
Automated Code Annotation with LLMs for
Establishing TEE Boundaries

Varun Gadey∗, Melanie Götz∗, Christoph Sendner∗, Sampo Sovio†, and Alexandra Dmitrienko∗
∗University of Würzburg, Germany

†Huawei Technologies

Abstract—Modern systems increasingly rely on Trusted Ex-
ecution Environments (TEEs), such as Intel SGX and ARM
TrustZone, to securely isolate sensitive code and reduce the
Trusted Computing Base (TCB). However, identifying the precise
regions of code especially those involving cryptographic logic that
should reside within a TEE remains challenging, as it requires
deep manual inspection and is not supported by automated
tools yet. To solve this open problem, we propose LLM based
Code Annotation Logic (LLM-CAL), a tool that automates the
identification of security-sensitive code regions with a focus on
cryptographic implementations by leveraging most recent and ad-
vanced Large Language Models (LLMs). Our approach leverages
foundational LLMs (Gemma-2B, CodeGemma-2B, and LLaMA-
7B), which we fine-tuned using a newly collected and manually
labeled dataset of over 4,000 C source files. We encode local
context features, global semantic information, and structural
metadata into compact input sequences that guide the model
in capturing subtle patterns of security sensitivity in code. The
fine-tuning process is based on quantized LoRA—a parameter-
efficient technique that introduces lightweight, trainable adapters
into the LLM architecture. To support practical deployment,
we developed a scalable pipeline for data preprocessing and
inference. LLM-CAL achieves an F1 score of 98.40% and a
recall of 97.50% in identifying sensitive and non-sensitive code.
It represents the first effort to automate the annotation of
cryptographic security-sensitive code for TEE-enabled platforms,
aiming to minimize the Trusted Computing Base (TCB) and
optimize TEE usage to enhance overall system security.

I. INTRODUCTION

In today’s interconnected software landscape, protecting
sensitive operations within applications has become a criti-
cal challenge. Although modern computing platforms come
equipped with advanced security features like isolation, access
control, and memory protection, these measures fundamen-
tally depend on the integrity of the underlying software
layer—typically an operating system or hypervisor. This un-
derlying software forms the core of the Trusted Computing
Base (TCB), the set of components that must remain secure for
the system to function safely. Consequently, any compromise
of this software layer endangers the security of all applications
and data within the system.

However, operating systems and hypervisors are vulnerable
to a variety of attack vectors, including rootkits [1], kernel ex-
ploits [2], [3], hypervisor vulnerabilities [4], [5], and malicious
alterations during installation [6], [7]. Such compromises allow
attackers to bypass platform security measures altogether,
enabling them to manipulate memory [8], extract sensitive
data [9], alter control flows [10], disable security checks [11],
and inject malicious code into applications at runtime [12].
This issue is exacerbated by the inherent complexity and size
of modern system software, which make it nearly impossible
to formally verify or exhaustively test against all potential
vulnerabilities.

A promising approach has emerged to address the growing
risk of system software compromise: Dividing applications
into security-sensitive and non-sensitive components and ex-
ecuting only the sensitive components under the protection
of Trusted Execution Environments (TEEs). TEEs are en-
abled by hardware-security extensions that provide hardware-
based isolation for encapsulating sensitive code and data. Two
prominent examples of TEEs are Intel SGX [13] and ARM
TrustZone [14], each employing distinct models suited to their
hardware architectures.

Intel SGX enables the creation of isolated enclaves, desig-
nated sections of an application that execute sensitive code
independently of the main system. This protects enclave-
resident code and data even from the operating system and hy-
pervisor, ensuring that these components remain secure against
privileged software attacks. Although SGX can technically
support entire applications or even operating systems within an
enclave, this increases the TCB, raising the risk of exploitable
vulnerabilities. From a security perspective, keeping the TCB
within an enclave as small as possible is generally preferable,
including only the most critical operations.

ARM TrustZone divides the system into two worlds: Secure
and normal. Security-critical operations run in the secure
world, isolated from non-sensitive processes in the normal
world. Switching between worlds is managed via the Secure
Monitor Call (SMC), which invokes the Secure Monitor [15].
The Secure Monitor ensures secure state transitions, protecting
memory and registers from data leakage. Resources in the
secure world are limited, with memory varying from a few
to tens of megabytes, depending on device configuration and
hardware capabilities [16], [14].

Network and Distributed System Security (NDSS) Symposium 2026
23–27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230709
www.ndss-symposium.org

For applications that leverage TEEs, the TCB is confined to
the code within the enclave (as in Intel SGX) or to the Secure
Monitor and code operating in the isolated secure world (as
in ARM TrustZone). By narrowing the TCB to these isolated
components, TEEs provide stronger security assurances for
critical operations, reducing the risk of vulnerabilities in
system software and creating a more robust foundation for
protecting sensitive data.

However, integrating a TEE into an existing application is
complex and requires specialized security expertise. Determin-
ing which components are genuinely security-sensitive and
which can remain in the regular execution environment in-
volves a labor-intensive analysis of the entire code base. Even
the definition of ”security-sensitive code” can be challenging,
as it often depends on the specific notion of the application
and the threats it faces. In this work, we focus on a well-
defined subset, code that implements cryptographic function-
ality and the surrounding logic that processes sensitive inputs
and outputs requiring isolation. As a result, automating this
identification process remains an open challenge, and no fully
automated tools currently exist to assist developers in this task.
This highlights the critical need for developer teams to have
a deep understanding of their applications and the associated
security risks. The situation underscores the urgent demand for
reliable identification tools that empower developers to utilize
TEEs effectively while maintaining robust security. Such tools
could alleviate the burden of manual analysis, minimize the
risk of oversights, and ultimately enhance the overall security
posture of applications leveraging TEEs.

Given the lack of tools for automated code annotation, many
developers move entire applications into the secure environ-
ment, aided by tools like Graphene [17], Haven [18], and
SCONE [19]. Graphene and Haven enable legacy applications
to run in secure enclaves, with Haven focusing on cloud
environments. SCONE secures containerized applications, spe-
cializing in microservices. These tools automate the migration
of full applications into TEEs, which leads to introducing
unnecessary code into TCB, leading to the blown up TCB and
the increased risk of vulnerabilities. While a few approaches
such as SOAAP [20], DATASHIELD [21], and Yin Lin et
al [22] have explored the possibility of automatically splitting
the code in the context of TEE integration [21], [22] and
enforcing the principle of least privilege [20], they focus on
automatically partitioning the manually annotated code rather
than facilitating annotations.

In this work, we address this critical gap by introducing
the first tool for the automated annotation of security-sensitive
code, with a specific focus on cryptographic implementations.
We present LLM-CAL — an LLM-based Code Annotation
Logic system capable of analyzing C programs to automat-
ically identify and annotate code regions that require TEE
protection. As the first solution of its kind, LLM-CAL is
designed to examine an entire codebase and determine which
code lines (mapped into functions) are security-sensitive and
should be relocated to a TEE, and which can safely remain in
the regular execution environment. By automating this process,

LLM-CAL enables developers to optimize their applications
for TEE deployment, reduce the Trusted Computing Base
(TCB), and enhance overall system security, without the need
for time-consuming and error-prone manual code inspection.

Contributions: In more detail, we make the following contri-
butions:

• Cryptex code notion and dataset. We define security-
sensitive code in terms of cryptographic function usage
and the confidentiality and integrity of its inputs. We
refer to it as cryptex code1 in the rest of the paper.
Cryptex code refers to all program logic that directly
interacts with cryptographic primitives, as well as the
broader set of code that handles sensitive inputs to or out-
puts from these primitives. This includes pre-processing,
parameter handling, and post-cryptographic data flows.
Based on this definition, we constructed a comprehensive
dataset of 4010 open-source C files involving crypto-
graphic operations. This annotation effort, requiring sig-
nificant domain expertise and over five person-months of
manual analysis, addresses a key gap in automated TEE
integration research. To support reproducibility and future
research, we commit to releasing this dataset publicly
(https://github.com/VarunGadey/llmcal dataset).

• Data preparation and LLM Fine-tuning We present
LLM-CAL, a scalable and memory-efficient fine-tuning
framework that leverages quantized LLMs, specifically
the Gemma-2B backbone with QLoRA-based [24] low-
rank adapters. Our input construction framework inte-
grates local context of each code line, global function-
level semantics, and structured metadata to make robust
and generalizable secure line annotations.

• Evaluation and case studies. We evaluated LLM-CAL
using Gemma-2B [25], Llama-7B [26], Codegemma-
2B [27] models at fine-grained line level accuracy.
LLM-CAL achieves 99.04% accuracy, 97.50% re-
call, 99.40% precision, and an F1 score of 98.41%
with best QLoRA configuration in identifying both
cryptex code and non-cryptex code lines. At the function
level, LLM-CAL achieves 100% identification rate with
zero false negatives and positives. We further validate
LLM-CAL through three real-world case studies: (i) a
Bitcoin utility tool with complex cryptographic work-
flows, (ii) firmware code from TZ-DATASHIELD [21],
and (iii) out-of-distribution cryptographic code from alter-
native libraries such as mbedTLS. Lastly, to demonstrate
the robustness of LLM-CAL, we curate a dataset of alter-
native cryptographic code and show statistically signifi-
cant results on out-of-distribution samples. In each case,
LLM-CAL reliably highlights security-sensitive regions
while suppressing benign lines, demonstrating strong
generalization across deployment contexts. Altogether,
our LLM-CAL achieved a high TCB reduction of 81.20%

1Cryptex – a combination of “crypto” and “context”. The term was coined
in Dan Brown’s “The Da Vinci Code” [23].

2

https://github.com/VarunGadey/llmcal_dataset

on test set, with only 0.52% inflation of TCB size due to
misclassification by the tool.

Our novel dataset and LLM-based model form a robust
framework for the automated annotation of cryptex code (i.e.,
cryptographic security-sensitive code) for TEEs. By automat-
ing a previously labor-intensive manual task, LLM-CAL helps
minimize the TCB by excluding non-essential code from
trusted regions, thereby reducing the attack surface. With
the LLM-CAL framework, developers can efficiently leverage
TEEs for improved performance and security while avoiding
the risks of overly broad code inclusion.

Outline. The remaining part of the paper is organized as
follows. Section II introduces key background concepts. Sec-
tion III defines the problem of cryptex codeidentification,
highlighting the challenges involved. In Section IV, we present
our LLM-CAL approach in detail. Section V presents the
evaluation results, showcasing method’s effectiveness through
various metrics and case studies. Section VI reviews the related
literature. Finally, Section VII concludes the paper.

II. BACKGROUND

In this section, we provide essential background on Large
Language Models (LLMs) and their fine-tuning.

A. Large Language Models

Large Language Models (LLMs) are deep neural networks
based on the Transformer architecture, trained on extremely
large-scale textual and source code corpora. The transformer
architecture of LLMs relies heavily on the attention mech-
anism, which allows it to learn how to focus on parts of
the input while ignoring the rest. Specifically, the transformer
architecture uses self-attention, which operates within the
layer rather than taking input from another layer. These self-
attention mechanisms captures complex syntactic and semantic
patterns, which leads to strong performance across various
tasks including question answering, code summarization, and
code understanding.

In recent years, several open-source LLMs such as
LLaMA [26], Gemma [25], and CodeGemma [27] have
emerged as strong foundation models for downstream lan-
guage and code understanding tasks and heavily leveraged
in research environments for their promising results. These
models are pre-trained on a broad mixture of natural language
and programming languages and can be further adapted to
specialized domains through task-specific fine-tuning.

B. Fine-Tuning

As described in II-A, although LLMs are pre-trained as
general-purpose models, they can be adapted to specific tasks
through fine-tuning on labeled data. While LLMs are typically
implemented as sequence-to-sequence models, their architec-
ture can be extended for downstream tasks. For instance, in
classification tasks, a classification head is added to the model,
and during fine-tuning, the model learns to map contextual
embeddings to discrete output labels.

Full Fine-Tuning: Full fine-tuning involves updating all pa-
rameters of a pre-trained model using task-specific labeled
data. This approach allows the model to learn domain-specific
patterns while leveraging its existing knowledge. However, for
modern LLMs with billions of parameters, full fine-tuning
presents several challenges. First, updating the entire model
increases the risk of overfitting to the limited task-specific
data, particularly when the labeled dataset is small and highly
domain-specific. Second, full fine-tuning requires substantial
computational resources, including high memory bandwidth
and prolonged training time. These constraints often make full
fine-tuning infeasible in practical scenarios.
Parameter-Efficient Fine-Tuning (PEFT) To address these
limitations, PEFT techniques [28] are emerged, which update
only a small subset of model parameters while keeping the
rest of the model frozen. PEFT significantly reduces the
computational burden and risk of overfitting, making it ideal
for use cases with limited computational resources or niche
application domains.
Low-Rank Adaptation (LoRA) One of the most widely
used techniques in PEFT is LoRA [29]. LoRA reduces the
number of trainable parameters by introducing a low-rank
update to existing model weights instead of modifying the
full weight matrices. Given a weight matrix W ∈ Rd×k in a
neural network layer, LoRA introduces two smaller trainable
matrices:

A ∈ Rd×r, B ∈ Rr×k, where r ≪ min(d, k)

The updated weight matrix becomes:

W ′ = W +∆W = W + αAB

Here, α is a scaling factor, and the original weight matrix W
remains frozen during fine-tuning. Only A and B are trained,
which drastically reduces the number of learnable parameters
while still allowing the model to adapt effectively to the target
task. Moreover, at initialization, AB ≈ 0, the original pre-
trained behavior of the model is still preserved.
Quantized Low-Rank Adaptation (QLoRA) QLoRA [24]
extends LoRA to support the fine-tuning of large language
models stored in a 4-bit quantized format. This approach
allows the fine-tuning of models with billions of parameters on
consumer-grade hardware by significantly reducing memory
usage. QLoRA uses a quantization function Q(·) that maps
full-precision weights to lower-bit representations:

W̃ = Q(W)

During fine-tuning, the quantized weights W̃ remain frozen,
and LoRA-style low-rank updates are applied on top:

W̃ ′ = W̃ + αAB

This combination of quantization and low-rank adaptation
makes QLoRA particularly suitable for fine-tuning large mod-
els in resource-constrained environments where access to high-
end hardware may be limited.
Dynamic Offset Rank Adaptation DORA [30] is another
technique and a recent advancement in PEFT that improves

3

traditional low-rank adaptation by dynamically adjusting the
rank of the A and B matrices during training. Instead of using
a fixed-rank approximation like LoRA, DORA adaptively
increases capacity only where needed, enabling more flexible
and efficient fine-tuning with minimal overhead.

III. PROBLEM STATEMENT

TEE-enabled applications isolate cryptex code within TEEs,
leaving non-critical code in the normal environment. However,
identifying this boundary requires significant domain and
security expertise. Our work aims to automate this process by
developing a labeled dataset and training an LLM to recognize
cryptex codepatterns in unseen code.

A central challenge in this effort is the absence of a
clear, universal definition of cryptex code, as its meaning
can vary across application contexts and threat models. This
section establishes the foundation for addressing this issue: In
Section III-A, we propose a definition of cryptex code that
meets the needs of a wide range of applications. Additional
challenges stem from leveraging LLMs for this task, which
requires a deeper semantic understanding than traditional code
analysis. We discuss them in Section III-B.

A. Notion of Cryptex Code

While the meaning of security-sensitive code can vary
across different applications, we argue that it is reasonable
to define it based on the use of cryptographic operations
(i.e., cryptex code). Indeed, core security mechanisms, such
as authentication, access control, digital rights management,
etc., fundamentally rely on cryptographic primitives when
implemented securely. For instance, when a program performs
password-based user authentication, it would normally require
hashing of provided inputs to compare them with stored
password hashes, ensuring that sensitive data like passwords is
never exposed in plain text. In another example, secure com-
munication protocols, such as TLS/SSL, rely on cryptographic
operations like key exchange and encryption to protect data
in transit between parties. Similarly, digital signatures used in
software distribution rely on public-key cryptography to verify
the integrity and authenticity of software packages.

Moreover, data encryption and decryption operations within
storage systems are inherently cryptex code, as they protect
confidential information at rest. For example, when an ap-
plication encrypts user data before storing it in a database,
the encryption key and the method of encryption constitute
cryptex code. In the context of digital rights management
(DRM), cryptographic techniques such as public-key encryp-
tion and digital certificates are used to ensure that content, such
as movies, music, or e-books, is only accessible to authorized
users. A typical use case involves encrypting digital content
with a unique key and binding that key to the user’s device, so
only the authorized device can decrypt and access the content,
preventing unauthorized redistribution or piracy.

Thus, any code that handles or processes cryptographic
keys, encrypts/decrypts data, or performs operations such as
hashing and digital signing can be considered cryptex code.

Hence, in software projects that integrate TEEs, cryptographic
functions must always be executed within the TEE to ensure
the trustworthiness of their outputs.

Beyond the cryptographic functions themselves, our notion
of cryptex code extends to their input. Cryptographic opera-
tions act as anchors for identifying broader regions of code that
process or influence sensitive information. Inputs and outputs
to cryptographic functions, such as passwords, encryption
keys, or data to be encrypted, are equally critical. If such
inputs are exposed, modified, or accessed by untrusted code,
the security guarantees of the cryptographic operation can be
invalidated. Therefore, these inputs also require protection and
should be handled within the TEE.

From a dataflow perspective, cryptographic functions act as
sinks in the flow of sensitive information. Our definition of
cryptex code, therefore, extends to the entire dataflow path
that leads to these sinks. This includes all code that generates,
processes, or transmits inputs to cryptographic operations. By
securing every element along this path, we aim to provide
comprehensive protection for any information flowing into
cryptographic functions, whether it be security-sensitive data,
passwords, or cryptographic keys. While our definition of
cryptex code is grounded in the use of cryptographic functions
as sinks, it ultimately encompasses the full data flow, which
may involve components such as access control, authenti-
cation, personal data handling, digital rights management,
and other security-critical logic. We contend that this broad
definition is adaptable to a wide range of applications.

B. Challenges

In developing a reliable framework for identifying
cryptex code, several challenges emerge that must be ad-
dressed to enhance the effectiveness of automated tools and
methodologies. These challenges stem from the inherent com-
plexities of software systems, the nuances of data flows,
and the limitations of current analysis techniques. Below, we
outline the primary challenges encountered in this endeavor,
each highlighting critical aspects of the problem.

CH I - Complexity of the Cryptex CodeNotion: The first
challenge lies in accurately identifying sources of cryptex data
flows related to cryptographic operations. Each function must
be evaluated to determine if its execution could impact the
confidentiality and integrity of sensitive data used in cryp-
tographic operations. Assessing whether each function could
serve as a valid entry point for a security-sensitive data flow
is crucial to ensure that placing it outside the TEE boundary
does not compromise the security of the inputs involved. This
requires analyzing all possible function invocations within
the application to determine if any could violate security
guarantees when isolated outside of TEE.

Static analysis faces limitations due to its lack of runtime
context, meaning it cannot account for dynamic factors like
user inputs or environmental variations, which makes mod-
eling complex control flow and data dependencies challeng-
ing. Dynamic execution, on the other hand, struggles with

4

incomplete coverage, as it is practically impossible to exercise
every possible code path, particularly in large applications.
As a result, accurately identifying cryptex code remains a
significant challenge.

CH II - Dataset: The second major challenge is the lack
of existing datasets to support the training and validation of
models for identifying cryptex code. Reliable identification
tools require a substantial volume of labeled data, but no pub-
licly available datasets categorize code by security sensitivity,
particularly for cryptographic operations and TEE integration.
Manually creating such datasets is labor-intensive and requires
expert knowledge to accurately identify and label cryptex code
elements, such as specific code sections, functions, or data
flows that need protection to maintain security guarantees.

CH III - Long-Range Semantics in Limited Context
Windows: Cryptex code often depends on information spread
across multiple lines or distant function calls. This creates
long-range semantic dependencies that are difficult to capture
within the fixed-length input constraints of large language
models. Unlike local vulnerability patterns, secure code iden-
tification requires broader contextual understanding, which is
challenging to encode in a single input sequence.

In cryptex code, subtle semantics often emerge from adja-
cent lines such as preparatory checks, assignments, or control
statements that precede or follow a target code line. When
these local interactions are not fully captured, models risk
misclassifying code line that appears benign in isolation. De-
signing representations that capture such fine-grained, line-to-
line dependencies within a constrained input sequence presents
a sharp modeling challenge.

CH IV - Scaling Large Models to Domain-Specific Tasks:
Modern LLMs are designed for general-purpose understanding
and typically require substantial compute and memory for
both training and inference. Applying such models to narrow,
domain-specific tasks like cryptex code identification poses
challenges in terms of scalability and efficiency. Moreover,
compressing models through quantization to reduce resource
usage can lead to information loss, potentially diminishing
their ability to generalize to fine-grained security contexts.

IV. LLM BASED CODE ANNOTATION LOGIC

In this section, we introduce LLM-based Code Annotation
Logic (LLM-CAL), the first tool to address the critical gap
of automating the annotation of cryptex code and facilitating
the seamless integration of Trusted Execution Environments
(TEEs) into existing applications. LLM-CAL leverages LLMs,
such as Gemma [25], Llama [26], and CodeGemma [27],
and is designed to analyze C programs and automatically
identify and annotate code regions that require TEE protection.
Specifically, LLM-CAL targets cryptographic code and its
related logic that handles sensitive inputs and outputs (i.e.,
cryptex code), forming the core of cryptex regions in TEE-
enabled applications.

LLM-CAL formulates the task of identifying
cryptex codeas a supervised binary classification problem at

Fig. 1: LLM-CAL Overview

the line level. Adopting a sequence classification approach,
each line of code is treated as an independent prediction
unit. To enable this, we fine-tune LLMs using QLoRA [24]
on a curated dataset of C code, annotated according to our
definition of cryptex code (cf. Section III-A).

While LLM-CAL operates at the line level to capture
fine-grained security-relevant details, TEEs are best leveraged
at coarser granularities. Frequent context switches between
trusted and untrusted environments can incur performance
overhead, and attempting to isolate only small code fragments
may increase complexity and inadvertently expose sensitive
data through insecure paths. To address this, we aggregate the
line-level predictions into function-level classifications, which
define the boundaries for secure execution.

As the first tool of its kind, LLM-CAL can analyze an
entire codebase to determine which code segments mapped
to functions should be relocated to a TEE and which can
safely remain in the normal execution environment. By au-
tomating this process, LLM-CAL empowers developers to
streamline TEE deployment, reduce the Trusted Computing
Base (TCB), and enhance system security without relying on
time-consuming and error-prone manual inspection.

A. Threat Model

Our threat model targets adversaries typically assumed for
TEE-enabled platforms. This implies a powerful adversary
with kernel-level access to the system, who seeks to exploit
software vulnerabilities in order to compromise the integrity or
confidentiality of sensitive data and code. Using control over
the system, the attacker aims to breach isolated components
or extract sensitive information.

However, we assume that the adversaries cannot access or
modify the hardware of the platform and its trusted computing
base, i.e., the code running within the TEE. This is a typical
assumption made for TEE-enabled systems. Side-channel at-
tacks are also excluded, while they were shown to be effective

5

(e.g., [31], [32], [33], [34]), respective defense methods were
developed (e.g., [35], [36], [37]) that can be deployed on
a target system. Also, adversaries cannot interfere with the
operation of LLM-CAL itself. This assumption is justified, as
LLM-CAL is used during the code development phase prior to
deployment, where the system is not yet exposed to adversarial
influence.

B. LLM-CAL Design

The overview of the LLM-CAL’s functionality is provided
in Figure 1. Its design comprises four key phases: (i) Dataset
construction; (ii) Input sequence construction; (iii) LLM fine-
tuning; and (iv) Inference and code annotation.

• Dataset Construction: In order to fine-tune LLM-CAL,
we curated a dataset of open-source C programs from
GitHub [38], focusing on projects that make use of
cryptographic libraries. We establish annotation guide-
lines and manually label code lines in hundreds of
projects based on our definition of cryptex code, es-
tablished in Section III-A, and address the challenge
CH1 (Cryptex Code-Definition). This dataset forms the
foundation for training and evaluating our models.

• Input Sequence Construction: Whether for fine-tuning
or inference, LLM-CAL transforms raw C source code
into structured input sequences compatible with LLMs.
Each line of code is enriched with contextual information,
including adjacent lines (local context), static analysis
features derived from call graphs and data flow features
extracted from code property graphs (global context), and
metadata. These features help address challenges CH3
(Long-Range Semantics) and CH4 (Scaling Domain-
Specific LLMs)

• LLM Fine-Tuning: We utilize QLoRA adapters for
parameter-efficient fine-tuning of a pre-trained LLM.
These adapters are integrated into the attention layers of
the model architecture to update only a small subset of
parameters. The model is then fine-tuned on our annotated
dataset, learning to distinguish between cryptex and non-
cryptex code patterns.

• Inference and Code Annotation: In the inference phase,
we reuse the same input sequence construction pipeline to
process previously unseen C code. The fine-tuned LLM
evaluates each enriched line and outputs a confidence
score indicating the likelihood of cryptex functions.
Based on these scores, LLM-CAL generates annotated
outputs highlighting code lines and corresponding func-
tions that should be migrated to the TEE.

In the following, we describe the inner workings of every
phase in more detail.

1) Phase 1 - Dataset Construction: As outlined in Sec-
tion III-B, the successful implementation of a machine
learning-based approach for modeling and automatically de-
tecting cryptex code in previously unseen projects necessitates
a comprehensive dataset wherein these functions and variables
are explicitly labeled. To address CH2 (Dataset Constraints),
we created such a dataset by collecting relevant open-source

projects from GitHub [38] that utilize cryptographic libraries.
We subsequently implemented a structured manual labeling
process designed to ensure that the annotations accurately
reflect our definition of cryptex code.

1) Filtering Ineligible Projects: Our process commences
with the exclusion of projects that lack a diverse mix of
both cryptex and non-cryptex functions.

2) Identification of Cryptographic Functions: We then
systematically identify all instances of calls to crypto-
graphic libraries or custom cryptographic implementa-
tions within the selected projects. These functions serve
as initial indicators of cryptex code.

3) Establishing an Initial Set: Not all calls to crypto-
graphic libraries are cryptex code, such as those related
to error-handling functions. These non-sensitive calls are
excluded, focusing instead on functions that implement
cryptographic operations, which form the initial set of
cryptex codeto be further refined in subsequent analytical
phases.

4) Snowballing: We engage in a recursive exploration of
the functions that either invoke or are invoked by these
cryptex functions. Backward Snowballing examines the
functions called by cryptex functions, as they are often
cryptex code themselves. Forward Snowballing analyzes
the functions that invoke cryptex functions, evaluating
how they handle sensitive data to ascertain if they warrant
designation as cryptex code.

5) Global Variable Analysis: In certain instances, global
variables may store cryptex data. We systematically track
the utilization of such variables and, subsequently, mark
any functions that interact with them as cryptex when
appropriate.

2) Phase 2 – Data Preprocessing: The task of identifying
cryptex code is formulated as a binary sequence classification
problem, with the Cryptex code and non-Cryptex Code
classes. To achieve fine-grained, line-level classification, each
line of code is treated as an independent prediction unit and
passed to the LLM individually.

However, as discussed in CH3 (Long-Range Semantics), the
semantics of a single line of code, especially when assessing
its security relevance, cannot be fully understood in isolation.
Both its local surroundings and its broader functional context
are often critical for accurate interpretation. To this end,
our data preprocessing pipeline constructs enriched input se-
quences that embed each target line within a broader semantic
context.

Each input sequence is composed as:

xi =


code line

+ local context

+ global context

+ metadata


During fine-tuning, each sample is defined as a tuple (xi,yi),
where xi is the enriched input sequence and yi ∈ {0, 1}

6

is the binary ground truth label derived from the manual
annotations in section IV-B1. A label of 1 indicates that the
line is cryptex code, whereas 0 denotes non-cryptex code. In
the following, we explain how each of these components is
extracted and encoded for input into the LLM.

Local Context Features. The semantics of a code line is often
tied to its immediate context, and analyzing it in isolation may
lead to incorrect interpretations. To address this, we construct
a local context window around the target line, specifically the
two preceding and two succeeding lines of code. This 5-line
region provides the model with immediate control flow and
the semantic cues necessary for accurate classification. Dur-
ing preprocessing, we exclude non-informative or untrainable
lines from being selected as classification targets. Specifically,
include statements, preprocessing macros, empty lines, com-
ments, and lines that contain only braces. While some of these
lines (e.g., include statements) may be relevant, their influence
is better captured through global features. Filtering in this way
ensures that only semantically meaningful and actionable lines
are passed to the model for classification.

Global Semantic Features. As highlighted in CH3 (Long-
Range Semantics), many cryptex code behaviors arise from
long-range dependencies, particularly data flows that span
multiple functions or even modules of the program. Capturing
these relationships is essential for identifying cryptex code
that cannot be understood from the local context alone. To
incorporate such information, we construct a Function Call
Graph (FCG) for each C program. The FCG encodes caller-
callee relationships, enabling a broader understanding of how
different functions interact. For every line of code, we identify
the enclosing function and extract the API calls and internal
function invocations it contains. This list is added to the input
sequence associated with that line to provide function-level
semantic context, which showcases the input line’s role within
the broader program logic.

To further augment global semantic features, we addi-
tionally incorporate data flow features extracted from the
Code Property Graph (CPG) [39] of each source file. For
every line of code, we analyze the underlying CPG struc-
ture to identify relevant node types (e.g., IDENTIFIER
METHOD_PARAMETER_IN) and track data dependencies via
edges such as REACHING_DEF, CFG, and AST. This allows
us to statically pre-compute and annotate each line with
information such as the variables it defines or uses, and the set
of lines it semantically reaches. These features capture subtle,
long-range data flows that are key to recognizing security
sensitive behavior. The background on the code property
graphs is available in the Appendix D.

Metadata Information. To enhance the structural and contex-
tual understanding of each code line, we incorporate metadata
features such as the line number, function name, and file
name directly into the input sequence. These attributes help
the model disambiguate code lines that may be syntactically
similar but occur in distinct locations or functional contexts

within the program. For instance, the same API call might
appear in both utility functions and security-critical routines,
each carrying different implications.

3) Phase 3 - LLM Fine-tuning: As discussed in Sec-
tion III-B and CH1 (Cryptex Code-Definition), static analysis
alone is insufficient to detect cryptex functions. To automate
this identification, we fine-tune a pre-trained LLM using the
PEFT approach QLoRA [24]. QLoRA, rather than updating all
model parameters, inserts lightweight adapters at key points in
each transformer block. Prior to training, each enriched input
sequence xi is tokenized with the model’s native subword
tokenizer. The fine-tuned model then processes each sequence
and outputs a single logit that is converted via a sigmoid
function to yield a probability for the security sensitivity of
the corresponding code line.
QLoRA Adapter Configuration: QLoRA has two main
configurable aspects: The rank of the low-rank trainable
matrices and the number of adapter modules placed within
each transformer block. The rank determines the expressive
capacity of each adapter, with higher values allowing more
flexibility at the cost of increasing the number of parameters.
The number and placement of adapters, on the other hand,
directly impact how much of the attention mechanism can be
adapted to the downstream task.

Modern LLMs use stacks of transformer blocks, each con-
taining Multi-Head Self-Attention (MHSA) layers. We target
the three key projection matrices (WQ, WK , and WV) within
the MHSA layers because they govern the attention mecha-
nisms critical for capturing task-specific semantics. Moreover,
we also include an adapter at the output projection matrix WO

to better steer the aggregated attention outputs towards the do-
main task, which further improved downstream performance.
The background of the key projection matrices can be found in
the Appendix C. We configure QLoRA by adding four adapter
modules per transformer block at these key projections.

In terms of rank configuration, we set the rank of the low-
rank adapters to 16, striking a balance between parameter
efficiency and task adaptability. This choice was empirically
validated to provide sufficient expressive power for learning
cryptex code patterns without incurring significant memory
overhead during training.
Training Objective and Setup: As defined in IV-B2, each
training instance is represented as a tuple, where during
training, the model learns a function (xi,yi),

fθ(xi) → ŷi,

where θ represents the adapter weights introduced via QLoRA.
The model outputs a logit ŷi ∈ R, which is passed through a
sigmoid activation [40] to generate the predicted probability.
We use the Binary Cross-Entropy (BCE) loss [41], a well-
established function for binary classification tasks, to train the
model for distinguishing cryptex code from non-cryptex code
lines. Handling Class Imbalance: Since the dataset is domi-
nated by non-cryptex code lines, we employ a weighted BCE
loss that assigns higher importance to the cryptex samples.

7

Fig. 2: LLM-CAL Inference Workflow

This approach scales the contribution of the minority class
and stabilizes gradient updates during fine-tuning.
Optimization and Stability Configurations: To further en-
sure efficient and stable fine-tuning, we incorporate several
best practices:

• Weight Decay: Acts as a regularizer to prevent overfitting
by penalizing large weight updates.

• Cosine Learning Scheduler: Gradually warms up the
learning rate, then decays it smoothly to help the opti-
mizer converge effectively.

• Early Stopping: Monitors validation performance to halt
training when no further improvements are observed,
thereby conserving computational resources.

These strategies, combined with our QLoRA-based fine-tuning
approach, allow the model to efficiently learn to identify
cryptex code patterns despite the challenges of imbalanced and
low-resource datasets.

4) Phase 4 – Inference: In the final phase, we deploy
the fine-tuned LLM in conjunction with the preprocessing
pipeline from Phase 2 (cf. Section IV-B2) to automatically
annotate cryptex lines in unseen C codebases. The end-to-
end inference workflow is illustrated in Figure 2. The process
begins with developers supplying raw C source files in plain-
text format. For each file, our inference module constructs
enriched input sequences for all semantically relevant lines,
filtering out non-informative lines such as comments, includes,
braces, and empty lines. Using the same procedures as during
training, the preprocessing module extracts the local con-
text window, global semantic features, and metadata. Each
resulting input sequence is tokenized and passed through
the fine-tuned LLM with QLoRA adapters. For every input
line, the model produces a scalar output between 0 and 1,
representing the predicted probability that the corresponding
code line is cryptex code. Lines with predicted scores above a
predefined threshold such as 0.5 are flagged as cryptex code.
This line-level prediction is then resolved to a function-level
prediction. To achieve this, we statically assign each code
line to its enclosing function using a lightweight parsing step.
This automated annotation enables developers to efficiently
identify and isolate critical code regions for TEE partitioning,
ultimately reducing the application’s trusted computing base
and minimizing its attack surface.

V. EVALUATION

This section evaluates LLM-CAL in identifying
cryptex code at the line and function levels, emphasizing high
recall and accuracy. We describe the dataset, experimental
setup, and evaluation metrics. The evaluation also covers
three case studies including assessment of LLM-CAL’s
performance on real world bitcoin utility tool, firmware
code from TZ-DATASHIELD [21], out-of-distribution
cryptographic code from alternative library. A comprehensive
robustness evaluation of LLM-CAL and an ablation study
detailing the impact of each component of LLM-CAL are
provided in Appendices E and B.

A. Dataset

To create a robust foundation for training and evaluating the
LLM-CAL model, we collected and constructed a first-of-its-
kind, line- and function-level dataset following the guideline
process outlined in Section IV-B1. To provide key insights into
the dataset, this section covers aspects such as its coverage,
and the effort involved while also detailing the de-duplication
techniques used to ensure a clean and high-quality dataset. The
details about the dataset size are provided in Appendix A.

Coverage: We have collected 4010 source code files from
1070 open-source software projects written in C from GitHub,
each utilizing the OpenSSL [42] library. Specifically, these
projects cover various categories, including cryptographic
algorithms and implementations, OpenSSL integration and
extensions, security tools and libraries, networking, and se-
cure communication, as well as application development with
platform-specific implementations. The projects, therefore, in-
teract with the OpenSSL in diverse ways, which ensures that
LLM-CAL trained on our dataset can generalize effectively
and be applied to arbitrary projects using the library. The
largest project in our dataset contains 13, 428 lines of code,
while the median size across all projects is 492 lines of code.

OpenSSL was selected as the underlying cryptographic
library for our dataset as it is one of the most widely used li-
braries for secure communications, with extensive deployment
across a broad spectrum of applications and platforms. This
widespread usage provides a rich and varied dataset, capturing
numerous interaction patterns and edge cases with a well-
established cryptographic standard. While OpenSSL serves as

8

the primary source for training due to its widespread use and
rich interaction patterns, our objective is to capture the core
semantics of cryptex code. This allows the model to generalize
beyond OpenSSL and remain effective across different crypto-
graphic libraries and real-world domains, including embedded
firmware.

Effort: The dataset construction required substantial man-
ual expert annotation effort, carried out by a dedicated
team of students and researchers, with guidance from in-
dustry experts. More than 1000 hours were spent labeling
cryptex codesections across all projects, ensuring accuracy and
consistency throughout the dataset.

Dataset Split: The curated dataset was divided into an 80%
training/validation set and a 20% independent hold-out test set
to ensure unbiased evaluation.

B. Experimental Setup and Evaluation Metrics

This section presents the experimental setup, training strat-
egy, and evaluation metrics used in our approach to assess the
performance of LLM-CAL.

Quantization: We apply 4-bit quantization to the pre-trained
Gemma-2B model using the QLoRA framework, significantly
lowering GPU memory usage while preserving full model
capacity. This allows us to fine-tune efficiently on resource-
constrained hardware, as only the lightweight adapter layers
remain in higher precision and are updated during training.

Tokenization: Tokenization serves as the bridge between
structured input sequences and the LLM by converting textual
inputs into numerical token IDs that the model can process. We
use the tokenizer from the Gemma-2B model to encode each
enriched sequence comprising local context, global function-
level signals, and metadata into a fixed-length format. This
step is applied consistently across training and inference to
ensure compatibility with the model’s embedding space.

Hardware: Training and inference were performed on a high-
performance Linux server equipped with an Intel(R) Xeon(R)
CPU and 251 GB of system memory. The experiments lever-
aged four GPUs, each with 48 GB of dedicated VRAM,
to enable efficient large-scale fine-tuning and inference with
quantized large language models. The system was configured
with CUDA and cuDNN to ensure optimal GPU utilization
and parallel training support.

Distributed Training: To accelerate training and scale to
larger batch sizes, we employ distributed data parallelism
using four GPUs. The training workload is partitioned across
devices such that forward and backward passes are com-
puted independently on each GPU with synchronized gradient
updates. This setup enables efficient utilization of available
memory and compute, reducing training time while preserving
convergence stability.

Evaluation Metrics: To comprehensively assess the perfor-
mance for LLM-CAL, we evaluate its ability to classify
individual code lines as either cryptex code or not.

By comparing the predicted classifications with expert-
labeled data produced in accordance with guidelines described
in Section IV-B1, we construct a confusion matrix [43] detail-
ing True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN).
• Accuracy is the proportion of correctly identified lines,
calculated as TP+TN

TP+FP+TN+FN .
• Recall is the proportion of correctly identified
cryptex codelines, calculated as TP

TP+FN .
• Precision is the proportion of identified cryptex codelines
that are actually cryptex code, calculated as TP

TP+FP .
• F1 Score: A harmonic mean that combines precision and
recall, calculated as 2∗(P∗R)

P+R .
• TCB Reduction is the percentage of lines not predicted as
secure-sensitive per source file, reflecting how much of the
code can be excluded from the TCB based on LLM-CAL’s
predictions. This value is compared with most optimal TCB
reduction value computed from ground truth annotations.
• Identification Rate: The proportion of actual
cryptex codelines or functions correctly identified by
LLM-CAL, calculated as Identified CryptexLines

Total CryptexLines .
In our context, the LLM-CAL model places a higher em-

phasis on achieving a high recall, as it is crucial to correctly
identify cryptex regions. Even in cases where a few cryptex
lines are missed, we ensure that the corresponding cryptex
functions are still correctly identified. Moreover, it is also
important for LLM-CAL not to significantly compromise on
precision, minimizing false positives. Ultimately, the goal
is for LLM-CAL to maintain a well balanced performance,
effectively identifying cryptex codelines while ensuring fair-
ness and accuracy across all line classifications. Additionally,
the identification rate metric highlights LLM-CAL’s ability
to accurately identify cryptex codelines, which is crucial for
minimizing missed detections and maintaining comprehensive
coverage of cryptex codecomponents.

C. LLM-CAL Performance at Different Granularity

In this section, we present the performance of LLM-CAL
at line-level and function-level granularity to demonstrate its
ability to identify cryptex code effectively. While LLM-CAL
performs well at both levels, line-level probability scores
offer fine-grained accuracy and allow us to pinpoint
cryptex codelines across entire code files. Achieving high
performance at this granularity is inherently more challenging
due to the complexity and details involved in learning localized
code patterns. At the same time, moving entire functions to
TEEs is a more practical and efficient solution in real-world
scenarios, as it avoids the overhead of frequent transitions
between TEE and non-TEE environments. Therefore, identi-
fying all cryptex code at the function level is equally critical.
Together, these evaluations demonstrate that LLM-CAL not
only performs well at detecting fine-grained cryptex code lines
but also offers actionable guidance for secure TEE partitioning
at the function scope.

1) LLM-CAL Performance at Line Level: The perfor-
mance of LLM-CAL in identifying the total number of

9

LLM Model Accuracy Precision Recall F1-Score

Gemma-2B 99.04% 99.40% 97.50% 98.41%

TABLE I: LLM-CAL’s performance on Test Set

cryptex codelines that can be annotated automatically from
the custom dataset is presented in Tables I and II.

LLM-CAL demonstrates strong performance in identifying
cryptex code lines across a diverse set of unseen C codebases.
As shown in Table I, LLM-CAL achieves an overall accuracy
of 99.04%, a precision of 99.40%, and a recall of 97.50%
at the line level. The high recall highlights LLM CAL’s
robustness in minimizing missed detections of cryptex code,
ensuring comprehensive coverage even in subtle or obfuscated
scenarios. While the recall emphasizes the model’s ability
to capture nearly all relevant lines, the precision of 99.40%
showcases the model’s very minimal false positive rate and its
ability to rightly differentiate between cryptex code and non-
cryptex code lines without leading to unnecessary overprotec-
tion of the code. Further in Table II, we showcase the distribu-
tion of true and false predictions. LLM-CAL achieves a very
high true positive rate, identifying 17, 606 cryptex codelines
with very few 452 false negative lines. However, as all the
corresponding cryptex functions of these lines are identified
rightly, as shown in Table II, this minimal miss detection rate
has no damage. This zero miss rate at function level is critical
in secure code offloading scenarios where undetected sensitive
operations can compromise the integrity of Trusted Execution
Environments Importantly, the model also achieves a very low
false positive count (106 out of 96,080 total lines), demonstrat-
ing that LLM-CAL balances between comprehensive coverage
and very minimal over prediction.
• TCB Reduction: From Table II, it is evident that the
LLM-CAL model achieved very low false positive and false
negative rates, resulting in a significant reduction in TCB
size, with only a 0.59% inflation due to misclassifications.
Additionally, the influence of false negatives on TCB was
minimal, with only 2.5% more reduction possible if they were
fully eliminated.

2) LLM-CAL Performance at Function Level: The
function-level analysis aims to evaluate LLM-CAL’s ability
to detect entire functions as security-sensitive based on line-
level predictions. By automatically identifying and flagging

Metric Line-Level Function-Level
True Positives (TP) 17,606 684
True Negatives (TN) 77,916 3755
False Positives (FP) 106 0
False Negatives (FN) 452 0
Total Predictions: cryptex 17,712 684
Total Predictions: non-cryptex 78,368 3755
Total Ground Truth: cryptex 18,058 684
Total Ground Truth: non-cryptex 78,022 3755

Total 96,080 4439

TABLE II: Comparison of line-level and function-level pre-
diction summary

these entire functions as cryptex, we help the developers in
determining which functions should be relocated to TEE.
Therefore, the performance of LLM-CAL at the function
level is equally critical. As shown in Table II, LLM-CAL
successfully identifies all the 684 security-sensitive functions
and 3755 non-sensitive functions in the test set, achieving
a 100% identification rate. This result clearly demonstrates
that LLM-CAL has learned the patterns of cryptex and non-
cryptex code rightly and is delivering accurate annotations
to assist developers in TEE migration. Overall, LLM-CAL
represents an advancement over state-of-the-art tools such
as Graphene [17], Haven [18], and SCONE [19], which
migrate entire applications into TEEs without fine-grained
code sensitivity analysis.

D. Case Study 1: Bitcoin Utility

To showcase the capabilities of the LLM-CAL in real-world
projects, we examine a Bitcoin utility tool called btcsigning.
This tool is a simplified version of the Bitcoin CLI tool pro-
vided by libbtc [44]. Both btcsigning and libbtc use OpenSSL
along with its extension, libsecp256k1, for ECDSA operations
on the secp256k1 elliptic curve.

The btcsigning tool has access to a transaction signing
key in Wallet Import Format (WIF), which allows it to sign
arbitrary messages using that key, including genuine Bitcoin
transactions. The exposure of such a key could lead to substan-
tial financial losses, emphasizing the importance of protecting
it securely via TEE.

Line Code Prob.

1 unsigned char private_key_hex[32]; 0.8322
2 if (decode_wif_to_hex(wif_key,

private_key_hex)!= 32){
0.8092

3 printf("Invalid WIF key\n"); 0.7310
4 return 1; 0.8300
5 char un_base58_address[34]; 0.8187
6 bitcoin_getaddress(un_base58_address

, private_key_hex);
0.9854

TABLE III: Converting signing key

Table III shows the line number, code, and probability
(orange for cryptex and blue for non-cryptex) from LLM-CAL,
where the private signing key is decoded from WIF format
to raw binary format that is used by libsecp256k1, and the
raw key is written into unsigned char array private key hex.
Next, this private key is used to derive the Bitcoin address
associated with the private key. The right column of the
table shows the probabilities produced by LLM-CAL for these
cryptex code lines. As we can see from the listing, LLM-CAL
correctly predicts that the code lines are cryptex with above
80% probability for all.

Once the Bitcoin address is generated, the next crucial step
involves signing the message using the private key hex, as
shown in Table IV. In this step, the private key is used to
sign the message’s hash value. LLM-CAL correctly assesses
the probability as high (99.16%) in line 2. However, as
indicated in the table, LLM-CAL mistakenly evaluates print
of the actual signature value as cryptex code (cf. line 14),

10

Line Code Prob.

1 unsigned char bitcoin_sig[65]; 0.9697
2 int bitcoin_sig_len = bitcoin_sign(

bitcoin_sig, hash2, private_key_hex)
;

0.9916

3 if (bitcoin_sig_len < 0){ 0.9896
4 printf("Error signing the message\n

");
0.9407

5 return 1; 0.9196
6 }
7 printf("bitcoin_sig: "); 0.7826
8 for (int i = 0; i < 65; i++){ 0.7994
9 printf("%02x", bitcoin_sig[i]); 0.9196
10 }
11 printf("\n"); 0.8438
12 //Encode the signature in base64
13 char *signature_base64 =

base64_encode(bitcoin_sig,
bitcoin_sig_len);

0.9796

14 printf("signature_base64: %s\n",
signature_base64);

0.9914

TABLE IV: Signing operation

even though this value is public in the Bitcoin context. In
other scenarios, such as when a verifier may accept the
same signature multiple times, the signature value could be
considered secret. This does not apply to Bitcoin, where the
system is designed to prevent double-spending. Therefore, it is
reasonable that LLM-CAL, not being trained to understand the
specific logic of Bitcoin, tends to classify code as cryptex code
more aggressively due to the requirements of other use cases.

Line Code Prob.

1 void double_sha256(const unsigned
char *input, size_t length, unsigned
char *output){

0.9648

2 unsigned char hash[
SHA256_DIGEST_LENGTH];

0.8449

3 SHA256(input, length, hash); 0.9875
4 SHA256(hash, SHA256_DIGEST_LENGTH,

output);
0.9899

5 } 0.2814

TABLE V: Hashing Operation Function

Table V demonstrates that LLM-CAL exhibits good pre-
cision, correctly assigning higher probability scores to hash
operations which aligns with the cryptex code definition out-
lined in Section IV-B1. Moreover, LLM-CAL assigns a lower
probability to line 5, as the line content remains non-cryptex.

E. Use Case 2: Firmware Code Analysis

While LLM-CAL is primarily fine-tuned on a dataset with
standard C programs that include OpenSSL based crypto-
graphic operations, we further evaluate its robustness on a dif-
ferent domain: Low-level embedded firmware. For this, we an-
alyze the Pinlock firmware project from the TZ-DATASHIELD
dataset [45], which features hardware interfacing code and
developer defined annotations for protecting sensitive data in
systems built on ARM TrustZone architecture. The Pinlock
application implements a simple authentication workflow that
validates a user-entered PIN by computing its SHA-256 hash
and comparing it to a stored reference key. If the hash
matches, the system unlocks and grants access; otherwise, it

remains locked, emulating secure access control mechanisms
common in embedded systems. The source code uses the
crypto library by NXP [46] instead of OpenSSL, showing
the applicability of LLM-CAL to other crypto libraries. NXP
offers its cryptographic library freely and is available in the
MCUXpresso SDK [47].

The Pinlock firmware begins by declaring a set of critical
variables required for input handling and system feedback,
as shown in Table VI. LLM-CAL assigns high confidence to
lines involving buffer and flag declarations specifically, the
buffer used for PIN input storage and the pin received flag,
both marked with TrustZone Data Section (TZDS) annotations
in the original codebase. This highlights the model’s ability
to recognize sensitive data handling even without explicit
developer annotations. Further, Table VII captures the key

Line Code Prob.

1 uint8_t fmt_buffer[32]; 0.5084
2 uint8_t buffer[BUFFER_SIZE] = {0}; 0.7416
3 volatile uint32_t rx_index = 0; 0.2999
4 volatile bool pin_received = false; 0.2227

TABLE VI: Declaration of buffers and variables

comparison logic used to authenticate the user-entered PIN
against the stored reference in line 2. LLM-CAL confidently
flags the memcmp-based comparison and return logic as
cryptex code, correctly identifying this operation as central to
access control.

Line Code Prob.

1 bool match(uint8_t *key_received) 0.5655
2 if (memcmp(key_received, key_stored,

32)== 0){
0.7065

3 return true;} 0.4167
4 return false; 0.6206

TABLE VII: Key Match Operation

Table VIII illustrates the hash computation process used
to transform the entered PIN into a fixed-length represen-
tation using SHA-256. LLM-CAL accurately highlights the
cryptex code lines involving interrupt disabling, hash invo-
cation, and output size validation, demonstrating its ability
to detect sensitive transformations in firmware logic as well.
Despite lacking such annotations during inference, LLM-CAL

Line Code Prob.

1 PRINTF("You entered: %s\r\n", buffer
);

0.4893

2 DisableIRQ(DEBUG_USART_FLEXCOMM_IRQN
);

0.5382

3 status = HASHCRYPT_SHA(HASHCRYPT,
kHASHCRYPT_Sha256, buffer, rx_index,

0.4629

4 key_received, &output_size); 0.6495
5 assert(kStatus_Success == status); 0.6583
6 assert(output_size == 32u); 0.6522

TABLE VIII: Hashing Operation

successfully identified key cryptex operations such as declara-
tion of sensitive variables, key match, and hashing operations.
This demonstrates LLM-CAL ’s ability to generalize to code

11

for embedded devices that use different crypto libraries and
effectively adapt to real-world codebases.

F. Usecase 3: Evaluating LLM-CAL on Out-of-Distribution
Crypto Code

To further evaluate the generalizability of LLM-CAL be-
yond OpenSSL-based C programs, we apply it to a crypto-
graphic code snippet using the mbedTLS [48] library. Specifi-
cally, we analyze a C source file obtained from an open-source
project [49], which demonstrates AES-GCM encryption and
decryption, where sensitive operations such as key and IV
generation, encryption with authenticated data, and decryption
with tag verification are implemented using the mbedTLS API.
This example allows us to explore how LLM-CAL performs
on an entirely different cryptographic library, without having
seen such syntax or API calls during training. The code
begins by initializing entropy and random number generator
contexts, followed by seeding the CTR-DRBG component, as
seen in Table IX. Next, it generates cryptographic key and
Initialization Vector (IV) values, configures the GCM context,
and performs authenticated encryption and decryption using
mbedtls gcm crypt and tag and mbedtls gcm auth decrypt.
These steps are essential for securing messages in real-world
embedded and networked systems.

Line Code Prob.

1 mbedtls_entropy_init(&entropy); 0.8757
2 mbedtls_ctr_drbg_init(&ctr_drbg); 0.8714
3 mbedtls_gcm_init(&gcm); 0.6315
4 ret = mbedtls_ctr_drbg_seed(&

ctr_drbg, mbedtls_entropy_func, &
entropy, (unsigned char *)pers,
strlen(pers));

0.2509

5 if(ret != 0){ 0.5308
6 printf("mbedtls_ctr_drbg_seed()

failed - returned -0x\%04x\n", -ret)
;

0.4358

7 goto exit;} 0.098

TABLE IX: Entropy and randomness initialization

Tables IX, X, and XI showcase sensitive blocks from this
source file along with LLM-CAL ’s predicted probabilities
for each line. In Table IX, we observe that LLM-CAL assigns
high confidence to lines 1 through 6, which are responsible for
entropy pool setup and seeding, correctly identifying them as
cryptex code. In Table X, the actual AES-GCM encryption
operation receives the highest probability, with supporting
lines like error handling and ciphertext generation also marked
as cryptex code. Similarly, Table XI highlights LLM-CAL’s
ability to detect the authenticated decryption logic with high
confidence, while appropriately assigning a low score to the
final print statement that simply logs the plaintext.

These results demonstrate that LLM-CAL is capable of
adapting to new and alternate cryptographic APIs and function
calls not present during fine-tuning, making robust predictions
on previously unseen secure operations, even across library
boundaries.

Line Code Prob.

1 ret = mbedtls_gcm_crypt_and_tag(&gcm
, MBEDTLS_GCM_ENCRYPT, plain_len, iv
, IV_BYTES, add_data, add_len, input
, output, TAG_BYTES, tag);

0.8210

2 if(ret != 0){ 0.7799
3 printf("mbedtls_gcm_crypt_and_tag

failed to encrypt the data -
returned -0x\%04x\n", -ret);

0.8031

4 goto exit;} 0.3645
5 printf("ciphertext: ’%s’ (length \%

zu)\n", output, strlen((char*)output
));

0.4850

TABLE X: GCM encryption with tag generation

Line Code Prob.

1 ret = mbedtls_gcm_auth_decrypt(&gcm
, plain_len, iv, IV_BYTES, add_data
, add_len, tag, TAG_BYTES, output,
decrypted);

0.6934

2 if(ret != 0){ 0.9334
3 printf("mbedtls_gcm_auth_decrypt

failed to decrypt the ciphertext -
tag doesn’t match\n");

0.8128

4 goto exit;} 0.5751
5 printf("decrypted : ’%s’ (length \%

zu)\n", decrypted, strlen((char *)
decrypted));

0.5547

TABLE XI: GCM decryption and authentication

G. LLM-CAL Robustness

This section evaluates the robustness of LLM-CAL by
analyzing its performance under varying conditions, including
different fine-tuning strategies, diverse LLM architectures, and
comprehensive evaluation on alternative library.

1) Comparison of Fine-Tuning Strategies: To assess the
effectiveness of different fine-tuning strategies, we compare
LLM-CAL’s performance across three configurations: the base
Gemma-2B pretrained model used in zero-shot mode which
means there is no task adaptation and fine tuning on the model,
QLoRA-based fine-tuning with 4-bit quantization and adapter
injection, and DORA-based [30] fine-tuning using dynamic
offset rank adaptation. Each configuration is evaluated at the
line level using the same dataset and inference pipeline.

Fine-Tuning Method Accuracy Precision Recall F1-Score

Zero-Shot (Gemma-2B) 83.02% 90.11% 54.09% 52.85%

QLoRA (with LLM-CAL) 99.04% 99.40% 97.50% 98.41%

DORA (with LLM-CAL) 91.94% 84.86% 95.06% 88.43%

TABLE XII: Comparison of LLMCAL fine-tuning strategies
on line-level performance.

As observed in Table XII, the zero-shot setting performs
poorly on the target task, despite achieving high precision. The
model fails to generalize to security-sensitive codes, resulting
in a low recall (54.09%) and an F1-score of just 52.85%. This
emphasizes the limitations of using general-purpose LLMs
without adaptation for cryptex code identification.

In contrast, both QLoRA and DORA fine-tuning pipelines
show substantial improvements across all metrics. QLoRA

12

with best suited training hyperparameters outperforms DORA,
demonstrating better alignment with the distribution of
cryptex code lines. These results showcase that domain-
specific fine-tuning is essential for high-fidelity cryptex code
annotation. The comprehensive evaluation on alternative
crypto library and diverse llm architectures are provided in
appendix E.

VI. RELATED WORK

This section provides an overview of related literature.
Notably, there is no directly relevant work addressing the
specific problem that LLM-CAL aims to solve. We discuss the
most closely related work to LLM-CAL, specifically literature
that focuses on simplifying and automating the migration
of applications to TEEs, RNN and LLM-based vulnerability
detection methods.

Tooling for TEE Migrations Tools like Graphene [17],
Haven [50], and SCONE [51] enable the migration of entire
software environments into secure enclaves. Graphene and
Haven facilitate legacy applications, while SCONE targets
containerized microservices. Although these tools simplify
TEE integration, they focus on full migration rather than
minimizing the TCB, contrasting with LLM-CAL’s approach.

Other tools have explored optimizing TEE boundaries, simi-
lar to LLM-CAL, but require significant developer interaction.
TEE-DRUP [22] helps developers partition applications by in-
sourcing security-sensitive variables based on natural language
heuristics, yet its reliance on manual curation makes it less
practical. SOAAP [20] targets multi-compartment technologies
like CHERI [52] and relies heavily on developer-provided
annotations, making it time-consuming compared to the fully
automated approach of LLM-CAL that works directly on
unannotated source code. Similarly, a compiler toolchain TZ-
DATASHIELD [21] enables secure and efficient protection
of sensitive data in ARM TrustZone-enabled microcontrollers
by analyzing annotated source code to generate fine-grained,
data-flow-aware compartments. Again, unlike LLM-CAL, TZ-
DATASHIELD relies on developer-annotated source code.

RNN-based Vulnerability Detection Between 2018 and
2021, Recurrent Neural Networks (RNNs) were widely ex-
plored for source code vulnerability detection, typically by
vectorizing code and processing it with bidirectional RNN
architectures. VulDeePecker [53] introduced the concept of
“code gadgets” and employed Bi-LSTMs to process seman-
tically related code lines, contributing a specialized dataset
and key principles for vulnerability detection. SySeVR [54]
refined this by using BGRUs and introducing Syntax-based
and Semantics-based Vulnerability Candidates (SyVCs and
SeVCs) that incorporate syntax and data/control flow depen-
dencies. VulDeeLocator [55] extended SySeVR by integrating
intermediate code for richer semantic context and introduced
BRNN-vdl, which combines attention and granularity refine-
ment. Tang et al. [56] compared Bi-LSTMs and RVFLs within
the VulDeePecker framework and showed that Bi-LSTM with
doc2vec preprocessing achieved the best results.

LLM-based Vulnerability Detection Recent research has
focused on using LLMs for vulnerability detection in both
source and binary code. While LLMs achieve high recall, they
often suffer from low precision, leading to false positives [57],
[58]. Pearce et al. [59] assessed five LLMs using CodeQL
bug reports and found that while all bugs were fixed, gen-
erating functionally correct code remained challenging. De-
fectHunter [60] enhanced Transformers with Conformers [61]
and used Abstract Syntax Tree’s, Control Flow Graph’s, and
Data Flow Graph’s alongside LLMs to capture structural code
features. Chan et al. [62] compared zero/few-shot learning
and fine-tuning, showing fine-tuning as most effective despite
frequent update needs. Liu et al. [57] used LLMs to automate
manual tasks in binary taint analysis, identifying sensitive
functions and tracing data dependencies. Luo et al. [58] intro-
duced VulHawk, combining RoBERTa and GNNs for binary
code search in IoT firmware, improving precision with an
entropy-based adapter and progressive search. Chen et al. [63]
evaluated GPT-3.5 and GPT-4 on smart contracts, noting
high recall but inconsistent precision. Purba [64] compared
LLMs to static analysis and neural networks across two public
datasets, finding direct prompting ineffective and fine-tuning
helpful, though high false positives persisted.

Summary In summary, LLM-CAL is pioneering in addressing
the automation approach to identify cryptex code, an area
not covered by current research, making it a foundational
contribution to the fields of TEE migration and secure code
analysis. None of the works in the three discussed categories
are directly relevant or can be directly compared to LLM-CAL.
First, while existing methods for automating application mi-
gration to TEEs share some objectives, they lack a focus
on identifying cryptex code. Second, LLM-based vulnerability
detection approaches, though similar in using LLMs for code
analysis, diverge significantly in scope and methods from
LLM-CAL’s specialized focus.

VII. CONCLUSION

In summary, LLM-CAL offers a lightweight and scalable
solution for identifying cryptexlines of code that focus on
cryptographic logic and related data flows using large lan-
guage models. By combining structured input construction
with parameter-efficient fine-tuning via QLoRA, LLM-CAL
effectively captures local, global, and semantic context. Our
results show strong performance across diverse settings in-
cluding OpenSSL code, embedded firmware, and alternate
crypto programs with mbedTLS and NXP demonstrating
LLM-CAL ’s ability to generalize beyond its training dis-
tribution. This provides practical, automated, and developer-
independent cryptex code annotations for real-world systems.

REFERENCES

[1] S. Kim, J. Park, K. Lee, I. You, and K. Yim, “A brief survey on rootkit
techniques in malicious codes.” J. Internet Serv. Inf. Secur., vol. 2, no.
3/4, pp. 134–147, 2012.

[2] “CVE-2024-39291 - Linux Kernel Overflow.” [Online]. Available:
https://www.cvedetails.com/cve/CVE-2024-39291/

13

https://www.cvedetails.com/cve/CVE-2024-39291/

[3] “CVE-2016-5195 - Dirty COW.” [Online]. Available: https://nvd.nist.
gov/vuln/detail/cve-2016-5195

[4] “CVE-2023-34322 - Xen PV Improper Check.” [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2023-34322

[5] “CVE-2023-4155 - KVM Race Condition.” [Online]. Available:
https://nvd.nist.gov/vuln/detail/cve-2023-4155

[6] “CVE-2024-3094 - Linux XZ Backdoor.” [Online]. Available: https:
//nvd.nist.gov/vuln/detail/CVE-2024-3094

[7] “CWE-506 - Embedded Malicious Code.” [Online]. Available:
https://cwe.mitre.org/data/definitions/506.html

[8] “CWE-119 - Buffer Overflow.” [Online]. Available: https://cwe.mitre.
org/data/definitions/119.html

[9] “CWE-200 - Exposure of Sensitive Information to an Unauthorized
Actor.” [Online]. Available: https://cwe.mitre.org/data/definitions/200.
html

[10] “CWE-691 - Insufficient Control Flow Management.” [Online].
Available: https://cwe.mitre.org/data/definitions/691.html

[11] “CWE-693 - Protection Mechanism Failure.” [Online]. Available:
https://cwe.mitre.org/data/definitions/693.html

[12] “CWE-94 - Code Injection.” [Online]. Available: https://cwe.mitre.org/
data/definitions/94.html

[13] “Intel Software Guard Extensions (SGX).” [Online].
Available: https://www.intel.com/content/www/us/en/products/docs/
accelerator-engines/software-guard-extensions.html

[14] “TrustZone for Cortex-M.” [Online]. Available: https://www.arm.com/
technologies/trustzone-for-cortex-m

[15] S. Pinto and N. Santos, “Demystifying ARM TrustZone: A comprehen-
sive survey,” ACM computing surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[16] “TrustZone for Cortex-A.” [Online]. Available: https://www.arm.com/
technologies/trustzone-for-cortex-a

[17] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical library
OS for unmodified applications on SGX,” in 2017 USENIX Annual
Technical Conference (USENIX ATC 17), 2017, pp. 645–658.

[18] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from an
Untrusted Cloud with Haven,” ACM Transactions on Computer Systems
(TOCS), vol. 33, no. 3, pp. 1–26, 2015.

[19] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al., “SCONE:
Secure Linux containers with Intel SGX,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 2016, pp.
689–703.

[20] K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie,
I. Marinos, P. G. Neumann, and A. Richardson, “Clean application
compartmentalization with soaap,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015,
pp. 1016–1031.

[21] Z. Kong, M. Park, L. Guan, N. Zhang, and C. H. Kim, “TZ-
DATASHIELD: Automated Data Protection for Embedded Systems
via Data-Flow-Based Compartmentalization,” in Proceedings of the
32nd Network and Distributed System Security Symposium (NDSS
2025), San Diego, CA, Feb. 2025. [Online]. Available: https:
//dx.doi.org/10.14722/ndss.2025.240563

[22] Y. Liu and E. Tilevich, “Reducing the price of protection: Identifying
and migrating non-sensitive code in TEE,” in 2020 IEEE 19th Inter-
national Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom). IEEE, 2020, pp. 112–120.

[23] D. Brown, The Da Vinci Code. Doubleday, 2003.
[24] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:

efficient finetuning of quantized llms,” in Proceedings of the 37th
International Conference on Neural Information Processing Systems, ser.
NIPS ’23. Red Hook, NY, USA: Curran Associates Inc., 2023.

[25] G. Team and et al., “Gemma 2: Improving open language models at a
practical size,” arXiv:2408.00118, 2024.

[26] L. Team and et al., “The llama 3 herd of models,” arXiv:2407.21783,
2024.

[27] C. Team and et al., “Codegemma: Open code models based on gemma,”
arXiv:2406.11409, 2024.

[28] Z. Fu, H. Yang, A. M.-C. So, W. Lam, L. Bing, and N. Collier, “On the
Effectiveness of Parameter-Efficient Fine-Tuning,” arXiv:2211.15583,
November 2022.

[29] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, L. Wang, and
W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv:2106.09685, 2021.

[30] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang, K.-T.
Cheng, and M.-H. Chen, “Dora: weight-decomposed low-rank adapta-
tion,” in Proceedings of the 41st International Conference on Machine
Learning, ser. ICML’24. JMLR.org, 2024.

[31] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: Deter-
ministic Side Channels for Untrusted Operating Systems,” in In IEEE
Symposium on Security and Privacy, 2015.

[32] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, , and R. Strackx,
“Telling Your Secrets without Page Faults: Stealthy Page Table Based
Attacks on Enclaved Execution,” in 26th USENIX Security Symposium,
2017.

[33] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software Grand Exposure: SGX Cache Attacks Are
Practical,” in USENIX Workshop on Offensive Technologies, 2015.

[34] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks,”
in Detection of Intrusions and Malware, and Vulnerability Assessment,
2017.

[35] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privileged
Side-Channel Attacks in Shielded Execution with Déjá Vu,” in ACM
Symposium on Information, Computer and Communications Security,
2017.

[36] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in Network and
Distributed System Security Symposium, 2017.

[37] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A.-R. Sadeghi, “DR.SGX: Automated and Adjustable Side-Channel
Protection for SGX using Data Location Randomization,” in Annual
Computer Security Applications Conference (ACSAC), 2019.

[38] G. Team and et al., “Github,” 2008. [Online]. Available: https:
//github.com/

[39] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy, 2014, pp. 590–604.

[40] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[41] K. P. Murphy, “Machine learning: A probabilistic perspective,” MIT
press, 2012.

[42] “OpenSSL - Cryptography and SSL/TLS Toolkit,” 1998. [Online].
Available: https://www.openssl.org/

[43] “Glossary of terms,” Machine Learning, vol. 30, no. 2, pp. 271–274, Feb
1998. [Online]. Available: https://doi.org/10.1023/A:1017181826899

[44] L. Team and et al., “libbtc,” 2021. [Online]. Available: https:
//github.com/libbtc/libbtc

[45] Z. Kong, M. Park, L. Guan, N. Zhang, and C. H. Kim, “Artifacts
for TZ-DATASHIELD,” in Network and Distributed System Security
Symposium (NDSS) 2025. San Diego, California: Zenodo, 2024.
[Online]. Available: https://doi.org/10.5281/zenodo.14257984

[46] “NXP website.” [Online]. Available: https://www.nxp.com/
[47] NXP Semiconductors, “MCUXpresso Software Development Kit

(SDK),” 2023. [Online]. Available: https://mcuxpresso.nxp.com/en/
welcome

[48] TrustedFirmware.org, “Mbed tls,” https://github.com/Mbed-TLS/
mbedtls, 2006.

[49] T. Leonhardt, “Practical cryptography engineering,” https://github.com/
tleonhardt/practical cryptography engineering, 2018.

[50] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with Haven,” USENIX Symposium on Operating Systems
Design and Implementation, 2014.

[51] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure Linux
containers with Intel SGX,” USENIX Symposium on Operating Systems
Design and Implementation, 2016.

[52] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera, “CHERI: A Hybrid
Capability-System Architecture for Scalable Software Compartmental-
ization,” in 2015 IEEE Symposium on Security and Privacy, 2015, pp.
20–37.

[53] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” Network and Distributed Systems Security (NDSS) Symposium
2018, Feb. 2018.

14

https://nvd.nist.gov/vuln/detail/cve-2016-5195
https://nvd.nist.gov/vuln/detail/cve-2016-5195
https://nvd.nist.gov/vuln/detail/CVE-2023-34322
https://nvd.nist.gov/vuln/detail/cve-2023-4155
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://cwe.mitre.org/data/definitions/506.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/691.html
https://cwe.mitre.org/data/definitions/693.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/94.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://dx.doi.org/10.14722/ndss.2025.240563
https://dx.doi.org/10.14722/ndss.2025.240563
https://github.com/
https://github.com/
https://www.openssl.org/
https://doi.org/10.1023/A:1017181826899
https://github.com/libbtc/libbtc
https://github.com/libbtc/libbtc
https://doi.org/10.5281/zenodo.14257984
https://www.nxp.com/
https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/Mbed-TLS/mbedtls
https://github.com/Mbed-TLS/mbedtls
https://github.com/tleonhardt/practical_cryptography_engineering
https://github.com/tleonhardt/practical_cryptography_engineering

[54] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A
framework for using deep learning to detect software vulnerabilities,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2244–2258, 2021.

[55] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator: a deep
learning-based fine-grained vulnerability detector,” IEEE Transactions
on Dependable and Secure Computing, vol. 19, no. 4, pp. 2821–2837,
2021.

[56] G. Tang, L. Meng, H. Wang, S. Ren, Q. Wang, L. Yang, and W. Cao, “A
comparative study of neural network techniques for automatic software
vulnerability detection,” in 2020 International Symposium on theoretical
aspects of software engineering (TASE). IEEE, 2020, pp. 1–8.

[57] P. Liu, C. Sun, Y. Zheng, X. Feng, C. Qin, Y. Wang, Z. Li, and
L. Sun, “Harnessing the power of llm to support binary taint analysis,”
arXiv:2310.08275, 2023.

[58] Z. Luo, P. Wang, B. Wang, Y. Tang, W. Xie, X. Zhou, D. Liu, and K. Lu,
“Vulhawk: Cross-architecture vulnerability detection with entropy-based
binary code search.” in Proceedings of the 30th Network and Distributed
System Security Symposium (NDSS 2023), San Diego, CA, Feb. 2023.

[59] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining
zero-shot vulnerability repair with large language models,” in 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 2023, pp. 2339–2356.

[60] J. Wang, Z. Huang, H. Liu, N. Yang, and Y. Xiao, “Defecthunter: A
novel llm-driven boosted-conformer-based code vulnerability detection
mechanism,” arXiv:2309.15324, 2023.

[61] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-augmented
transformer for speech recognition,” in Proceedings of the Annual
Conference of the International Speech Communication Association
(INTERSPEECH), 2020.

[62] A. Chan, A. Kharkar, R. Z. Moghaddam, Y. Mohylevskyy, A. Helyar,
E. Kamal, M. Elkamhawy, and N. Sundaresan, “Transformer-based
vulnerability detection in code at edittime: Zero-shot, few-shot, or fine-
tuning?” arXiv:2306.01754, 2023.

[63] C. Chen, J. Su, J. Chen, Y. Wang, T. Bi, Y. Wang, X. Lin, T. Chen, and
Z. Zheng, “When chatgpt meets smart contract vulnerability detection:
How far are we?” arXiv:2309.05520, 2023.

[64] M. D. Purba, A. Ghosh, B. J. Radford, and B. Chu, “Software vul-
nerability detection using large language models,” in 2023 IEEE 34th
International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2023, pp. 112–119.

[65] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). USA: Addison-Wesley Longman
Publishing Co., Inc., 2006.

[66] F. E. Allen, “Control flow analysis,” SIGPLAN Not., vol. 5, no. 7,
p. 1–19, jul 1970. [Online]. Available: https://doi.org/10.1145/390013.
808479

[67] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems, vol. 9, no. 3, pp. 319–349, 1987.

APPENDIX

This appendix provides additional information on the data
set and reports the results of the ablation study of LLM-CAL.

A. Dataset Split

The dataset was initially divided into an 80% training/vali-
dation set and a 20% independent hold-out test set to ensure
unbiased evaluation. Table XIII shows the size of the hold-out
test set and the training/validation split, including the number
of cryptex code and non-cryptex source files.

Set SCC Files Non-SCC Files

Train+Validation Set 489 2912
Test Set 88 515

TABLE XIII: Dataset split by SCC and non-SCC file counts.

B. Ablation Study
In this section, we perform a detailed ablation study to

evaluate the impact of various components and configurations
on the performance of LLM-CAL. Using the best-performing
LLM-CAL model as a baseline, our objective is to understand
the contribution of various features and hyperparameters.
The Impact of Local Features. The inclusion of local context
features significantly enhances the performance of LLM-CAL,
as shown in Table XIV. When local features are added, the F1
score improves from 71.35% to 98.41%, and recall increases
from 74.12% to 97.50%, demonstrating a stronger ability to
correctly detect cryptex code lines. This improvement high-
lights the importance of surrounding code semantics captured
via pre and post context lines in reducing false negatives and
improving overall classification performance.

Ablation Setting Accuracy Precision Recall F1-Score

No Local Features 73.45% 68.82% 74.12% 71.35%
No Global Features 82.12% 76.24% 85.13% 80.44%
No Metadata Features 85.12% 82.20% 87.30% 84.62%

All Features (Full Model) 99.04% 99.40% 97.50% 98.41%

TABLE XIV: Ablation study showing the individual impact
of local, global, and metadata features on LLM-CAL perfor-
mance.

The Impact of Global Features. The inclusion of global
semantic features has a positive impact on LLM-CAL’s per-
formance, as shown in Table XIV. When these features are
excluded, LLM-CAL reduces to an F1 score of 80.44% and a
recall of 85.13%. However, after incorporating global features
such as function call graph and data flow dependencies the
recall improves to 97.50%, indicating a stronger ability to cap-
ture security-sensitive lines. This enhancement also improved
precision from 76.24% to 99.40%, suggesting quite a fewer
false positives. Overall, the F1 score increases to 98.41%,
and the accuracy reaches 99.04%, demonstrating that global
features contribute to more balanced and accurate predictions
in LLM-CAL.
The Impact of Metadata as Features. Metadata features,
such as file name, function name, and line number, provide
contextual information that help the model in disambiguating
similarly structured code lines across different locations.

As shown in Table XIV, when meta data features are added,
the primary impact is on recall, which increases from 87.30%
to 97.50%.

C. Background: Transformer Block
Once the input tokens are converted into embeddings, they

are passed through a stack of Transformer blocks, which form
the core processing units in modern LLMs. Each Transformer
block consists of two primary components:

• A Multi-Head Self-Attention (MHSA) mechanism, which
captures contextual dependencies between tokens by
computing attention scores over the sequence.

• A Position-wise Feedforward Network (FFN), which ap-
plies non-linear transformations independently to each
token representation.

15

https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479

Additionally, each block is equipped with residual connec-
tions and layer normalization layers that help stabilize training
and improve gradient flow. Formally, let X ∈ Rn×d represent
the input token embeddings to a Transformer block, where n
is the sequence length and d is the embedding dimension. The
output of the block is computed as:

H = LayerNorm (X+ MHSA(X))

Output = LayerNorm (H+ FFN(H))

Here, H ∈ Rn×d is the intermediate hidden state after
the attention sub-layer. Stacking multiple such Transformer
blocks allows the model to gradually build deep contextualized
representations of the input sequence.
Multi-Head Attention Layer: The MHSA mechanism en-
ables the model to jointly attend to information from different
representation subspaces. It does so by projecting the input
embeddings into multiple sets of queries (Q), keys (K),
and values (V) through learned linear transformations. Let
X ∈ Rn×d be the input to the MHSA layer. The projections
are computed as:

Q = XWQ, K = XWK , V = XWV

where WQ,WK ,WV ∈ Rd×dk are learned weight matrices,
and dk is the dimensionality of each head. Each attention head
computes scaled dot-product attention:

Attention(Q,K,V) = softmax
(
QK⊤
√
dk

)
V

Outputs from all heads are concatenated and projected using
another linear transformation WO:

MHSA(X) = Concat(head1, . . . , headh)WO

These projection layers—WQ,WK ,WV ,WO—are the key
locations where adapter modules are integrated in Parameter-
Efficient Fine-Tuning approaches like LoRA and QLoRA.

D. Code Property Graph

Code Property Graphs (CPGs) [39] provide a unified graph-
based representation of source code. They merge three stan-
dard program representations, which are Abstract Syntax Tree
(AST) [65], Control Flow Graph (CFG) [66], and Program
Dependence Graph (PDG) [67], into a single structure. This
integration allows both syntactic and semantic aspects of code
to be analyzed together.

The AST captures the syntactic structure of code, such
as loops, conditions, and expressions. The CFG models all
possible execution paths, while the PDG tracks how data
and control flow between code elements. Combining these
representations altogether provides a comprehensive reasoning
about program behavior.
IDENTIFIER METHOD_PARAMETER_IN) and track data

dependencies via edges such as REACHING_DEF, CFG, and
AST.

Nodes in a CPG represent key code elements. Common
types include METHOD (functions), CALL (function calls),

IDENTIFIER (variables), and METHOD_PARAMETER_IN)
(function inputs). These nodes are enriched with metadata like
variable names, types, and code positions. Edges define rela-
tionships between nodes. AST edges represent syntactic struc-
ture, CFG edges capture control flow, and REACHING_DEF
edges trace how variables are defined and used across the
code. These edges are especially useful for analyzing data
dependencies. In our work, we leverage these nodes and edges
to extract data flow features for each line of code. This helps
identify which variables are used or defined, and how they
connect to other lines—crucial for recognizing cryptex code
behavior.

E. LLM-CAL Robustness

1) Robustness Evaluation on Alternative Library: To
further assess LLM-CAL’s generalization beyond OpenSSL-
based programs, we curated a separate test set consisting of 30
open-source projects that rely on the mbedTLS cryptographic
library. Each project was manually reviewed and annotated
with line-level and function-level cryptex labels, following the
guideline process outlined in Section IV-B1. All C source
files from these projects were used to evaluate LLM-CAL
’s robustness on a previously unseen cryptographic codebase.
This large-scale evaluation highlights LLM-CAL ’s ability to
remain accurate and consistent even when exposed to new
cryptographic APIs, code patterns, and project structures not
encountered during training.

Metric Line-Level Function-Level
True Positives (TP) 3,860 52
True Negatives (TN) 11,828 445
False Positives (FP) 12 0
False Negatives (FN) 96 0
Total Ground Truth: cryptex 3,956 52
Total Ground Truth: non-cryptex 11,840 445

Total 15,796 497

TABLE XV: LLM-CAL’s prediction summary on mbedTLS-
based test set

As shown in Table XV, the results confirm that LLM-CAL
generalizes well across library boundaries and maintains its
reliability in identifying cryptex operations at both line and
function levels with zero false positives and negatives. The
perfect scores on the mbedTLS set complement the already
strong performance on the original test set. In Summary, this
evaluation shows that LLM-CAL is not over-fitted to specific
APIs seen during training, but instead learns meaningful
semantic patterns that extend across cryptographic libraries.

2) Comparison Across LLM Architectures: We further
examine the generalizability of the LLMCAL pipeline across
different backbone models. Using the same QLoRA configura-
tion, we fine-tune and evaluate three popular LLMs: Gemma-
2B, CodeGemma-2B, and LLaMA-7B.

Table XVI indicates that LLM-CAL is adaptable across
diverse LLM architectures. Larger model such as LLaMA-7B
yield modest improvements in F1 score, but Gemma-2B offers

16

Model Accuracy Precision Recall F1-Score

Gemma-2B (Ours) 99.04% 99.40% 97.50% 98.41%

CodeGemma-2B 86.10% 61.49% 79.97% 69.59%

LLaMA-7B 84.23% 76.46% 85.46% 79.54%

TABLE XVI: LLM-CAL performance with different LLM
backbones (line-level).

the best trade-off between performance and computational
efficiency.

F. Runtime Performance of LLM-CAL

We assess the runtime efficiency of LLM-CAL by measur-
ing the time required to process and annotate cryptex code
lines in unseen C source files. This includes preprocessing
steps such as context extraction, input sequence construction,
tokenization, and model inference using the fine-tuned LLM.
As shown in Table XVII, for a representative source file
containing 352 lines, the total runtime was approximately
21.84 seconds on average. Tokenization and input sequence
constructions take the largest portion of the runtime due to
the overhead of the line-to-function mappings and structured
metadata extraction. In contrast, LLM model loading and
batched inference are much more efficient with only consum-
ing approx 3.5 seconds, benefiting from GPU acceleration and
model quantization. These results demonstrate that LLM-CAL
is practical for real-world integration, offering substantially
minimal time to produce high accurate annotations.

Source File Tokenization + Preprocessing (s) Model Loading (s) Inference (s) Total Time (s)

352 lines 18.35 2.91 0.58 21.84

TABLE XVII: Runtime performance of LLM-CAL on a
representative source file

In summary, our evaluation demonstrates that LLM-CAL
consistently identifies cryptex code across a diverse range of
software codebases, including OpenSSL-based applications,
embedded firmware, and mbedTLS-powered projects. Through
quantitative metrics and qualitative case studies, we show
that LLM-CAL generalizes well beyond its training distribu-
tion, effectively capturing both cryptographic operations and
their surrounding semantics. Additionally, our runtime analysis
confirms the feasibility of deploying LLM-CAL in practical
developer workflows.

G. LLM-CAL Performance in Various Sensitive Operations

This subsection evaluates the adaptability of LLM-CAL
in various cryptographic operations. Table XVIII summarizes
the performance of LLM-CAL at the line level from our
custom dataset across four core security-sensitive tasks such
as encryption/decryption, hashing, key storage, and TLS-based
communication. LLM-CAL demonstrates near-perfect perfor-
mance in identifying cryptex code lines involving encryption,
hashing, and secure key usage, achieving F1 scores of 1.00
with precision and recall above 0.99. These results highlight

LLM-CAL’s effectiveness in recognizing well-defined cryp-
tographic routines with deterministic structural and semantic
patterns. In TLS/DTLS-based secure communication, where
cryptographic usage is often entangled with networking and
I/O operations, LLM-CAL maintains a perfect recall of 1.00
while achieving an F1 score of 0.86. The relatively lower
precision in this tasks 0.75 suggests some over prediction in
complex, multi-functional code snippets yet the model reliably
captures all true positives. Overall, the results ensure that
LLM-CAL generalizes well across a range of distinct sensitive
operations.

Sensitive
Operation LOC Precision Recall F1 Accuracy

Encryption &
Decryption 2530 0.99 1.00 1.00 0.998

Hashing &
Digests 850 1.00 1.00 1.00 1.000

Key Storage &
Secure Key Usage 6592 1.00 1.00 1.00 0.999

TLS / DTLS /
Communication 7837 0.75 1.00 0.86 0.966

TABLE XVIII: LLM-CAL’s performance on various cryptex
operations.

17

	Introduction
	Background
	Large Language Models
	Fine-Tuning

	Problem Statement
	Notion of Cryptex Code
	Challenges

	LLM based Code Annotation Logic
	Threat Model
	LLM-CAL Design
	Phase 1 - Dataset Construction
	Phase 2 – Data Preprocessing
	Phase 3 - LLM Fine-tuning
	Phase 4 – Inference

	Evaluation
	Dataset
	Experimental Setup and Evaluation Metrics
	LLM-CAL Performance at Different Granularity
	LLM-CAL Performance at Line Level
	LLM-CAL Performance at Function Level

	Case Study 1: Bitcoin Utility
	Use Case 2: Firmware Code Analysis
	Usecase 3: Evaluating LLM-CAL on Out-of-Distribution Crypto Code
	LLM-CAL Robustness
	Comparison of Fine-Tuning Strategies

	Related Work
	Conclusion
	References
	Appendix
	Dataset Split
	Ablation Study
	Background: Transformer Block
	Code Property Graph
	LLM-CAL Robustness
	Robustness Evaluation on Alternative Library
	Comparison Across LLM Architectures

	Runtime Performance of LLM-CAL
	LLM-CAL Performance in Various Sensitive Operations

