as dependent on the
referencing one.

TABLE VI
FP AND FN DISTRIBUTION ACROSS DIFFERENT PHASES OF THE SCA TASKS IN VulSCA

Module FP FN Root Cause
Input Dataset 30 (17.04%) 0 Incomplete TPL coverage in dataset
0 90 (32.84%) Inaccurate call graph extraction

Call Graph Construction 94 51.13%)

38 (13.86%)

Complex nested dependency

Community Partitioning 52 (29.54%)!

146 (53.28%)*

Limitation of community granularity

I Detailed FP cases are visualized in Fig. 6 (a).
2 Detailed FN cases are visualized in Fig. 6 (b).

e Community Partitioning: Community granularity produces
146 FNs, accounting for 53.28% of all FN cases. This typically
occurs when a project reuses only a few functions from a
TPL, which are insufficient to form a cohesive community
in the call graph. As a result, the partitioned community
contains a high proportion of functions authored by the target
project, while the semantic contribution from the TPL is
limited. Consequently, VulSCA fails to identify the dependency
between the community and the original TPL.

For example, as shown in Fig. 6 (b), when the target project
reuses only two functions from TPL,,, the majority of functions
in the resulting community are written by the target project.
This imbalance reduces the semantic presence of TPL, in the
community, which makes it difficult for VulSCA to detect the
actual dependency.

Answer to RQ2: Compared with the baselines, VulSCA
demonstrates superior performance in real-world SCA
scenarios, achieving an FI-score of 0.72 and surpassing
OSSFP and CENTRIS by 4—12%.

D. RQ3: Vulnerability Detection Comparative Experiments

This subsection evaluates two aspects: (1) the impact of
different clone vulnerability detection methods on VulSCA’s
performance, and (2) its effectiveness compared with other
supply chain vulnerability detection methods.

1) Effectiveness of VulSCA with Different Clone Vulnera-

bility Detection Methods

To assess the influence of clone detection techniques and
explore the flexibility of VulSCA to more complex clone
types, we replace its default Vulnerability Existence Analysis
algorithm (i.e., hash) with three advanced methods: Vuddy [4],
Fire [5], and AntMan [9].

We then evaluate VulSCA’s performance in supply chain
vulnerability detection based on the clone vulnerabilities iden-
tified in TPLs by each method. The rows labeled “VulSCA”
in Table VII report its performance under different clone
detection settings. Replacing the default hash-based approach
with advanced tools such as Vuddy, Fire, and AntMan increases
the number of vulnerabilities detected and demonstrates that
VulSCA can adapt to different levels of clone complexity.

In terms of TPs, all alternative methods outperform
VulSCApagn- VulSCAp;y. detects the most TPs (31), followed by
VulSCA gnivan (28) and VulSCAv,qqy (27). Fire and AntMan sur-
pass Vuddy by identifying Type-III clones. Although AntMan

12

TABLE VII
COMPARISON OF VULNERABILITY DETECTION EFFECTIVENESS BETWEEN
VULSCA AND OTHER DETECTION SOLUTIONS

Group Method FP TP F1 Precise Recall
Version-based OSSFP 560 22 0.07 0.04 0.42
CENTRIS 310 22 0.11 0.07 0.42
Vuddy 62 30 041 0.33 0.57
Code-based Fire 113 34 034 023 0.64
AntMan 75 30 038 029 0.57
OSSFP-Hash 35 28 048 0.44 0.53
Code-based OSSFP-Vuddy 41 28 046 0.41 0.53
Combined with OSSFP-Fire 87 33 0.38 0.28 0.62
Version-based OSSFP-AntMan 44 29 046 0.40 0.55
ViScan 46 17 0.29 0.27 0.32
VulSCAygyy, (default) 13 25 055 0.66 047
VulSCAviaay 13 27 058 0.68 0.51
VulS€A VilSCApire 25 31 057 055 058
VulSCA pnistan 20 28 0.55 0.58 0.53

is designed to handle more complex clones through normalized
call graphs and interprocedural attribute clustering, its TP
count is slightly lower than that of VulSCAp;.. This may be
because Type-III clones are relatively rare in the dataset and
some call relations are missed during graph construction due to
tool limitations. Overall, all three methods improve detection
performance compared with the default hash-based approach.

However, VulSCAg;. yields the highest number of FPs, pri-
marily because Fire does not incorporate reachability analysis.
Although it detects many vulnerabilities, a significant portion
are not actually invoked by the target project. Fire originally
reports 113 FPs, and while VulSCAp;, reduces this number
to 25 through its own reachability analysis, some unreachable
instances remain.

In summary, VulSCA exhibits strong extensibility by sup-
porting the integration of advanced clone vulnerability detec-
tion tools. Tools such as Vuddy, Fire, and AntMan further en-
hance its effectiveness in supply chain vulnerability detection.

2) Comparison between VulSCA and Baselines for Supply

Chain Vulnerability Detection

To assess the effectiveness of VulSCA, we compare it against
several representative baselines for supply chain vulnerability
detection. These include version-based SCA tools, code-based
clone vulnerability detectors, and hybrid approaches that com-
bine SCA with vulnerability detection techniques.
Comparison with Version-based Methods. The rows labeled
“Version-based” in Table VII show the detection results when
C/C++ SCA methods are directly applied to supply chain
vulnerability detection. These methods assume that if a target

TABLE VIII
FP AND FN DISTRIBUTION ACROSS DIFFERENT PHASES OF THE VULNERABILITY DETECTION TASKS IN VulSCA.

FN

FP'

VulSCAjq, VulSCAviaay VuISCApie VulSCApuptan VitlSCApay, VuISCAviaqy VuISCArie VuISCAputan Root Cause
TPL Reuse - . .
[0 (o o
Identification 1 (3.57%) 1 (3.84%) 1 (4.54%) 1 (4%) 0 0 0 0 Missing TPL dependency Identification
V”m”az‘nl:lyy ::i“s‘ence 14 (50%) 12 (46.15%) 8 (36.36%) 11 (44%) 0 0 0 0 Limited performance of clone detection
Vulnerability Reachability o P . 0 P P P P FN: imprecise call graph construction
Analysis 13 (46.42%) 13 (50%) 13 (59.09%) 13 (52%) 13 (100%) 13 (100%) 25 (100%) 20 (100%) FP: incomplete path checking

1 Detailed FP cases are visualized in Fig. 7.

project depends on a vulnerable TPL, the project is affected
and should be flagged accordingly. Specifically, they identify
the TPLs and versions used by the target project, query
vulnerability databases for known issues in those versions, and
report the results as supply chain vulnerabilities [1].

However, VulSCA significantly outperforms both CENTRIS

and OSSFP, achieving 44-48% higher Fl-scores. This im-
provement arises from two major limitations of version-based
approaches: (1) they generate many FPs due to the lack
of code-level validation, and (2) their recall is constrained
by incomplete or inaccurate component—version mappings
in vulnerability databases. As a result, these methods often
miss real vulnerabilities while reporting numerous irrelevant
ones. Overall, the findings indicate that direct application
of existing version-based SCA techniques is inadequate for
accurate supply chain vulnerability detection.
Comparison with Code-based Methods. The “Code-based”
rows in Table VII show the results of directly applying clone-
based vulnerability detection to supply chain scenarios. These
methods search for code in the target project that resembles
known vulnerable functions and assume that all such matches
pose real risks.

When integrated with clone detection tools, VulSCA im-

proves their original F1-scores by 17-23% and increases preci-
sion by 29-35%. This demonstrates that VulSCA’s reachability
analysis substantially enhances the accuracy of vulnerability
detection. Code-based methods rely solely on code similarity
without verifying whether the matched vulnerable functions
are actually invoked by the target project. This limitation arises
from the high cost of function-level reachability analysis,
which often suffers from path explosion and excessive time
or memory consumption. VulSCA mitigates this problem by
operating at the community level.
Comparison of Version-based Combined with Code-based
Approaches. To fairly evaluate VulSCA, which integrates SCA
with clone vulnerability detection, we compare it with two
baselines that adopt similar integration strategies. The first is a
set of enhanced OSSFP variants (OSSFP-*), where the original
OSSFP is augmented with different clone detection modules to
enable function-level vulnerability identification. The second
is VIScan, which extends CENTRIS by incorporating patch-
based validation for vulnerability detection.

While CENTRIS alone is a widely used SCA tool, it operates
at the file level and lacks the granularity to determine which
specific TPL functions are actually used in the target project.

13

Target Project

N

Fig. 7. FP Cases in VulSCA’s Vulnerability Detection

This limitation prevents it from directly supporting precise
clone vulnerability detection. As a workaround, VIScan aug-
ments CENTRIS with vulnerability-specific patch matching.
For consistency and completeness, we re-implement VIScan
for comparison in our evaluation.

The results show that VulSCA consistently outperforms all
these combined approaches, achieving F1-score improvements
ranging from 7% to 19%. Notably, when paired with a more
powerful clone detector such as Fire, VulSCA achieves even
greater gains, surpassing OSSFP-Fire by 19% and VIScan
by 28%. In particular, VulSCA exhibits substantially higher
precision than these approaches, which is primarily attributed
to its reachability analysis that effectively filters out non-
invoked vulnerabilities.

Reasons for VulSCA’s Higher Precision. VulSCA’s supe-
riority in detection accuracy over other detection methods
primarily stems from three key innovations:

o Community-level Dependency Detection: VulSCA employs
community-level SCA detection, which not only provides
reliable support for subsequent supply chain vulnerability de-
tection but also successfully avoids the path explosion problem
common in function-level path analysis.

o Vulnerability Existence Analysis: After completing SCA
detection, VulSCA further integrates clone detection technol-
ogy to filter out unreused third-party vulnerable functions in
the project. Compared with traditional version-based schemes,
this method can significantly reduce FPs.

o Vulnerability Reachability Analysis: After detecting vul-
nerability, VulSCA further verifies whether these are reachable
from the project’s entry point. This additional validation im-
proves detection accuracy. In contrast, existing version-based
and code-based methods lack this path-sensitive analysis.
Even when combining the two, they cannot address the high
overhead of reachability analysis, leading to more FPs.

TABLE IX
COMPARISON OF EFFICIENCY BETWEEN VulSCA AND OTHER DETECTION SOLUTIONS

Software Composition Analysis Time (s) Vulnerability Detection Time (s) Total Avg. Peak Memory Average Memory
Group Method - — - — Ti Ti U GB U GB
Feature Extraction TPL Identification Detection Reachability ime (s) ime (s) sage (GB) sage (GB)
Time (s) Time (s) Time (s) Analysis Time (s)

Version-based OSSFP 6,382 12 1 - 6,395 80 10.2 45
CENTRIS 6,588 16,579 1 23,168 290 11.9 52
Vuddy 8,027 3,440 11,467 143 9.9 6.9
Code-based Fire 2,464 9,856 12,320 154 10.1 7.8
AntMan 19,553 13,035 32,588 407 7.9 6.6
OSSFP-Hash 6,376 12 1 6,388 80 10.2 43
Code-based OSSFP-Vuddy 6,762 12 166 6,939 87 10.2 45
Combined with OSSFP-Fire 6,775 12 1,601 8,388 105 10.2 5.1
Version-based OSSFP-AntMan 7,316 12 627 7,956 99 10.2 4.7
VIScan 6,588 16,579 2,385 25,544 319 11.9 4.7
VulSCA g (default) 7,011 46 1 182 7,240 91 16.2 72
VuISCA VulSCAviaay 7,162 46 351 189 7,748 97 16.2 7.1
VulSCAFire 7,375 46 1,455 310 9,187 115 16.2 7.3
VulSCA ntman 7,867 46 570 214 8,697 109 16.2 7.1

VulSCA False Positive Analysis. Manual analysis shows that
all FPs in VulSCA stem from limitations in its reachability
analysis, as summarized in Table VIII. To improve efficiency,
VulSCA performs reachability analysis in two stages: (1) inter-
community analysis, from the project’s entry community to
the vulnerable community, and (2) intra-community analysis,
within the vulnerable community itself, from its entry function
to the vulnerable function.

However, it skips intra-community checks for intermediate
communities along the path, except for the vulnerable commu-
nity. As illustrated in Fig. 7, although F% in Coms is reachable
from Comy, there is no path from F; to the vulnerable function
F5 within Coms. Since Coms is not the vulnerable community,
its internal reachability is not analyzed, which leads to an FP.
VulSCA False Negative Analysis. Manual analysis reveals
that the FNs in VulSCA arise from three main phases: TPL
reuse identification, vulnerability existence analysis, and vul-
nerability reachability analysis. Among these, the latter two
account for the majority of cases, contributing 36% to 52% of
all FNs, as shown in Table VIII.

e TPL Reuse Identification: This phase contributes a rel-
atively small portion of FNs. Such cases occur when some
dependency relationships are not successfully identified during
the SCA phase. As a result, vulnerabilities in the reused TPLs
cannot be detected, leading to FNs.

o Vulnerability Existence Analysis: The FNs in this phase
vary depending on the clone detection algorithm used in
VulSCA. They occur when the clone-based vulnerability detec-
tion tool fails to recognize the presence of a known vulnerable
code snippet from a TPL in the target repository. Therefore,
performance is closely tied to the capability of the underlying
clone detection algorithm. As shown in Table VIII, clone
detection tools with stronger detection capabilities, such as
Fire (which supports Type-III clones), result in fewer FNs
compared with simpler tools like hash (which supports only
Type-I clones).

o Vulnerability Reachability Analysis: The FNs in this phase
mainly result from inaccuracies in call graph construction,
which lead to missing call edges. Consequently, when VulSCA

14

performs reachability analysis, some call chains are incorrectly
considered broken. These incomplete paths make vulnerabili-
ties appear unreachable, ultimately causing FNs.

Answer to RQ3: VulSCA demonstrates strong flexibility in
supply chain vulnerability detection, with its performance
further enhanced by integration with advanced clone de-
tection tools. On this task, it achieves 44—48% higher F1I-
scores than version-based methods and 17-23% higher
than code-based methods.

E. RQA4: Efficiency Analysis

This subsection analyzes the time and memory overhead of
each tool to evaluate scalability and efficiency. The results are
summarized in Table IX.

1) Time Overhead in the SCA Phase

The SCA phase typically consists of two steps: feature
extraction and TPL identification, although their implementa-
tions differ across method groups. In terms of total SCA time,
VulSCA-Hash runs significantly faster than CENTRIS and only
slightly slower than OSSFP.

Version-based tools extract features after code preprocessing
and perform matching during TPL identification. Code-based
tools, which rely on clone detection, skip TPL identification
and instead extract clone-relevant features. Hybrid methods
(i.e., version-based combined with code-based) and VulSCA
follow a two-part process: extracting TPL features and gen-
erating clone vulnerability features based on the SCA results.
Since hybrid methods share the same SCA process as version-
based tools, we focus on OSSFP, CENTRIS, and VulSCA when
comparing time overhead.

VulSCA’s feature extraction is the most time-consuming
step, as it involves call graph construction and community
partitioning. In contrast, OSSFP computes function hashes di-
rectly, and CENTRIS applies locality-sensitive hashing (LSH).
Although VulSCA introduces additional overhead, the cost
remains acceptable given its improved accuracy.

For TPL identification, OSSFP is the fastest because it
relies on simple hash matching. CENTRIS is the slowest,

since it compares every function pair between the project
and TPLs using LSH, which incurs high computational cost.
VulSCA improves efficiency by computing similarity at the
community level rather than the function level, which dras-
tically reduces the number of comparisons. Its lightweight
community features and GPU-accelerated similarity further
enhance performance, enabling it to complete identification
in only 46 seconds.

2) Time Overhead in the Vulnerability Detection Phase

Vulnerability detection time consists of two components:
detection time and reachability analysis time. Detection time
refers to the time spent identifying supply chain vulnerabilities
based on extracted features. Reachability analysis, which is
supported only by VulSCA, determines whether a detected
clone vulnerability is reachable from the project’s entry point.
Overall, version-based tools are the fastest, followed by hy-
brid methods (code-based combined with version-based) and
VulSCA, while code-based tools are the slowest.

Version-based tools achieve the highest speed because they
only query known vulnerabilities by matching TPL names
and versions from the SCA results. However, without code-
level semantic analysis, their detection F1-scores remain very
low (0.07 and 0.11). Code-based methods perform exhaustive
clone detection by comparing every project function against
all known vulnerable functions, which introduces substantial
overhead. In contrast, hybrid methods and VulSCA reduce
this cost by narrowing the clone detection scope to the TPLs
identified during the SCA phase. As a result, even with the
additional reachability analysis step, VulSCA remains faster
than pure code-based approaches.

Notably, under the same clone detection algorithm, VulSCA
variants demonstrate higher efficiency than both OSSFP-based
combinations and VIScan. This improvement stems from
VulSCA’s more accurate SCA results, which localize vulnera-
ble dependencies more precisely and thereby reduce redundant
clone matching. These findings underscore the importance of
accurate SCA in minimizing vulnerability detection time.

3) Overall Time Overhead Analysis

VulSCA variants achieve better overall detection efficiency
than all methods in the code-based group and perform com-
parably to OSSFP-based combinations, while delivering sig-
nificantly higher detection accuracy.

The code-based group is noticeably slower because it lacks
an SCA stage. Without SCA to narrow the scope of potential
vulnerable TPLs, these methods must scan many irrelevant
candidates, nearly doubling the total detection time. VulSCA
incurs slightly more overhead than OSSFP-based combinations
due to feature extraction and reachability analysis. Building the
call graph and performing community partitioning introduce
extra cost, but this is largely offset by the reduced comparison
count during TPL identification. Each TPL contains an average
of 3,522 functions, while community partitioning reduces this
number to 918 on average, significantly lowering the number
of comparisons. Reachability analysis adds little overhead,
since it considers only inter-community paths and intra-
community reachability within the vulnerable community.

15

On average, VulSCA requires about 10 seconds more per
project than OSSFP-based combinations. However, this small
increase yields about 10% higher detection accuracy, demon-
strating that VulSCA achieves a favorable balance between
efficiency and accuracy.

4) Memory Overhead Analysis

For tools that include TPL identification, peak memory
usage occurs during this phase because TPL feature data must
be loaded and compared. Among them, the VulSCA-* variants
show the highest peak memory consumption. This is because
VulSCA performs similarity computations on community-level
features, which introduces additional memory overhead. As
a result, both its peak and average memory usage are the
highest, though still within an acceptable range. It is also worth
noting that both VulSCA and AntMan utilize GPU acceleration.
During execution, VulSCA’s peak GPU memory usage remains
low at 3.1GB (less than 10% of total GPU memory), indicating
minimal reliance on GPU resources.

Answer to RQ4: VulSCA maintains acceptable memory
usage and comparable time efficiency while delivering
higher detection accuracy, achieving a favorable balance
between efficiency and accuracy.

V. DISCUSSION
A. Practicality of VulSCA

We apply VulSCA to detect supply chain vulnerabilities in 80
high-quality open-source projects. By combining community-
level dependency detection with reachability analysis, VulSCA
identifies 32 vulnerabilities with reachable call paths. To
validate these findings, we perform small-scale directed fuzz
testing using a state-of-the-art directed fuzzing tool [31].
This process confirms 18 vulnerabilities. For each confirmed
case, we provide fix suggestions and submit detailed reports
through GitHub Issues. To date, five project maintainers have
acknowledged and merged our reports.

B. Call Graph Extraction

Although VulSCA employs state-of-the-art call graph con-
struction tools, the generated graphs still suffer from incom-
plete call relationships. Moreover, even minor modifications
in the call graph can lead to significant changes in community
structures, thereby affecting the detection performance of
VulSCA. In future work, we plan to design a more efficient
and accurate call graph construction scheme to address the
issue of incomplete call relationships and to enhance both the
stability and effectiveness of VulSCA.

C. Similarity Metric Averaging

The current averaging strategy for combining structural- and
code-level features in VulSCA is selected based on extensive
empirical validation. Our analysis shows that structural and
code features play distinct yet complementary roles in SCA
scenarios. In earlier experiments, we applied independent simi-
larity thresholds for structure (V) and code (V) features using
grid search. However, this approach decreases the Fl1-score

(from 0.72 to 0.70) and introduces instability, as the decision
boundaries become more sensitive to feature noise. In contrast,
the averaging strategy demonstrates stronger robustness and
better generalizability across diverse projects. Nevertheless,
we acknowledge the asymmetric contributions of structural
and code features. As future work, we plan to investigate
adaptive weighting mechanisms to dynamically integrate the
two feature types and further enhance detection performance.

D. Nested Dependency Handling

Existing methods typically rely on timestamps to resolve
nested dependencies. However, in practice, issues such as
repository migration, missing timestamps, or inconsistencies
may cause the timestamp of a function’s source repository to
appear later than that of its reused repository. This reversal can
mislead TPL reuse identification and result in FPs. To mitigate
this issue, VulSCA introduces a virtual node substitution mech-
anism to enhance nested dependency handling. Specifically,
functions identified as non-original within a community are
replaced with virtual nodes, and SCA is then performed at
the community level. This approach reduces the impact of
inaccurate timestamps for individual functions and improves
the SCA’s robustness.

E. Dataset Selection Bias

Since the OSSFP dataset is not publicly available, we repro-
duced its construction process and further annotated reachable
vulnerabilities associated with TPLs, which are essential for
supply chain vulnerability detection. This additional annota-
tion effort limited the dataset size but made it more suitable
for evaluating SCA tools in the vulnerability detection task.
In contrast, the original OSSFP dataset lacks vulnerability
information and is thus not applicable to this task. As noted in
Section IV.C, 30 FPs were caused by incomplete TPL coverage
in our dataset. Nevertheless, all methods were evaluated on the
same dataset, ensuring fair and consistent comparison. We plan
to expand the dataset in future work to include more real-world
projects and further assess the generalizability of VulSCA.

VI. RELATED WORK
A. Software Composition Analysis

Developers increasingly clone TPL code to improve devel-
opment efficiency. Studies report that 10-30% of code across
repositories consists of cloned segments [32], [33]. However,
code reuse also introduces security risks: even widely adopted
TPLs such as Log4j contain numerous vulnerabilities that can
propagate to many Java codebases through dependencies [34],
[35]. Zerouali [36] highlights that clarifying dependency re-
lationships can mitigate risks, while Alfadel [37] finds that
excessively long vulnerability fix cycles exacerbate them.
These findings underscore the need for SCA tools to manage
TPL dependencies and address security risks.

For languages with official package managers such as Java
and Python, SCA tools [38], [39], [40], [41] detect depen-
dencies by parsing dependency files, and their effectiveness
has been validated in empirical studies [42], [43], [44]. In

16

contrast, C/C++ lacks official package management support, so
SCA relies primarily on code clone detection techniques [45],
[46], [47], which face notable limitations. For example, OS-
SPolice [2] uses directory structures as TPL signatures, but
structural changes often lead to false negatives. SourcererCC
[6] improves robustness but struggles with nested clones across
TPLs. CENTRIS [7] addresses nested clones but suffers from
prohibitively high time complexity. OSSFP [3] extracts core
functions as TPL signatures, yet the omission of vulnerability-
related functions in core selection limits its effectiveness for
supply chain vulnerability detection.

B. Clone Vulnerability Detection and Reachability Analysis

Cloning TPL code into projects can also propagate vulnera-
bilities from TPLs to dependent projects. Code clone detection
techniques [48], [49], [50], [51], [52], [53] have been widely
applied to identify clones, and some studies [54], [4], [55],
[25], [1] extend these approaches to detect cloned vulnerabil-
ities. While effective, clone detection typically requires full
repository scans to identify N-day vulnerabilities, making it
difficult to respond promptly after vulnerability disclosures.
Integrating SCA to narrow the scan scope can significantly
improve efficiency and enable faster mitigation of security
threats [56].

Most existing methods emphasize code similarity while
overlooking whether detected vulnerabilities are actually
reachable, which limits their practical applicability. Reach-
ability analysis addresses this issue by evaluating whether
vulnerabilities can propagate to execution paths, thereby re-
ducing false positives. Several studies [57], [58], [59], [60],
[23] have explored upstream vulnerability reachability. For
example, symbolic execution has been used to analyze bug
reachability in Python scientific libraries, though it relies
heavily on conditions extracted from bug reports [58]. In the
Java ecosystem, static and dynamic analyses have been applied
to improve reachability assessment and enhance tools such
as Evosuite [61]. However, these efforts are often ecosystem-
specific and limited in scope. Research on vulnerability reach-
ability in C/C++ remains scarce, highlighting the need for
further investigation in this critical area.

VII. CONCLUSION

This paper tackles the challenge of C/C++ software supply
chain vulnerability analysis by bridging the long-standing gap
between SCA and vulnerability detection. We present VulSCA,
the first community-level SCA framework that simultaneously
supports dependency identification, vulnerability detection,
and reachability analysis. By modeling call graphs as social
networks, VulSCA extracts semantic communities to achieve
more accurate dependency identification. Experimental results
show that VulSCA outperforms traditional SCA tools such as
CENTRIS and OSSFP, achieving 4-12% higher F1-scores in
dependency detection. For supply chain vulnerability detec-
tion, it delivers even greater benefits, improving F1-scores by
17-48% compared to conventional methods.

ACKNOWLEDGEMENTS

We would thank the anonymous reviewers for their in-
sightful comments to improve the quality of the paper. This
work is supported by the Program of National Natural Science
Foundation of China under Grant No. 62172168.

[1]

[2]

[3]

[6]

[7]

[8]

[10]
(1]

[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

Seunghoon Woo, Eunjin Choi, Heejo Lee, and Hakjoo Oh. Vlscan:
Discovering 1-day vulnerabilities in reused c/c++ open-source software
components using code classification techniques. In 32nd USENIX
Security Symposium, pages 6541-6556, 2023.

Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee.
Identifying open-source license violation and 1-day security risk at large
scale. In Proceedings of the 24th ACM SIGSAC Conference on computer
and communications security, pages 2169-2185, 2017.

Jiahui Wu, Zhengzi Xu, Wei Tang, Lyuye Zhang, Yueming Wu,
Chengyue Liu, Kairan Sun, Lida Zhao, and Yang Liu. Ossfp: Precise
and scalable c/c++ third-party library detection using fingerprinting func-
tions. In Proceedings of the 45th IEEE/ACM International Conference
on Software Engineering, pages 270-282, 2023.

Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. Vuddy: A
scalable approach for vulnerable code clone discovery. In Proceedings
of the 38th IEEE Symposium on Security and Privacy, pages 595-614,
2017.

Siyue Feng, Yueming Wu, Wenjie Xue, Sikui Pan, Deqing Zou, Yang
Liu, and Hai Jin. Fire: Combining multi-stage filtering with taint analysis
for scalable recurring vulnerability detection. In Proceedings of the 33rd
USENIX Security Symposium, pages 1867—1884, 2024.

Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and
Cristina V Lopes. Sourcerercc: Scaling code clone detection to big-
code. In Proceedings of the 38th international conference on software
engineering, pages 1157-1168, 2016.

Seunghoon Woo, Sunghan Park, Seulbae Kim, Heejo Lee, and Hakjoo
Oh. Centris: A precise and scalable approach for identifying modified
open-source software reuse. In Proceedings of the 43rd IEEE/ACM
International Conference on Software Engineering, pages 860-872,
2021.

Awad A Younis, Yashwant K Malaiya, and Indrajit Ray. Using attack
surface entry points and reachability analysis to assess the risk of
software vulnerability exploitability. In Proceedings of the 15th IEEE In-
ternational Symposium on High-Assurance Systems Engineering, pages
1-8, 2014.

Yiheng Cao, Susheng Wu, Ruisi Wang, Bihuan Chen, Yiheng Huang,
Chenhao Lu, Zhuotong Zhou, and Xin Peng. Recurring vulnerability
detection: How far are we? Proceedings of the ACM on Software
Engineering, 2(ISSTA):573-595, 2025.

NGINX. https://github.com/nginx/nginx., 2025.

Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Dongxiao He, Jia Wu,
Philip S Yu, and Weixiong Zhang. A survey of community detection ap-
proaches: From statistical modeling to deep learning. /[EEE Transactions
on Knowledge and Data Engineering, 35(2):1149-1170, 2021.

Splayer. https://github.com/tomasen/splayer, 2017.

Openssl. https://www.openssl.org/, 2021.

Dong Qiu, Bixin Li, and Hareton Leung. Understanding the api usage
in java. Information and software technology, 73:81-100, 2016.
Doxygen. https://www.doxygen.nl, 2025.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-
enne Lefebvre. Fast unfolding of communities in large networks. Journal
of statistical mechanics: theory and experiment, 2008(10):P10008, 2008.
Martin Rosvall and Carl T Bergstrom. Maps of random walks on
complex networks reveal community structure. Proceedings of the
national academy of sciences, 105(4):1118-1123, 2008.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain
to leiden: guaranteeing well-connected communities. Scientific reports,
9(1):1-12, 2019.

Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding com-
munity structure in very large networks. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics, 70(6):066111, 2004.

Haojun Zhao, Yueming Wu, Deqing Zou, and Hai Jin. An empirical
study on android malware characterization by social network analysis.
IEEE Transactions on Reliability, 73(1):757-770, 2023.

17

[21]
[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]
[30]

[31]

(32]

[33

[t

[34]

[35]
(36]

(371

[38]
[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

Luai Al Shalabi, Zyad Shaaban, and Basel Kasasbeh. Data mining:
A preprocessing engine. Journal of Computer Science, 2(9):735-739,
2006.

National vulnerability database. https://nvd.nist.gov, 2021.

Yulun Wu, Zeliang Yu, Ming Wen, Qiang Li, Deqing Zou, and Hai
Jin. Understanding the threats of upstream vulnerabilities to downstream
projects in the maven ecosystem. In Proceedings of the 45th IEEE/ACM
International Conference on Software Engineering, pages 1046-1058,
2023.

Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia.
Patchdb: A large-scale security patch dataset. In Proceedings of the 51st
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 149-160, 2021.

Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan,
Feng Li, Binghong Liu, Yang Liu, Wei Huo, Wei Zou, et al. Mvp:
Detecting vulnerabilities using patch-enhanced vulnerability signatures.
In Proceedings of the 29th USENIX Security Symposium, pages 1165—
1182, 2020.

ctags. https://github.com/universal-ctags/ctags, 2025.

re. https://docs.python.org/3/library/re.html, 2025.

hashlib. https://docs.python.org/3/library/hashlib.html, 2025.

The MapEquation software package. https://mapequation.org, 2025.
Software for complex networks (networkx). http://networkx.github.io,
2021.

Penghui Li, Wei Meng, and Chao Zhang. Sdfuzz: Target states
driven directed fuzzing. In Proceedings of the 33rd USENIX Security
Symposium, pages 2441-2457, 2024.

Mohammad Gharehyazie, Baishakhi Ray, Mehdi Keshani, Ma-
soumeh Soleimani Zavosht, Abbas Heydarnoori, and Vladimir Filkov.
Cross-project code clones in github. Empirical Software Engineering,
24:1538-1573, 2019.

Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. On code reuse
from stackoverflow: An exploratory study on android apps. Information
and Software Technology, 88:148-158, 2017.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray.
Deep learning based vulnerability detection: Are we there yet? [EEE
Transactions on Software Engineering, 48(9):3280-3296, 2021.
Apache log4j2. https://github.com/apache/logging-log4j2., 2022.
Ahmed Zerouali, Tom Mens, Alexandre Decan, and Coen De Roover.
On the impact of security vulnerabilities in the npm and rubygems
dependency networks. Empirical Software Engineering, 27(5):107,
2022.

Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. Empirical

analysis of security vulnerabilities in python packages. Empirical
Software Engineering, 28(3):59, 2023.

Eclipse steady. https://github.com/eclipse/steady/, 2022.

Owasp dependency-check project - owasp. https://owasp.org/
www-project-dependency-check/, 2021.

About alerts for vulnerable dependencies - github docs.

https://docs.github.com/en/code- security/supply-chain-security/
managing-vulnerabilities-in- your-projects-dependencies/
about-alerts- for- vulnerable-dependencies, 2023.

Ochrona. https://ochrona.dev, 2021.

Andreas Dann, Henrik Plate, Ben Hermann, Serena Elisa Ponta, and Eric
Bodden. Identifying challenges for oss vulnerability scanners-a study
& test suite. IEEE Transactions on Software Engineering, 48(9):3613—
3625, 2021.

Nasif Imtiaz, Seaver Thorn, and Laurie Williams. A comparative
study of vulnerability reporting by software composition analysis tools.
In Proceedings of the 15th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pages 1-11, 2021.
Lida Zhao, Sen Chen, Zhengzi Xu, Chengwei Liu, Lyuye Zhang,
Jiahui Wu, Jun Sun, and Yang Liu. Software composition analysis
for vulnerability detection: An empirical study on java projects. In
Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 960-972, 2023.

Abdullah Sheneamer and Jugal Kalita. A survey of software clone
detection techniques. International Journal of Computer Applications,
137(10):1-21, 2016.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing
for similarity search: A survey. arXiv preprint arXiv:1408.2927, 2014.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Chanchal Kumar Roy and James R Cordy. A survey on software clone
detection research. Queen’s School of computing TR, 541(115):64—68,
2007.

Siyue Feng, Wenqi Suo, Yueming Wu, Deqing Zou, Yang Liu, and Hai
Jin. Machine learning is all you need: A simple token-based approach
for effective code clone detection. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, pages 1-13, 2024.
Tiancheng Hu, Zijing Xu, Yilin Fang, Yueming Wu, Bin Yuan, Deqing
Zou, and Hai Jin. Fine-grained code clone detection with block-based
splitting of abstract syntax tree. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
pages 89-100, 2023.

Yutao Hu, Deqing Zou, Junru Peng, Yueming Wu, Junjie Shan, and
Hai Jin. Treecen: Building tree graph for scalable semantic code
clone detection. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, pages 1-12, 2022.
Yuekun Wang, Yuhang Ye, Yueming Wu, Weiwei Zhang, Yinxing
Xue, and Yang Liu. Comparison and evaluation of clone detection
techniques with different code representations. In Proceedings of the
45th International Conference on Software Engineering, pages 332-344,
2023.

Yueming Wu, Siyue Feng, Deqing Zou, and Hai Jin. Detecting semantic
code clones by building ast-based markov chains model. In Proceedings
of the 37th IEEE/ACM International Conference on Automated Software
Engineering, pages 1-13, 2022.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang,
and Xudong Liu. A novel neural source code representation based on
abstract syntax tree. In Proceedings of the 41st IEEE/ACM International
Conference on Software Engineering, pages 783-794, 2019.

Jiyong Jang, Abeer Agrawal, and David Brumley. Redebug: Finding
unpatched code clones in entire os distributions. In Proceedings of the
33rd IEEE Symposium on Security and Privacy, pages 48-62, 2012.
Benjamin Bowman and H Howie Huang. Vgraph: A robust vulnerable
code clone detection system using code property triplets. In Proceedings
of the 5th IEEE European Symposium on Security and Privacy, pages
53-69, 2020.

Shangzhi Xu, Jialiang Dong, Weiting Cai, Juanru Li, Arash Shaghaghi,
Nan Sun, and Siqi Ma. Enhancing security in third-party library reuse—
comprehensive detection of 1-day vulnerability through code patch
analysis. In Proceedings of the 32nd Annual Network and Distributed
System Security Symposium, 2025.

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta,
and Fabio Massacci. Vulndreal: A methodology for counting actually
vulnerable dependencies. IEEE Transactions on Software Engineering,
48(5):1592-1609, 2020.

Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yang Feng, Zhaogui
Xu, Zhifei Chen, Yuming Zhou, and Baowen Xu. Impact analysis of
cross-project bugs on software ecosystems. In Proceedings of the 42nd
ACM/IEEE International Conference on Software Engineering, pages
100-111, 2020.

Henrik Plate, Serena Elisa Ponta, and Antonino Sabetta. Impact
assessment for vulnerabilities in open-source software libraries. In
Proceedings of the 31st IEEE International Conference on Software
Maintenance and Evolution, pages 411-420, 2015.

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta,
and Fabio Massacci. Vulnerable open source dependencies: Counting
those that matter. In Proceedings of the 12th ACM/IEEE international
symposium on empirical software engineering and measurement, pages
1-10, 2018.

Emanuele Iannone, Dario Di Nucci, Antonino Sabetta, and Andrea
De Lucia. Toward automated exploit generation for known vulnerabil-
ities in open-source libraries. In Proceedings of the 29th International
Conference on Program Comprehension, pages 396—400, 2021.

18

