
BINALIGNER: Aligning Binary Code for
Cross-Compilation Environment Diffing

Yiran Zhu1, Tong Tang1, Jie Wan1, Ziqi Yang*1,2, Zhenguang Liu*1,2, and Lorenzo Cavallaro3

1The State Key Laboratory of Blockchain and Data Security, Zhejiang University
2Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

3University College London
{zhuyiran, tong.tang, wanjie, yangziqi, liuzhenguang}@zju.edu.cn, l.cavallaro@ucl.ac.uk

Abstract—Binary diffing aims to align portions of control
flow graphs corresponding to the same source code snippets
between two binaries for software security analyses, such as
vulnerability and plagiarism detection tasks. Previous works have
limited effectiveness and inflexible support for cross-compilation
environment scenarios. The main reason is that they perform
matching based on the similarity comparison of basic blocks.
In our work, we propose a novel diffing approach BINALIGNER
to alleviate the above limitations at the binary level. To reduce
the likelihood of false and missed matches corresponding to the
same source code snippets, we present conditional relaxation
strategies to find candidate subgraph pairs. To support a more
flexible binary diffing in cross-compilation environment scenarios,
we use instruction-independent basic block features for sub-
graph embedding generation. We implement BINALIGNER and
conduct experiments across four cross-compilation environment
scenarios (i.e., cross-version, cross-compiler, cross-optimization
level, and cross-architecture) to evaluate its effectiveness and
support ability for different scenarios. Experimental results show
that BINALIGNER significantly outperforms the state-of-the-art
methods in most scenarios. Especially in the cross-architecture
scenario and multiple combinations of cross-compilation envi-
ronment scenarios, BINALIGNER exhibits F1-scores that are on
average 65% higher than the baselines. Two case studies using
real-world vulnerabilities and patches further demonstrate the
utility of BINALIGNER.

I. INTRODUCTION

Binary code differential analysis, i.e., binary diffing [1]–
[4], aims to align code portions corresponding to the same
source code snippets between two binaries. It can play a
vital role in a series of security scenarios caused by code
cloning [5], [6], such as code plagiarism detection [7], [8],
vulnerability and patch analysis [9], [10], and bug replication
analysis [11]. Another technique called binary code similarity
detection [12]–[26] is widely used in these security scenarios.
In contrast to binary code similarity detection which learns

* Corresponding authors: Ziqi Yang (yangziqi@zju.edu.cn) and Zhenguang
Liu (liuzhenguang@zju.edu.cn)

feature representations to evaluate the similarity between two
binaries, binary diffing focuses on finding correspondences to
capture the differences between them. Therefore, the goal of
binary diffing cannot be directly achieved using binary code
similarity detection methods, which do not output correspon-
dences. In this paper, we focus on aligning portions of the
Control Flow Graph (CFG) that correspond to the same source
code snippets between two given binary functions in cross-
compilation environment scenarios.

The main challenge of binary diffing in cross-compilation
environment scenarios is that basic blocks corresponding to
the same source code may not always align precisely. This is
because different compilation strategies in varying compilation
environments may cause changes in divisions of basic blocks
corresponding to the same source code. For example, a piece
of source code may be split into multiple basic blocks in one
compilation environment, while multiple basic blocks may be
merged into one in another compilation environment (such as
a higher optimization level).

Existing binary diffing methods, both traditional-based and
Machine Learning (ML)-based, do not address this challenge.
These methods rely on basic block matching, which involves
computing the similarity of two basic blocks. Traditional meth-
ods usually perform basic block matching using instruction
syntax and rely on fixed rules, which can easily be disrupted
by changes in the compilation environment. These methods
can be mainly divided into feature-based [1], [27], [28], sym-
bolic execution-based [2], [29], graph isomorphism-based (i.e.,
matching nodes to find the largest common subgraph) [2], [30],
and graph decomposition-based (i.e., decompose the graph
into data-flow dependency chains within the scope of a basic
block as the basic comparable unit of similarity) [31]–[33].
ML-based approaches [3], [4] achieve more accurate binary
diffing than traditional methods due to stronger basic block
feature learning capabilities. InnerEye [3] learns basic block
embeddings by automatically capturing the semantics and
dependencies of instructions with Long Short-Term Memory
(LSTM) [34]. Then, it decomposes the CFG into multiple
paths and matches basic blocks to find the longest common
subpath. DeepBinDiff [4] generates basic block embeddings
by considering instruction semantic information with Text-
associated DeepWalk (TADW) algorithm [35]. It explores the

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230649
www.ndss-symposium.org

neighbors of already-matched basic block pairs to match more
basic blocks.

However, ML-based approaches still encounter two limita-
tions. The first limitation is the restricted diffing effectiveness
caused by the matching of only nodes. In particular, the source
code is compiled into a graph (CFG) connected by nodes (ba-
sic blocks). The information of the same source code snippets
is mapped to subgraphs of CFG and is unevenly dispersed
along the edges to the nodes within the subgraph. This implies
that while the cumulative quantity of information in two sub-
graphs remains constant, the information distributions of the
nodes in the subgraphs may vary. Thus, calculating similarities
of only node embeddings causes information loss. The second
limitation is that these approaches cannot perform flexible
cross-compilation environment diffing. InnerEye implements
binary diffing across two architectures (i.e., x86 and arm).
Each architecture pair requires re-training a complex neural
network (with about 3.7 million parameters). For each binary
pair, a corresponding neural network needs to be selected.
DeepBinDiff does not support cross-architecture scenarios and
only implements x86 diffing. This is because they heavily
rely on architecture-dependent instruction information to learn
node embeddings.

Performing diffing at a higher-level language (i.e., pseu-
docode) can mitigate the second limitation. The state-of-the-
art pseudocode diffing approach SigmaDiff [36] constructs
Intermediate Representation (IR) level Interprocedural Pro-
gram Dependency Graphs (IPDGs). It matches nodes in IPDGs
using a graph-matching model called Deep Graph Matching
Consensus (DGMC) [37]. A node in the IPDG represents
an IR statement, which is decompiled from binary code and
is a smaller similarity calculation unit than the basic block.
The decompiler strives to recover the semantic information
of binary code through inference, which means it does not
guarantee the consistency of IPDGs between different binaries
of the same source code. Thus, SigmaDiff still encounters
information loss due to performing node-level matching (i.e.,
the first limitation).

In this paper, we present a novel ML-based diffing approach
BINALIGNER that aims to alleviate the above two limitations
at the binary level. To improve the accuracy of aligning por-
tions of CFG corresponding to the same source code snippets,
we propose graph-level matching (i.e., finding two subgraphs
and computing a similarity score of their graph embeddings) to
replace node-level matching (i.e., finding two nodes and com-
puting a similarity score of their node embeddings). To support
a more flexible cross-compilation environment diffing on the
binary language, we utilize basic block features independent
of the instruction set as node embeddings for generating graph
embeddings.

BINALIGNER can be divided into three steps. We repeat
the first two steps alternately to obtain all potential candidate
subgraph pairs and decide which candidate subgraph pairs are
aligned in the third step. Specifically, given two CFGs, we
divide the nodes into anchor nodes and chain nodes. An anchor
node can be a branch node, an entry node, or an exit node

(i.e., a node with special topological features). A chain node
is an intermediate node that connects two anchor nodes, with
the possibility of multiple chain nodes existing between them.
We first enumerate nodes not belonging to matched subgraphs
to identify an initial subgraph pair. The initial subgraph
pair is composed of an anchor node pair (i.e., two nodes
with the same in-degree and the same out-degree). Starting
with the initial subgraph pair, we expand the subgraphs to
obtain a candidate subgraph pair by iteratively incorporating
neighboring nodes (including anchor nodes and chain nodes)
through our proposed conditional relaxation strategies. Finally,
we calculate similarities of candidate subgraph pairs by com-
paring their graph embeddings generated by cross-compilation
environment node embeddings and an ML-based model.

We use graph-level information to identify the initial sub-
graph pair, i.e., the first node pair in the candidate subgraph
pair. To improve matching accuracy, a node that serves as the
initial subgraph is selected among the anchor nodes. Chain
nodes are excluded during this step to reduce the probability
of semantic irrelevance. We match initial subgraph pairs in
which at most one anchor node belongs to matched candidate
subgraphs to obtain more distinct initial subgraph pairs.

To expand an initial subgraph pair into a candidate subgraph
pair, we propose two conditional relaxation strategies that
iteratively incorporate neighboring nodes. The first strategy re-
quires identifying new anchor node pairs along the predecessor
and successor directions of the currently identified node pair,
respectively. Chain nodes may exist between a new node pair
and the current node pair to connect them. In each iteration, the
new node pair and these potential chain nodes are incorporated
into the subgraph pair. This strategy aims to absorb redundant
nodes (e.g., empty instructions insertion, alignment padding)
and adapt to chain deformations of the CFG (e.g., loop
unrolling, jump instruction replacement). Then, we perform
the second strategy on the subgraph pair expanded by the
first strategy. If an anchor node is directly connected to any
node in the current subgraph or indirectly connected through
chain nodes, the anchor node and the potential chain nodes
will be incorporated into the subgraph. This strategy aims to
alleviate the mismatch caused by changes related to branches
(e.g., basic block reordering, predication).

To measure the similarity of candidate subgraph pairs across
cross-compilation environments, we use the instruction set
independent basic block statistical attributes [22], [23] as node
embeddings. The Siamese architecture [38] based on the graph
embedding network Structure2vec [39] is then employed as a
binary classifier to generate and compare graph embeddings.

We implement a prototype of BINALIGNER and conduct
extensive experiments to evaluate its effectiveness and support
for cross-compilation environment scenarios. Furthermore, we
categorize the function pairs based on varying degrees of
similarity. The effectiveness and support for various scenarios
of BINALIGNER are also evaluated on function pairs with
different similarity degrees. The experimental results show that
BINALIGNER performs optimally in most scenarios, especially
in the cross-architecture scenario and combination of multiple

2

scenarios. For instance, in the cross-architecture scenario,
BINALIGNER’s F1-scores are more than 46.7% higher than
the baselines. In the combination of cross-version and cross-
optimization level scenarios based on function pairs with low
similarity degrees, the F1-score of BINALIGNER is more than
3 times that of the baselines. Additionally, we demonstrate
the strongest resilience to compilation environment evolution
compared to the baselines. We further validate the utility of
our approach via real-world vulnerability/patch case studies.

We summarize our contributions as follows:

• To our knowledge, we are the first to achieve graph-
level matching for cross-compilation environment binary
diffing, while previous works only perform node-level
matching.

• In our proposed approach BINALIGNER1, we reduce the
probability of false and missed matches by designing
conditional relaxation strategies. In addition, we support
more flexible cross-compilation environment diffing at the
binary level by using instruction set independent node
embeddings to generate subgraph embeddings.

• Experimental results underscore the significant impact
of BINALIGNER in the binary diffing task. It exhibits
superior effectiveness and supports more complex cross-
compilation environment scenarios than state-of-the-art
methods. Furthermore, it shows greater resilience to com-
pilation environment evolution. Case studies validate BI-
NALIGNER’s real-world vulnerability/patch identification
utility.

II. PROBLEM STATEMENT

In this section, we first formally define how to deal with
the binary diffing problem using graph-level matching in our
scope, then exhibit the motivation for graph-level matching
through specific examples, and finally introduce state-of-the-
art diffing techniques in detail.

A. Problem Definition

Given a binary function pair (f, f ′), we denote their CFGs
as G = ⟨V,E⟩ and G′ = ⟨V′,E′⟩, where V and V′ are the sets
of vertices, E and E′ are the sets of edges. A subgraph of G
is denoted as Gs = ⟨Vs,Es⟩, where Vs ⊆ V and Es ⊆ E. The
graph-level matching method is to first identify a set of candi-
date subgraph pairs (denoted as Pg

c = {(Gs
i , G

s
i
′)|1 ≤ i ≤ m})

and then decide a set of aligned subgraph pairs (denoted as
Pg
a) from candidate subgraph pairs, where m is the number

of candidate subgraph pairs and Pg
a ⊆ Pg

c . ∀(Gs
j , G

s
j
′) ∈ Pg

a,
Gs

j and Gs
j
′ correspond to the same source code snippet (i.e.,

same source code lines obtained by text matching).
Note that since we calculate similarities based on subgraph

embeddings of CFG using static features of binary code, ob-
fuscated code (e.g., packing and encryption) is not considered
in this paper.

STMFD SP!, {R4,LR}
......
STR R1, [SP,#0x28+var_1C]
BNE loc_22240

LDR R0, [SP,#0x28+var_10]
......
CMP R0, #0
BNE loc_222B0

true

B loc_222A4

false

LDR R0, [SP,#0x28+var_18]
STR R0, [SP,#0x28+var_C]
B loc_22308

blockid: 8

blockid: 1

blockid: 0

blockid: 3

STMFD SP!, {R4,R5,R11,LR}
......
CMP R0, #0
BEQ loc_1B988

blockid: 1

LDR R0, [s,#8]
......
CMP ok, #0
BEQ 1oc_1B97C

false

blockid: 0

STMFD SP!, {R4,LR}
......
STR R1, [SP,#0x30+var_18]
BLE loc_19C94

blockid: 0

B loc_19C68
blockid: 3

false

LDR R0, [SP,#0x30+var_10]
LDR R0, [R0,#0x168]
CMP R0, #0
BEQ loc_19C34

blockid: 14

B loc_19C7C
blockid: 10

false

LDR R0, [SP,#0x30+var_10]
......
CMP R0, #0
BEQ loc_19CA0

blockid: 9

true

LDR R0, [SP,#0x30+var_10]
......
STR R0, [SP,#0x30+var_20]
BNE 1oc_13D38

blockid: 8

(a) OpenSSL 1.0.1f, clang-6.0, arm_32, O0

(b) OpenSSL 1.0.1f, clang-6.0, arm_32, O3

(c) OpenSSL 1.0.1u, clang-6.0, arm_32, O0

Fig. 1: Partial CFGs of Function ssl3 check finished under
different compilation environments and OpenSSL versions.

B. Motivation for Graph-level Matching

In this section, we explain our motivation for performing
graph-level matching instead of node-level matching. The
compilation of the same source code can produce different
CFGs based on different compilers, compiler optimization
levels, and architectures. For example, a line of source code
may correspond to two basic blocks under one compilation
environment but may be optimized into one basic block under
another compilation environment. Fig. 1a and 1b respectively
illustrate partial CFGs of a function ssl3 check finished in
OpenSSL [40] in the same version (1.0.1f) but with different
compilation environments (clang-6.0, arm 32, O0 vs clang-
6.0, arm 32, O3). According to the mapping between the
source code line number and the program address obtained
from debug symbol information, the basic blocks with id 1
and 3 in Fig. 1a align the basic block with id 0 in Fig.
1b. Furthermore, the compilation of different source codes
(such as differences caused by version upgrades), can yield
different CFGs. Within the same compilation environment,
alterations to the copied function or selective content-copying
may result in changes to the CFG of the entire function. Fig.
1c displays a partial CFG of ssl3 check finished under
version 1.0.1u with the same compilation environment as Fig.
1a. The basic block with id 8 in Fig. 1a aligns the basic blocks
with id 0 and 9 in Fig. 1c. These cases mean that node-level
matching can lead to missed and false matches. In contrast,
graph-level matching increases the probability of a correct
and comprehensive alignment. Thus, we perform graph-level
matching to improve the probability of aligning binary code
portions corresponding to the same source code snippets.

1https://github.com/zyyrrr/BinAligner

3

C. State-of-the-art Techniques

The state-of-the-art techniques [3], [4], [36] achieve diffing
based on the binary language and the pseudocode language.

Binary Diffing. InnerEye [3] calculates the similarity of
two basic blocks from x86 and arm architectures respectively
referring to machine translation. It regards instructions as
words and proposes a cross-lingual basic block embedding
model based on LSTM [34]. Then, it decomposes the CFG into
a set of linearly independent paths using the Depth First Search
(DFS) algorithm. Finally, it matches basic blocks to find the
longest similar path between a query path and a target path
by adopting Breadth First Search (BFS) combined with the
Longest Common Subsequence (LCS) dynamic programming
algorithm. DeepBinDiff [4] compares two basic blocks both
from x86 binaries. It first generates token (i.e., opcode or
operand) embeddings using a token embedding model derived
from the Word2Vec technique [41] and then generates basic
block embeddings by iteratively optimizing token embeddings
with the TADW algorithm [35]. Finally, it matches basic
blocks within the k-hop neighbors of already matched ones.

Pseudocode Diffing. SigmaDiff [36] searches for node
pairs with high similarity in IR-level IPDGs. It first extracts
node features using a lightweight symbolic analysis. Then, it
generates node embeddings and matches nodes leveraging the
ML-based DGMC model [37]. A node (i.e., an IR statement)
at the IR level is a smaller unit than a node (i.e., a basic block)
at the binary level.

Overall, they all perform node-level matching, so the ef-
fectiveness of diffing is limited by missed and false matches.
In addition, binary diffing methods are difficult to be flexible
across compilation environments due to instruction reliance.

III. APPROACH

A. BINALIGNER Overview

The overview of BINALIGNER is shown in Fig. 2. Given
a pair of binary functions, we use the mainstream disas-
sembly tool IDA Pro [42] to generate the target CFG pair.
BINALIGNER consists of three steps. We repeat the first two
steps alternately to find potential candidate subgraph pairs
and decide aligned subgraph pairs in the third step. In the
first step, we identify an initial subgraph pair by enumerating
nodes that do not belong to matched subgraphs. To reduce
false matches, the initial subgraph pair comprises two nodes
with special topological features, sharing the same in-degree
and the same out-degree. In the second step, we obtain a
candidate subgraph pair by expanding the initial subgraph pair.
To reduce missed matches, we propose conditional relaxation
strategies that iteratively incorporate neighboring nodes. To
make the matched subgraphs larger to reduce omissions, we
allow partial overlap between different candidate subgraph
pairs. Meanwhile, candidate subgraph pairs remain distin-
guishable from each other because of the differences in their
initial subgraph pairs. In the third step, we decide aligned
subgraph pairs by calculating the similarity between the graph
embeddings of candidate subgraph pairs. To generate graph

embeddings that are independent of instructions, we utilize
basic block statistical attributes [22], [23] as node embeddings.
The Siamese network [38] based on Structure2vec [39] is used
to learn and compare graph embeddings.

B. Initial Subgraph Pair Identification

Given a CFG pair, we identify initial subgraph pairs by enu-
merating nodes in a random order after the preprocessing of
eliminating loops. To reduce the probability of false subgraph
matches, we select anchor nodes to construct initial subgraphs.

1) Anchor/Chain Node Definition: To effectively exploit
graph-level information, we divide nodes in CFG into two
categories: anchor nodes and chain nodes. Branch nodes, entry
nodes, and exit nodes are classified as anchor nodes. Interme-
diate nodes between anchor nodes are defined as chain nodes,
which are used to connect anchor nodes. Compared with
chain nodes, anchor nodes have special topological features.
In particular, the topological features of all chain nodes are
consistent, i.e., the in-degree and out-degree are both equal to
1. It can be formalized as:

(In(n) = 1) ∧ (Out(n) = 1) (1)

where n represents a node in the CFG, In(·) and Out(·) are
functions for counting a given node’s in-degree and out-degree,
respectively. In contrast, anchor nodes may exhibit diverse
topological features. However, they all share the property that
at least one of their in-degree or out-degree is not equal to 1
(i.e., = 0 or >1), which can be formalized as:

(In(n) ̸= 1) ∨ (Out(n) ̸= 1) (2)

Fig. 3b exemplifies anchor/chain node distinction: solid
boxes denote anchor nodes (red: branch nodes, purple: entry
nodes, orange: exit nodes); dashed boxes indicate chain nodes.

2) Loop Elimination Preprocessing: To ensure the pres-
ence of anchor nodes, we preprocess the two given CFGs
to eliminate their loops consisting only of chain nodes. An
example of a CFG missing anchor nodes is that it has only
one node and an edge pointing to itself. After removing this
edge, the chain node becomes an anchor node. To avoid non-
unique preprocessing results that may cause uncertainty in
subsequent steps, loop elimination preprocessing is fixed rather
than heuristic. Specifically, we traverse and record all chain
nodes. Starting from an unrecorded chain node, we recursively
record its successors. If the recursion eventually reaches the
starting node, it indicates the presence of a loop formed solely
by chain nodes. In this situation, we remove the edge between
the currently reached recorded node and its predecessor node.

3) Initial Subgraph Pair Matching: We identify the initial
subgraph pair comprising only one node pair (i.e., (Gs =
{n0}, Gs′ = {n′

0})) among all anchor nodes. This is because
anchor nodes with the same topological features are more
likely to be semantically related than chain nodes. To identify
more distinct initial subgraph pairs, we allow the node pair in
which at most one node belongs to already matched candidate
subgraphs in the same CFG. Specifically, we specify three
conditions to identify the initial subgraph pair. Condition 1

4

CFG pair

candidate
subgraph

pairs

Initial Subgraph
Pair Matching

Step 1: Initial Subgraph Pair IdentificationInput

CFG Generation

0101
1011
0010

0111
1010
0001

a binary
function pair

Step 3: Aligned Subgraph Pair Decision
 Siamese Architecture

aligned subgraph pairs

Output

similarity
score

subgraph 1

subgraph 2

Node Embedding
Combination

Node Embedding
Combination

Cosine

graph
embedding 1

graph
embedding 2

Subgraph
Expansion

initial
subgraph pairs

Step 2: Candidate Subgraph Pair Obtainment

repeat
alternately

Fig. 2: Overview of BINALIGNER.

requires that the node pair has the same in-degree and the
same out-degree. This condition is formalized as follows:

C1 : (In(n0) = In(n′
0)) ∧ (Out(n0) = Out(n′

0)) (3)

Condition 2 restricts that the node pair are both anchor nodes,
which can be formalized as:

C2 : ((In(n0) ̸= 1) ∨ (Out(n0) ̸= 1))

∧((In(n′
0) ̸= 1) ∨ (Out(n′

0) ̸= 1))
(4)

Condition 3 demands that at least one node in the node
pair does not belong to any matched candidate subgraphs.
Suppose that we are currently identifying the i-th pair of initial
subgraphs, Condition 3 can be formalized as:

C3 : (n0 /∈
i−1⋃
j=1

Gs
j) ∨ (n′

0 /∈
i−1⋃
j=1

Gs
j
′) (5)

where {(Gs
j , G

s
j
′)|1 ≤ j ≤ i − 1} represents the candidate

subgraph pairs identified and expanded previously in the target
CFG pair. Each initial subgraph pair satisfies the above three
conditions, i.e., C1(n0, n

′
0) ∧C2(n0, n

′
0) ∧C3(n0, n

′
0).

C. Candidate Subgraph Pair Obtainment

We expand an initial subgraph pair to obtain a candidate
subgraph pair by iteratively incorporating neighboring nodes.
To reduce the probability of missed subgraph matches, we
introduce two conditional relaxation strategies.

1) Challenges of Tackling Missed Matches: Node-level
matching omissions stem from CFG alterations (basic blocks
cannot be aligned precisely) after the compilation environment
changes. Table I presents several typical CFG changes that
arise from variations in the compilation environment. These
changes can be divided into chain (block splitting/merging)
and branch (linearization/complication) changes. The chal-
lenge brought by the chain change is the linear disper-
sion/concentration of basic block information. To address this
challenge, we propose the first relaxation strategy (denoted
as St.1st) to achieve linear information consolidation via
subgraph matching. The challenge brought by the branch
change lies in the alteration of basic blocks’ topological

positions (the branches to which they belong). Since the branch
change occurs near unchanged branches, we propose the
second strategy (denoted as St.2nd) to perform anchor-based
neighborhood search. This allows basic block information to
be identified when the new position is still nearby. However,
optimizations that scatter basic blocks across branches may
cause some irrecoverable losses. We present the robustness
of different conditional relaxation strategies to these CFG
changes in Table I. St.1st adapts to changes such as loop
optimization, dead code elimination, etc. St.2nd is robust to
changes such as basic block reorganization and predication.
However, BINALIGNER may miss some correct matches (e.g.,
exception handling code optimization). Note that our goal is
to effectively reduce omission/error probabilities rather than
completely avoid them.

2) The First Conditional Relaxation Strategy St.1st: This
strategy iteratively searches for new anchor node pairs based
on the current anchor node pair. We compare whether the next
two anchor nodes in the predecessor or successor direction of
the current anchor node pair have the same in-degree and the
same out-degree. If a new anchor node pair can be identified,
the iteration in the current direction continues. Otherwise,
the iteration in the current direction stops. Chain nodes may
exist between the new anchor node pair and the current one.
The relaxation of St.1st is reflected in incorporating the new
anchor node pair and these potential chain nodes into the
subgraph pair. This relaxation can improve the robustness
against changes in the compilation environment that may cause
the appearance of redundant nodes (e.g., empty instructions
insertion, alignment padding) and chain deformations (e.g.,
loop unrolling, jump instruction replacement) in the CFG.

Specifically, we use five conditions to expand the initial
subgraph pair. We denote the set of p pairs of anchor nodes
identified in the t-th round of iteration as Pn

t = {(nt
i, n

′t
i)|1 ≤

i ≤ p}. Thus, the set of q pairs of anchor nodes in the t+ 1-
th round is Pn

t+1 = {(nt+1
i , n

′t+1
i)|1 ≤ i ≤ q}, which can

be identified through Condition 1 and 2 as well as three new
conditions. Condition 4 requires that a new pair of nt+1

i and
n

′t+1
i does not belong to the subgraph pair currently being

5

(a) An example of a
target CFG pair

(b) Anchor/chain node
distinction

(e) Two candidate subgraph pairs expanded using
two conditional relaxation strategies St.1st and St.2nd

(f) Six candidate subgraph pairs expanded without any conditional relaxation strategy

G

G'

G

G'

(c) Two initial subgraph pairs

(d) Two candidate subgraph pairs expanded using
the first conditional relaxation strategy St.1st

G

G'

G

G'

G

G'

Fig. 3: Candidate subgraph pairs for a target CFG pair.

TABLE I: Robustness of Conditional Relaxation Strategies for Different CFG Changes (NoSt. / St.1st / St.1st+2nd denotes
that BINALIGNER obtains candidate subgraph pairs without any conditional relaxation strategy / with the first conditional
relaxation strategy / with two conditional relaxation strategies, ✓ means a certain ability, × means no ability)

Change Partial CFG 1 Partial CFG 2 NoSt. St.1st St.1st+2nd

Loop Optimization A → B → C A → B → B → B → C × ✓ ✓

Dead Code Elimination A → B → C A → C × ✓ ✓

Conditional A → true → B A → case1 → B

× ✓ ✓Branch ↘ false → C ↘ case2 → C

Simplification ↘ case3 ↗
Function Inlining A → B → C A → D → E → C × ✓ ✓

Tail Call A → B → C → D A → B → F × ✓ ✓
Optimization E ↙ E ↙ ↖ |
Basic Block · · · → A → B → C → · · · · · · → B → A → C → · · · × × ✓

Reorganization ↘ D ↘ · · · ↘ D ↘ · · ·

Predication
A → B → · · · A → B → · · · × × ✓
· · · ↙↘ · · · ↘ · · ·

Exception Handling
(try)A → (catch)B → C

(try)A → (catch1)B → C × × ×
Code Optimization ↘ (catch2)D → E

expanded. Suppose that the j-th pair of candidate subgraphs
(Gs

j , G
s
j
′) is being expanded, Condition 4 is formalized as:

C4 : (nt+1
i /∈ Gs

j) ∧ (n
′t+1
i /∈ Gs

j
′) (6)

Condition 5 demands that ∃(nt
e, n

′t
e) ∈ Pn

t , nt+1
i and n

′t+1
i

are both predecessor nodes or both successor nodes of nt
e and

n
′t
e , which can be formalized as:

C5 : ((nt+1
i ∈ Pred(nt

e)) ∧ (n
′t+1
i ∈ Pred(n

′t
e)))

∨((nt+1
i ∈ Succ(nt

e)) ∧ (n
′t+1
i ∈ Succ(n

′t
e)))

(7)

where Pred(·) and Succ(·) are functions for recording a
given node’s predecessor node set and successor node set,
respectively. Condition 6 permits that nt+1

i (n
′t+1
i) and nt

e

(n
′t
e) can be connected through chain nodes. Let l denote the

number of chain nodes, where l ≥ 0. The relationship between

6

nt+1
i and nt

e is formalized as follows, and the relationship
between n

′t+1
i and n

′t
e is the same.

C6 : (nt+1
i → nc

1 → nc
2 → ... → nc

l → nt
e)

∨(nt
e → nc

1 → nc
2 → ... → nc

l → nt+1
i)

(8)

where nc represents a chain node, and → represents an
edge connecting two nodes. Each anchor node pair in the
t+ 1-th round satisfies C1(nt+1

i , n
′t+1
i)∧C2(nt+1

i , n
′t+1
i)∧

C4(nt+1
i , n

′t+1
i)∧C5(nt+1

i , n
′t+1
i)∧C6(nt+1

i)∧C6(n
′t+1
i).

3) The Second Conditional Relaxation Strategy St.2nd:
This strategy searches for neighboring anchor nodes of the
subgraph pair expanded using St.1st. For each subgraph in
the subgraph pair, a new anchor node is searched in the
predecessor or successor direction along each anchor node that
serves the boundary of the subgraph. The new anchor node
is directly connected to the subgraph or indirectly connected
through chain nodes. The relaxation of St.2nd is reflected
in incorporating these new anchor nodes and potential chain
nodes into the subgraph pair. This relaxation can improve the
robustness against changes in the compilation environment that
may cause CFG deformations related to branches (e.g., basic
block reordering, predication).

Specifically, we use two conditions to expand the subgraph
pair. We denote the set of r new anchor nodes searched in G
using St.2nd as N = {nT+1

i |1 ≤ i ≤ r}, where T represents
the number of iterations in St.1st. ∀nT+1

i ∈ N, nT+1
i satisfies

Condition 7 and 8, which are formalized as follows. The same
applies to n

′T+1
i searched in G′.

C7 : ((In(nT+1
i) ̸= 1) ∨ (Out(nT+1

i) ̸= 1)) ∧ (nT+1
i /∈ Gs

i)
(9)

C8 : ∃nx ∈ Gs
i , (n

T+1
i → nc

1 → nc
2 → ... → nc

l → nx)

∨(nx → nc
1 → nc

2 → ... → nc
l → nT+1

i)
(10)

Each neighboring anchor node searched in G and G′ satisfies
C7(nT+1

i) ∧C8(nT+1
i) and C7(n

′T+1
i) ∧C8(n

′T+1
i).

Fig. 3 illustrates BINALIGNER’s initial subgraph pair iden-
tification and candidate subgraph pair obtainment: (a) a target
CFG pair (G, G′); (c) initial subgraph pairs; (d) subgraph pairs
expanded with St.1st; (e) candidate subgraph pairs expanded
with two conditional relaxation strategies. Here, the anchor
node pairs identified using St.1st are marked with blue boxes,
the anchor nodes searched using St.2nd are marked with green
boxes, and the chain nodes incorporated into the subgraphs are
represented by blue dashed boxes. In addition, Fig. 3f shows
six candidate subgraph pairs expanded without any conditional
relaxation strategy. The subgraph pairs are expanded iteratively
by exploring neighboring node pairs (whether anchor node
or chain node) with the same in-degree and the same out-
degree. In this example, we can see the strategies bias toward
larger subgraphs, reducing candidate count while enhancing
graph-level information corresponding to the same source code
snippets.

D. Aligned Subgraph Pair Decision
We decide the aligned subgraph pairs by calculating the

graph embedding similarity of the two subgraphs in each

candidate subgraph pair. To generate architecture-agnostic
graph embeddings, we use instruction-independent basic block
features as node embeddings.

We first generate the node embedding by adopting seven
basic block attributes used in Gemini [22] and Genius
[23]. These attributes include six block-level attributes (i.e.,
String/Numeric Constants, No. of Transfer/Calls/Arithmetic
Instructions, No. of Instructions) and an inter-block attribute
(i.e., No. of offspring), all quantified when the disassembler
extracts the CFG. These statistical attributes focus on the
overall behavior of a basic block and are independent of
the instruction set of a specific compilation environment.
Therefore, the graph embeddings learned based on these node
embeddings can support similarity comparisons across compi-
lation environments. For a subgraph, we combine the node em-
beddings in the order of node numbers. The disassembler takes
care of the node numbering. Then, we input node embedding
combinations of a candidate subgraph pair into an ML-based
model. The model is the Siamese architecture [43], where the
graph embedding network Structure2vec [39] serves as the
generator of the subgraph embedding. It output a similarity
score calculated by the cosine function. Finally, we obtain the
aligned subgraph pairs according to a similarity threshold θ
(see Section IV-D4 for details on threshold selection).

E. BINALIGNER Process
The binary diffing process of BINALIGNER is detailed in

Algorithm 1. Given a target CFG pair, BINALIGNER performs
preprocessing to eliminate loops (Ln. 1). Formal binary diffing
consists of three steps. The first step is to identify an initial
subgraph pair. Then, BINALIGNER expands initial subgraphs
to obtain a candidate subgraph pair. The alternate execution of
these two steps stops when the first step cannot generate a new
initial subgraph pair (Ln. 2-25). In the third step, BINALIGNER
calculates the similarity scores of candidate subgraph pairs
(Ln. 26-35) to decide aligned subgraph pairs (Ln. 36).

IV. EVALUATION

In this section, we first describe the experimental setup.
For cross-compilation environment scenarios, we evaluate the
effectiveness, support ability for different scenarios, and com-
pilation environment evolution resilience of BINALIGNER.
Next, we evaluate BINALIGNER’s efficiency. Furthermore, we
perform ablation studies to analyze the influence of different
components and hyperparameters on BINALIGNER. We also
show BINALIGNER’s security applications by conducting case
studies.

A. Experimental Setup
The experiments are conducted on a desktop computer with

Ubuntu 22.04LTS operating system, 3.0 GHz Intel® Xeon®
Gold 6248R CPU, 251GB memory, and two NVIDIA GeForce
RTX 3090 GPUs. Additionally, we use Kunpeng&Ascend
server platform for partial data processing and intermediate
data storage, especially for large executable files. We use
IDA Pro 7.5 [42] as the disassembly tool and implement
BINALIGNER based on Python 3.7.

7

Algorithm 1 BINALIGNER Process

Input: (G,G′): the target CFG pair; F: aligned subgraph pair
decider; θ: similarity threshold of graph embeddings

Output: the set of aligned subgraph pairs Pg
a

1: G = EliminateLoop(G), G′ = EliminateLoop(G′)
2: G = GetNodes(G), G′ = GetNodes(G′)
3: Pg

c = {}
4: while G ̸= ∅ do
5: n0 = G.pop()
6: G′∗ = GetNodes(G′)
7: for i = 0; i < ||G′∗||; i++ do
8: n′

0 = G′∗[i]
9: if C1(n0, n

′
0) ∧C2(n0, n

′
0) ∧C3(n0, n

′
0) then

10: Gs = {n0}, Gs′ = {n′
0}

11: (Gs, Gs′) = ExpandSubgraph(Gs, Gs′)
12: Pg

c .add((G
s, Gs′))

13: G = G−GetNodes(Gs)
14: G′ = G′ −GetNodes(Gs′)
15: end if
16: end for
17: end while
18: while G′ ̸= ∅ do
19: n′

0 = G′.pop()
20: G∗ = GetNodes(G)
21: for i = 0; i < ||G∗||; i++ do
22: n0 = G∗[i]
23: Same as Ln.9-15.
24: end for
25: end while
26: Pg

a = {}
27: for i = 0; i < ||Pg

c ||; i++ do
28: (Gs, Gs′) = Pg

c [i]
29: X⃗ = GetNodeEmbeddings(Gs)
30: X⃗ ′ = GetNodeEmbeddings(Gs′)
31: s = F(X⃗, X⃗ ′)
32: if s ≥ θ then
33: Pg

a.add((G
s, Gs′))

34: end if
35: end for
36: return Pg

a

TABLE II: Number of Functions, Basic Blocks, and Control
Edges extracted from Binary Files of GNU and OpenSSL
Datasets

Library Function Basic Block Control Edge
Coreutils 766,951 4,322,352 3,782,819
Diffutils 33,317 229,731 206,313
Findutils 30,667 250,983 232,433
OpenSSL 2,125,098 17,673,532 16,781,138

1) Datasets: We compile three libraries from the GNU
project (called the GNU dataset) and OpenSSL [40] (called
the OpenSSL dataset), which are widely used in practice
and binary diffing research. IDA Pro extracts functions, basic
blocks, and control edges from binary files of the GNU and
OpenSSL datasets, with statistical breakdowns in Table II.

GNU Dataset. We compile Coreutils (5.93, 6.4, 7.6, 8.1,
8.25, 8.30, 9.1) [44], Diffutils (2.8, 3.1, 3.3, 3.4, 3.6) [45],
and Findutils (4.41, 4.6) [46]. Compilation environments en-
compass GCC-5.4/8.2 and Clang-3.8 compilers, O0-O3 opti-

mization levels, and x86-64/ARM-64 architectures. In total,
there are 2,941 binary files in this dataset.

In the cross-version scenario, we use the optimization level
of O1, the GCC-5.4 compiler, and the x86-64 architecture.
Version comparisons are conducted for Coreutils ({5.93, 6.4,
7.6, 8.1, 8.25} vs 8.30), Diffutils ({2.8, 3.1, 3.3, 3.4} vs
3.6), and Findutils ({4.41} vs 4.6). In the cross-optimization
level scenario, the versions are Coreutils 8.30, Diffutils 3.6,
and Findutils 4.6. The compiler and architecture are the
same as in the cross-version scenario. The optimization level
comparisons conducted are {O0, O1, O2} vs O3. In the cross-
compiler scenario, the optimization level is O0. The version
and architecture are the same as the cross-optimization level
scenario. The compiler comparison is GCC-5.4 vs Clang-3.8.
In the cross-architecture scenario, the versions and compiler
are the same as the cross-optimization level scenario, and
the optimization level is O0. The architecture comparison is
x86-64 vs ARM-64. To evaluate the compilation environment
evolution resilience of BINALIGNER, we compile an updated
version of Coreutils (Coreutils 9.1) in the cross-architecture
scenario using a newer compiler (GCC-8.2) and a higher
optimization level (O3) compared to the original compilation
environment (Coreutils 8.30, GCC-5.4, O0).

We obtain function pairs with the same function name and
then remove duplicate function pairs (follow the benchmark
standard [47]) via source filenames and line numbers. The
number of function pairs in the above five scenarios is 4,530,
4,272, 2,250, 2,377, and 935, respectively. Function pairs for
the first four scenarios are randomly split 6:2:2 to train/test the
ML-based aligned subgraph pair decision model and evaluate
BINALIGNER. Function pairs of the fifth scenario are all used
for the evolution resilience evaluation. To ensure DeepBinDiff
compatibility, only function pairs in which two functions are
from the same binary file are retained in the evaluation set.
Note that we conservatively label subgraph pairs as aligned
when their source code overlaps in at least one line.

OpenSSL Dataset. We compile two versions (1.0.1f and
1.0.1u) and obtain large executable files (i.e., libssl.so and
libcrypto.so) using 2 compilers (GCC and Clang), of which
GCC has 5 versions (4.9.4, 5.5.0, 6.4.0, 7.3.0, 8.2.0) and Clang
has 2 versions (6.0, 7.0), 4 optimization levels (O0, O1, O2,
O3), 3 architectures (x86, ARM, and MIPS) with 2-word sizes
(32-bit and 64-bit). We acquire 2*2*(5+2)*4*3*2=672 binary
files in total.

Functions are randomly sampled from 336 binary files of
versions 1.0.1f and 1.0.1u, respectively, to form cross-version
function pairs. In each function pair (f, f ′), f comes from
1.0.1f and f ′ comes from 1.0.1u. Additionally, both f and
f ′ come from either libssl.so or libcrypto.so. In this dataset,
the comparison scenarios are denoted as X(V), X(V+C),
X(V+O), and X(V+A). Specifically, function pairs in the X(V)
scenario only cross versions, with the compilation environ-
ments remaining consistent. In the X(V+C/O/A) scenario,
function pairs not only cross versions but also cross com-
pilers/optimization levels/architectures, while the remaining
compilation environments remain consistent. The compilation

8

environment pairs for each scenario are 336, 2,016, 1,008,
and 1,680, respectively. Take 2,016 as an example, which
corresponds to X(V+C). We use 2 versions of OpenSSL
and 7 compilers (different types or versions). The OpenSSL
version pair is fixed to (1.0.1f, 1.0.1u), and the number of
compiler pairs is 7*7-7=42. Therefore, 1*42*4(optimization
levels)*3(architectures)*2(word sizes)*2(binary files)=2,016.

We divide function pairs into different similarity degree
ranges according to the similarity rate Rs. Rs represents
the proportion of subgraphs corresponding to the same snip-
pets of source code within a target CFG pair. The cal-
culation formula is detailed in Section IV-A4. We choose
function pairs with similarity rates falling within four ranges:
10∼30%, 30∼50%, 50∼70%, and 70∼90%. Since function
pairs are selected randomly, there are fewer function pairs
with higher similarity rates. Let α represent the number
of function pairs in the 70∼90% similarity degree range.
To ensure an even distribution of samples across different
similarity degree ranges, we randomly select α pairs of
functions from the other three ranges. Thus, the numbers of
function pairs in X(V), X(V+C), X(V+O), and X(V+A) are
12,086*4=48,344, 61,640*4=246,560, 32,466*4=129,864, and
61,283*4=245,132, respectively, totaling 669,900. We denote
the set of these function pairs as Df . Then, we sample 20,000,
40,000, 40,000, and 40,000 function pairs in the four scenarios,
respectively. We denote the set of these function pairs as
D1

f . We sample one of the candidate subgraph pairs from
each function pair in D1

f , aiming to collect 20,000 pairs of
aligned subgraphs and 20,000 pairs of unaligned subgraphs.
These 40,000 subgraph pairs come from different function
pairs and are divided into the training set and test set for
the aligned subgraph pair decision model at a ratio of 8:2.
Since none of the baselines conduct binary diffing on MIPS in
their works, we ensure a fair comparison by sampling function
pairs compiled on x86 and ARM from the remaining pairs
in Df to form a new dataset denoted as D2

f . The number
of function pairs in D2

f under the four scenarios is 2,000,
8,000, 8,000, and 8,000, respectively. Note that the training
of baseline models does not use functions on MIPS [3], [4],
[36], while BINALIGNER does.

2) Baseline Methods: We compare BINALIGNER (abbrevi-
ated as BA) with four baseline methods based on three state-
of-the-art diffing techniques (described in Section II-C).

InnerEye (IE). We use the model provided by the authors
and follow the setting of the basic block similarity threshold
(i.e., 0.5). Additionally, we reproduce the LCS algorithm
described in the paper.

DeepBinDiff (DBD). We use open-source code provided by
the authors and follow the setting of the basic block similarity
threshold (i.e., 0.6) and the number of hops (i.e., k=4).

DeepBinDiff-k-hop with InnerEye-embedding (DBDIE).
Note that DeepBinDiff cannot be applied to the cross-
architecture scenario and fails to process large binary files (i.e.,
libssl.so and libcrypto.so). Therefore, we apply DeepBinDiff’s
k-hop greedy matching algorithm on InnerEye’s basic block
embeddings with k=4 and the basic block embedding similar-

ity threshold of 0.6. The algorithm extracts direct neighbors
of virtual nodes in the Inter-procedural Control Flow Graph
(ICFG) as initial matched node pairs. To adapt this algorithm
for CFGs, we modify an initial node pair to a pair of nodes
that exhibit maximal basic block embedding similarity (1.0).

SigmaDiff-DGMC with Gemini-embedding (SDG). To
make SigmaDiff (the pseudocode diffing tool) suitable for bi-
nary diffing, we transform symbolic analysis node embeddings
into Gemini’s basic block embeddings and then use DGMC
to match nodes. We utilize the code and hyperparameters of
the DGMC model provided by the authors.

For convenience, we use their acronyms instead of full
names in the following experimental analysis.

3) Ablation Study Settings: Hyperparameters of BA’s Al-
gorithm and ML-based Model. We employ randomized node
enumeration ordering for initial subgraph pair identification,
establishing reproducibility through a fixed random seed (0).
Gemini’s graph embedding network [22] is employed to gener-
ate candidate subgraph embeddings. The similarity threshold
θ of the aligned subgraph pair decision model is 0.7. The
node embedding adopts the best-performing combination of
seven basic block attributes from the hyperparameter selection
evaluation in Gemini [22]. In addition, training epochs of the
model is 100 and the Adam [48] optimizer with a learning rate
of 0.0001 is used to optimize the model parameters (following
the default values of [22]). Key Components of BA. We
evaluate BA with different conditional relaxation strategies and
different subgraph embedding generators in the ablation study.

• BINALIGNER without any strategy (BA-0). In the second
step of BA, we expand subgraph pairs to obtain candi-
date subgraph pairs without any conditional relaxation
strategy. It means that the subgraph pairs are expanded
iteratively by exploring neighboring node pairs (whether
anchor node or chain node) that exhibit the same in-
degree and the same out-degree.

• BINALIGNER with only the first strategy St.1st (BA-1).
In the second step of BA, we expand subgraph pairs
to obtain candidate subgraph pairs with only the first
conditional relaxation strategy.

• BINALIGNER with GMN [49] (BA-GMN). In the third
step of BA, we generate candidate subgraph embeddings
using GMN. The hyperparameter settings of GMN are the
same as those of Gemini’s graph embedding network.

Same as baselines, we use their acronyms in the following
experimental analysis.

4) Metrics: We follow and improve the metrics of Deep-
BinDiff [4] to be suitable for evaluating BINALIGNER. For a
function pair (f , f ′), we denote their basic block sets as U and
U ′. The ground truth sets of nodes in subgraphs corresponding
to the same source code snippets are represented as T and
T ′. The nodes in aligned subgraph pairs (when using BA)
and the matched nodes (when using the baseline methods) are
indicated as M and M ′. Then, the sets of correctly aligned
nodes are denoted as Mc = M ∩ T (M ′

c = M ′ ∩ T ′),
the sets of incorrectly aligned nodes are denoted as Mi and
M ′

i , and the sets of unknown nodes are denoted as Mu

9

Basic Block Starting
Program Address

CAST_cfb64_encrypt

Line
Number

Basic Block Starting
Program Address

CAST_ofb64_encrypt

Line
Number

0x86F64
0x86EE8

0x86F80
0x86F68

0x86F90
0x871AC

0x87404
0x87400

72
73
77
78

86
87
88
89
90

84
85

119
120

82
80

72
73

80

90

104

108

78

···
88

0xB51E4
0xB4F60

0xB5214
0xB5200

0xB5304

0xB5364
0xB5350

0xB542C

98
99

···
96

109

106
105

101
102
103

89

Fig. 4: The mapping relationship between basic block starting
program addresses and source code line numbers.

and M ′
u. We have no idea whether the unknown nodes are

aligned correctly or incorrectly. This could happen due to the
conservative method of gathering the same source codes via
text matching. Thus, the relationship between Mc, Mi and Mu

is Mc +Mi +Mu = M . We use Precision (P), Recall (R),
and F1-score (F1) as metrics. p represents the proportion of
correctly aligned nodes among all known aligned nodes.

p =


0, if M = Mu or M ′ = M ′

u

1

2
· (||Mc||

||M −Mu||
+

||M ′
c||

||M ′ −M ′
u||

), otherwise
(11)

r means the ratio of correctly aligned nodes among nodes in
subgraphs corresponding to the same source code snippets.

r =
1

2
· (||Mc||

||T ||
+

||M ′
c||

||T ′||
) (12)

We calculate the average value (i.e., P and R) of all ps
and rs for a compilation environment scenario. Then, F1 is
calculated by 2∗P∗R

P+R . Furthermore, to measure the similarity
degree of two functions, we define the similarity rate (Rs),
which employs the ratio of nodes in subgraphs corresponding
to the same source code snippets.

Rs =
1

2
· (||T ||

||U ||
+

||T ′||
||U ′||

) (13)

5) Ground Truth Collection: For the binary diffing task,
we rely on source code text matching and debugging symbol
information to conservatively collect ground truth (i.e., the
sets of nodes in subgraphs corresponding to the same source
code snippets of two functions). Specifically, we extract two
types of information from the debugging symbol information.
(I) Function name, source file name, and source file path.
These are employed to identify the same source code snippets
between two functions. We use Python’s difflib module [50] to
perform text matching on the source code, thereby obtaining
the ground truth of source code line numbers. This method

ensures soundness, although the unmatched text may also
be semantically identical. (II) The mapping between basic
block starting program addresses and line numbers. Unlike
[4], which deletes code statements that lead to multiple basic
blocks, we retain all mapping relationships between program
addresses and line numbers. Through the ground truth of
the same source codes and the mapping relationship between
program addresses and line numbers, we obtain the ground
truth at the CFG-level.

Take two functions CAST cfb64 encrypt and
CAST ofb64 encrypt as an example. The former is
derived from c cfb64.c in OpenSSL 1.0.1f, compiled with
the options clang-6.0, arm 32, O0. The latter originates from
c ofb64.c in OpenSSL 1.0.1u, compiled using the settings
clang-6.0, mips 64, O0. The mapping relationship between
their basic block starting program addresses and line numbers
is shown in Fig. 4. In CAST cfb64 encrypt, Ln.82 ↔
0x86F80 is an one-line-to-one-address mapping, Ln.80 ↔
(0x86F64, 0x86F68) and (Ln.119, Ln.120) ↔ 0x87404 are
multiple-lines-to-multiple-addresses mappings. Moreover,
0x871AC and 0x87400 have no corresponding line numbers.
Through the mapping between line numbers, the alignment
(0x86EE8, 0x86F90, 0x87404) ↔ (0xB4F60, 0xB5214,
0xB5364, 0xB542C) of the two functions at the CFG-level
can be obtained.

B. Effectiveness, Support Ability, and Evolution Resilience for
Cross-compilation Environment Scenarios

We benchmark BA and baseline methods across four cross-
compilation environment scenarios using the GNU dataset,
evaluating the effectiveness, support ability for different sce-
narios, and compilation environment evolution resilience.
Then, we evaluate the performance of these methods for
function pairs spanning varying similarity degree ranges using
the OpenSSL dataset.

1) Cross-version Diffing: In this experiment, we compare
the performance of BA and four baselines in function pairs
with different versions. As shown in Table III, BA outperforms
the baselines in most version comparison cases, achieving
an average F1 improvement of 39.5%, and up to 66.4%.
This result shows that the diffing effectiveness of graph-level
matching is better than that of node-level matching. When
comparing BA with the suboptimal DBDIE, we can see in
Coreutils that the performance gap between the two methods
becomes larger as the comparison versions become closer.
When the comparison version is 5.93 vs 8.30, BA’s F1 is
slightly lower than that of DBDIE by 2.7%. This is because
a larger version gap results in smaller snippets of the same
source code, which means that the corresponding subgraph is
also smaller. At the same time, the NN-based node embedding
encompasses more instruction semantic information than the
statistical attribute-based node embedding. Therefore, DBDIE

can work when the version gap is large in the same architec-
ture. However, when the version gap becomes smaller, F1s
of graph-level matching gradually exceed those of node-level
matching, and its advantages are more clearly demonstrated.

10

TABLE III: Cross-version Diffing Results

Approach Coreutils (* vs 8.30) Diffutils (* vs 3.6) Findutils
5.93 6.4 7.6 8.1 8.25 2.8 3.1 3.3 3.4 4.41 vs 4.6

R

IE 0.209 0.237 0.285 0.268 0.25 0.299 0.28 0.239 0.294 0.209
DBD 0.254 0.247 0.241 0.185 0.21 0.205 0.391 0.533 0.51 0.698

DBDIE 0.773 0.768 0.823 0.796 0.837 0.779 0.828 0.864 0.861 0.898
SDG 0.162 0.154 0.328 0.307 0.402 0.366 0.377 0.351 0.359 0.323
BA 0.745 0.782 0.881 0.864 0.947 0.834 0.961 0.904 0.972 0.967

BA-0 0.651 0.688 0.779 0.79 0.905 0.749 0.906 0.844 0.944 0.764
BA-1 0.644 0.683 0.781 0.776 0.92 0.752 0.884 0.853 0.956 0.819

BA-GMN 0.644 0.7 0.846 0.803 0.932 0.752 0.886 0.862 0.97 0.967

P

IE 0.6 0.63 0.672 0.656 0.669 0.564 0.645 0.656 0.67 0.697
DBD 0.688 0.607 0.598 0.534 0.571 0.562 0.667 0.867 0.913 1.0

DBDIE 0.968 0.963 0.966 0.966 0.976 0.875 0.944 0.978 0.978 1.0
SDG 0.493 0.452 0.638 0.657 0.723 0.667 0.694 0.701 0.668 0.571
BA 0.945 0.95 0.976 0.974 0.996 0.906 1.0 0.989 1.0 1.0

BA-0 0.856 0.882 0.928 0.946 0.979 0.859 0.971 0.967 0.986 0.786
BA-1 0.853 0.877 0.93 0.931 0.977 0.849 0.96 0.954 1.0 0.857

BA-GMN 0.83 0.88 0.945 0.902 0.975 0.823 0.889 0.944 0.989 1.0

F1

IE 0.31 0.344 0.4 0.381 0.364 0.391 0.39 0.35 0.409 0.322
DBD 0.371 0.351 0.344 0.275 0.307 0.3 0.493 0.66 0.654 0.822

DBDIE 0.86 0.855 0.889 0.873 0.901 0.824 0.882 0.917 0.916 0.946
SDG 0.244 0.23 0.434 0.418 0.517 0.473 0.489 0.468 0.467 0.413
BA 0.833 0.858 0.926 0.916 0.971 0.869 0.98 0.945 0.986 0.983

BA-0 0.74 0.773 0.847 0.861 0.941 0.8 0.937 0.901 0.965 0.775
BA-1 0.734 0.768 0.849 0.846 0.948 0.798 0.92 0.901 0.978 0.838

BA-GMN 0.725 0.78 0.893 0.85 0.953 0.786 0.887 0.901 0.979 0.983

2) Cross-optimization-level Diffing: We then perform
experiments to evaluate the effectiveness in the cross-
optimization level scenario. Fig. 5 presents the Cumulative
Distribution Function (CDF) figures of F1. The y-axis repre-
sents the proportion of F1 less than or equal to a certain value
in all F1 values. We can observe that BA performs best in most
cases, especially when F1 is in the range of 0.8 ∼ 1.0. This
result shows the effectiveness of graph-level matching. When
F1 is in the range of 0.4 ∼ 0.8, CDF curves of DBDIE and
SDG are located below that of BA in some cases. This result
illustrates that DBDIE and SDG usually correctly match nodes
corresponding to a portion of the same source code snippets,
but also have incorrect matches at the same time. In addition,
it can be seen that the effectiveness of all diffing methods
improves as the compared optimization levels become closer.

3) Cross-compiler Diffing: We also conduct cross-compiler
diffing to evaluate BA. Table IV shows that F1 of BA in
Findutils is 3.5% ∼ 84.3% higher than baselines while slightly
lower (0.4% ∼ 0.5%) than DBDIE in Coreutils and Diffutils.
This is mainly because P s of DBDIE are slightly higher
than BA. These results show that graph-level matching can
improve the effectiveness, although the statistical attribute-
based node embedding used to support cross-architecture
may not perform as well as the NN-based node embedding
under the same architecture. An interesting finding is that
DBD performs poorly (F1 at most 8.2%). This is because
DBD processes instructions based on GCC, which means that
DBD cannot work across compilers beyond its inability to
work across architectures. Additionally, SDG underperforms
relative to originally reported metrics in [36], exhibiting
13.4%/12.1% R and 3.3%/1.5% P reductions on identically
compiled Diffutils 3.6/Findutils 4.6. This discrepancy stems
from two transformations. (i) Transitioning from node-level

TABLE IV: Cross-compiler Diffing Results (GCC vs Clang)

Approach Coreutils 8.30 Diffutils 3.6 Findutils 4.6

R

IE 0.271 0.241 0.262
DBD 0.04 0.045 0.053

DBDIE 0.801 0.801 0.808
SDG 0.177 0.161 0.242
BA 0.797 0.801 0.868

BA-0 0.655 0.707 0.731
BA-1 0.684 0.694 0.748

BA-GMN 0.773 0.752 0.781

P

IE 0.733 0.641 0.623
DBD 0.172 0.197 0.177

DBDIE 0.996 1.0 0.99
SDG 0.541 0.553 0.604
BA 0.991 0.992 0.99

BA-0 0.974 0.951 0.945
BA-1 0.949 0.93 0.938

BA-GMN 0.963 0.942 0.902

F1

IE 0.396 0.35 0.369
DBD 0.065 0.073 0.082

DBDIE 0.888 0.89 0.89
SDG 0.267 0.25 0.345
BA 0.883 0.886 0.925

BA-0 0.783 0.811 0.824
BA-1 0.795 0.795 0.832

BA-GMN 0.858 0.836 0.837

to graph-level Ground Truth collection expands the basic
block corpus, increasing recall’s denominator (Eq. 12). (ii)
Converting symbolic analysis node embeddings to basic block
embeddings for binary diffing.

4) Cross-architecture Diffing: We compare BA with three
baselines in the cross-architecture scenario, since DBD only
supports x86 binaries. The results are shown in Table V.
We can see that BA performs best. The highest R of these
baselines is 90.9% and the highest P is 73.7%, while all
metrics of BA are above 93% and most of them are close

11

0.0 0.2 0.4 0.6 0.8 1.0
F1

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

coreutils8.30
IE
DBD
IE+DBD
SD
BA
BA-0
BA-1
BA-GMN

(a) O0 vs O3

0.0 0.2 0.4 0.6 0.8 1.0
F1

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

coreutils8.30

(b) O1 vs O3

0.0 0.2 0.4 0.6 0.8 1.0
F1

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

coreutils8.30

(c) O2 vs O3

0.0 0.2 0.4 0.6 0.8 1.0
F1

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

diffutils3.6

(d) O0 vs O3

0.0 0.2 0.4 0.6 0.8 1.0
F1

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

diffutils3.6

(e) O1 vs O3

0.0 0.2 0.4 0.6 0.8 1.0
F1

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

diffutils3.6

(f) O2 vs O3

0.0 0.2 0.4 0.6 0.8 1.0
F1

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

findutils4.6

(g) O0 vs O3

0.0 0.2 0.4 0.6 0.8 1.0
F1

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

findutils4.6

(h) O1 vs O3

0.0 0.2 0.4 0.6 0.8 1.0
F1

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

findutils4.6

(i) O2 vs O3

Fig. 5: Cross-optimization level diffing F1-score CDF.

to 100%. Note that Rs of IE and DBDIE are extremely low.
The main reason is that the change of architecture largely alters
the CFG, which makes it difficult to find consecutive correctly
matched nodes using IE’s node embeddings. In practice, they
can usually only find scattered matched nodes.

5) Cross-architecture Diffing after the Compilation En-
vironment Evolves: We simulate compilation environment
evolution through source code/compiler version updates and
optimization level increases. Architectures typically remain
stable over extended periods to ensure backward compatibility.
Specifically, we evaluate BA and three baselines on Coreutils
9.1 (GCC-8.2, O3) function pairs in the cross-architecture
scenario. ML-based models in these methods are trained using
Coreutils 8.30 (GCC-5.4, O0) function pairs.

As displayed in Table VI, BA maintains superior perfor-
mance (achieving 49.7% ∼ 78% higher F1 than baselines).
This demonstrates BA’s strongest resilience to the evolution of

the compilation environment compared to baseline methods.
BA, SDG, and DBDIE exhibit reduced performance relative to
Table V. This is because the trained neural networks (BA’s sub-
graph embedding generator, SDG and DBDIE’s node matcher)
cannot generalize effectively to CFG feature shifts induced
by compilation environment evolution. It is interesting that IE
exhibits a 15.4% F1 improvement. This enhancement primar-
ily results from CFG simplification under O3 optimization:
optimized CFGs have fewer basic blocks (but the single basic
block becomes larger) and reduced branching. This is more
conducive to IE’s node matching algorithm based on linear
path search, which tends to produce false positives in complex
CFGs by matching non-ground-truth node pairs exceeding
similarity thresholds. Nevertheless, IE’s performance gains
remain constrained, and BA is the optimal diffing tool after
the compilation environment evolves.

12

TABLE V: Cross-architecture Diffing Results (x86 vs ARM)

Approach Coreutils 8.30 Diffutils 3.6 Findutils 4.6

R

IE 0.081 0.09 0.074
DBDIE 0.098 0.121 0.1
SDG 0.34 0.366 0.371
BA 0.961 0.935 0.989

BA-0 0.941 0.897 0.953
BA-1 0.936 0.92 0.971

BA-GMN 0.929 0.932 0.967

P

IE 0.44 0.47 0.352
DBDIE 0.322 0.326 0.204
SDG 0.71 0.737 0.713
BA 0.991 0.977 1.0

BA-0 0.982 0.977 0.993
BA-1 0.985 0.97 0.993

BA-GMN 0.954 0.977 0.98

F1

IE 0.137 0.151 0.122
DBDIE 0.15 0.176 0.134
SDG 0.46 0.489 0.488
BA 0.976 0.956 0.994

BA-0 0.961 0.935 0.973
BA-1 0.96 0.944 0.982

BA-GMN 0.941 0.954 0.973

TABLE VI: Cross-architecture Diffing Results after the Com-
pilation Environment Evolves

IE DBDIE SDG BA
R 0.181 0.005 0.128 0.688
P 0.742 0.017 0.526 0.921
F1 0.291 0.008 0.206 0.788

6) Diffing on Different Function Pairs with Different De-
grees of Similarity: Finally, we evaluate the performance of
BA on function pairs with different degrees of similarity. DBD
is not employed in this experiment due to its inability to handle
large-sized binary files (e.g., libssl.so and libcrypto.so).

As shown in Table VII, BA performs significantly better
than the baselines. For example, when the similarity degree of
function pairs ranges from 50% to 70%, F1 of BA achieves
an average improvement of 65.4% with a maximum gain
of 85.2%. The results demonstrate that graph-level matching
can achieve better binary diffing performance than node-level
matching. In addition, it can be seen that the higher the sim-
ilarity degree of the function pair, the better the performance
of BA. This is because larger source code snippets typically
correspond to larger subgraphs, which are more favorable for
accurate matching.

The limited performance of the baselines is largely due to
the node-level matching method. Specifically, IE’s path search
is restricted to semantically equivalent basic blocks, without
considering any branch information of the graph. The k-hop
algorithm restricts the node matching range to k hops. This
restriction may lead to omissions, especially when the CFG
is large. SDG also focuses on node matching by computing
node similarities, although it uses a neural network instead of
a heuristic algorithm. In contrast, BA reduces the probability
of false and missed matches by proposing the conditional
relaxation strategies to obtain candidate subgraph pairs. Thus,
BA achieves better effectiveness.

The poor performance of IE and DBDIE can also be at-
tributed to the low quality of node embeddings generated by
IE. The OpenSSL dataset used to train IE embedding models
comprises a blend of function pairs derived from all Rss, rang-
ing from 10% to 90%. Thus, it imposes a significant burden
on the model that utilizes instructions as learning information.
In contrast, BA employs statistical attributes to substantially
reduce the learning complexity of the node feature, which is
more suitable for such a complex scenario.

C. Efficiency

In this section, we evaluate the efficiency of BA. We first
focus on the algorithm efficiency of graph/node matching
for given function pairs. This is because the algorithm for
matching subgraph pairs is a crucial component of BA, which
alleviates the effectiveness limitation of existing diffing tech-
niques. We then evaluate the overall execution efficiency of
BA, considering a more realistic end-to-end binary file diffing.

1) Algorithm of Graph/Node Matching: We analyze and
evaluate the algorithm efficiency of graph-level matching (i.e.,
BA) and node-level matching (i.e., IE and DBDIE) in the scope
of function pairs, both theoretically (i.e., time complexity) and
experimentally (i.e., algorithm execution time). We represent
the number of vertices (i.e., nodes) of a CFG as V , the number
of edges as E, and the number of loops as L.

The algorithms used in IE mainly include loop unrolling,
DFS, and LCS. The time complexity of unrolling all loops is
O((V +E) · (L+1)) [51]. The time complexity to determine
the starting block and candidate starting blocks is O(V), and
the time complexity of using DFS to find linearly independent
paths in a query CFG is O(V ·(V +E)). The time complexity
of applying BFS in the target CFG, combined with the LCS
dynamic programming to match basic blocks is O(V ·(V +E)).

DBDIE proposes the k-hop greedy matching algorithm. We
mention that the initial node pairs in ICFG are changed to node
pairs that exhibit maximal similarities in CFG (see Section
IV-A2), so the time complexity of determining the starting
node is O(V 2). Neighbor node exploration incurs O(E) time
complexity, and sorting similarity scores of neighbor nodes
requires O(V logV).

The algorithm process in BA includes initial subgraph pair
identification and candidate subgraph pair obtainment (i.e., the
first two steps of BA). The time complexity of our algorithm
to eliminate loops is O(V 2). Besides, the time complexity
of identifying the initial subgraph pairs is O(V 2), while
expanding the subgraphs to obtain a candidate subgraph pair
takes O(V + E).

Table VIII lists the average matching time (in seconds) of
all function pairs under four scenarios for three algorithms.
In general, DBDIE and BA are on the same time scale, while
IE is 4000∼30000 times higher than DBDIE. The matching
process in IE demands a substantial amount of time, primarily
due to the large number of semantically equivalent block pairs.
Specifically, the increase in the number of these block pairs
directly corresponds to an escalated time investment, as each
pair demands an independent path search and the running of

13

TABLE VII: Diffing Results under Different Similarity Degree Ranges

Sim. Deg. Approach R P F1
Range (%) X(V) X(V+C) X(V+O) X(V+A) X(V) X(V+C) X(V+O) X(V+A) X(V) X(V+C) X(V+O) X(V+A)

10∼30

IE 0.195 0.13 0.119 0.05 0.355 0.225 0.18 0.078 0.252 0.165 0.143 0.061
DBDIE 0.082 0.219 0.181 0.131 0.112 0.237 0.189 0.179 0.095 0.228 0.185 0.151
SDG 0.195 0.037 0.027 0.008 0.289 0.08 0.058 0.02 0.233 0.051 0.037 0.011
BA 0.627 0.504 0.498 0.512 0.767 0.678 0.678 0.715 0.69 0.578 0.574 0.597

30∼50

IE 0.262 0.173 0.161 0.037 0.598 0.416 0.371 0.101 0.364 0.244 0.225 0.054
DBDIE 0.08 0.19 0.209 0.109 0.192 0.333 0.36 0.223 0.113 0.242 0.264 0.146
SDG 0.356 0.125 0.076 0.025 0.476 0.257 0.147 0.101 0.407 0.168 0.1 0.04
BA 0.867 0.754 0.647 0.776 0.959 0.914 0.853 0.926 0.911 0.826 0.736 0.844

50∼70

IE 0.307 0.214 0.197 0.043 0.802 0.606 0.535 0.204 0.444 0.316 0.288 0.071
DBDIE 0.069 0.176 0.198 0.106 0.271 0.398 0.404 0.32 0.11 0.244 0.266 0.159
SDG 0.456 0.169 0.094 0.028 0.66 0.377 0.235 0.14 0.539 0.233 0.135 0.047
BA 0.931 0.851 0.746 0.853 0.963 0.935 0.932 0.95 0.947 0.891 0.829 0.899

70∼90

IE 0.344 0.282 0.238 0.059 0.908 0.783 0.668 0.295 0.499 0.415 0.351 0.098
DBDIE 0.041 0.193 0.178 0.079 0.201 0.431 0.361 0.254 0.068 0.267 0.238 0.121
SDG 0.589 0.235 0.142 0.025 0.784 0.527 0.318 0.126 0.673 0.325 0.196 0.042
BA 0.964 0.908 0.833 0.899 0.974 0.96 0.936 0.951 0.969 0.933 0.882 0.924

TABLE VIII: Comparison of Algorithm Matching Time

Algorithm Matching Time (seconds per function pair)
Cross Vers. Cross Opti. Cross Comp. Cross Arch.

IE 118.733 217.386 135.092 98.823
DBDIE 0.027 0.023 0.008 0.003

BA 0.133 0.121 0.065 0.006

100 200 300 400 500
Size (KB)

10 3

10 2

10 1

100

101

102

103

104

Ti
m

e
(s

)

IE
DBD
DBD
SD
BA

Fig. 6: Binary file (unstripped binaries taken from the cross-
version scenario) size vs. execution time of different diffing
approaches.

the LCS algorithm. The time consumption of DBDIE is slightly
less than BA, which is basically in line with our analysis of
time complexity.

2) Approach of Binary Diffing: We evaluate the execution
efficiency of BA and all baselines via end-to-end binary
file diffing. Function names enable preliminary matching of
function pairs, reflecting realistic application contexts such
as plagiarism detection (e.g., student homework vs. open-
source code on the Internet) where identically named functions
exhibit higher matching probabilities, and vulnerability track-
ing where known function names guide patch/vulnerability
preliminary matching.

Fig. 6 shows the execution time scaling trends of different
methods across binary file sizes in the cross-version scenario.
BA exhibits efficiency comparable to SDG for small binary

files (< 200KB). Beyond this threshold, BA incurs moderately
higher execution times than SDG, attributable to the increased
scale and complexity of CFGs in larger binary files. While this
affects the matching time of the algorithm, model inference
time exhibits minimal sensitivity to file size scaling. Crucially,
BA, SDG, and DBDIE complete diffing within 100 seconds
(for all binaries under 600KB), demonstrating practicality.
Conversely, IE’s high-complexity node matching and DBD’s
expensive embedding generation exhibit significant scalability
limitations, with execution times increasing substantially as
the file size increases (note that the y-axis is in log scale).

D. Ablation Study

In this section, we investigate the impact of different com-
ponents and hyperparameters on BA with the GNU dataset.
We first evaluate BA with different conditional relaxation
strategies. Then, we compare different neural networks in the
aligned subgraph pair decision model. Next, we evaluate the
sensitivity of initial subgraph pairing to the node enumeration
order and its subsequent effect on diffing performance. Finally,
we set different values for the threshold of graph embeddings’
similarity scores to understand the impact.

1) Conditional Relaxation Strategy: We measure the effect
of different conditional relaxation strategies on binary diffing
performance in BA. From Table III, Table IV, Table V and Fig.
5, we can see that the effectiveness of BA is superior to BA-0
and BA-1 in four scenarios. For example, in the cross-version
scenario, F1 of BA is more than 14.5% higher than that of
BA-0 and BA-1 on Findutils. In the cross-optimization level
scenario, the CDF curve of BA consistently lies beneath the
curves of both BA-0 and BA-1. Another interesting observa-
tion is that BA-1 does not always achieve better results than
BA-0. For instance, in the cross-compiler scenario, F1s of
BA-1 on Coreutils and Findutils are 1.2% and 0.8% higher
than BA-0, while 1.6% lower on Diffutils. This may be
because the first strategy St.1st is not sufficient to significantly
prevent omissions. Compared with chain nodes, branch nodes
may contain more information about similarity. These results
illustrate that the combination of the two conditional relaxation

14

TABLE IX: Diffing Results of Different Node Enumeration
Orders (Taken from the Cross-architecture Scenario)

Order Coreutils 8.30 Diffutils 3.6 Findutils 4.6

R
ascending 0.964 0.934 0.989

descending 0.962 0.935 0.987
random 0.961 0.935 0.989

P
ascending 0.991 0.977 1.0

descending 0.992 0.977 1.0
random 0.991 0.977 1.0

F1
ascending 0.977 0.955 0.994

descending 0.977 0.956 0.993
random 0.976 0.956 0.994

strategies can reduce the probability of missing graph-level
information and achieve better diffing performance.

2) Aligned Subgraph Pair Decision Model: To observe the
impact of subgraph embeddings generated by different neural
networks on the aligned subgraph pair decision, we compare
two neural networks, Gemini’s graph embedding network [22]
and GMN [49]. As shown in Table III, Table IV, Table V
and Fig. 5, the performance of Gemini’s graph embedding
network is better than that of GMN. The maximum difference
of F1 between BA and BA-GMN is 10.8% in the cross-
version scenario, and the CDF curve of BA is always below
that of BA-GMN. The results show that the graph embedding
network learns similarity features for subgraph pairs better
than GMN. The reason may be that GMN first matches
each node with a similar node in another graph and then
learns graph embeddings based on matched node embeddings.
Essentially, GMN performs node-level matching.

3) Node Enumeration Order: In this experiment, we eval-
uate whether initial subgraph pairing is sensitive to the node
enumeration order, thereby affecting the effectiveness of diff-
ing. We compare three orderings in the cross-architecture sce-
nario: ascending node number order, descending node number
order, and random index order (with a random seed set to 0).
The results in Table IX demonstrate that the effect of node
enumeration order on the effectiveness of BA is negligible
(with F1 difference within 0.1%), indicating that any ordering
is feasible.

4) Similarity Threshold θ: We evaluate how the value
of θ affects the diffing performance for cross-compilation
environment scenarios of BA. The similarity score calculated
by the aligned subgraph pair decision mode is a value in [0,1],
so we set θ to 0.0 ∼ 0.9 with an interval of 0.1. Fig. 7 shows
the variation of F1 concerning θ in four scenarios. We can see
that most of the F1 change curves exhibit an initial increase
followed by a decrease as θ increases. This is because initially
increasing θ allows for the model to exclude incorrectly
aligned candidate subgraph pairs. However, when θ becomes
excessively large, correctly aligned candidate subgraph pairs
may also be discarded. Therefore, we conservatively choose
0.7 as the value of θ.

E. Case Study

We further exhibit BA’s utility to real-world vulnerabil-
ity/patch analysis through two case studies: the first uses

0.0 0.2 0.4 0.6 0.8

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1

c_5.93-8.30
c_6.4-8.30
c_7.6-8.30
c_8.1-8.30
c_8.25-8.30
d_2.8-3.6
d_3.1-3.6
d_3.3-3.6
d_3.4-3.6
f_4.41-4.6

(a) Cross-version

0.0 0.2 0.4 0.6 0.8

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F1

c_O0-O3
c_O1-O3
c_O2-O3
d_O0-O3
d_O1-O3
d_O2-O3
f_O0-O3
f_O1-O3
f_O2-O3

(b) Cross-optimization level

0.0 0.2 0.4 0.6 0.8

0.82

0.84

0.86

0.88

0.90

0.92

F1

c_clang-gcc
d_clang-gcc
f_clang-gcc

(c) Cross-compiler

0.0 0.2 0.4 0.6 0.8
0.95

0.96

0.97

0.98

0.99

F1

c_arm-x86
d_arm-x86
f_arm-x86

(d) Cross-architecture

Fig. 7: Impact of different similarity threshold θ.

TABLE X: Diffing Results for Heartbleed on OpenSSL

Approach Vulnerability Patch
X(A) X(A+O) X(A+O+C) X(A) X(A+O) X(A+O+C)

IE 0.0 0.0 0.0 0.0 0.0 0.0
DBDIE 1.0 1.0 0.5 0.5 0.667 0.375
SDG 1.0 0.0 0.0 0.75 0.0 0.417
BA 1.0 1.0 1.0 1.0 1.0 1.0

libraries and compilation environments within the model’s
training distribution, while the second employs previously
unseen libraries and compilation environments.

1) Practical Application: Heartbleed (CVE-2014-0160) is
a classic vulnerability in OpenSSL that exists in version
1.0.1f and gets fixed in version 1.0.1u. We identify the
vulnerability and the patch in these two versions for an in-
depth comparison between BA and the state-of-the-art diffing
tools. Table X displays diffing results (we use the recall
score R) in three cross-compilation environment scenarios.
The first scenario is (x86-64, O0, GCC-8.2.0) vs (ARM-64,
O0, GCC-8.2.0), i.e., cross-architecture, represented as X(A).
The second scenario is (x86-64, O0, GCC-8.2.0) vs (ARM-64,
O3, GCC-8.2.0), i.e., cross-architecture and cross-optimization
level, expressed as X(A+O). The third scenario is (x86-64,
O0, GCC-8.2.0) vs (ARM-64, O3, Clang-6.0), i.e., cross-
architecture, cross-optimization level, and cross-compiler, in-
dicated as X(A+O+C). As we can see, BA outperforms all
three baselines, demonstrating its utility for pinpointing the
vulnerability/patch in complex cross-compilation scenarios.
Furthermore, IE’s zero recall (R = 0) underscores the im-

15

portance of considering branch information, particularly when
analyzing targets containing low-optimization-level CFGs.

2) Robustness Verification: To validate BA’s robustness in
real-world applications, we conduct this case study on nine
vulnerabilities and patches from five libraries (Binutils, Tar,
Libmicrohttpd, Inetutils, Recutils) compiled with Clang-13/O3
for cross-architecture (x86-64 vs ARM-64) diffing. Models are
trained on Coreutils/Diffutils/Findutils compiled under GCC-
5.4/O0. Table XI details these vulnerabilities and patches, and
the evaluation results of four diffing methods. We confirm
vulnerability/patch presence in a function when corresponding
basic blocks exist in the matching results (i.e., R > 0). Overall,
the robustness of these four methods is similar to the results
in Section IV-B5. BA achieves 100% success (9/9) despite
encountering unseen libraries, functions, and the compilation
environment. IE and SDG perform suboptimally (7/9 and
5/9, respectively), attributed to the node matching algorithm
suitable for high optimization levels (IE) and the deep neural
network-based node matching model (SDG). DBDIE fails com-
pletely (0/9) due to limited model generalization capability.
IE’s node embedding generation model cannot produce high-
similarity embeddings for unseen basic blocks. The results
highlight the robustness of BA for practical applications.

V. DISCUSSION

In this section, we discuss some limitations of BINALIGNER
and future work.

Semantic Features. To achieve a flexible cross-compilation
environment diffing at the binary level, BINALIGNER employs
basic block statistical attributes in Genius for graph embed-
dings, which avoid architectural constraints inherent to instruc-
tion syntax. However, this approach limits the exploitation of
instruction information. Future work will abstract instructions
to the IR level, thereby integrating natural language processing
techniques for enhanced semantic analysis.

Attack Robustness. BINALIGNER can partially handle
code optimization (e.g., function inlining via simple C
macros) and obfuscation (e.g., basic opaque predicates) prob-
lems. Specifically, single-block changes like constant hiding
or expression obfuscation do not affect subgraph pairing.
Chain/simple branch modifications with preserved topology
(e.g., opaque predicates or basic block splitting) are ad-
dressable. However, topology-altering transformations such as
control flow flattening or loop nesting may cause partial match
failures, exposing attack surfaces where sophisticated branch
alterations could challenge BINALIGNER.

Disassembler Difference. Our implementation utilizes IDA
Pro 7.5 [42]. It should be noted that different disassembly tools
(e.g., Ghidra [52]) or versions (e.g., IDA Pro 6.5) may produce
different CFGs. Consequently, applying BINALIGNER to these
variants could introduce minor experimental biases. Neverthe-
less, as a mainstream disassembler with broad adoption in
state-of-the-art methods, the use of IDA Pro is sufficient to
prove BINALIGNER’s practicality.

Indirect Jumps. BINALIGNER relies on the disassembly
tool for indirect jump branch recovery. We ignore indirect

jumps when dividing the chain/anchor node, which may in-
fluence diffing results. Nevertheless, this limitation exists in
all diffing methods. We leave this issue for future work.

Ground Truth of Source Code. We conservatively employ
textual equivalence as the ground truth for the same source
codes, which is sound but incomplete. Our future work aims
to incorporate source code similarity detection to capture more
functionally identical but syntactically different transforma-
tions that the current ground truth may not fully identify.

Scalability. For one given function pair, BINALIGNER
performs binary diffing once. Future work should consider the
problem of function retrieval for large binaries (e.g., containing
hundreds of thousands of functions). In addition, our current
datasets (i.e., GNU and OpenSSL) come from dynamically
linked binaries, so different functions are easy to separate. In
contrast, function boundaries for statically linked binaries may
not be well-defined, which may adversely influence the diffing
performance of BINALIGNER.

Loop Elimination. Removing an edge may cause an anchor
node to become a chain node or vice versa. This may induce
bidirectional incorporation: incorporating the node that is
originally excluded or excluding the node that is originally
incorporated. Consequently, the positive and negative impact
of loop elimination on BINALIGNER’s performance may re-
main balanced. Further exploration is deferred to future work.

VI. RELATED WORK

In this section, we introduce traditional binary and pseu-
docode diffing approaches (the ML-based methods are intro-
duced in Section II-C).

Traditional binary diffing approaches usually match basic
blocks based on fixed rules and static syntax features. BinDiff
[1] establishes basic block correspondences through various
features such as instruction prime products, hashes of raw
bytes, call references, string references, etc. Binslayer [27]
combines BinDiff with the Hungarian algorithm for bipartite
node matching. Dullien et al. [30] iteratively refine call graph
isomorphisms via hierarchical function/basic block/instruction
matching, while BinHunt [2] achieves subgraph isomorphism
through symbolic execution-based basic block similarity com-
parison. CoP [29] similarly employs symbolic execution to
verify basic block semantic equivalence and identify the
longest semantically equivalent subsequences. Pewny et.al.
[28] compute basic block I/O pair hashes for bug discovery,
contrasting with Tracelet’s [31] path-based function decom-
position and register/memory matching. Esh [32] decomposes
code into smaller comparable fragments and verifies interme-
diate/output value equivalence, and GitZ [33] is a reoptimized
version. Falleri et al. [53] compare code differences in the ab-
stract syntax tree. Traditional methods have limited effective-
ness, especially in cross-compilation environment scenarios.

Traditional pseudocode diffing tool Diaphora [54] is driven
by simple heuristic algorithms. It treats two code snippets as
two strings and conducts string-based matching to diff the two
code snippets. Therefore, it has little robustness to pseudocode
changes caused by changes in the compilation environment.

16

TABLE XI: List of CVE Vulnerabilities and Patches Detected on Other Open-source Libraries

Library Ver. CVE Vul./Pat. Function IE DBDIE SDG BA

Binutils 2.4
CVE-2025-5245 Vul. debug type samep ✓
CVE-2025-5244 Vul. bfd elf gc sections ✓ ✓ ✓
CVE-2025-1176 Vul. bfd elf gc mark rsec ✓ ✓ ✓

Tar 1.34 CVE-2023-39804 Vul. xheader decode ✓ ✓ ✓
CVE-2023-39804 Vul. xattr decoder ✓ ✓ ✓

Libmicrohttpd 0.9.75 CVE-2023-27371 Vul. MHD create post processor ✓ ✓

Inetutils 2.4 CVE-2022-39028 Pat. telrcv ✓ ✓
CVE-2021-40491 Pat. initconn ✓ ✓

Recutils 1.9 CVE-2021-46022, Pat. rec parse comment ✓ ✓CVE-2021-46019

VII. CONCLUSION

In this paper, we propose a novel binary diffing approach
BINALIGNER to alleviate the limitations of existing works in
effectiveness and flexibility across compilation environments.
To improve effectiveness, we propose graph-level matching
to obtain candidate subgraph pairs. To increase flexibility at
the binary level, we use instruction-independent basic block
features to generate subgraph embeddings. We evaluate BI-
NALIGNER in terms of the effectiveness, support ability for
different scenarios, and compilation environment evolution
resilience, as well as utility for real-world vulnerabilities
and patches. Our experimental results demonstrate that the
proposed approach outperforms state-of-the-art methods.

ACKNOWLEDGMENT

We are deeply grateful to the anonymous reviewers for their
valuable comments, which greatly enhanced the quality of our
paper. We also thank Sijie Zhi, Qiuyu Li, and Kecheng Li for
their contributions to the preliminary research of the paper.
This work is supported by ZJU Kunpeng&Ascend Center of
Excellence. We appreciate the support of Kunpeng&Ascend
server computing resources.

REFERENCES

[1] “zynamics BinDiff,” https://www.zynamics.com/bindiff.html, 2023. 1,
16

[2] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding
semantic differences in binary programs,” in Information and Commu-
nications Security: 10th International Conference, ICICS 2008 Birming-
ham, UK, October 20-22, 2008 Proceedings 10. Springer, 2008, pp.
238–255. 1, 16

[3] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural machine
translation inspired binary code similarity comparison beyond function
pairs,” in Network and distributed system security symposium, 2019. 1,
4, 9

[4] Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning program-
wide code representations for binary diffing,” in Network and distributed
system security symposium, 2020. 1, 4, 9, 10

[5] M. Sojer and J. Henkel, “Code reuse in open source software develop-
ment: Quantitative evidence, drivers, and impediments,” Journal of the
Association for Information Systems, vol. 11, no. 12, pp. 868–901, 2010.
1

[6] C. J. Kapser and M. W. Godfrey, ““cloning considered harmful” con-
sidered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13, pp. 645–692, 2008. 1

[7] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software and algorithm plagiarism detection,” IEEE Transactions on
Software Engineering, vol. 43, no. 12, pp. 1157–1177, 2017. 1

[8] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting
code clones in binary executables,” in Proceedings of the eighteenth
international symposium on Software testing and analysis, 2009, pp.
117–128. 1

[9] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
security patch analysis for binaries towards understanding the pain and
pills,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 2017, pp. 462–472. 1

[10] Y. Li, W. Xu, Y. Tang, X. Mi, and B. Wang, “Semhunt: Identifying
vulnerability type with double validation in binary code.” in SEKE, 2017,
pp. 491–494. 1

[11] J. F. Islam, M. Mondal, and C. K. Roy, “Bug replication in code clones:
An empirical study,” in 2016 IEEE 23Rd international conference on
software analysis, evolution, and reengineering (SANER), vol. 1. IEEE,
2016, pp. 68–78. 1

[12] B. S. Baker, “On finding duplication and near-duplication in large soft-
ware systems,” in Proceedings of 2nd Working Conference on Reverse
Engineering. IEEE, 1995, pp. 86–95. 1

[13] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in 29th International
Conference on Software Engineering (ICSE’07). IEEE, 2007, pp. 96–
105. 1

[14] G. Tao, D. Guowei, Q. Hu, and C. Baojiang, “Improved plagiarism
detection algorithm based on abstract syntax tree,” in 2013 Fourth
International Conference on Emerging Intelligent Data and Web Tech-
nologies. IEEE, 2013, pp. 714–719. 1

[15] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, “αdiff:
cross-version binary code similarity detection with dnn,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 667–678. 1

[16] S. Eschweiler, K. Yakdan, E. Gerhards-Padilla et al., “discovre: Efficient
cross-architecture identification of bugs in binary code.” in Ndss, vol. 52,
2016, pp. 58–79. 1

[17] M. R. Farhadi, B. C. Fung, P. Charland, and M. Debbabi, “Binclone:
Detecting code clones in malware,” in 2014 Eighth International Con-
ference on Software Security and Reliability (SERE). IEEE, 2014, pp.
78–87. 1

[18] W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A search
engine for binary code,” in 2013 10th Working Conference on Mining
Software Repositories (MSR). IEEE, 2013, pp. 329–338. 1

[19] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can
learn function type signatures from binaries,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017, pp. 99–116. 1

[20] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static
representation robustness for binary clone search against code obfusca-
tion and compiler optimization,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 2019, pp. 472–489. 1

[21] K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray, “Trex: Learning
execution semantics from micro-traces for binary similarity,” arXiv
preprint arXiv:2012.08680, 2020. 1

[22] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, 2017, pp. 363–376. 1, 2, 4, 7, 9, 15

[23] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
2016, pp. 480–491. 1, 2, 4, 7

17

https://www.zynamics.com/bindiff.html

[24] G. Kim, S. Hong, M. Franz, and D. Song, “Improving cross-platform
binary analysis using representation learning via graph alignment,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022, pp. 151–163. 1

[25] S. Wang, X. Wang, K. Sun, S. Jajodia, H. Wang, and Q. Li, “Graphspd:
Graph-based security patch detection with enriched code semantics,” in
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023, pp.
2409–2426. 1

[26] Z. Luo, P. Wang, B. Wang, Y. Tang, W. Xie, X. Zhou, D. Liu, and K. Lu,
“Vulhawk: Cross-architecture vulnerability detection with entropy-based
binary code search.” in NDSS, 2023. 1

[27] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate comparison
of binary executables,” in Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop, 2013, pp. 1–10.
1, 16

[28] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in 2015 IEEE Symposium
on Security and Privacy. IEEE, 2015, pp. 709–724. 1, 16

[29] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection,” in Proceedings of the 22nd ACM SIG-
SOFT international symposium on foundations of software engineering,
2014, pp. 389–400. 1, 16

[30] T. Dullien and R. Rolles, “Graph-based comparison of executable objects
(english version),” Sstic, vol. 5, no. 1, p. 3, 2005. 1, 16

[31] Y. David and E. Yahav, “Tracelet-based code search in executables,”
Acm Sigplan Notices, vol. 49, no. 6, pp. 349–360, 2014. 1, 16

[32] Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,”
Acm sigplan notices, vol. 51, no. 6, pp. 266–280, 2016. 1, 16

[33] ——, “Similarity of binaries through re-optimization,” in Proceedings of
the 38th ACM SIGPLAN conference on programming language design
and implementation, 2017, pp. 79–94. 1, 16

[34] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and
R. Ward, “Deep sentence embedding using long short-term memory
networks: Analysis and application to information retrieval,” IEEE/ACM
transactions on audio, speech, and language processing, vol. 24, no. 4,
pp. 694–707, 2016. 1, 4

[35] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.” in IJCAI, vol. 2015,
2015, pp. 2111–2117. 1, 4

[36] L. GAO, Y. QU, S. YU, Y. DUAN, and H. YIN, “Sigmadiff: Semantics-
aware deep graph matching for pseudocode diffing,” in Proceedings of
the 31st Network and Distributed System Security Symposium (NDSS
2024), San Diego, CA, USA, February, 2024, pp. 1–19. 2, 4, 9, 11

[37] M. Fey, J. E. Lenssen, C. Morris, J. Masci, and N. M. Kriege, “Deep
graph matching consensus,” arXiv preprint arXiv:2001.09621, 2020. 2,
4

[38] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a” siamese” time delay neural network,” Advances in
neural information processing systems, vol. 6, 1993. 2, 4

[39] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” in International conference on
machine learning. PMLR, 2016, pp. 2702–2711. 2, 4, 7

[40] “OpenSSL,” https://www.openssl.org/, 2012. 3, 8
[41] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013. 4

[42] H. Rays, “IDA Pro,” https://www.hex-rays.com/products/ida/, 2019. 4,
7, 16

[43] I. Jane Bromley, I. Guyon, and R. Shah, “Signature verification using a”
siamese.”,” Time Delay Neural Network International Journal of Pattern
Recognition and Artificial Intelligence, vol. 7, p. 25, 1993. 7

[44] “Gnu coreutils,” https://www.gnu.org/software/coreutils/, 2024. 8
[45] “Gnu diffutils,” https://www.gnu.org/software/diffutils/, 2024. 8
[46] “Gnu findutils,” https://www.gnu.org/software/findutils/, 2024. 8
[47] E. van der Kouwe, G. Heiser, D. Andriesse, H. Bos, and C. Giuffrida,

“Sok: Benchmarking flaws in systems security,” in 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2019, pp. 310–
325. 8

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014. 9

[49] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in

International conference on machine learning. PMLR, 2019, pp. 3835–
3845. 9, 15

[50] Python Software Foundation, “difflib – helpers for computing deltas,”
https://docs.python.org/3/library/difflib.html, Python 3.7. 10

[51] “networkx.algorithms.cycles.simple cycles,” https://networkx.org/
documentation/networkx-2.4/reference/algorithms/generated/networkx.
algorithms.cycles.simple cycles.html, 2023. 13

[52] N. S. Agency, “Ghidra reverse engineering tool,” https://ghidra-sre.org/,
2019. 16

[53] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 313–324. 16

[54] “Diaphora,” https://github.com/joxeankoret/diaphora, 2024. 16

18

https://www.openssl.org/
https://www.hex-rays.com/products/ida/
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/findutils/
https://docs.python.org/3/library/difflib.html
https://networkx.org/documentation/networkx-2.4/reference/algorithms/generated/networkx.algorithms.cycles.simple_cycles.html
https://networkx.org/documentation/networkx-2.4/reference/algorithms/generated/networkx.algorithms.cycles.simple_cycles.html
https://networkx.org/documentation/networkx-2.4/reference/algorithms/generated/networkx.algorithms.cycles.simple_cycles.html
https://ghidra-sre.org/
https://github.com/joxeankoret/diaphora

	Introduction
	Problem Statement
	Problem Definition
	Motivation for Graph-level Matching
	State-of-the-art Techniques

	Approach
	BinAligner Overview
	Initial Subgraph Pair Identification
	Anchor/Chain Node Definition
	Loop Elimination Preprocessing
	Initial Subgraph Pair Matching

	Candidate Subgraph Pair Obtainment
	Challenges of Tackling Missed Matches
	The First Conditional Relaxation Strategy St.1st
	The Second Conditional Relaxation Strategy St.2nd

	Aligned Subgraph Pair Decision
	BinAligner Process

	Evaluation
	Experimental Setup
	Datasets
	Baseline Methods
	Ablation Study Settings
	Metrics
	Ground Truth Collection

	Effectiveness, Support Ability, and Evolution Resilience for Cross-compilation Environment Scenarios
	Cross-version Diffing
	Cross-optimization-level Diffing
	Cross-compiler Diffing
	Cross-architecture Diffing
	Cross-architecture Diffing after the Compilation Environment Evolves
	Diffing on Different Function Pairs with Different Degrees of Similarity

	Efficiency
	Algorithm of Graph/Node Matching
	Approach of Binary Diffing

	Ablation Study
	Conditional Relaxation Strategy
	Aligned Subgraph Pair Decision Model
	Node Enumeration Order
	Similarity Threshold

	Case Study
	Practical Application
	Robustness Verification

	Discussion
	Related Work
	Conclusion
	References

