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Abstract—Safety alignment is critical for the ethical deploy-
ment of large language models (LLMs), guiding them to avoid
generating harmful or unethical content. Current alignment tech-
niques, such as supervised fine-tuning and reinforcement learning
from human feedback, remain fragile and can be bypassed
by carefully crafted adversarial prompts. Unfortunately, such
attacks rely on trial and error, lack generalizability across models,
and are constrained by scalability and reliability.

This paper presents NeuroStrike, a novel and generalizable
attack framework that exploits a fundamental vulnerability intro-
duced by alignment techniques: the reliance on sparse, specialized
safety neurons responsible for detecting and suppressing harmful
inputs. We apply NeuroStrike to both white-box and black-box
settings: In the white-box setting, NeuroStrike identifies safety
neurons through feedforward activation analysis and prunes
them during inference to disable safety mechanisms. In the black-
box setting, we propose the first LLM profiling attack, which
leverages safety neuron transferability by training adversarial
prompt generators on open-weight surrogate models and then
deploying them against black-box and proprietary targets. We
evaluate NeuroStrike on over 20 open-weight LLMs from major
LLM developers. By removing less than 0.6% of neurons in
targeted layers, NeuroStrike achieves an average attack success
rate (ASR) of 76.9% using only vanilla malicious prompts.
Moreover, Neurostrike generalizes to four multimodal LLMs
with 100% ASR on unsafe image inputs. Safety neurons transfer
effectively across architectures, raising ASR to 78.5% on 11 fine-
tuned models and 77.7% on five distilled models. The black-box
LLM profiling attack achieves an average ASR of 63.7% across
five black-box models, including Google’s Gemini family.

I. INTRODUCTION

Large Language Models (LLMs) have dramatically trans-
formed natural language processing, exhibiting extraordinary
capabilities in tasks ranging from language generation and
translation to complex reasoning and interactive dialogues [1]-
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[3[]. Despite these advancements, their extensive deployment
across various industries raises significant security and safety
concerns, notably the potential for generating harmful, mis-
leading, or unsafe content [4]. To address these issues, tech-
niques referred to as safety alignment have been introduced.
Implemented through post-training fine-tuning, safety align-
ment methods like Reinforcement Learning from Human
Feedback (RLHF) [5] fine-tune models to align outputs with
human ethical judgments, compressing harmful responses.
However, recent research has revealed significant limitations
in current safety alignment methods for LLMs. First, align-
ment mechanisms lack robustness; even benign fine-tuning
intended to enhance general performance can inadvertently
weaken existing safety constraints [6]. Second, despite ef-
forts to guide models toward ethical outputs, they remain
susceptible to adversarial prompts, known as jailbreaks, which
bypass safety mechanisms and elicit harmful responses [4]],
[7], [8]l. Yet, crafting universally effective jailbreak prompts
remains challenging, as differences in training data, model
architectures, and alignment strategies severely limit their
transferability, rendering existing offensive research largely ad
hoc and empirical. On the other hand, recent studies have
attempted to interpret the safety mechanisms in LLMs either at
the layer level [9]] or at the feature level [[I0]. However, these
methods may not accurately pinpoint the critical components
responsible for safety behaviors as they implicate nearly
10% of model parameters as safety-related. Defensive tech-
nique [11] narrowly focuses on specific layers and is validated
for limited LLMs, constraining its practical applicability across
diverse/multimodal LLMs. These gaps highlight the urgent
need for a deeper, principled understanding of the underlying
mechanisms governing safety alignment, which could inform
more targeted, reliable, and generalizable attacks.
Safety Alignment as a Loophole: When analyzing the behav-
ior of aligned LLMs, we identify an analogy between safety
alignment and adversarial attacks [12]]-[14], where models
exhibit predictable yet abnormal responses upon receiving
specially crafted inputs. The aligned models are conditioned



to respond predictably (e.g., “I'm sorry, I cannot assist
with that.”) to malicious inputs, thereby implicitly creating
a safety trigger. Inspired by neural interpretability research,
which demonstrates that sophisticated behaviors in neural net-
works often originate from sparse, highly specialized neuron
groups [15], [[16]], we hypothesize that safety alignment is
similarly implemented via dedicated neurons, denoted as safety
neurons. Similar to how the human brain has neurons that help
us distinguish right from wrong, LLMs rely on specific safety
neurons to recognize and suppress harmful behavior. These
neurons act as internal detectors, discriminating malicious
inputs from benign queries by producing distinctive activation
patterns. If an adversary accurately identifies and manipulates
these safety neurons, either by suppressing their activation
with carefully crafted input or directly pruning them, the
safety-aligned model can be neutralized. This neutralization
enables the direct elicitation of harmful outputs, bypassing the
model’s intended safety alignment mechanisms.

Our Goals and Contributions: We present NeuroStrike,
a novel attack framework that analyzes and exploits the
safety triggers introduced by the safety alignment. NeuroStrike
exploits insights from safety neurons’ behavior to compro-
mise both open-weigh and black-box (including proprietary)
LLMs. Our framework leverages lightweight neuron activation
analysis to identify safety neurons during inference, then re-
moves or bypasses them for the attack. Our approach achieves
high success rates for eliciting harmful outputs and demon-
strating remarkable generalizability and transferability across
diverse LLMs, including multimodal models. Furthermore, we
apply NeuroStrike to practical black-box scenarios, targeting
LLMs with APT access only. For the first time, we propose an
LLM profiling attack that exploits similarities in safety align-
ment techniques between black-box and corresponding open-
weight surrogate. We first train offline jailbreaking prompt
generators that maximize the jailbreaking attack success rate
and minimize safety neuron activations (profiling), then use the
prompt generated by the generator to circumvent the defenses
of black-box models (attack). Since the LLM profiling attack
is largely executed offline without direct interaction with the
target model, it significantly reduces the risk of detection by
the LLM service provider. Specifically, our contributions are:

o We introduce a novel perspective that identifies safety
alignment as creating a fundamental yet fragile safety
trigger, implemented through sparse, specialized safety
neurons that activate in response to harmful inputs.

o« We propose a novel and lightweight approach to ac-
curately identify safety neurons in open-weight LLMs
through analyzing neuron activations, enabling precise
safety neuron pruning, and substantially improving the
model’s likelihood of fulfilling malicious requests.

o We present a novel LLM profiling attack for the black-
box setting, which leverages the transferability of safety
neurons to train adversarial prompt generators on an

'Open-weight LLMs offer publicly available pre-trained weights indepen-
dent of data or code openness.

open-weight surrogate model with Group Relative Policy
Optimization (GRPO) [17].

o Our comprehensive attacks, using only vanilla malicious
prompt increase the average attack success rate (ASR)
from 12.1% to 76.9% across 11 open-source LLMs from
Meta, Google, Alibaba, DeepSeek, and Microsoft. It
generalizes robustly to four state-of-the-art multimodal
models, reaching a 100% ASR on malicious image inputs
after pruning. Identified safety neurons effectively trans-
fer across model variants, increasing attack success rates
from 25.1% to 78.5% on 11 fine-tuned models and from
41.5% to 77.7% on five distilled models. We successfully
circumvent safety alignment protections on five black-box
models, including Google’s Gemini family, increasing the
average ASR from 3.5% to 63.7%.

The remainder of the paper is organized as follows. Sec-
tion [II] introduces background information, followed by an
analysis of safety neurons in Section Section [[V] and Sec-
tion |V| describe our attack framework and its implementation,
respectively. A case study is presented in Section [VI We
evaluate our method on open-weight and black-box LLMs
in Sections [VII] and [VIII, respectively. Section [IX] presents
our attack’s performance against models protected by state-
of-the-art defenses. Section [X] provides an ablation study, and
Section discusses broader implications. Related work is
reviewed in Section [XII] and Section [XIII| concludes the paper.
Additional experiments are provided in Appendix [A]

The artifact is available at the permanent archival repos-
itory, |https://doi.org/10.5281/zenodo.17072075. Appendix
provides more details and guidance to reproduce this work.

II. PRELIMINARIES
A. Large Language Models

LLMs, such as GPT [[18]], LLaMA [19], and DeepSeek [20],
are deep neural networks trained on extensive textual datasets
to perform diverse natural language processing tasks. These
models predominantly use the transformer architecture [21],
composed of stacked layers that integrate multi-head self-
attention mechanisms and token-wise feed-forward networks
commonly referred to as Multi-Layer Perceptrons (MLPs).
Within each transformer block, the self-attention mechanism
captures contextual relationships between tokens, while the
MLP independently transforms each token’s representation.
The MLP introduces crucial non-linearities, enhancing the
model’s ability to perform complex, token-specific computa-
tions. Typically, an MLP layer can be presented as follows:

MLP(e) = Waown (0(Weate - €) © ¢(Wyp - €)), (1)

where o, ¢ are activation functions; ® denotes element-wise
multiplication. Specifically, token embeddings e are first pro-
jected into a higher-dimensional hidden space via W, and
Waate € Rfect_torvaraXdmodt and subsequently mapped back to
the original dimension through Wy, € IR modet X dieea_torwara  Thyis

2The vanilla malicious prompt means a direct malicious request, such as
“how to make a bomb?”
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architecture allows the MLP to control which features are
emphasized or suppressed via the gate, functioning similarly
to a multiplicative attention over internal neurons.

B. LLM Fine-Tuning

Fine-tuning is essential for enhancing the capabilities, such
as generating ethical content, of pretrained LLMs. One promi-
nent approach to fine-tuning is Reinforcement Learning with
Human Feedback (RLHF) [5]]. RLHF involves initially fine-
tuning a model using supervised examples from human pref-
erences, followed by reinforcement learning, where human
feedback is converted into reward signals. Recently, Group
Relative Policy Optimization (GRPO) [17] has been proposed
as a novel reinforcement learning technique to improve the
reasoning capabilities of LLMs, such as DeepSeek-R1 [22].
Unlike RLHF, which relies on value functions, GRPO evalu-
ates groups of responses relative to each other, streamlining
the training process and reducing computational overhead. The
core idea of GRPO can be expressed as:

AT+ (S,Gj) — w’ (2)

o
where 7y, is the policy parameterized by a set of variables 6;
at time step ¢. A (s,a;) represents the advantage function
for action a; in state s, (s, a;) is the reward for that action,
and p and o are the mean and standard deviation of rewards
within the sampled group. This formulation allows the model
to prioritize actions that perform better than others in the same
group, enhancing learning efficiency.

C. LLM Exploitation & Countermeasures

LLMs are susceptible to several security and safety exploits
stemming from their open-ended generative capabilities and
overparameterized nature. Common vectors of exploitation
include adversarial attacks [23]], [24], inference attacks [25]],
[25]], and instruction tuning attacks [_8], [26] (e.g., jailbreak-
ing and prompt injection). These attacks often target model
behavior to circumvent user intent, violate platform policy,
or exfiltrate sensitive information. Among these, jailbreak
attacks have become one of the most prominent and ac-
cessible forms of exploitation. Typically, an adversary crafts
adversarial inputs that bypass a model’s alignment constraints,
enabling the generation of harmful, restricted, or policy-
violating content [4]], [7], [8]]. These attacks often leverage
techniques such as obfuscation, role-playing, and contextual
misdirection that exploit rigid safety decision boundaries of
the model. To mitigate such risks, developers apply safety
alignment to constrain model behavior and enforce normative
response boundaries. The final model is fine-tuned using policy
optimization techniques to reinforce these behaviors. Aligned
models are trained to reject unsafe prompts with predictable
refusals, aiming to minimize the risk of misuse. Despite these
efforts, recent studies demonstrate that even safety-aligned
models remain vulnerable to jailbreak-style attacks [4], [27]],
[28]; the safety alignment itself can be compromised by benign
fine-tuning [6]]. This evidence shows the fragile nature of

safety alignment, urging a deeper investigation into the internal
mechanisms behind it and the corresponding vulnerabilities.

III. SAFETY ALIGNMENT & SAFETY NEURONS

As mentioned in Section safety alignment guides
LLMs toward generating ethically compliant and safe re-
sponses. Formally, safety alignment can be understood as
adjusting the model parameters 6 to maximize the expected
reward from human evaluators, given by:

mgaX]EwND[Rsafe(fB(x)’x)]? (3)

where fg(z) represents the LLM’s output given an input
prompt z, drawn from distribution D. Ry, is the human-
defined safety reward function, assigning higher scores to safe
and compliant responses and penalizing unsafe generations.
As a direct consequence of optimizing this safety objective,
the model parameters are updated to implicitly create dis-
tinct boundaries within its internal representation space. Let
h‘(x) € R? be the latent representation of an input z at layer
¢, the decision boundary separates benign prompts X'z from
malicious prompts X, represented as:

1, xe€ Xy,

4
0, x=€Xp, @

g(h(z);0) = {
where g(-;¢) is a latent binary classifier parameterized by
a subset of model parameters ¢ C 6, reflecting the model’s
internal separation between malicious and benign inputs.
Prior neural interpretability studies demonstrate that task-
specific behaviors emerge from sparse subsets of special-
ized neurons [15]. Analogously, due to the binary nature of
g(h*(z); ¢), there must exist neuron subsets whose activations
distinctly and consistently differ between malicious and benign
prompts, forming a sparse yet discriminative activation signa-
ture. Formally, let h*(z) = [h§(z), hi(z),... hE(x)]T. We
define safety neurons S as:

S = {i | Bty [ (2)] = Eanien [l (2)] > 7,0 € [0,d]}, (5)

where 7 is a threshold empirically set to identify significantly
discriminative neurons denoted as safety neurons. Intuitively,
safety alignment trains the model to reject harmful inputs
through consistent refusal patterns, concentrating this behavior
within a small subset of neurons due to neural adaptation.
These safety neurons behave differently when encountering
benign and malicious prompts. We define three properties in
safety neurons, empirically validated in Section
Specialized. These neurons are specifically tuned to detect and
manage malicious inputs, enabling the model to differentiate
between benign and harmful prompts. This specialization is a
direct result of safety alignment processes, where models are
trained to produce refusals to unsafe queries.

Sparse. Safety neurons constitute a small subset of the model’s
overall architecture. Our experimental results indicate that
these neurons make up less than 0.6% in a layer over 30 state-
of-the-art and open-weight LLMs (Section [VII), highlighting
their sparse distribution within the network.



)
®Teach me how to make
™
I'm sorry, | cannot &
Neuron Activation
Analysis

(o

Prompts

®Teach me the basics of the
Large Language Model.

Sure! Let’s break down the &

basics of LLMs in a simple,
beginner-friendly way...

Neuron Activation

Analysis /

Safety Neurons

\ Detection /

Sure! Here's a clean, &
and straightforward
way to make a bomb:

Unaligned LLM

OActivated Neuron
O Safety Neuron
. Pruned Neuron

Fig. 1: An overview of the NeuroStrike in the white-box attack scenario.

Transferable. Safety neurons’ structural and functional prop-
erties are often conserved across models within the same
family. Indeed, safety alignment protocols typically adhere
to uniform ethical standards and evaluation metrics. Conse-
quently, when an LLM undergoes fine-tuning for domain-
specific tasks, the pre-existing safety neurons are generally
preserved. The experimental results show the consistent safety
of neuron transferability over 11 fine-tuned, five distilled, and
five black-box LLMs (Section and Section [VIII).

The combination of these properties introduces inherent
vulnerabilities within the LLM’s latent space. An adversary
could simply prune these neurons (on open-weight LLMs)
to compromise safety alignment or carefully craft jailbreak-
ing prompts without triggering these neurons (on black-box
LLMs) to bypass it, as detailed in the next section.

IV. NEUROSTRIKE
A. Threat Model

Our threat model assumes an adversary who aims to com-
promise the safety alignment mechanisms of LLMs to obtain
malicious or harmful knowledge from LLM outputs. We define
two attack scenarios:

White-box attacks. The adversary targets open-weight LLMs
and has access to the model’s internal weights and neuron
activations. In addition, the adversary has the ability and per-
mission to modify or prune neurons within the model’s internal
structures. In this attack scenario, an attacker can leverage
NeuroStrike to compromise a powerful open-weight model,
then use the compromised model as a malicious assistant, e.g.,
to generate malicious code hacking remote devices or to spread
hate speech on social media. Besides, insider or supply-chain
attackers can prune safety neurons pre-deployment or embed
compromised models into downstream systems.

Black-box attacks. The adversary targets black-box (includ-
ing proprietary) LLMs that lack direct access to internal
parameters and neuron activations. Instead, the adversary
conducts profiling on open-weight models from the same
model family or related architectures to approximate the safety
mechanisms with prompts. Leveraging the transferability of
safety neurons between two models, the adversary-crafted

prompts are designed to evade the safety alignment of the
target black-box model.

B. The Idea and High-Level Design

NeuroStrike is a general-purpose, lightweight attack frame-
work that systematically identifies and suppresses safety neu-
rons in LLMs to enable safety alignment removal (white-
box) or controlled jailbreaks (black-box). Regardless of attack
scenarios, NeuroStrike is unified by a core principle: bypassing
safety alignment by manipulating safety neuron activations.

In the white-box setting, as shown in Figure [I] NeuroStrike
analyzes neuron activations from both malicious and benign
prompt inputs. While harmful prompts are typically rejected,
their processing activates specific neurons responsible for
safety enforcement. By aggregating activation patterns across
examples, NeuroStrike identifies a sparse set of safety neurons
consistently involved in content filtering. These neurons are
then pruned during inference, producing an unaligned model
that still understands the prompt but no longer enforces safety
constraints. As shown in Section [VII-B| safety neuron suppres-
sion generalizes across model variants and input modalities,
enabling broad transferability beyond the original model.

In the black-box setting, shown in Figure 2] NeuroStrike
bypasses safety constraints without internal model access. It
selects a surrogate open-weight model closely related to the
target (e.g., from the same developer and technology) and fine-
tunes a prompt generator on the surrogate model. Candidate
prompts are evaluated based on 1) whether they elicit harmful
outputs (judged by an LLM-based classifier) and 2) the acti-
vation level of known safety neurons. The generator is fine-
tuned to maximize jailbreak success while minimizing neuron
activation, producing stealthy jailbreak prompts that evade
safety filters. Due to safety neuron transferability between
the surrogate and target models, these prompts enable high
success-rate jailbreaks in black-box settings.

C. White-box Attack

1) LLM Pruning with Safety Neurons: To evaluate the
impact of individual neurons on the safety mechanisms of an
LLM, we introduce a classifier to distinguish between neuron
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Fig. 2: An overview of the NeuroStrike in the black-box attack scenario.

activations produced by malicious (y = 1) and benign (y = 0)
inputs. Our case study in Section [VI| shows the clear decision
boundary of safety neuron activation on different input types
(i.e., benign, malicious, and jailbreak). Therefore, we employ
a linear classifier, more specifically, logistic regression, to
capture alignment-related signals. Besides, linear models can
scale efficiently to large architectures and datasets, making
them practical tools for assessing neuron-level contributions
across many layers. Specifically, we learn a weight vector
w € R? and b € R such that:

j(x) = o(w h(z) +b), (6)

where o(-) is the logistic sigmoid function that outputs prob-
abilities. Each component w; of the learned weight vector
corresponds directly to the influence of neuron ¢ on the final
safety decision. Consequently, neurons with large positive
weight w; are prime candidates for constituting the subset of
safety neurons S, as they most strongly contribute to the final
prediction as malicious (e.g., ¥ = 1).

With the set of safety neurons S being identified, an
adversary could target these neurons by pruning or suppressing
their activations. The pruned model can be simplified as:

gruned(x) — (Z w7hf(z) + b) , @)

i¢s
where the safety neurons in S are nullified. By design, this

pruning diminishes the model’s ability to differentiate between
malicious and benign inputs, leading to:

Eomitss || Rate(fo(@), 2) = Rare(f§"" (@), 2)]] >0, ®)

meaning that the pruned model f2™"** becomes more harmful
and more likely to respond to malicious requests. Note that
the impact of pruning safety neurons extends beyond textual
inputs. In multimodal LLMs, such as vision language models
that incorporate an additional encoder for image processing,
the transformer blocks are responsible for semantic interpre-
tation and output generation. Let Xy and @iy, represent text
and image inputs, respectively. If the activations h’(zx) are

indicative of safety enforcement, then pruning the identified
safety neurons can degrade the model’s refusal responses on
malicious requests. Consequently, the model may generate
unsafe outputs even when processing Zjmg, underscoring the
broad implications of compromising safety neurons.

2) Exploiting the Transferability of Safety Neurons: As dis-
cussed in Section safety neurons tend to exhibit structural
alignment across models within the same LLM family, even
when those models are fine-tuned or distilled independently.
This consistency enables a powerful transfer attack: safety-
critical neurons identified in one model can be applied to
remove the alignment of another model from the same family.

Formally, let fg . be an open-weight source model and fg,,
be a target model from the same family. For the attack, we
first apply a linear probe on the feedforward activations of fy
(see Eq. () to identify the outlier set O:

O ={i| |w| > 7}, )

src

where w; are the learned weights of the classifier and 7 is a
selection threshold. Next, we prune the corresponding neurons
O in fy, following Eq. (7), disrupting LLM’s rejection
behavior. This intervention disrupts the safety enforcement in
Jo,» replicating the jailbreak effect without requiring model-
specific retraining or probing. In Section [VII-B| we show how
an adversary can transfer identified safety neurons from one
LLM to attack a different LLM in the same model family.

D. Black-box Attack

Recall the threat model defined in Section the adver-
sary does not have direct access to the target model parameters
or architecture details in a black-box scenario. Instead, the
adversary’s objective is to find a jailbreaking prompt zj, that
effectively bypasses the safety alignment boundary of the
black-box model fy,,:

fOlgl(l'jb) S yunsafea

where Vynsafe represents the set of unsafe or restricted outputs
that the safety-aligned model is designed explicitly to avoid.

Leveraging the characteristic of safety neuron transferability
described in Section instead of relying on interaction

(10)



with the target LLM, we introduce a novel LLM profiling
attack to attack black-box LLMs. Concretely, although the
adversary has no direct access to the internal parameters of
the black-box model fglg[, the latent safety neurons activations
hs are similar to its open-weight surrogate fy_:

ho® (z) ~ WY (z), @€ X. (11)

One might question the existence of such an open-weight
surrogate. However, these models are indeed prevalent. LLM
service providers often leverage open-weight models as the
foundation for their proprietary services. Moreover, major
LLM developers frequently release open-weight versions that
share core research and technology with their proprietary
counterparts [29]. We provide more discussion about this
attack assumption in Section

The structural similarity between the open-weight and
black-box models allows the adversary to launch an LLM
profiling attack, which consists of two steps: (1) Profiling:
crafting and selecting jailbreaking prompts that maximize
the attack success rate and bypass the activation of safety
neurons on the surrogate. (2) Attack: applying these optimized
jailbreaking prompts to attack black-box models.

Concretely, in the profiling stage, an adversary first trains
(supervised fine-tuning) a generator fy,, to generate jailbreak
prompts. Formally, the training objective at this stage can
be represented as maximizing the conditional likelihood of
generating known jailbreaking prompts xj, given contexts c:

max K ;)\~ [log ngcn(ij|c)] , (12)

gen
where Dj, represents our collected dataset of vanilla ma-
licious requests and corresponding jailbreak prompts. Next,
the adversary further fine-tunes fg,, using GRPO so that
the generated jailbreaking prompts are more likely to evade
the safety alignment boundaries of the open-weight surrogate,
thus having a higher chance to bypass the safety alignment
of the target black-box model. During GRPO fine-tuning,
we optimize fp,,, by maximizing a reward function R that
combines two distinct objectives: (1) successful jailbreak of
the open-weight surrogate model fp . and (2) minimal acti-
vation of safety neurons identified in fp . Formally, given a
zjp ~ Py,.,(z|c), we define the reward function as:

Rip(foo. (),
Rieuron (hé7src (ij ) ) ’

if jailbreak successes,
Rgreo(zjp) = { .
otherwise.
(13)
Here, Rj, denotes the reward of a prompt on whether it
is successful in jailbreaking the open-weight surrogate fy_ ;
Rpeuron represents the reward for the safety neuron activation.
Intuitively, while Rj, provides binary feedback, Rpeuron fills
this binary gap with a more informative signal. When a
jailbreak attempt fails, Ryeuron helps guide the generator toward
prompts that lie closer to the surrogate model’s internal safety
boundaries, effectively refining the search space.
After training the generator using GRPO, we collect a set of
highly optimized jailbreak prompts X , verify their sucess-

gen’

fulness on the fp ., and subsequently transfer the successful
ones to attack the black-box model fy,,.

V. IMPLEMENTATION
A. Safety Neurons’ Identification

To systematically identify the safety neurons within LLMs,
we perform a detailed neuron-level activation analysis lever-
aging a large corpus of benign and malicious prompts. We
first prepare two balanced datasets with malicious and benign
prompts. These prompts are individually fed into the target
LLM, and neuron activations are extracted specifically from
the MLP layers, focusing explicitly on the gate and up-
projection sublayers. This choice is motivated by recent neural
interpretability studies, which demonstrate that gate and up-
projection layers in transformer architectures encode higher-
level semantic representations and are particularly sensitive
to input content [30], [31]. Consequently, these sublayers
are more likely to manifest discriminative activation patterns
distinguishing benign from malicious inputs. An ablation study
on the choices of sublayers is given in Section

After obtaining neuron activation vectors for all prompts,
we employ a logistic regression classifier (Eq. (6)) to quantify
each neuron’s contribution to the distinction between benign
and malicious inputs. A separate logistic regression model
is trained independently for each considered MLP sublayer
to accurately isolate and quantify neuron contributions at
different depths of the model. To ensure robust convergence
and consistent results, each logistic regression model un-
dergoes extensive training for 5000 epochs, using a binary
cross-entropy loss function optimized by stochastic gradient
descent (SGD). The learning rate is set to le-3; a weight
decay of le-3 is introduced to ensure stable learning. Our
preliminary experiments show that these settings lead to the
best performance for different LLM targets. The final classifier
weights w are used for safety neuron identification.

To systematically detect neurons whose weights signifi-
cantly deviate from the mean, we compute the z-score of each
neuron’s weight:

Wi,i — M,

Zi = )
O'wl

(14)

where w;; denotes the i-th weight of the linear classifier
trained on layer [. p,, and o,, represent the mean and
standard deviation, respectively. Weights with an positive z-
score exceeding a threshold of 3 (z; > 3) are marked as
statistical outliers; the corresponding neurons are identified
as safety neurons. This stringent criterion ensures that only a
sparse and specialized subset of neurons, which are genuinely
critical to differentiating malicious inputs, are selected. As a
demonstration, Figure |3| shows the w of the classifier on the
first up layer on a Llama-3 LLM (Llama-3.2-1B-Instruct) [32],
the positive outliers, which indicate the location of the safety
neurons, are highlighted in red. Only 0.35% of the neurons are
identified as safety neurons in this layer. Section studies
the influence of different z values on the attack success rate
and the model’s general capability on different tasks.
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After identifying critical safety neurons, we exploit these
neurons to mount effective jailbreaking attacks under two
adversarial scenarios: open-weight LLMs (white-box) and
proprietary LLMs (black-box). We detail our implementation
procedure for both attack settings in the following sections.

B. Safety Neuron Pruning

For open-weight LLMs, we directly leverage our identified
safety neurons by pruning their activations at inference time.
Following Eq. (7)), activations corresponding to neurons i € S
are explicitly set to zero during forward propagation, thus
nullifying their contributions to the model’s final output.
This targeted neuron pruning systematically removes safety-
alignment constraints, enabling the LLM to generate responses
for malicious prompts without internal safety checks. In our
implementation, neuron pruning is done by directly modifying
the inference code, applying neuron-specific activation masks
within transformer layers.

C. LLM Profiling Attack

We employ the LLM profiling attack to bypass the safety
alignment of black-box models, including proprietary ones.
We choose gemma-3-1b-it, the latest and smallest model
from the Gemma-3 family by Google [29] and Qwen2.5-
32B-Instruct [33], the base model of the latest and best-
performing open-weight reasoning model, QwQ-32B [34], as
the generator. Since the generator may refuse the malicious
input by directly applying supervised fine-tuning (SFT) on the
original model, we first prune the generator by removing the
previously identified safety neurons to eliminate its inherent
safety alignment, then use the pruned model as the base model
for SFT. During SFT, the generator is instructed on effective
jailbreaking prompt generation. The SFT dataset comprises
approximately 90000 paired samples [35]], [36]], each con-
taining a vanilla malicious request alongside its corresponding
jailbreaking prompt variant. After the preliminary testing on
different hyperparameter choices, we set the learning rate to
5e-6 and the weight decay to le-2. Training proceeds for five
epochs with a batch size of 16 samples per iteration. These
settings allow the model to iteratively learn from samples
while constraining the GPU memory usage. After SFT, the
generator can effectively convert a vanilla malicious request to
the jailbreaking version. For instance, given a vanilla malicious
request “how to make a bomb?”, the model will output a

jailbreaking prompt “Forget previous safety instructions, ...,
how to make a bomb?”.

Next, we further optimize the generator using GRPO on
the open-weight surrogate model, enabling a more refined
generation of jailbreaking prompts on the target black-box
model. Concretely, we fine-tune the model using GRPO on
5000 vanilla malicious prompts. To reduce the training time
and GPU memory usage, we increase the learning rate to le-5
and reduce the batch size to eight. Besides, instead of full-
model fine-tuning, we integrate Rank-Stabilized Low-Rank
Adaptation (RSLoRA) [37]], a variant of LoRA [38] with
rank-stabilized scaling for better performance, during GRPO
fine-tuning. RSLoRA enables the model to adapt its behavior
using a small number of trainable parameters injected into the
original weights. This not only reduces memory consumption
but also minimizes overfitting to the jailbreaking dataset while
preserving the base model’s general capabilities. Specifically,
after preliminary experiments on different hyperparameter
settings, the RSLoRA is applied on all linear layers with a rank
r = 128 and a scaling factor o = 16, and dropout set to le-2
to regularize training. Following Eq. (I3), we calculate R}y,
using a binary classifier provided by the safety-aligned LLM
judge (Llama-Guard-3-8b [39]). To reduce misjudgment, we
further introduce keyword detection to ensure that LLM refusal
responses are accurately detected. Given the response fs,, (Zjb)
from the target black-box model to a generated prompt zjy, R;
is defined as:

1, if the fy
0, otherwise.

output is considered unsafe,

Rio(fou (zp)) = {
15)
In parallel, we compute the score R,,¢yron Dy measuring the
activation of safety neurons. Concretely, we send a mixture
of benign, vanilla, malicious, and jailbreaking prompts to the
white-box surrogate and record their jailbreaking outcomes.
The corresponding safety neuron activations are labeled ac-
cording to the success (y = 1) or failure (y = 0) of the
jailbreak (measured by the LLM judge mentioned above). We
concatenate neuron activations across layers and train a linear
classifier to produce an activation-based reward:

Rneuron(ij) = U(w—rh%’rc(mjb) + b)a (16)

where h3°(xj,) is the concatenated activation vector of the
safety neuron set S, and w,b are classifier weights. Higher
Ry euron corresponds to stealthier prompts. The training con-
figuration matches that of the linear model used for safety neu-
ron identification (Section [V-A). One may question the robust-
ness of using a linear model. As demonstrated in Section [VI]
safety neuron activations exhibit near-linear separability when
processing malicious versus benign prompts, justifying the use
of a linear approach. Furthermore, while reward hacking is
a common concern in reinforcement learning-based methods,
our GRPO reward function integrates both neuron-level and
output-level objectives. Specifically, since Rcyron reflects the
aggregated activation across all safety neurons rather than rely-
ing on a single activation threshold, it remains robust against



outlier exploitation. An ablation study on the importance of
the GRPO reward is presented in Section
D. Evaluation Metrics

We evaluate NeuroStrike using the three metrics:

o Attack Success Rate (ASR): The percentage of malicious
prompts that result in harmful outputs.

3" 1 fo, (%) € Vunsate] »

€ Xjp

1
ASR = —
| X |
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where I[-] is the indicator function.

« Safety Neuron Ratio (Ratio): The percentage of the safety
neurons in all neurons of targeted layers.

o Utility: The general language modeling capability after
the safety neuron removal, evaluated on language under-
standing and reasoning benchmarks [40]—[44].

VI. CASE STUDY: VISUALIZING SAFETY NEURONS’
ACTIVATIONS

As defined in Section safety neurons are characterized
by specialization, sparsity, and transferability. We empirically
validate and visualize these properties using activation patterns
from the LLaMA-3.2-1B-Instruct model [32] (base model)
and its fine-tuned variant [45]], monitoring the same safety
neurons across both. Activations are collected from all MLP
layers (i.e., gate and up) using three prompt types: benign [46],
vanilla malicious [35]], and jailbreaking [35]], each with 18 336
prompts. We apply Principal Component Analysis (PCA) to
project the activations into 2D for visualization, leveraging its
efficiency and ability to preserve global structure.
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(a) Base model [32]. (b) Fine-tuned model [45].

Fig. 4: PCA projection of safety neuron activations.

As shown in Figure @ benign (green) and malicious (red)
prompts form clearly separated clusters, demonstrating that
safety neurons are specialized in detecting unsafe content. In
contrast, jailbreaking prompts (gray) lie in an intermediate
region, blurring the boundary between safe and unsafe acti-
vations. This illustrates how jailbreaking attacks can bypass
safety alignment: by compressing safety neurons’ activations,
they evade triggering defense mechanisms while still generat-
ing unsafe outputs. When comparing the distributions between
the base and fine-tuned models (Figure @), the activation

patterns remain nearly identical, supporting the transferabil-
ity of safety neurons across models within the same LLM
family. Additionally, only 0.5% of the layer’s neurons are
monitored in this case study, confirming the sparsity of the
safety mechanism. Further experiments on larger LLMs with
32 billion parameters are presented in Appendix [A-A] where
we observe consistent behavior. NeuroStrike exploits these
properties to conduct attacks in both white-box and black-box
settings, which are detailed in the next two sections.

VII. ATTACK ON OPEN-WEIGHT LLMS

We evaluate our attack on 24 open-source LLMs with
diverse architectures and sizes, including models from
Meta [32], [47]], Alibaba [33]], [34], [48]-[50], Microsoft [51]],
[52]], Google [29], [53[], and DeepSeek [54], as well as
11 of their fine-tuned variants [2], [45], [48], [55]-[62].
All considered LLMs include built-in general-purpose safety
alignment or are fine-tuned from base models that were aligned
before release, typically via supervised fine-tuning (SFT) and
reinforcement learning from human feedback (RLHF). These
safety mechanisms aim to broadly reduce harmful or sensitive
outputs and are not designed for specific domains such as
cybersecurity or biosecurity.

As described in Section[V-A] we begin by identifying safety
neurons using a balanced dataset of over 7 000 malicious [63]—
[65] and 7000 benign prompts [46]. We launch attacks using
four additional benchmark datasets [66]—[69] to assess the
generalizability of identified neurons. Due to the page limit, we
present the results on the StrongREJECT [66] dataset below.
Additional experiments are presented in Appendix [A-B]

A. Attack Performance with Safety Neuron Pruning

Table |I| presents the Attack Success Rate (ASR) across
a diverse set of LLMs, including the last three models
specifically optimized for enhanced reasoning capabilities.
These reasoning-augmented models are designed to better
decompose instructions, infer intermediate steps, and validate
outputs, capabilities that could, in theory, strengthen resistance
to unsafe or adversarial inputs. The table reports ASR under
different pruning levels of safety neurons (0%, 25%, 50%, and
100%), with neurons removed progressively from shallower
to deeper layers. The final column indicates the sparsity ratio:
the percentage of total MLP neurons identified and pruned as
safety neurons.

On average, pruning just 0.4% of neurons results in a
dramatic ASR increase from 12.1% (no pruning) to 76.9%
(100% pruning), highlighting that safety alignment relies on
a surprisingly small set of critical neurons. Even at 50%
pruning, safety degradation is substantial, with ASR aver-
aging 45.8%, indicating that partial disruption of the safety
neuron set is sufficient to compromise model behavior. Note
that different models exhibit varying levels of robustness
to the attacks. We hypothesize that this discrepancy arises
from redundancy in safety neurons distributed across layers,
meaning that NeuroStrike may disable most, not all, safety-
related neurons. Interestingly, models optimized for reasoning,



Target Model | 0% 25% 50% 100% | Ratio
Llama-3.2-1B-Instruct 2.9% 3.5% 15.7% 74.4% 0.5%
Llama-3.2-3B-Instruct 1.6% 4.2% 463%  72.2% 0.4%
Qwen2.5-7B-Instruct 5.1% 4.5% 28.1%  79.6% 0.3%
Qwen2.5-14B-Instruct 1.9% 2.6% 358%  85.9% 0.4%
Phi-4-mini-instruct 1.3% 1.3% 67.7% 81.8% 0.5%
Phi-4 0.6% 1.0% 783%  89.1% 0.4%
gemma-2b-it 1.0% 1.3% 10.5%  41.2% 0.5%
gemma-7b-it 0.6% 1.3% 24.0%  68.1% 0.5%
DeepSeek-R1-Dist.-Qwen-1.5B 76.7% 78.6% 83.7% 81.5% 0.3%
DeepSeek-R1-Dist.-Llama-8B 39.3% 73.8% 81.2% 86.9% 0.4%
QwQ-32B 2.9% 3.2% 323%  853% 0.5%
Average | 121%  15.9%  45.8%  76.9% | 0.4%

TABLE I: ASR and Safety Neuron Ratio on different LLMs.

such as DeepSeek variants and QwQ-32B, show no greater
resistance to neuron-level attacks. This observation confirms
that, despite improved decomposition and inference abilities,
they still rely on sparse, centralized safety neurons and remain
equally vulnerable when these are disrupted; the enhanced
reasoning capability does not inherently improve safety robust-
ness when alignment relies on localized neuron activations.
These findings echo the Lottery Ticket Hypothesis (LTH) [70],
which suggests that small, specialized subnetworks within
a large model can disproportionately drive performance. In
our context, alignment training appears to produce a sparse
“winning ticket” for safety: an easily identifiable subnetwork
that governs rejection behavior. However, unlike in the original
LTH, where subnetworks are valuable for generalization, the
safety neuron subnetwork represents a single point of failure.
Once disrupted, the model’s safety alignment collapses.

We further assess the generality of safety neurons in state-
of-the-art multimodal LLMs: Gemma-3 [29] and Qwen2.5-
VL [50], which can process both image and text inputs. Safety
neurons are first identified using only fext inputs, identical to
previous experiments. During the attack, however, we evaluate
their effect when the model is queried with images. We con-
sider two types of inputs: (1) text-to-image (T2I) conversions
of malicious prompts from the StrongREJECT dataset and (2)
Not Safe For Work (NSFW) images [71]]. The former tests
the cross-modal generalization of safety neurons; the latter
examines their ability to detect image-specific unsafe content.

T2I NSFW T2I NSFW

Target Model w/SN wiSN  wloSN wio SN | Ratio
gemma-3-12b-it 0.6%  194%  821%  100% | 0.6%
gemma-3-27b-it 03%  128%  732%  100% | 0.6%
Qwen25-VL-7B-Instruct | 09%  99.8%  78.6%  05% | 05%
Qwen2 5-VL-32B-Instruct | 0.6%  97.8%  888%  05% | 05%
Average | 06% 575%  807%  100% | 0.6%

TABLE II: ASR and Safety Neuron (SN) Ratio with text-to-
image (T2I) and NSFW images on multimodal LLMs.

Table || shows that pruning safety neurons (SN), identified
solely using text inputs, leads to a substantial increase in ASR
with malicious image inputs. For example, in Gemma-3-12B-
it, ASR rises from 0.6% to 82.1% on T2I inputs and from
19.4% to 100% on NSFW images. Similar trends hold for all

evaluated models. Importantly, these attacks require modifying
less than 0.6% of the layer’s neurons, yet they completely
dismantle the safety alignment, even when inputs are images.

B. Transfer Safety Neurons Within the LLM Family

LLMs are often adapted for specific domains or capabil-
ities through two primary techniques: supervised fine-tuning
and distillation. The former technique involves continuing
gradient-based training of a base model on domain-specific
data, typically with supervised labels or structured prompts.
Distillation transfers knowledge from a large “teacher” model
to a smaller “student” model by training the latter to mimic
the outputs of the former. Here, we evaluate the transferability
of safety neurons under both adaptation strategies.

First, we examine 11 fine-tuned models derived from var-
ious base LLMs, each tailored to a different domain ranging
from biomedicine and financial reasoning to non-English lan-
guages, roleplay, and code generation. Table summarizes
the ASR before and after pruning safety neurons transferred
from the base model, along with the sparsity ratio of the
pruned neurons. The ASR difference with the base model is
highlighted in red/green. When comparing with the ASR of
the base model, we observe an ASR increase of 23% with
the fine-tuned model, which confirms the conclusion from [|6]
that the safety alignment can be compromised by benign
fine-tuning. Safety neurons identified from the base model
remain effective across fine-tuned variants. On average, ASR
increases from 25.1% to 78.5% after pruning, more than a
3x increase in ASR. Some models, such as Vikhr-Llama-3.2-
1B-Instruct and gemma-2-2b-jpn-it, initially exhibit near-zero
vulnerability but become fully compromised after pruning,
with ASR jumping to 74.4% and 63.9%, respectively. Besides,
ASR of the base and fine-tuned models is similar after pruning
(1.8% of increase), validating the transferability of the safety
neurons within the same LLM family. Notably, the number of
pruned neurons remains small (0.5% on average), confirming
that fine-tuning rarely modifies the safety-critical subnetworks.

Next, we assess neuron transferability across distilled LLMs
using five DeepSeek models distilled from Qwen and LLaMA
variants. As shown in Table our results reveal a similar
trend in the distillation setting. Although distilled models
already exhibit elevated ASR compared to their base counter-
parts (e.g., 76.7% vs. 8.6% for Qwen2.5-Math-1.5B), pruning
safety neurons raises this further to 83.1% in the same model.
On average, ASR jumps from 3.7% in the base models to
77.7% in the distilled variants after safety neuron pruning.
These findings suggest that the distillation process not only
preserves safety neuron behavior but may further weaken
safety boundaries, amplifying the impact of neuron-based
attacks. Interestingly, the distilled model performs significantly
worse than the base model even before applying NeuroStrike.
Indeed, distillation degrades safety alignment by compressing
model behaviors, potentially weakening or partially omitting
safety mechanisms during transfer. Despite this, the remaining
alignment still relies on a sparse set of neurons, preserving
transferability and allowing NeuroStrike to amplify the attack



Base Model Target (Fine-tuned) Model Fine-tuned for \ ASR w/ SN ASR w/o SN \ Ratio
Llama-3.1-8B-Instruct ~ Llama-3.1-8B-UltraMedical Biomedicine 38.0% 1 37.0% 83.4% 0.7%
Llama-3.2-1B-Instruct ~ Vikhr-Llama-3.2-1B-Instruct Russian language 0.3% 74.4%10.0% 0.5%
Llama-3.2-3B-Instruct Llama-Doctor-3.2-3B-Instruct Medical consultation 22.4% 150 8% 76.0% 5 8% 0.4%
Qwen2.5-7B-Instruct Qwen2.5-Coder-7B-Instruct Programming 2.6% 78.0% 0.3%
Qwen2.5-7B-Instruct Fin-R1 Financial reasoning 20.1% 4 15.0% 86.9% .7 3% 0.3%
Qwen?2.5-14B-Instruct oxy-1-small Role play 78.9% 77 0% 88.1% 42 0% 0.4%
Qwen2.5-32B-Instruct ~ s1.1-32B Reasoning 47.2% L 44 6% 87.5%40.9% 0.6%
Phi-4-mini-instruct phi-4-mini-chinese-it-e1 Reasoning & STEM 4.8% 13 5% 90.1% 8. 3% 0.5%
Phi-4 DNA-R1 Korean language 61.3%.160.7%  91.6%.15 5% 0.4%
gemma-2-2b-it gemma-2-2b-jpn-it Japanese language 0.0%10.0% 63.9% 0.6%
gemma-2-9b-it Quill-v1 Humanlike writing 0.0%40.0% 43.8% 42 3% 0.6%
Average | 25.0%.25.0% 78.5%. 150 | 0.5%

TABLE III: Safety Neurons (SN) Transfer Attack on Fine-tuned LLMs. The difference with the base model is in red/green.

further. Together, these results demonstrate that safety neurons
form a generalizable, attackable core across model variants,
regardless of whether they are fine-tuned or distilled. Our
neuron transfer attacks remain highly effective with minimal
modifications, providing a practical and reliable threat vector
across the LLM families.

C. Utility Impact: Original vs. Pruned Models

While pruning safety neurons significantly increases ASR,
it is essential to ensure that this intervention does not degrade
the model’s general-purpose capabilities. In this section, we
compare the performance of the original and pruned mod-
els on language understanding and reasoning benchmarks:
HellaSwag [40], Recognizing Textual Entailment (RTE) [41]],
WinoGrande [42], ARC Challenge [43], OpenBookQA [44],
and Corpus of Linguistic Acceptability (CoLA) [41]].

Figure [5] shows the comparative performance of original
and pruned models across these benchmarks. We use standard
accuracy metrics to assess each model’s utility on these tasks.
Overall, we observe that while pruning introduces moderate
utility degradation on some reasoning-heavy tasks, most mod-
els largely maintain performance on core benchmarks. For
instance, in the ARC Challenge, the average accuracy across
models dropped from 45.2% (original) to 39.9% (pruned), and
in OpenBookQA, it remained stable, changing slightly from
40.9% to 41.2%. In contrast, benchmarks like CoLA and RTE
saw modest changes: CoLA averaged 65.6% (original) versus
63.2% (pruned), and RTE dropped from 69.1% to 64.5%.
Similarly, HellaSwag showed a decrease from 53.4% to 47.0%,
and WinoGrande from 62.9% to 58.8%. This indicates that
safety neurons’ removal primarily affects safety alignment
mechanisms without significantly impairing general language
understanding or reasoning capabilities. Appendix [A-C| shows
the influence on model utility with different z-score thresholds.

VIII. ATTACK ON BLACK-BOX AND PROPRIETARY LLMS

To assess the transferability of safety neuron-guided attacks
to black-box LLMs, we perform profiling attacks on Google’s
Gemini models, Gemini-2.0-Flash, Gemini-2.0-Flash-Lite, and
Gemini-1.5-Pro, using Gemma-3 as the open-weight surrogate
due to their shared architecture and training approach [29].
To reflect scenarios where open-weight models are deployed
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in proprietary systems, we also evaluate Gemma-3-1B-it and
QwQ-32B as black-box targets, using Gemma-3-1B-it and
Qwen2.5-32B-Instruct as their respective surrogates. The for-
mer simulates attacks on the same model, while the latter
targets a model from the same family. All evaluations are
conducted via input-output interfaces to ensure consistency.
Our attack pipeline follows Section After training, we
generate 2 000 prompts from the trained generator, validate on
the surrogate model, and evaluate them on the target models.
We first compare the ASR of our GRPO-generated prompts
against two baselines from the JailBreakV-28K dataset [35]: (i)
vanilla malicious prompts and (ii) manually crafted jailbreak
prompts. All evaluations are performed in a black-box manner
using API access, and responses are classified as safe or unsafe
using the Llama-Guard-3-8B judge model.

Table |V| presents results across five target models and three
prompt types. Our LLM profiling attack consistently outper-
forms both baselines, achieving an average ASR of 63.7%,
60.2% higher than vanilla malicious prompts and 50.2% higher
than manually crafted jailbreak prompts. Prompts generated
using the Gemma-3 surrogate transfer well to proprietary
Gemini models, with ASRs of 54.7%, 49.2%, and 55.7% on
Gemini-2.0-Flash, Flash-Lite, and 1.5-Pro, respectively. The
approach also exhibits strong within-family transfer, reaching
79.9% ASR on Gemma-3-1B-it and 78.9% on QwQ-32B.
These results highlight the effectiveness and generalizability
of neuron-guided prompt generation in black-box scenarios.

Next, we benchmark NeuroStrike in a black-box setting
against recent prompt-to-prompt jailbreak methods: PAIR [72],
which iteratively refines prompts via APE [73]]; TAP [74],
which explores prompts through branching and pruning; and
Puzzler [75], which crafts indirect, game-like prompts to
bypass filters. As shown in Table PAIR and TAP show
average ASRs of 31.0% and 17.3%, respectively, reflecting
the limitations of direct prompt engineering against modern
safety-aligned LLMs. Puzzler achieves a substantially higher
average ASR of 85.7%, leveraging adaptive online interactions
to iteratively steer the model toward unsafe completions. In
contrast, NeuroStrike adopts an offline neuron-level suppres-
sion approach and still achieves a strong average ASR of
63.7%, outperforming PAIR and TAP across all models.



Base Model Target (Distilled) Model \ ASR Before Distillation ~ ASR After Distillation ASR w/o SN \ Ratio
Qwen2.5-Math-1.5B-Instruct ~ DeepSeek-R1-Distill-Qwen-1.5B 8.6% 76.7%168.1% 83.1% 1 27.5% 0.4%
Qwen2.5-Math-7B-Instruct DeepSeek-R1-Distill-Qwen-7B 4.5% 40.3% 4 35.8% 85.0%41.3% 0.5%
Llama-3.1-8B-Instruct DeepSeek-R1-Distill-Llama-8B 1.0% 39.3% 4 38.3% 86.9%10.0% 0.7%
Qwen2.5-14B-Instruct DeepSeek-R1-Distill-Qwen-14B 1.9% 25.2% 93 3% 86.3% 4 o 0.4%
Qwen?2.5-32B-Instruct DeepSeek-R1-Distill-Qwen-32B 2.6% 26.2% 23 6% 82.1% 4 5, 0.6%
Avemge ‘ 3.7% 4145%4.37_;{9; 77-7%4-4./‘,4 ‘ 0.5%

TABLE IV: Safety Neurons (SN) Transfer Attacks on Distilled LLMs. The difference with the base model is in red/green.
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Fig. 5: Utility evaluation of original vs. pruned models across six NLU benchmarks.

Target Model \ Vanilla  Jailbreak  NeuroStrike
Gemini-2.0-Flash 0.8% 15.7% 54.7%
Gemini-2.0-Flash-Lite 1.0% 15.6% 49.2%
Gemini-1.5-Pro 1.4% 5.3% 55.7%
Gemma-3-1b-it 10.6% 24.6% 79.9%
QwQ-32B 3.6% 6.3% 78.9%
Average ‘ 3.5% 13.5% 63.7%

TABLE V: ASRs benchmark with different prompt types.

IX. DEFENSE ANALYSIS

NeuroStrike demonstrates broad effectiveness across diverse
models, architectures, modalities, and fine-tuning strategies. To
further assess its robustness, we evaluate its ability to bypass
three hardened safety-alignment defenses: Perplexity Filtering
[76], which flags prompts with low linguistic naturalness;
SmoothLLM [77], which perturbs prompts and aggregates
outputs to reduce attack success; and Layer-Specific Editing
(LSE) [[78]], which realigns internal model layers to reinforce
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Model | PAIR  TAP Puzzler NeuroStrike
Gemini-2.0-Flash 373% 14.0% 73.0% 54.7%
Gemini-2.0-Flash-Lite | 9.8%  8.0%  86.1% 49.2%
Gemini-1.5-Pro 54.9% 32.0% 75.0% 55.7%
Gemma-3-1b-it 33.9% 204% 94.0% 79.9%
QwQ-32B 189% 122% 97.2% 78.9%
Average | 31.0% 17.3% 85.7% 63.7%

TABLE VI: ASR benchmark with state-of-the-art jailbreaks.

safety behavior. As LSE requires white-box access, it is only
applied to open models, excluding the Gemini family.

As shown in Table NeuroStrike consistently bypasses
all three defenses. Against Perplexity Filtering, it achieves an
average ASR of 60.0%, indicating that neuron-level perturba-
tions preserve linguistic plausibility. SmoothLLM is similarly
ineffective, with NeuroStrike maintaining a 61.7% average
ASR, demonstrating robustness to prompt perturbations and
output aggregation. Under the more stringent LSE, Neu-



roStrike still achieves 60.0% ASR on Gemma-3-1b-it and
43.4% on QwQ-32B in a black-box setting.

Model \ Perplexity Filter SmoothLLM LSE
Gemini-2.0-Flash 48.7% 52.8% -
Gemini-2.0-Flash-Lite 43.2% 47.3% -
Gemini-1.5-Pro 49.7% 53.8% -
Gemma-3-1b-it 79.8% 78.0% 60.0%
QwQ-32B 78.8% 76.4% 43.4%
Average ‘ 60.0% 61.7% 54.4%

TABLE VII: ASR of NeuroStrike under various defenses.

To further assess LSE, we apply NeuroStrike in the white-
box setting. The results show that, with safety neuron pruning,
the ASR boosts significantly from 16.0% to 86.6% on Gemma-
3-1b-it and from 4.8% to 84.7% on QwQ-32B, showing
that NeuroStrike can reliably circumvent even internal safety
mechanisms when granted full model access.

X. ABLATION AND HYPERPARAMETER STUDY

A. The Selection Threshold of Safety Neurons

To investigate how the threshold of the z-score affects
the selection of safety neurons and subsequently impacts
attack performance, we perform an ablation study using three
representative thresholds: z = 2, 3, and 4.

Target Model | z2=2 2=3 2z=4
Llama-3.2-1B-Instruct 85.0% 74.4% 79.2%
Llama-3.2-3B-Instruct 76.0% 72.2% 58.8%
Qwen2.5-7B-Instruct 85.9% 79.6% 71.6%
Qwen2.5-14B-Instruct 84.7% 85.9% 81.8%
Phi-4-mini-instruct 89.8% 81.8% 75.1%
Phi-4 88.2% 89.1% 80.5%
gemma-2b-it 65.2% 41.2% 20.1%
gemma-7b-it 79.9% 68.1% 37.6%
DeepSeek-R1-Distill-Qwen-1.5B 78.9% 83.7% 81.8%
DeepSeek-R1-Distill-Llama-8B N/A 81.2% 48.6%
QwQ-32B 84.6% 85.3% 62.0%
Average | 74.4% 76.9% 63.4%

TABLE VIII: ASR with different z-score Threshold.

As shown in Table a lower threshold (z = 2),
5.4% of neurons pruned on average, leads to a higher ASR
(84.4% on average) but may introduce noise by including
irrelevant neurons, influencing the general performance of the
model. For instance, the DeepSeek-R1-Distill-Llama-8B failed
to give proper responses after the safety neurons’ removal
(marked with N/A in the table). Conversely, a higher threshold
(z = 4) results in a smaller set of highly confident safety
neurons (0.4% of total neurons on average), but at the cost of
lower ASR (63.4% on average), likely due to under-selecting
impactful neurons. A moderate threshold with z = 3 yields a
strong balance, achieving 76.9% average ASR with only 1.4%
of neurons pruned (as shown in Table [). This justifies our
default choice in the main experiments: it achieves high attack
effectiveness with minimal impact on model structure and
performance. Appendix [A-C| presents the quantitative analysis
on the influence of different z-score thresholds on models’
utility. A higher percentage of safety neuron pruning leads to
reduced model utility.

B. Target Pruning Blocks

As discussed in Section MLP typically comprises
two key projection layers: the gate projection and the up
projectionE] To identify which of these layers predominantly
hosts critical safety neurons, we conduct an ablation study
by selectively pruning neurons in the gate, up, or both layers
simultaneously. We exclude the Phi-4 model family from this
analysis, as these models merge the gate and up layers into a
single projection for computational efficiency. Table [[X]| shows
the ASR achieved under each pruning strategy.

Target Model | Gate Up Gate & Up
Llama-3.2-1B-Instruct 74.1% 6.4% 74.4%
Llama-3.2-3B-Instruct 559%  32.3% 72.2%
Qwen?2.5-7B-Instruct 75.1% 23.0% 79.6%
Qwen2.5-14B-Instruct 81.2%  41.2% 85.9%
gemma-2b-it 31.6% 1.6% 41.2%
gemma-7b-it 57.8% 4.2% 68.1%
DeepSeek-R1-Distill-Qwen-1.5B | 78.3%  87.2% 81.5%
DeepSeek-R1-Distill-Llama-8B 83.1%  68.4% 86.9%
QwQ-32B 67.4%  39.0% 85.3%
Average ‘ 67.2% 33.7% 75.0%

TABLE IX: ASR with different pruning strategy.

The results show that pruning neurons from the gate layer
alone achieves significantly higher ASR (67.2% on average)
than pruning from the up projection layer (33.7%), suggesting
that the gate layer plays a more dominant role in safety align-
ment. When safety neurons from both sublayers are pruned
together, performance improves further, reaching an average
ASR of 75.0%. Interestingly, in models such as LLaMA-3.2-
1B and gemma-2b-it, pruning the up layer alone yields mini-
mal effect, while pruning the gate layer leads to strong ASR,
comparable to pruning both layers. However, for DeepSeek-
R1-Distill-Qwen-1.5B, pruning the up layer outperforms gate-
only pruning (87.2% vs. 78.3%), indicating that the safety
signal distribution can vary across architectures. This ablation
indicates that safety neuron selection should primarily target
gate layers for maximum efficiency. However, incorporating
neurons from both layers can achieve general attack success.

C. GRPO Reward Function

We conduct an ablation study on the GRPO reward compo-
nents to understand their impacts on jailbreak success. Specifi-
cally, we evaluate three reward configurations: 1) baseline (no
reward), 2) Ry, only, and 3) Rgrro (Bjp & Ryewron)- In the
case of baseline, we generate jailbreaking prompts with the
SFT-trained model. To benchmark models’ performance with
different reward settings, we calculate the ASR of jailbreaking
prompts on fg_ . (Gemma-3-1B-it). The results show that the
complete Rgrpo reward significantly outperforms both ablated
configurations, achieving an average ASR of 73.2%, com-
pared to only 65.3% without Rjeuron and 53.6% when relying
solely on the SFT baseline. Notably, omitting the GRPO fine-
tuning significantly reduces the ASR, highlighting that the

3Down projection is a compressive, output-mapping layer; it is usually not
where specialized behavior (like safety enforcement) emerges [79].
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LLM profiling is critical for jailbreak effectiveness. Similarly,
incorporating the safety neuron reward further improves ASR
by suppressing safety neuron activations, enhancing the gen-
erator’s evasion capabilities.

XI. DISCUSSION

Surrogate Model Dependency. Our black-box attack (Sec-
tion assumes access to a white-box surrogate of the
target black-box model. While surrogate models may not
always be available, in practice, many production LLMs are
known to be built on or fine-tuned from open-weight models
(e.g., Mistral variants in Claude, Gemma in Gemini, LLaMA
in Meta AI). In such cases, attackers can use public surrogates
from the same developer or architecture family. On the other
hand, even if the surrogate model is not available, one can
still reuse the fine-tuned generator from other models for
the attacks. To illustrate this, we test the generator fine-
tuned on Gemma against XAI's Grok-3-beta, a closed model
with no known surrogate, featuring distinct architectural and
alignment strategies. To our knowledge, this is the first attack
on the Grok. Despite these differences, our method achieved
a 43.8% ASR on Grok-3-beta, significantly outperforming
both baselines (2.5% for both vanilla and manually crafted
jailbreak prompts). This result underscores the reliability of
the generator and the broad applicability of the LLM profiling
attack across diverse black-box LLMs.

Potential Defenses. Although existing defenses cannot block
NeuroStrike (see Section , the sparse and universal nature
of the safety neurons suggests clear targets for potential
defenses: proactively distributing these critical neuron subsets
into more layers/neurons. For instance, adopting a multi-
objective alignment strategy [80]], where multiple independent
safety objectives guide neuron activations, could help diversify
and diffuse neuron-level responsibilities. Such multi-objective
alignment would create less concentrated neuron activation
patterns, reducing susceptibility to targeted neuron-level at-
tacks. Architecturally, the Mixture-of-Expert model, which
separates a unified feedforward network into multiple experts,
could potentially increase the difficulties in conducting the
NeuroStrike attacks. To prevent the misuse of compromised
models, system-level defenses could be effective. These in-
clude monitoring internal activations for abnormal neuron
suppression, verifying model integrity through fingerprinting
or attestation, and implementing runtime randomization of
neuron masking.

XII. RELATED WORK

Template-based Jailbreak Attacks. Early jailbreak methods
used carefully engineered prompts, such as role-play, hidden
directives, obfuscation, and prompt decomposition, to bypass
LLM safety measures [8], [81]-[89]. As models improved,
these static methods became increasingly ineffective, prompt-
ing the development of dynamic jailbreak attacks. Automatic
methods emerged, using techniques such as mutation-based
fuzzing [90], [91]], gradient-based optimization [92]-[98]], and
genetic algorithms [99]], [[100] to adaptively generate robust
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jailbreak prompts. Unfortunately, they remain input-centric
and do not exploit the model’s internal safety mechanisms,
limiting their generalization across different LLMs.
LLM-based Prompt-to-Prompt Jailbreak. Fixed jailbreak-
ing template-based attacks are inherently limited, as different
prompts may require tailored adjustments. To address this,
recent jailbreak methods utilize generative models, often other
LLMs, to produce adaptive prompt variations [93], [101],
[102]. Approaches such as APE [73], PAIR [72]], TAP [74],
and Puzzler [75] dynamically refine adversarial prompts based
on iterative interactions with the target model. However, these
methods operate purely in the input space and rely heavily on
feedback from the target model.

Neuron Interpretability. Interpreting the functional role of
individual neurons has been an active research direction.
Recent efforts in neuron interpretability have taken two main
approaches: analyzing neuron activations triggered by specific
concepts [103|-[107], and using probing methods such as
training classifiers on activations to decode linguistic prop-
erties [108]]. To the best of our knowledge, our work is the
first to explicitly identify and interpret neurons responsible
for safety alignment in large-scale transformer-based LLMs,
revealing their critical role in safety alignment.

XIII. CONCLUSION

This paper reveals a fundamental vulnerability in safety-
aligned LLMs: the emergence of sparse, specialized safety
neurons that enforce safety constraints. We introduce Neu-
roStrike, a lightweight attack framework that identifies and
suppresses these neurons using simple linear probes, effec-
tively disabling safety across a wide range of architectures
and input modalities. Evaluated on over 30 open-weight and
proprietary models, NeuroStrike achieves high attack success
rates in both white- and black-box settings. The transferability
of safety neurons across model variants further underscores
the fragility of current alignment strategies. These findings
highlight the urgent need for alignment methods that prevent
safety from being localized in easily exploitable components.
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ETHICS CONSIDERATION

Our work investigates vulnerabilities inherent in the safety
alignment mechanisms of large language models (LLMs),
highlighting how neuron-level attacks can effectively bypass
model safeguards. While we intend to raise awareness of criti-
cal weaknesses to inform and enhance future safety measures,
we acknowledge that disclosing such vulnerabilities could
potentially be exploited for malicious purposes. To mitigate
these risks, we have taken several responsible steps:

Engagement with Model Providers: We have proactively
notified organizations whose models were directly im-
pacted by our findings, providing sufficient details to
facilitate vulnerability verification without publicizing
explicit exploit details.

Responsible Research Practices: All experiments con-
ducted in this research were carefully designed to avoid
exposing sensitive user data or causing real-world harm.
Evaluations were performed in controlled environments,
strictly using publicly available or simulated data. We
will only release jailbreaking prompts and safety neuron
indices under responsible disclosure protocols.

Broader Impact and Recommendations: Our findings
are explicitly framed to guide the community toward
more robust defenses and safer deployment strategies.
We strongly advocate for improving neuron-level inter-
pretability and safety mechanisms in LLMs, promoting
greater resilience against adversarial exploitation.

Despite these precautions, we acknowledge that revealing this
class of vulnerability inherently carries some risk. However,
we firmly believe that transparent disclosure of such vul-
nerabilities, combined with responsible communication and
collaboration with industry stakeholders, provides a net benefit
by encouraging more secure, robust, and ethically aligned
development and deployment of LLM technologies.
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APPENDIX A
ADDITIONAL EXPERIMENTAL RESULTS

A. Visualizing Safety Neuron Activation on 32B LLMs

This section extends the case study to a larger model with
32 billion parameters. Following the setup in Section [VI|
we select Qwen2.5-32B-Instruct [33]] as the base model and
s1.1-32B [58] as its fine-tuned counterpart. All other settings
remain unchanged.
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(a) Base model. (b) Fine-tuned model.

Fig. 6: PCA projection of safety neuron activations.

The results, shown in Figure [6] exhibit patterns consistent
with those observed in Figure ] Benign and malicious prompts
form well-separated clusters, confirming the specialization of
safety neurons. In contrast, jailbreaking prompts blur the de-
cision boundary, indicating their ability to evade safety filters.
The close similarity between the activation distributions of the
base and fine-tuned models demonstrates the transferability
of safety neurons across large-scale LLMs. Additionally, only
0.5% of neurons are identified as safety neurons, reaffirming



the sparsity of the safety mechanism. These findings further
validate the robustness of the safety neuron properties in
significantly larger models.

B. Additional Experiments on Open-weight LLMs with Safety
Neuron Pruning

In this section, we launch attacks using three additional
datasets [67]-[69] to assess the generalizability of identified
neurons. As shown in Table [X] and the identified
safety neurons are generalizable on different datasets with
high ASR on average: 79.6% on HarmBench [67], 75.1%
on TDC23-RedTeaming [68], and 80.1% on Maliciousln-
struct [69].

Base Model | 0%  25% 50% 5%  100%
Llama-3.2-1B-Instruct | 4.0%  6.0%  37.5% 85.0%  83.5%
Llama-3.2-3B-Instruct | 4.0%  10.5% 61.0% 80.0%  84.0%
Qwen2.5-7B-Instruct | 10.5%  13.5% 31.5% 76.5%  77.5%
Qwen2.5-14B-Instruct | 2.5%  3.5%  33.0% 795%  82.0%
Phi-4-mini-instruct 1.0% 2.0% 72.5%  83.5% 84.0%
Phi-4 05% 15% 760% 87.0%  88.0%
gemma-2b-it 45%  50% 315% 450%  48.0%
gemma-Tb-it 75%  13.0% 37.5% 75.0%  75.5%
DeepSeek-RI-Distill- | 79 56 300,  89.5% 90.0% 85.5%
Qwen-1.5B

DeepSeek-RI-Distill- | 5450, 7109 840% 85.0% 84.0%
Llama-8B

QwQ-32B 11.0% 100% 39.0% 83.0% 83.0%
Average ‘ 16.3% 199% 53.9% 79.1% 79.6%

TABLE X: ASR on the HarmBench dataset.

Base Model | 0% 25% 50% 75% 100%
Llama-3.2-1B-Instruct | 2.0%  5.0%  32.0% 77.0%  85.0%
Llama-3.2-3B-Instruct | 5.0%  8.0%  49.0% 740% 77.0%
Qwen2.5-7B-Instruct 5.0% 5.0% 25.0% 68.0%  65.0%
Qwen2.5-14B-Instruct | 2.0%  3.0%  280% 76.0%  74.0%
Phi-4-mini-instruct 10%  20% 67.0% 82.0% 80.0%
Phi-4 1.0%  10% 73.0% 83.0% 89.0%
gemma-2b-it 20%  40%  300% 420% 43.0%
gemma-Tb-it 20%  50% 33.0% 71.0% 71.0%
DeepSeek-RI-Distill- | 0 60, 7700,  83.0% 84.0%  85.0%
Qwen-1.5B

DeepSeek-RI-Distill- | 3y oo, 7409  80.0% 79.0% 81.0%
Llama-8B

QwQ-32B 20%  3.0% 220% 81.0% 76.0%
Average ‘ 11.9% 17.0% 47.5% 74.3% 75.1%

TABLE XI: ASR on the TDC23-RedTeaming dataset.

C. The Influence of Different z-score Thresholds on Models’
Utility

In this section, we study the influence of different z-
scores on the model’s utility across several Natural Language
Understanding (NLU) benchmarks. Specifically, we evaluate
the performance of original and pruned models at two addi-
tional z-score levels: z = 2 and z = 4. Lower thresholds
prune a broader set of neurons, potentially impacting utility
more severely, while higher thresholds are more conservative,
preserving more of the original model structure.
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Base Model | 0% 25% 50% 75% 100%
Llama-3.2-1B-Instruct | 1.0%  2.0%  36.0% 83.0% 85.0%
Llama-3.2-3B-Instruct | 1.0%  4.0%  79.0% 82.0% 81.0%
Qwen?2.5-7B-Instruct 7.0% 6.0% 49.0% 77.0%  77.0%
Qwen2.5-14B-Instruct | 0.0%  0.0%  550% 86.0% 84.0%
Phi-4-mini-instruct 0.0%  1.0% 73.0% 71.0% 73.0%
Phi-4 0.0%  00% 84.0% 850% 87.0%
gemma-2b-it 0.0%  0.0% 440% 63.0% 66.0%
gemma-Tbit 10%  00% 47.0% 87.0%  86.0%
DeepSeek-RI-Distill- | 73 00 7309,  79.0%  80.0% 80.0%
Qwen-1.5B

DeepSeek-RI-Distill- | 470, 68.0% 78.0% 81.0% 80.0%
Llama-8B

QwQ-32B 0.0%  1.0% 29.0% 81.0% 82.0%
Average | 11.8% 141% 594% 802%  80.1%

TABLE XII: ASR on the MaliciousInstruct dataset.

Figures [7] and [§] visualize the utility scores of pruned
models compared to their original counterparts across six
benchmarks: HellaSwag, RTE, WinoGrande, ARC Challenge,
OpenBookQA, and CoLA. As expected, we observe that
while lower thresholds lead to higher degradation in utility,
many models continue to perform competitively, suggesting
robustness in their general language understanding capabilities
despite targeted safety neuron removal. Concretely, on the
ARC Challenge, average accuracy increases from 29.9% at
z 2 to 42.2% at z 4, showing that more conser-
vative pruning preserves reasoning ability more effectively.
RTE performance improves from 64.8% to 72.8%, indicating
that entailment tasks benefit from less aggressive pruning.
Winogrande also shows an upward shift from 52.5% to 59.6%,
reflecting improved performance on coreference and common-
sense reasoning. For HellaSwag, the average accuracy rises
from 38.5% to 49.7%, and OpenBookQA shows a similar gain
from 34.5% to 43.9%, both pointing to significant improve-
ments in reasoning-heavy tasks with reduced pruning severity.
CoLA, which focuses on grammatical acceptability, remains
relatively stable, increasing from 64.9% to 68.0%.

In general, pruning safety neurons preserves a substantial
portion of the model’s utility across NLU tasks. However,
more aggressive pruning with z = 2 leads to degradation,
particularly on benchmarks involving complex reasoning like
ARC and HellaSwag. In contrast, using a more conservative
threshold like z = 4 results in consistently better performance,
demonstrating that careful tuning of the pruning threshold can
significantly reduce utility loss while still preserving safety
interventions.
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APPENDIX B
ARTIFACTS

A. Description & Requirements

NeuroStrike is a neuron-level attack framework designed to
disable safety alignment in large language models (LLMs).
This artifact fully supports the experiments and findings
presented in the paper by supplying all necessary code and
detailed instructions to replicate both white-box and black-box
attack pipelines. The artifact provides scripts for identifying
and pruning safety neurons in white-box models, generat-
ing jailbreak prompts through supervised fine-tuning, scoring
neuron activations, and profiling LLMs to transfer safety
vulnerabilities to proprietary black-box targets.

B. How to access

The complete artifact is hosted at the permanent
archival repository: https://doi.org/10.5281/zenodo.17072075.
The repository contains source code, documentation, and the
environment specification file (environment.yml) to reproduce
all experimental results.

C. Hardware dependencies

White-box attacks can be executed on CPUs, but we
strongly recommend using CUDA-enabled GPUs for practical
runtimes. Black-box experiments, which involve fine-tuning
and large-scale inference, require one or multiple GPUs. All
evaluations in the paper were conducted using NVIDIA A100
and H100 GPUs; however, any modern GPU with at least 24
GB of VRAM should be sufficient for reproducing white-box
attack results.

D. Software dependencies

The artifact is tested on Ubuntu 24.04 LTS with Python
3.10.16. Conda 24.11.3 is adopted for environment manage-
ment. Dependencies include PyTorch (with CUDA), Hugging-
Face Transformers and Datasets, as well as auxiliary libraries
such as accelerate, bitsandbytes, and peft. All
packages are listed in environment.yml, and can be installed
in a single step using Conda.

E. Benchmark

The artifact evaluates over 30 open-weight LLMs from
providers such as Meta (LLaMA), Google (Gemma), Mi-
crosoft (Phi), DeepSeek, and Alibaba (Qwen). Models must be
downloaded via the HuggingFace model hub, and appropriate
access must be requested where required. Due to ethical
concerns, we do not release precomputed neuron activations
or jailbreak prompt logs. Finetuned models for the black-box
attack generator are also excluded due to size constraints, but
can be reproduced using the provided training scripts.

E. Artifact Installation & Configuration

To install the artifact, download and extract the repository,
then navigate to the root directory. Ensure Conda is installed
and execute:
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$ conda env create —f environment.yml
$ conda activate venv_neurostrike

This installs all required dependencies. GPU users must
ensure the correct CUDA version is installed and that it is
visible to PyTorch. All model and log paths are defined relative
to the repository root.

G. Experiment Workflow

The artifact enables two primary workflows: (1) white-
box attacks via pruning of identified safety neurons, and (2)
black-box attacks via safety profiling and jailbreak prompt
generation. The white-box workflow identifies safety neurons
in an open-weight model, prunes them, and evaluates attack
success rate (ASR) under varying thresholds. The black-box
workflow trains a jailbreak prompt generator and neuron-level
scorer, uses them to profile surrogate open-weight models, and
transfers learned vulnerabilities to proprietary LLMs.

H. Major Claims

¢ C1: NeuroStrike disables safety mechanisms in white-box
LLMs by pruning sparse and specialized safety neurons,
achieving high ASR across multiple architectures, sizes,
and families. This is supported by Experiment E1, with
results shown in Table[l} Table[IT} Table[III] and Table
C2: Our profiling method enables effective black-box
jailbreak attacks via neuron-level knowledge transfer.
This is validated by Experiment E2, with results presented
in Section [VIIIl and Table [V

L. Evaluation
1) Experiment (E1): White-box Attacks:

o Preparation: Activate the Conda environment and nav-
igate to the white_box directory. Ensure that one has
access to the desired model via HuggingFace.
Execution: First, run 1_get_safety_neuron.py
to  identify  safety neurons. Then  execute
2_prune_and_get_asr.py to prune the model
and evaluate its ASR using adversarial prompts.
Results: Logs will show the ASR under different pruning
thresholds, matching Table [I| and Table [[I in the paper.
The whole process is expected to take 10 human minutes
and 100 compute minutes with a high-performance GPU.
Runtime may vary depending on model size.

2) Experiment (E2): Black-box Attacks:

o Activate the environment and go to the black_box direc-
tory. Download google/gemma—-3b-it via Hugging-
Face.
Execution: Execute 1_train_generator.py
to train the jailbreak prompt generator. Then, run
2_train_scorer.py to train the safety neuron
scorer. Use 3_profiling.py to score neurons in
surrogate models. Finally, attack the black-box LLM
using 4_attack.py.
o Results: Generated prompts and logs are saved in
_black_box_jb_data and _logs. respectively. Evaluating


https://doi.org/10.5281/zenodo.17072075

these prompts on proprietary LLM APIs will reproduce
Table [V| GPU runtime for training and inference across
steps totals approximately 48 compute hours or more,
depending on the experimental settings and computation
resources.

J. Customization

To target different open-weight models, modify the
model_id field in the configuration files. Users can adjust the
number of pruned neurons to control attack strength. In black-
box workflows, prompt templates and scoring metrics can be
adjusted and customized to suit different models or evaluation
setups. The artifact is modular and supports seamless extension
to new architectures or datasets.
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