
CoT-DPG: A Co-Training based Dynamic Password
Guessing Method

Chenyang Wang, Fan Shi, Min Zhang�, Chengxi Xu, Miao Hu, Pengfei Xue, Shasha Guo, Jinghua Zheng
National University of Defense Technology

Emails: {wcy, shifan17, zhangmindy, xuchengxi, humiao17, xuepengfei, guoshasha13, zhengjinghua}@nudt.edu.cn

Abstract—Password is still the primary authentication method,
and the security community researches password guessing to
improve password security. Dynamic password guessing contin-
uously collects target’s information and dynamically fits the dis-
tribution during the guessing process, thus expanding the threat.
Existing methods are mainly of two types: dynamic adjustment
of password policies and dynamic generation based on generative
models. However, these methods fit the target distribution from
a single perspective, ignoring the complementary effects of
information between different dimensions. Dynamic password
guessing performance will be greatly improved if information
from multiple dimensions is well utilized, but how to effectively
fuse multidimensional information is a challenge.

Motivated by this, we propose CoT-DPG, a new dynamic pass-
word guessing framework that allows multiple guessing models
to learn collaboratively and complement each other’s knowledge.
This is the first application of the co-training approach in multi-
view learning to password guessing. Firstly, at the feature level,
we dynamically update the neural network parameters and fit
the target distribution based on incremental training. Secondly, at
the character level, we design a policy distribution optimization
approach to alleviate the blindness of policy selection. Thirdly, we
use the co-training approach for complementary learning, iter-
ative training, and password generation in multiple dimensions.
Finally, the experiments demonstrate the effectiveness of the
proposed framework, with the absolute improvement in cracking
rate of 6.4% to 26.7% over the state-of-the-art method on eight
real-world password datasets.

I. INTRODUCTION

Textual password is the primary authentication approach
in almost all web services. Although various authentication
solutions such as two-factor authentication [1], [2] and biomet-
ric authentication [3], [4] are applied, textual passwords will
continue to be the main method used for the foreseeable future.
Because textual passwords have the advantage of being low-
cost and easy to deploy [5], [6], [7], [8], [9]. A large number
of password guessing methods have been proposed in order to
improve password security by evaluating the security strength
of password dataset under guessing attacks. These methods

�Min Zhang is the corresponding author.

construct models to learn the distribution of historically leaked
password data and generate a large number of guesses to
crack the target dataset. The three predominant ways of
password guessing are rule-based (such as Hashcat [10] and
John the Ripper [11]), probability-based (such as PCFG [12]
and Markov [13]), deep learning-based (such as FLA [14],
PassGAN [15]). Most of the existing work is geared towards
the scenario where some of the passwords have been leaked
from the target site, and these methods construct models to
break other passwords of the site. Yet few studies have focused
on how to guess passwords for completely unknown sites. At
this point, because the distribution of passwords on the target
site is completely unknown, the difficulty of cracking is greatly
increased.

Dynamic password guessing (DPG) is the password guess-
ing approach that dynamically adapts the guessing strategy
based on the feedback received from the interaction with
the attacked password set [16]. Existing dynamic password
guessing methods can be classified into two types: Adaptive
Rule based Password Guessing (ARPG) based [17], [18] and
generative model based [16]. These two types of methods
dynamically fit the target’s password distribution at the char-
acter level or feature level. Adaptive rule based password
guessing aims at dynamically adjusting the transformation
policies (mangling rules) based on feedback information.
This type of method essentially exploits the character-level
password locality, as string-similar passwords are clustered
in character space. This type of method suffers from the
problem that rule definition requires domain knowledge and
policy configuration is difficult. The generative model based
method exploits feature-level password locality to continu-
ously generate guesses around hit passwords. This is because
semantically similar passwords cluster together in the feature
space of deep neural networks.

However, existing methods only implement DPG at a single
level, which is an insufficient use of information. This will lead
to the difficulty of generating more surrounding passwords
during the dynamic guessing process. We compare dynamic
password generation using only a single method with multiple
methods, as shown in Fig. 1. We count all passwords around
the password ‘pakistan’ (with an edit distance of 1 from its
string) in the 000webhost dataset. That is, these passwords are
all real-world passwords and are similar. We then observe the
percentage of these passwords generated during each iteration.
When generating using only the FLA method, it fails to gen-

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230755
www.ndss-symposium.org

28% Generated 70% Generated 75% Generated 75% Generated 75% Generated

pakistannpakistann

pakistanipakistani pakistan1pakistan1

pak1stanpak1stan

pakisthanpakisthan

PakistanPakistan

pakistan7pakistan7

ppakistanppakistan

pakistanepakistane pakstanpakstan

pakistan2pakistan2
pakistan0pakistan0

pajistanpajistan

pakistan4pakistan4

pakistanspakistans

pak%istanpak%istan

1pakistan1pakistan

pakistaanpakistaan

pakistan5pakistan5

pakistanwpakistanw

pkistanpkistan

2pakistan2pakistan

pakistanapakistana
pakistanpakistan

pakistan3pakistan3

paistanpaistan

pakitanpakitan

kpakistankpakistan

pakistapakista

pakistann

pakistani pakistan1

pak1stan

pakisthan

Pakistan

pakistan7

ppakistan

pakistane pakstan

pakistan2
pakistan0

pajistan

pakistan4

pakistans

pak%istan

1pakistan

pakistaan

pakistan5

pakistanw

pkistan

2pakistan

pakistana
pakistan

pakistan3

paistan

pakitan

kpakistan

pakista

pakistannpakistann

pakistanipakistani pakistan1pakistan1

pak1stanpak1stan

pakisthanpakisthan

PakistanPakistan

pakistan7pakistan7

ppakistanppakistan

pakistanepakistane pakstanpakstan

pakistan2pakistan2
pakistan0pakistan0

pajistanpajistan

pakistan4pakistan4

pakistanspakistans

pak%istanpak%istan

1pakistan1pakistan

pakistaanpakistaan

pakistan5pakistan5

pakistanwpakistanw

pkistanpkistan

2pakistan2pakistan

pakistanapakistana
pakistanpakistan

pakistan3pakistan3

paistanpaistan

pakitanpakitan

kpakistankpakistan

pakistapakista

pakistann

pakistani pakistan1

pak1stan

pakisthan

Pakistan

pakistan7

ppakistan

pakistane pakstan

pakistan2
pakistan0

pajistan

pakistan4

pakistans

pak%istan

1pakistan

pakistaan

pakistan5

pakistanw

pkistan

2pakistan

pakistana
pakistan

pakistan3

paistan

pakitan

kpakistan

pakista

pakistannpakistann

pakistanipakistani pakistan1pakistan1

pak1stanpak1stan

pakisthanpakisthan

PakistanPakistan

pakistan7pakistan7

ppakistanppakistan

pakistanepakistane pakstanpakstan

pakistan2pakistan2
pakistan0pakistan0

pajistanpajistan

pakistan4pakistan4

pakistanspakistans

pak%istanpak%istan

1pakistan1pakistan

pakistaanpakistaan

pakistan5pakistan5

pakistanwpakistanw

pkistanpkistan

2pakistan2pakistan

pakistanapakistana
pakistanpakistan

pakistan3pakistan3

paistanpaistan

pakitanpakitan

kpakistankpakistan

pakistapakista

pakistann

pakistani pakistan1

pak1stan

pakisthan

Pakistan

pakistan7

ppakistan

pakistane pakstan

pakistan2
pakistan0

pajistan

pakistan4

pakistans

pak%istan

1pakistan

pakistaan

pakistan5

pakistanw

pkistan

2pakistan

pakistana
pakistan

pakistan3

paistan

pakitan

kpakistan

pakista

28% Generated 62% Generated 83% Generated 90% Generated 97% Generated

pakistannpakistann

pakistanipakistani pakistan1pakistan1

pak1stanpak1stan

pakisthanpakisthan

PakistanPakistan

pakistan7pakistan7

ppakistanppakistan

pakistanepakistane pakstanpakstan

pakistan2pakistan2
pakistan0pakistan0

pajistanpajistan

pakistan4pakistan4

pakistanspakistans

pak%istanpak%istan

1pakistan1pakistan

pakistaanpakistaan

pakistan5pakistan5

pakistanwpakistanw

pkistanpkistan

2pakistan2pakistan

pakistanapakistana
pakistanpakistan

pakistan3pakistan3

paistanpaistan

pakitanpakitan

kpakistankpakistan

pakistapakista

pakistann

pakistani pakistan1

pak1stan

pakisthan

Pakistan

pakistan7

ppakistan

pakistane pakstan

pakistan2
pakistan0

pajistan

pakistan4

pakistans

pak%istan

1pakistan

pakistaan

pakistan5

pakistanw

pkistan

2pakistan

pakistana
pakistan

pakistan3

paistan

pakitan

kpakistan

pakista

pakistannpakistann

pakistanipakistani pakistan1pakistan1

pak1stanpak1stan

pakisthanpakisthan

PakistanPakistan

pakistan7pakistan7

ppakistanppakistan

pakistanepakistane pakstanpakstan

pakistan2pakistan2
pakistan0pakistan0

pajistanpajistan

pakistan4pakistan4

pakistanspakistans

pak%istanpak%istan

1pakistan1pakistan

pakistaanpakistaan

pakistan5pakistan5

pakistanwpakistanw

pkistanpkistan

2pakistan2pakistan

pakistanapakistana
pakistanpakistan

pakistan3pakistan3

paistanpaistan

pakitanpakitan

kpakistankpakistan

pakistapakista

pakistann

pakistani pakistan1

pak1stan

pakisthan

Pakistan

pakistan7

ppakistan

pakistane pakstan

pakistan2
pakistan0

pajistan

pakistan4

pakistans

pak%istan

1pakistan

pakistaan

pakistan5

pakistanw

pkistan

2pakistan

pakistana
pakistan

pakistan3

paistan

pakitan

kpakistan

pakista

pakistannpakistann

pakistanipakistani pakistan1pakistan1

pak1stanpak1stan

pakisthanpakisthan

PakistanPakistan

pakistan7pakistan7

ppakistanppakistan

pakistanepakistane pakstanpakstan

pakistan2pakistan2
pakistan0pakistan0

pajistanpajistan

pakistan4pakistan4

pakistanspakistans

pak%istanpak%istan

1pakistan1pakistan

pakistaanpakistaan

pakistan5pakistan5

pakistanwpakistanw

pkistanpkistan

2pakistan2pakistan

pakistanapakistana
pakistanpakistan

pakistan3pakistan3

paistanpaistan

pakitanpakitan

kpakistankpakistan

pakistapakista

pakistann

pakistani pakistan1

pak1stan

pakisthan

Pakistan

pakistan7

ppakistan

pakistane pakstan

pakistan2
pakistan0

pajistan

pakistan4

pakistans

pak%istan

1pakistan

pakistaan

pakistan5

pakistanw

pkistan

2pakistan

pakistana
pakistan

pakistan3

paistan

pakitan

kpakistan

pakista

pakistannpakistann

pakistanipakistani pakistan1pakistan1

pak1stanpak1stan

pakisthanpakisthan

PakistanPakistan

pakistan7pakistan7

ppakistanppakistan

pakistanepakistane pakstanpakstan

pakistan2pakistan2
pakistan0pakistan0

pajistanpajistan

pakistan4pakistan4

pakistanspakistans

pak%istanpak%istan

1pakistan1pakistan

pakistaanpakistaan

pakistan5pakistan5

pakistanwpakistanw

pkistanpkistan

2pakistan2pakistan

pakistanapakistana
pakistanpakistan

pakistan3pakistan3

paistanpaistan

pakitanpakitan

kpakistankpakistan

pakistapakista

pakistann

pakistani pakistan1

pak1stan

pakisthan

Pakistan

pakistan7

ppakistan

pakistane pakstan

pakistan2
pakistan0

pajistan

pakistan4

pakistans

pak%istan

1pakistan

pakistaan

pakistan5

pakistanw

pkistan

2pakistan

pakistana
pakistan

pakistan3

paistan

pakitan

kpakistan

pakista

pakistannpakistann

pakistanipakistani pakistan1pakistan1

pak1stanpak1stan

pakisthanpakisthan

PakistanPakistan

pakistan7pakistan7

ppakistanppakistan

pakistanepakistane pakstanpakstan

pakistan2pakistan2
pakistan0pakistan0

pajistanpajistan

pakistan4pakistan4

pakistanspakistans

pak%istanpak%istan

1pakistan1pakistan

pakistaanpakistaan

pakistan5pakistan5

pakistanwpakistanw

pkistanpkistan

2pakistan2pakistan

pakistanapakistana
pakistanpakistan

pakistan3pakistan3

paistanpaistan

pakitanpakitan

kpakistankpakistan

pakistapakista

pakistann

pakistani pakistan1

pak1stan

pakisthan

Pakistan

pakistan7

ppakistan

pakistane pakstan

pakistan2
pakistan0

pajistan

pakistan4

pakistans

pak%istan

1pakistan

pakistaan

pakistan5

pakistanw

pkistan

2pakistan

pakistana
pakistan

pakistan3

paistan

pakitan

kpakistan

pakista

pakistannpakistann

pakistanipakistani pakistan1pakistan1

pak1stanpak1stan

pakisthanpakisthan

PakistanPakistan

pakistan7pakistan7

ppakistanppakistan

pakistanepakistane pakstanpakstan

pakistan2 pakistan2
pakistan0pakistan0

pajistanpajistan

pakistan4pakistan4

pakistanspakistans

pak%istanpak%istan

1pakistan1pakistan

pakistaanpakistaan

pakistan5pakistan5

pakistanwpakistanw

pkistanpkistan

2pakistan2pakistan

pakistanapakistana
pakistanpakistan

pakistan3pakistan3

paistanpaistan

pakitanpakitan

kpakistankpakistan

pakistapakista

pakistann

pakistani pakistan1

pak1stan

pakisthan

Pakistan

pakistan7

ppakistan

pakistane pakstan

pakistan2
pakistan0

pajistan

pakistan4

pakistans

pak%istan

1pakistan

pakistaan

pakistan5

pakistanw

pkistan

2pakistan

pakistana
pakistan

pakistan3

paistan

pakitan

kpakistan

pakista

pakistannpakistann

pakistanipakistani pakistan1pakistan1

pak1stanpak1stan

pakisthanpakisthan

PakistanPakistan

pakistan7pakistan7

ppakistanppakistan

pakistanepakistane pakstanpakstan

pakistan2pakistan2
pakistan0pakistan0

pajistanpajistan

pakistan4pakistan4

pakistanspakistans

pak%istanpak%istan

1pakistan1pakistan

pakistaanpakistaan

pakistan5pakistan5

pakistanwpakistanw

pkistanpkistan

2pakistan2pakistan

pakistanapakistana
pakistanpakistan

pakistan3pakistan3

paistanpaistan

pakitanpakitan

kpakistankpakistan

pakistapakista

pakistann

pakistani pakistan1

pak1stan

pakisthan

Pakistan

pakistan7

ppakistan

pakistane pakstan

pakistan2
pakistan0

pajistan

pakistan4

pakistans

pak%istan

1pakistan

pakistaan

pakistan5

pakistanw

pkistan

2pakistan

pakistana
pakistan

pakistan3

paistan

pakitan

kpakistan

pakista

Generate by neural network Generate by policy transformationGenerate by neural network Generate by policy transformation

Fig. 1. An example of dynamically generated passwords around the password ‘pakistan’ using a single model and multiple models, respectively. Passwords
in the figure are real-world passwords in the 000webhost dataset. Red arrows indicate generation using a neural network model (FLA) and yellow arrows
indicate generation using policy transformation. During the iteration, we use the last hit passwords as the training set. It can be seen that using multiple
models iteratively is able to hit more passwords than a single model.

erate more passwords around ‘pakistan’ after the third round
by 75%. While more hit passwords are generated overall, it
is difficult to generate more on a local scale. However, more
passwords can be generated when using the FLA model and
policy transformation method iteratively, which is 97%. This
illustrates that feature-level password locality and character-
level password locality can complement each other. Thus we
can generate more password guesses and improve the dynamic
password guessing performance by using the dual password
locality for iterative learning.

Motivated by this, we propose CoT-DPG, a co-training
based dynamic password guessing framework, which allows
multiple guessing models to learn from each other for efficient
password guessing. Unlike existing methods that dynamically
generate from only a single information dimension, CoT-
DPG learns complementarily at both feature and character
levels to guide the DPG process. CoT-DPG improves the
generalization while ensuring accuracy, thus generating more
valid passwords and increasing the cracking rate. Firstly, at the
feature level, we design a feedback-based password learning
approach based on incremental training, which implicitly
represents the feature-level password locality and generates
password guesses through neural networks. The incremental
training approach is easy to implement and applicable to
multiple methods. Secondly, at the character level, we design
the local password transformation policy generation algorithm
that explicitly represent character-level password locality. We
also design a policy distribution optimization method based on
the Particle Swarm Optimization (PSO) algorithm to optimize
the password policy distribution and improve the quality
of password generation. Thirdly, based on the co-training
approach, model incremental training and policy distribution
optimization are performed alternately. CoT-DPG makes full
use of the multidimensional information to guide DPG, which

enables faster and better fitting of the target distribution.
Finally, we demonstrate the effectiveness of the proposed
method through extensive experiments, and the cracking rate
of CoT-DPG exceeds the state-of-the-art methods by 6.4% to
26.7% absolutely. The key contributions are as follows.

• We propose a new dynamic password guessing frame-
work CoT-DPG, which enables multiple guessing meth-
ods to complement each other’s knowledge and improve
DPG performance. This is the first application of co-
training in multi-view learning to password guessing.

• At the feature level, we design a feedback-based pass-
word incremental training approach to implicitly rep-
resent feature-level password locality. At the character
level, we design a policy generation algorithm that ex-
plicitly represents character-level password locality. We
design a PSO-based policy distribution optimization algo-
rithm to alleviate the blindness issue of policy selection.

• Based on the co-training approach, model incremental
training and policy distribution optimization are carried
out in alternating iterations, thus complementing each
other’s knowledge and generating password guesses more
comprehensively.

• Through password guessing experiments on eight real-
world password datasets, we demonstrate the effective-
ness of CoT-DPG, with a higher cracking rate than the
state-of-the-art dynamic password guessing methods.

The remainder of this paper is organized as follows. In
Section II, we introduce related work on general and dynamic
password guessing as well as background on co-training. Sec-
tion III describes the dynamic password guessing framework
CoT-DPG. In Section IV we evaluate the proposed method
through password guessing experiments. In Section V, we
discuss some insights and future work. Finally, Section VI
concludes the paper.

2

II. RELATED WORK AND BACKGROUND

A. General Password Guessing

Research on password guessing dates back to 1979 [19],
[20], [21]. Initially, brute force and dictionary attack methods
were employed. Later researchers proposed rule-based guess-
ing methods and data-driven guessing models to effectively
crack generic passwords within larger guesses in offline trawl-
ing attack scenario [22], [23], [24].

Rule-based Methods. Rule-based methods are also known
as dictionary attacks and policy-based attacks. The most
widely known are two open-source password cracking soft-
ware, Hashcat [10] and John the Ripper (JtR) [11]. Liu
et al. [25] introduce techniques to reason analytically and
efficiently about transformation-based password cracking in
software tools. Di et al. [26] propose automated training
techniques to improve the cracking rate of these rule-based
cracking tools. Eckroth et al. [27] develop an algorithm that
automatically finds successful rules via the combinatorial
generation of rules and empirical observation of how often
each generated rule transforms a dictionary word to a target
password.

Data-Driven Guessing Models. Data-driven guessing mod-
els are trained on historically leaked password datasets to learn
the data distribution and generate password guesses. Tradi-
tional machine learning models applied to password guessing
are Markov model [13], Probabilistic Context Free Grammar
(PCFG) [12], and random forest [28]. Improved password
guessing models based on the basic Markov model [29],
[30], [31] and improved password guessing models based on
the PCFG model [32], [33], [34], [35] have been proposed
continuously. With the rapid development of deep learning,
a large number of deep learning-based password guessing
models have emerged. Melicher et al. [14] first propose a Re-
current Neural Network (RNN)-based [36] password guessing
model, named Fast, Lean, Accurate (FLA). Hitaj et al. [15]
propose PassGAN, a GAN-based [37] password guessing
model to autonomously learn the distribution of password
data. Password guessing models based on recurrent neural
networks [38], [39], [40], [41], [42], [43], [44], [45], [46]
and generative adversarial networks [47], [48], [49], [50],
[51], [52] have proliferated in recent years. Xiu et al. [53]
propose a new targeted guessing mode, PointerGuess, to
accurately and comprehensively characterize users’ password
reuse behaviors. With the application of pre-trained language
models, Xu et al. [18] propose a bi-directional-transformer
(BERT)-based [54] guessing framework, named PassBERT,
which first applies the pre-training/finetuning paradigm to
password guessing attacks. Rando et al. [55] present PassGPT,
a Generative Pre-trained Tansformer (GPT) [56] based pass-
word generation model. Su et al. [57] present PagPassGPT,
a GPT based model which performs pattern guided guessing
by incorporating pattern structure information as background
knowledge. In addition, Xie et al. [58] propose Guessfuse, a
hybrid password guessing framework, which combines multi-
ple password guessing methods.

B. Dynamic Password Guessing

Dynamic password guessing is a method that dynamically
adjusts the model based on feedback for password guessing.
DPG is described as follows: (1) We don’t have any informa-
tion about the target password set. (2) Once the first password
has been cracked, we can begin to observe and model the
distribution of the target set. (3) Each new hit guess provides
valuable information that we can use to improve the quality
of guessing. (4) We continue to crack more passwords of the
target set through an iterative process.

Adaptive Rule based Password Guessing. In 2021,
Pasquini et al [17] devise the Adaptive Mangling Rules attack
relying on deep learning techniques. They build neural net-
works to model the functional relationship between mangling
rules (transformation policies) and dictionary words. They
then introduce a dynamic guessing strategy in the dictionary
attack, which dynamically adjusts the strategy during the
guessing process. In 2023, Xu et al. [18] propose a bi-
directional-transformer-based guessing framework and design
three attack-specific fine-tuning models for CPG, TPG, and
ARPG. Similarly, they construct neural networks to model
the adaptive relationship between passwords and rules. They
constructed a BERT-based classification model that outputs a
continuous value between 0 and 1 that measures the fitness of
the rule to the word.

In summary, both methods aim to establish mappings
between passwords and rules and dynamically adjust the
rules during the guessing process. This essentially leverages
the character-level password locality. Because string-similar
passwords are clustered in the character space, we can generate
nearby passwords using mangling rules. However, there are
several issues that are worth discussing: (1) Definition of
mangling rules (transformation policies) often requires domain
expert knowledge. (2) When neural networks are used to derive
the adaptation rule set, a larger number of rules leads to a
larger output dimension and the problem of feature sparsity.
(3) When only rule transformations are used, as in tools
such as Hashcat, it is inefficient to sample and transform all
rules uniformly. Because in dynamic password guessing we
don’t know which rules apply to the target set and which
are more effective. To cope with the above problems, in this
paper, we design the password transformation policy auto-
matic generation algorithm to automatically generate policies
(mangling rules) that are applicable to the character-level
password locality. Meanwhile, we design a policy distribution
optimization scheme based on PSO [59] algorithm to optimize
the policy distribution and dynamically adapt the dictionary.

Generative Model based Method. In 2021, Pasquini et
al. [16] introduce an expectation maximization-inspired frame-
work that can dynamically adapt the estimated password
distribution to match the distribution of the attacked password
set. The authors introduce the concept of weak locality of
passwords and dynamically generate password guesses based
on weak locality. They train a Generative Adversarial Network
(GAN) to learn the representation of passwords in the potential

3

space as well as to generate guesses. By controlling the latent
distribution, the method can increase the probability of the
region that may be covered by passwords from the target
distribution.

In summary, the weak locality of passwords is actually
feature-level password locality, where semantically similar
passwords are close in the representation space of the neural
network. The higher the probability of generating the target
password, the higher the probability of generating the sur-
rounding passwords. However there are several issues worth
discussing: (1) The approach by sampling and generating is
applies to GANs but is difficult to apply to other models
such as Markov, PCFG, and RNN. (2) As more passwords
are cracked, the authors’ proposed method did not learn the
new passwords, and the model parameters are not updated. (3)
The GAN model is unable to assign probabilities and rank the
generated password guesses. To cope with the above problems,
we design a feedback-based password learning approach based
on incremental training, which is applicable to a variety of
models including Markov, PCFG, and RNN. By adding the
newly cracked passwords to the training set, the model can
reduce the bias from the target distribution. Models such as
Markov, PCFG, and RNN can assign probabilities to and rank
the generated password guesses.

Finally, we make full use of feature-level and character-level
password locality. We iteratively learn and generate password
guesses at the feature level and character level based on co-
training to further improve generalization. We will introduce
the co-training algorithm in the next subsection.

C. Co-training

Co-training [60], [61], [62] is a multi-view classification
algorithm that improves the generalization performance of
models by combining two (or more) classifiers trained from
different views. Different views exchange the prediction labels
of unlabeled samples to realize the information exchange. The
co-training algorithm is based on two key assumptions. The
one assumption is that each view contains enough information
to build the optimal learner. The other assumption is that the
two views are independent under the condition of a given class
label. Although the process of the co-training algorithm is
simple, the theory proves that if the two views satisfy the two
key assumptions, the generalization of weak classifiers can be
improved to any high level through co-training using unlabeled
data [63]. Qiao et al. [64] present Deep Co-Training (DCT)
based on the co-training framework for semi-supervised image
recognition, which improves the accuracy of models. Katz et
al. [65] propose an ensemble-based co-training approach that
makes use of unlabeled text data to improve text classification
when labeled data is very small.

The goal of co-training is to improve overall task perfor-
mance through complementary learning of multiple base mod-
els. Although traditional co-training is applied to classification
tasks, its theory can be extended to tasks in other domains.
In this paper, we adopt co-training for dynamic pass-
word guessing stemming from the following intuitions: (1)

Character-level password locality and feature-level password
locality are different views of password distribution properties.
(2) Feature and character level localities are independent of
each other, and it is possible to build a password generation
model from a single level of locality. (3) Feature and character-
level locality information can complement each other during
dynamic password guessing. That is, after guessing the target
set at the feature level, the hit passwords can be provided
to the character-level model for password transformation.
Similarly, hit passwords at the character level can be provided
to the feature-level model for incremental learning. (4) The
above process can be carried out iteratively to improve the
performance of the models at both levels, thus improving the
overall dynamic guessing cracking rate.

III. METHOD

Threat Model. Password cracking attacks mainly include
online targeted attacks [30] and offline trawling attacks [23],
[24]. In this paper, we primarily consider the case of dynamic
password guessing in the offline trawling attack scenario. In
practice, the attacker obtains the password hash database of the
target site by means of SQL injection, social worker database
leakage, etc., expecting to use the existing password data to
guess the target. The attacker uses the password generation
model to generate a guess list and hashes these guesses using
the hashing algorithm (e.g., MD5, Argon2) to compare with
the cipher-text password. The attacker then adapts their model
based on matching (hit) passwords. The above process is
carried out iteratively so that the model fits the target data
distribution better and better. Finally, the attacker uses the
dynamically adapted model to generate a large amount of
guesses (>108) to maximize the number of guessed passwords.
β−success−rate [66] is used to measure the average success
rate when an attacker is limited to a maximum number of β
guesses.

sβ(X) =

β∑
i=1

P (xi) (1)

Overview of CoT-DPG. In this section, we present CoT-
DPG, our dynamic password guessing framework based on co-
training. The framework of the proposed method is illustrated
in Fig. 2. The framework includes three modules: Password
Incremental Training, Policy Distribution Optimization with
PSO, and Co-Training. In the password incremental training
module, we design a feedback-based password learning ap-
proach based on incremental training at the feature level. We
dynamically learn the distribution of the target set by con-
tinuously adding newly cracked passwords to the training set
and incrementally training the password generation model with
feedback information. In the policy distribution optimization
with PSO module, we design the password transformation
policy automatic generation algorithm and PSO-based pol-
icy distribution optimization algorithm at the character level.
We optimize policy distribution during dynamic guessing to
generate more efficient password guesses. In the co-training
module, model incremental learning and policy distribution

4

Target Dataset

Password

Generation Model

<start>

Guess List A

123456

password

Password Incremental Training Policy Distribution Optimization with PSO

Co-Training

Generate

Incremental

Training PSO

0.08 $1

0.02 D6

0.001 i4@

High

Low

Prob Policies

0.08 $1

0.02 D6

0.001 i4@

High

Low

Prob Policies

Policy Probability Distribution
Guess List B

abc123

zxcvbnm Generate

CrackCrack

123456

password

Initial List

TrainTrain
A B

123456

password

123456

password

abc123

zxcvbnm

abc123

zxcvbnm

Hit List A Hit List B

Model AModel A

Model BModel B

Incremental

Training

Policy

Optimization

Update
Update

Fig. 2. The dynamic password guessing framework CoT-DPG.

optimization alternate to complement each other’s knowledge,
and dynamic password guessing is achieved through multiple
rounds of iterations. The proposed method takes full advantage
of the dual locality of passwords at the feature level and
character level.

A. Password Incremental Training
Deep neural networks are generalized for generative tasks

and can generate text that does not appear in the training set
in addition to fitting the training set distribution. In addition
to this, the weights of a deep learning network can be
dynamically learned and updated. That is, if we crack more
passwords and extend the training set, the neural network can
fit the new training set distribution to encode more password
knowledge. Therefore, it is feasible to dynamically update
the parameters of the password generation model through
incremental learning and gradually generate more hit password
guesses.

Feature-Level Password Locality. Deep neural networks
represent passwords in potential space, and passwords with
similar features are similar in potential space. Thus when
a particular password is generated with a high probability,
passwords that are close to it in the potential space may also
be generated. Even if the password does not appear in the
training set, the neural network will have some generalization
ability to generate it. This is the locality of passwords at the
feature level.

Incremental Training. In general-purpose password guess-
ing, the model does not change once it is trained, but such a
static model is not applicable to dynamic password guessing.
Incremental training [67], [68], [69] allows the model to be
changed and updated dynamically. When new data arrives,
the model adjusts its parameters to the new data distribution
by learning the features of the new samples. Incremental
training is divided into full incremental training and partial
incremental training. Full incremental training refers to adding

new samples to the training set and training on the expanded
training set. Partial incremental training refers to training on
newly acquired samples. Since the amount of password data
used for training in the dynamic password guessing scenario
is not very large, and in order to prevent the model from
forgetting the old knowledge, we adopt the full incremental
training approach. For neural network models, a parametric
function is used to estimate the distribution of passwords:

p(X) = p(X; θ) (2)

Where θ is the set of parameters of the neural network, p(X)
is the distribution of the train set. In the case of recurrent
neural networks, the model predicts the next character in
the string. Assuming the input password x to the network is
‘<s>abc123’ and <s>’ is the start symbol. Then the correct
output (label) of the network is ‘abc123<e>’ with ‘<e>’ as
the end symbol. The label is compared with the predictions
of the model and the loss is calculated by cross entropy.
After obtaining the losses, the parameters of the network are
optimized using gradient descent. All training samples play a
role in the optimisation of the network parameters. In this way,
as we obtain more new cracked passwords, we can update θ
to θ′ through the learning process of the neural network. The
model can adapt to the new training set distribution p(X ′).

p(X ′) = p(X ′; θ′) = p(X +∆X; θ′) (3)

Where ∆X is the incremental part of passwords, θ′ is the up-
dated model parameter, and p(X ′) is the updated distribution
of passwords. This feedback-based incremental training allows
us to continuously generalize new cracked passwords, making
the distribution of passwords learned by the model more
and more adapted to the target dataset. The generalization
ability of the model is improved by learning more samples.
In combination with feature-level password locality, the model
will be able to generate more hit password guesses after each
round of iterations.

5

The feedback-based incremental training approach is ap-
plicable to almost all data-driven password guessing models.
Data-driven models almost invariably fit the distribution of
the training set by building a probabilistic model. Then the
probability distribution function can be changed by changing
the training set. In the subsequent experimental validation of
this paper, we explore the effectiveness of the incremental
training approach on four models, Markov, PCFG, FLA, and
GPT. After incremental training, all four models are able to
generate more hit password guesses, and the generalization
ability of the models is further enhanced. During incremental
training, the expansion of the training set and the timely
addition of newly hit passwords enable the model to better
fit the target distribution.

B. Policy Distribution Optimization with PSO

At the character level, we aim to further extend the genera-
tion through password locality. For the surrounding passwords
that cannot be generated at the feature level, we generate
them at the character level by means of password policy
transformation/mangling rule extension.

Character-Level Password Locality. Character-level pass-
word locality means that passwords that are similar in structure
and character are clustered together in character space. Some
of the passwords in this cluster can be transformed into other
passwords by the password transformation policy. The pass-
word transformation policy, also known as the mangling rule,
refers to changing the password string according to a certain
transformation. For example, ‘pass123’ can be transformed
into ‘p@ss123’ by the policy ‘sa@’ (replacing ’a’ with ’@’).
The reason for this locality of passwords at the character
level is that users tend to construct passwords with local
modifications on popular passwords that are easy to remember.
This is why dictionary attacks can be successful. Meanwhile,
this habit of local modification by users is common enough
to make dictionary attacks feasible in the dynamic password
guessing scenario. This is because we can extract these local
transformation policies on other leaked datasets and apply
them by cracking the unknown target set. In the following,
we describe how our work automatically generates password
transformation policies based on data-driven without expert
predefinition.

Password Transformation Policy Generation. The algo-
rithm we designed for the automatic generation of password
transformation policies is data-driven, so we analyze password
data from other leaked datasets. These passwords are clustered
together in character space and are similar in character struc-
ture. Therefore, we first find these similar password pairs by
calculating the string similarity between the passwords, which
is used for the next step of extracting password transformation
policies. Levenshtein distance [70], [71], also known as edit
distance, refers to the minimum number of edit operations
required to convert from one to the other between two strings.
Levenshtein distance is commonly used to calculate the sim-

ilarity between two strings, and the Levenshtein distance is
defined as follows:

leva,b(i, j) =


max(i, j), if min(i, j) = 0,

min

 leva,b(i− 1, j) + 1
leva,b(i, j − 1) + 1
leva,b(i− 1, j − 1) + lai ̸=bj

else.

(4)
Where lai ̸=bj is an indicator function equal to 0 when ai = bj
and equal to 1 in all other cases. leva,b(i, j) represents the
Levenshtein distance from the first i characters of string a to
the first j characters of string b.

We then use the string analysis tool SequenceMatcher, a
sequence-matched library in Python. This tool helps us to
analyze the differences in similar password pairs. Inputs two
strings to be compared and outputs the result of the compar-
ison, which contains four types of tag information: ’equal’,
’insert’, ’delete’, ’replace’ and four positional information i1,
i2, j1, j2. These tag information and position information can
help us to construct password transformation policies. For
example, input the strings ’pass123’ and ’pass123!’ to the
SequenceMatcher function, and we get an output ’[(’equal’,
1, 7, 1, 7), (’insert’, 7, 7, 7, 8)]’. This means that both
strings are the same from the first to the seventh position,
with the character ’!’ inserted in the eighth position. It is
possible to derive the policy ’$!’, and this policy refers to
inserting the character ’!’ at the end of the password. Similarly,
we extract password transformation policies on each pair of
similar passwords.

Policy Distribution Optimization with PSO. How to sam-
ple the appropriate policy set from a large number of policies is
an issue worth investigating. Obviously, a uniform distribution
of all policies is not appropriate, because the efficiency of each
policy is different. In addition to this, we have no information
about the target set, we don’t know which policies are effective
and which ones are not. Therefore the policy distribution needs
to be optimized and the sampling probability of effective
policies should be increased while the sampling probability
of ineffective policies should be decreased.

Swarm Intelligence (SI) has attracted the interest of many
researchers in various fields [72], showing the potential to
solve many optimization problems. Particle Swarm Optimiza-
tion (PSO) is an optimization technique proposed by Kennedy
and Eberhart in 1995 [59]. It uses a simple mechanism that
mimics the flocking behavior of birds and fishes to guide the
particles in their search for a globally optimal solution. The
PSO algorithm first initializes the population. The second step
is to calculate the fitness value of each particle, update the
individual and global optimal values, and update the velocity
and position of the particles. The second to fourth steps are
repeated until the termination condition is satisfied [73], [74].
We apply the PSO algorithm to the task of optimizing pass-
word policy distribution, with the aim of generating more valid
password guesses by choosing an optimal policy probability
distribution for a given list of words. The PSO-based policy
distribution optimization algorithm is shown in Fig. 3.

6

High

Low

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

Probability Distribution



Particle Swarm 1

High

Low

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

Probability Distribution



Particle Swarm 1

High

Low

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

Probability Distribution



Particle Swarm 2

High

Low

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

Probability Distribution



Particle Swarm 3

Fig. 3. The policy distribution optimization algorithm based on PSO.

Firstly we need to initialize multiple particle swarms. We
define each particle to represent a password transformation
policy, and the position of the particle represents the sampling
probability of the corresponding policy. The particle swarm
is for all password policies, and the sum of the positions
of all particles in the swarm is 1, that is, the sum of the
sampling probabilities of all policies is 1. We use multiple
particle swarms to explore the globally optimal probability
distribution. Each particle updates its position during the
iteration process, i.e., the sampling probability. We set the
position x[i][j] of each particle in each swarm to a random
value and normalize the probability distribution x[i] of all
particles in each swarm to 1. In order to evaluate the goodness
of the policy distribution, we need to set up a password
generation function Generate and an evaluation function
Object function. The generator function samples the poli-
cies based on the policy distribution x[i] and applies them with
the initial password list pwds to generate password guesses
Gen[i] = Generate(x[i], pwds). The evaluation function is
used to evaluate the cracking rate of the generated guess list.

Secondly, we generate password guesses and evaluate the
cracking rate. We use multiple particle swarms to explore
different password transformation policy probability distribu-
tions. We sequentially generate password guesses for each
particle swarm and evaluate them. Specifically, we sample a
fixed number of policies based on the probability distribu-
tion of each particle swarm without playback and generate
password guesses. We then verify the cracking rate of these
password guesses on the validation set. The local score for
each particle will be obtained by multiplying the score of the
particle swarm by the probability of that particle. Naturally,
the higher the sampling probability of a good policy, the higher
its contribution, the higher its score, and the higher the overall
crack rate will be. Meanwhile, the particle will locate its
optimal position Lbest[i][j] based on the score of each round.
After evaluating each particle swarm sequentially, the particle
swarm with the highest cracking rate Sbest and the optimal
policy distribution Gbest[i] are obtained.

Thirdly, we update the position for each particle in the
swarm based on the evaluation results:

v[i][j] = w × v[i][j] + c1 × r1 × (Lbest[i][j]− x[i][j])

+ c2 × r2 × (Gbest[j]− x[i][j])
(5)

x[i][j] = x[i][j] + v[i][j] (6)

Where v[i][j] is the velocity of the particle, w is the habitual
factor and it controls the inertia of the particle to maintain its
current state of motion. The habitual factor w is a constant
that we can initialize to 0.9. c1 is the cognitive coefficient
and c2 is the social coefficient. c1 and c2 are two constants
that control the rate at which the particles move towards the
local optimum and the population optimum. r1 and r2 are
two random numbers between 0 and 1. The PSO-based policy
distribution optimization algorithm is shown in Algorithm 1.

After the PSO-based policy distribution optimization al-
gorithm is executed, we can then obtain the optimal policy
sampling probability distribution. We sample a fixed number
of password transformation policies based on this sampling
probability distribution and apply them to a password list to
generate password guesses.

C. Co-training

Based on the co-training algorithm, incremental learning
and policy distribution optimization are performed iteratively,
and both complement each other. The co-training process is
shown in Fig. 4.

The process is as follows: (1) At the feature level, the
password generation model generates guess list A. Here we
can choose password generation models such as FLA, Markov,
PCFG, etc. (2) The guess list A is used to crack the target
dataset and and the hit passwords compose hit list A. (3) We
optimize the distribution of password policies based on the hit
list A. Here we use the PSO algorithm for optimization. (4)
At the character level, the guess list B is generated based on
the updated policy distribution. (5) The guess list B is used to
crack the target dataset and the hit passwords compose hit list
B. (6) We incrementally train the password generation model
based on the hit list B. (7) The above process is repeated
iteratively.

The co-training process makes full use of feature and
character-level password locality. Based on the password
guesses generated at the feature level, more hit passwords can
be extended at the character level using policy transformations.
Similarly, character-level extended passwords can be used for
training the password generation model. The model encodes
more password information and uses its powerful generaliza-
tion capabilities to further generate more hit password guesses.
Executing the PSO algorithm on more hit passwords makes
the distribution of password transformation policies more

7

Algorithm 1 The PSO based Policy Distribution Optimization
Algorithm.
Input:
Number of particle swarms: m,
Number of particles in each swarm: n,
The habitual factor: w,
The cognitive coefficient: r1,
The social coefficient: r2,
Number of iterations: N ,
Initial password list: pwds.
Output:
The best score: Sbest,
The optimal policy distribution: Gbest.
Process:

1: for iter = 0; iter < N ; iter ++ do
2: for i = 0; i < m; i++ do
3: Gen[i] = Generate(x[i], pwds)
4: S[i] = Object function(Gen[i])
5: if S[i] > Sbest then
6: Sbest = S[i]
7: Gbest = x[i]
8: end if
9: xsum = 0

10: for j = 0; j < n; j ++ do
11: s[i][j] = S[i]× x[i][j]
12: if s[i][j] > sbest[i][j] then
13: sbest[i][j] = s[i][j]
14: Lbest[i][j] = x[i][j]
15: end if
16: r1 = random(), r2 = random()
17: v[i][j] = w × v[i][j] + c1 × r1 × (Lbest[i][j]−

x[i][j]) + c2 × r2 × (Gbest[j]− x[i][j])
18: x[i][j] = x[i][j] + v[i][j]
19: xsum = xsum + x[i][j]
20: end for
21: for j = 0; j < n; j ++ do
22: x[i][j] = x[i][j]/xsum

23: end for
24: end for
25: end for

complete. Also, larger and more efficient word lists enable
the policy transformation to generate more valid password
guesses. Because dictionary attacks are sensitive to the word
list and rule list.

IV. EVALUATION

In this section, we conduct a systematic experiment to
evaluate the effectiveness of CoT-DPG, the co-training based
dynamic password guessing framework. Our method gener-
ates password guesses through co-training at the feature and
character level for dynamic password guessing. We compare
four existing models (Markov, PCFG, FLA, and PassGPT) for
password generation at the feature level. We use a fourth-
order Markov model, and in the FLA model, we use a three-

Guess List A

① Generate

123456

password

123456

password

Target Dataset

② Crack

123456

password

123456

password

Hit List A

B

0.08 $1

0.02 D6

0.001 i4@

High

Low

0.08 $1

0.02 D6

0.001 i4@

High

Low

B

0.08 $1

0.02 D6

0.001 i4@

High

Low

AA

❶ Generate

Guess List B

abc123

zxcvbnm

abc123

zxcvbnm

abc123

zxcvbnm

abc123

zxcvbnm

Hit List B

❷ Crack

❸ Incremental

Training

③ Policy

Optimization

Fig. 4. The co-training process for incremental training and policy distribution
optimization.

layer 128-neuron network architecture. We also compare with
the state-of-the-art methods DPG [16] and ARPG [18] in dy-
namic password guessing. In our experiments, we compare the
cracking performance of dynamic password guessing, which
is adapted through feedback, with that of static password
guessing. We also compare the performance of password
cracking with co-training at the feature and character level
and feedback-based adapting at a single level. We analyze the
effectiveness of the PSO-based policy distribution optimization
algorithm and show its optimization process.

A. Experiment Setup

Datasets. Eight leaked password datasets are used in this
paper, three from Chinese websites and five from English
websites, containing a total of 66.9 million plain-text pass-
words. The detailed information of the eight password datasets
is shown in Table I. We divide each password dataset into
training and testing sets in the ratio of 1:1. When guessing on
one of the datasets, only the training sets of the other datasets
are utilized, guaranteeing that the target is unknown. Our
experiments are conducted on a server with Intel(R) Xeon(R)
Gold 6139 CPU, 377G memory, and TITAN RTX3090 GPU,
24G video memory.

Comparison Baseline. We fairly compare our CoT-DPG
with its foremost counterparts (i.e., PassGAN (DPG) [17],
PassBERT (ARPG) [18], GuessFuse [58], FLA [14],
Markov [13], PCFG [12], and PassGPT [55]). Since the
PassGAN and PassBERT are dynamic password guessing

8

methods, and GuessFuse is the hybrid guessing method, they
can be compared directly. For the FLA, Markov, PCFG, and
PassGPT methods, we train it incrementally and also put it
into our CoT-DPG framework to form methods CoT-F, CoT-
M, CoT-P, and CoT-G for comparison.

TABLE I
THE INFORMATION OF DIFFERENT DATASETS.

Dataset Year Language Service type Website Size
000webhost 2015 English Web Hosting https://000webhost.com 14,451,798

Linkedin 2012 English Social Platform https://linkedin.com 7,660,392
ClixSense 2016 English Paid to click https://www.ysense.com 3,634,274

7k7k 2011 Chinese Games http://www.7k7k.com 14,785,569
Csdn 2011 Chinese Programmer Forum https://csdn.net 6,427,828

Dodonew 2011 Chinese E-commerce http://www.dodonew.com 16,103,478
BookCrossing 2022 English Book site https://bookcrossing.com 1,465,568

CraftRise 2023 English Games http://www.craftrise.com.tr 2,375,526

Ethical Considerations. The datasets used in this paper are
publicly available and are widely used in research [75], [76],
[77]. Although these data are widely used, they remain private.
We therefore do not show the actual passwords associated with
individual users in these datasets and use them for research
purposes only. We report only the results of our experiments.

B. Evaluation of Dynamic and Static Guessing

Firstly, we compare static password guessing and dynamic
password guessing. We use the other datasets to form the initial
password guess list to crack the target dataset, and the hit
passwords are used as the initial training set. Static password
guessing refers to a cracking method that is trained only once.
A large number of password guesses are generated to crack the
target set directly after training the password generation model
using the initial password list as the training set. Dynamic
password guessing refers to multiple rounds of incremental
training and updating the model based on feedback. In each
iteration, the model generates password guesses to crack the
target, and the hit passwords are added to the training set
for incremental training. To speed up the dynamic password
guessing, only a small number of password guesses are
generated in each round (one-tenth of the final number), and a
large number of guesses are generated for cracking in the final
round. Duplicate password guesses are removed during the
iteration process and only the non-duplicate password guesses
generated in the last round are retained. We use the FLA model
as the comparative password generation model. The complete
guessing curves of dynamic and static guessing approaches are
shown in Fig. 5.

We can see from Fig. 5 that dynamic password cracking has
a much higher cracking rate than static password guessing.
This indicates that the newly cracked passwords in each
round provide the neural network with important information
about the distribution of the target set. The neural network
can encode more password information in each round of
incremental learning. Also, its strong generalization capability
allows the model to generate more hit passwords. Even with
many passwords that are not in the training set, the neural
network model has the ability to generate them, and the
increase in cracking rates confirms this view.

C. Evaluation of Dual-locality and Single-locality

In this subsection, we discuss the effectiveness of dual
password locality. We compared the four methods as shown
in the Table II. Where the FLA, Markov, PCFG, and PassGPT
models are trained using dynamic incremental training. CoT-
F, CoT-M, CoT-P, and CoT-G are co-training methods in
the CoT-DPG framework using FLA, Markov, PCFG, and
PassGPT with policy transformations respectively. Incremental
training is performed at the feature level in rounds 1,3,5,7.
Policy distribution optimization is performed at the character
level in rounds 2,4,6. When guessing the target dataset, the
initial training set is sampled from other datasets in order to
ensure that the distribution information of the target dataset
is completely unknown. The newly cracked passwords in
each round are used as feedback and delivered to the model
for incremental training and policy distribution optimization.
Duplicate password guesses during iteration are removed. That
is, only the cracking rate of non-repeated password guesses
will be calculated in each iteration. The cracking rates of these
methods for each round are recorded in Table II.

From the experimental results in Table II. we can draw the
following conclusions:

(1) The dynamic password guessing framework CoT-DPG
outperforms any single method. On all eight datasets and all
four methods, the performance of password cracking using
the co-training methods (CoT-F, CoT-M, CoT-P, and CoT-
G) is better than the performance using incremental training
alone. The password cracking rate with co-training relatively
improves by 1.77% to 35.71% compared to no co-training.
This illustrates the importance of dual locality of password
and the single level of locality is deficient. In addition to this,
we find that as the number of iterations increases, the cracking
rate of the model grows larger at first and then grows slowly.
This suggests that during the dynamic guessing process, when
the target is unknown at the beginning, the newly cracked
password can provide rich information enabling the model to
quickly fit the distribution of the target dataset. Afterwards the
newly cracked passwords become fewer and can provide less
information. This is as illustrated in Fig. 1, after the model has
been incrementally trained for several rounds, the generation
of surrounding passwords for the target password reaches an
upper bound. At this point generating more hit passwords
through policy transformation is a solution to improve this
upper bound. This is the reason why more passwords can
be cracked using the co-training approach compared to the
incremental training approach only.

(2) The password guessing performance varies between
different models and different datasets. After incremental
training, CoT-P performs better than the other models on
the 000webhost, ClixSense, and Craftrise datasets. And CoT-
F outperforms on the other five datasets. We note that the
password cracking performance of the PCFG model is better
than the other models on seven datasets when trained for
only one round using the initial set of passwords. After
incremental training, the FLA model outperforms the other

9

(a) 000webhost (b) Linkedin (c) ClixSense

(d) 7k7k (e) Csdn (f) Dodonew

Fig. 5. Complete guessing curves of dynamic and static guessing approaches.

models on five datasets. This indicates that the neural network
is sensitive to the training samples. The neural network does
not fit the target distribution well when the training data is
small, and the generalization ability of the model is enhanced
with more training data. The password cracking rate has the
largest absolute improvement rate of 8.77% on the CoT-
G model, exceeding the 4.20% on CoT-M and the 3.35%
on CoT-P. This suggests that in the co-training framework,
while FLA, Markov, PCFG, and PassGPT methods, and policy
transformations are all able to complement each other, neural
networks are better integrated with policy transformations.
This also confirms the view of this paper that feature-level
and character-level password locality can complement each
other well.

Our CoT-DPG also achieved significant success on the
BookCrossing and Craftrise datasets in 2022 and 2023. Al-
though the leak time is different for each dataset and the
password distribution may change, the password locality is an
invariant property. This is the reason why dynamic password
guessing can be successful. In addition, when guessing on
unknown sites, the other datasets are only used to provide the
initial set of passwords, while fitting the target distribution
relies on dynamic learning and updating of the model. There-
fore, the time attribute of the dataset has little effect on the
experimental results. Our framework is robust and scalable.

(3) The proposed CoT-DPG is highly applicable and trans-
ferable. The CoT-DPG proposed in this paper is a dynamic

password guessing framework that allows multiple models to
learn and complement each other. The models from different
views learn from each other and iteratively train to achieve
better dynamic password guessing performance. Therefore, in
CoT-DPG, as long as effective password guessing models can
be constructed from different views, co-training is able to
integrate the two well. In this paper, feature level and character
level locality are two different views. CoT-DPG can even
be applied to the hybrid password guessing scenario, fusing
knowledge from multiple models to take full advantage of the
strengths of multiple models.

We compare CoT-DPG with the state-of-the-art dynamic
guessing methods PassGAN (DPG) proposed in [16] and
PassBERT (ARPG) proposed in [18]. We also compare CoT-
DPG with the hybrid guessing method GuessFuse. After the
7-th round of training, we generate more than 108 password
guesses to observe the password cracking performance of var-
ious methods under a large number of guesses. The complete
guessing curves of different methods in dynamic password
guessing after 7 iterations are shown in Fig. 6. We can see
that the password cracking performance of CoT-DPG exceeds
the three methods on all eight datasets. And the password
cracking rates of co-training methods are all higher than that
of single model. The policy transformation at the character
level has the lowest cracking rate after multiple rounds of
feedback optimization. The highest password cracking rate is
achieved after multiple rounds of co-training (CoT-F) of the

10

TABLE II
PASSWORD CRACKING RATES FOR DIFFERENT NUMBER OF ITERATIONS FOR CO-TRAINING USING PASSWORD DUAL LOCALITY AND DYNAMIC UPDATING

USING SINGLE LOCALITY.

000webhost FLA CoT-F Markov CoT-M PCFG CoT-P PassGPT CoT-G Linkedin FLA CoT-F Markov CoT-M PCFG CoT-P PassGPT CoT-G

iter 1 0.1589 0.1589 0.1721 0.1721 0.1922 0.1922 0.1554 0.1554 iter 1 0.3474 0.3474 0.3508 0.3508 0.3835 0.3835 0.3347 0.3347

iter 2 0.1749 0.1812 0.1767 0.1931 0.2064 0.2062 0.1588 0.1802 iter 2 0.3668 0.3818 0.3562 0.3819 0.3965 0.4019 0.3409 0.3703

iter 3 0.1832 0.1915 0.1776 0.1995 0.2088 0.2180 0.1598 0.1827 iter 3 0.3789 0.4023 0.3573 0.3906 0.3978 0.4129 0.3429 0.3749

iter 4 0.1879 0.2002 0.1779 0.2046 0.2093 0.2220 0.1605 0.1903 iter 4 0.3854 0.4091 0.3576 0.3973 0.3980 0.4189 0.3441 0.3831

iter 5 0.1927 0.2066 0.1781 0.2062 0.2094 0.2246 0.1609 0.1912 iter 5 0.3911 0.4176 0.3577 0.3997 0.3981 0.4205 0.3448 0.3845

iter 6 0.1969 0.2088 0.1782 0.2082 0.2143 0.2257 0.1612 0.1941 iter 6 0.3951 0.4198 0.3577 0.4012 0.3981 0.4218 0.3454 0.3877

iter 7 0.1997 0.2164
(8.36%↑) 0.1782 0.2088

(17.17%↑) 0.2145 0.2264
(5.55%↑) 0.1615 0.1946

(20.50%↑) iter 7 0.3984 0.4257
(6.85%↑) 0.3584 0.4020

(12.17%↑) 0.3981 0.4221
(6.03%↑) 0.3459 0.3884

(12.29%↑)

ClixSense FLA CoT-F Markov CoT-M PCFG CoT-P PassGPT CoT-G 7k7k FLA CoT-F Markov CoT-M PCFG CoT-P PassGPT CoT-G

iter 1 0.4042 0.4042 0.3984 0.3984 0.4227 0.4227 0.3903 0.3903 iter 1 0.5023 0.5023 0.4781 0.4781 0.4787 0.4787 0.4586 0.4586

iter 2 0.4114 0.4235 0.4012 0.4180 0.4274 0.4385 0.3936 0.4124 iter 2 0.5279 0.5098 0.4908 0.4885 0.4854 0.4903 0.4730 0.4735

iter 3 0.4190 0.4329 0.4016 0.4220 0.4286 0.4437 0.3944 0.4149 iter 3 0.5420 0.5433 0.4942 0.5026 0.4861 0.4979 0.4752 0.4854

iter 4 0.4228 0.4375 0.4018 0.4263 0.4288 0.4478 0.3948 0.4200 iter 4 0.5515 0.5536 0.4954 0.5049 0.4862 0.5007 0.4760 0.4886

iter 5 0.4252 0.4429 0.4018 0.4272 0.4288 0.4489 0.3951 0.4206 iter 5 0.5557 0.5642 0.4959 0.5091 0.4862 0.5016 0.4765 0.4904

iter 6 0.4274 0.4446 0.4018 0.4289 0.4288 0.4498 0.3953 0.4222 iter 6 0.5579 0.5672 0.4961 0.5099 0.4862 0.5023 0.4769 0.4912

iter 7 0.4290 0.4482
(4.48%↑) 0.4044 0.4308

(6.53%↑) 0.4288 0.4501
(4.97%↑) 0.3955 0.4226

(6.85%↑) iter 7 0.5591 0.5698
(1.91%↑) 0.5009 0.5164

(3.09%↑) 0.4862 0.5025
(3.35%↑) 0.4771 0.4919

(3.10%↑)

Csdn FLA CoT-F Markov CoT-M PCFG CoT-P PassGPT CoT-G Dodonew FLA CoT-F Markov CoT-M PCFG CoT-P PassGPT CoT-G

iter 1 0.3587 0.3587 0.3568 0.3568 0.3637 0.3637 0.3504 0.3504 iter 1 0.3226 0.3226 0.3205 0.3205 0.3304 0.3304 0.2969 0.2969

iter 2 0.3718 0.3663 0.3618 0.3659 0.3688 0.3726 0.3523 0.3596 iter 2 0.3601 0.3606 0.3370 0.3585 0.3463 0.3615 0.3079 0.3452

iter 3 0.3802 0.3800 0.3633 0.3711 0.3699 0.3774 0.3528 0.3610 iter 3 0.3746 0.3877 0.3424 0.3731 0.3514 0.3735 0.3109 0.3528

iter 4 0.3848 0.3820 0.3640 0.3729 0.3702 0.3797 0.3531 0.3633 iter 4 0.3864 0.3982 0.3446 0.3826 0.3533 0.3819 0.3125 0.3673

iter 5 0.3890 0.3889 0.3643 0.3743 0.3703 0.3806 0.3532 0.3637 iter 5 0.3981 0.4152 0.3456 0.3869 0.3540 0.3848 0.3134 0.3691

iter 6 0.3922 0.3893 0.3644 0.3749 0.3703 0.3814 0.3534 0.3644 iter 6 0.3998 0.4183 0.3462 0.3904 0.3544 0.3882 0.3141 0.3730

iter 7 0.3948 0.4018
(1.77%↑) 0.3673 0.3783

(2.99%↑) 0.3703 0.3816
(3.05%↑) 0.3535 0.3646

(3.14%↑) iter 7 0.4078 0.4282
(5.00%↑) 0.3472 0.3923

(12.99%↑) 0.3546 0.3892
(9.76%↑) 0.3147 0.3740

(18.84%↑)

BookCrossing FLA CoT-F Markov CoT-M PCFG CoT-P PassGPT CoT-G Craftrise FLA CoT-F Markov CoT-M PCFG CoT-P PassGPT CoT-G

iter 1 0.3300 0.3300 0.3275 0.3275 0.3445 0.3445 0.3226 0.3226 iter 1 0.2062 0.2062 0.2613 0.2613 0.3170 0.3170 0.2281 0.2281

iter 2 0.3360 0.3499 0.3286 0.3364 0.3483 0.3506 0.3240 0.3333 iter 2 0.2098 0.2580 0.2755 0.2943 0.3515 0.3378 0.2543 0.2650

iter 3 0.3391 0.3553 0.3288 0.3380 0.3489 0.3541 0.3243 0.3348 iter 3 0.2214 0.2724 0.2784 0.3172 0.3613 0.3699 0.2727 0.2935

iter 4 0.3407 0.3580 0.3288 0.3388 0.3489 0.3547 0.3244 0.3357 iter 4 0.2342 0.2981 0.2792 0.3239 0.3651 0.3732 0.2872 0.3044

iter 5 0.3415 0.3598 0.3288 0.3390 0.3490 0.3552 0.3245 0.3360 iter 5 0.2386 0.3101 0.2795 0.3305 0.3707 0.3819 0.2977 0.3225

iter 6 0.3424 0.3602 0.3288 0.3391 0.3490 0.3552 0.3246 0.3362 iter 6 0.2435 0.3208 0.2795 0.3326 0.3725 0.3829 0.3046 0.3262

iter 7 0.3431 0.3614
(5.33%↑) 0.3288 0.3391

(3.13%↑) 0.3490 0.3553
(1.81%↑) 0.3247 0.3363

(3.57%↑) iter 7 0.2456 0.3333
(35.71%↑) 0.2795 0.3349

(19.82%↑) 0.3733 0.3910
(4.74%↑) 0.3095 0.3361

(8.59%↑)

FLA model and policy transformation on the four datasets.
The highest cracking rate is achieved after the PCFG and
policy transformation are co-trained (CoT-P) on the other four
datasets. This shows that by cracking more passwords at the
feature level and character level, the model encodes more
information and is able to fit the target set distribution better.

D. Evaluation of Policy Distribution Optimization using PSO

At the character level, we use the PSO algorithm to optimize
the policy distribution, thereby mitigating the blindness of
the selection process of password transformation policies.
Intuitively sampling on a more optimal distribution of policies
will generate a more efficient list of password guesses, which
will then have a correspondingly higher cracking rate. We
execute the policy distribution optimization algorithm on the
set of hit passwords generated by FLA for the first time and
show the optimization results in Fig. 7. The figure shows
the growth curve of the password cracking rate over a total
of 50 iterations and the probability distribution of the 300
password transformation policies after the PSO algorithm has
been executed. From the figure, we can see that the password
cracking rate is gradually increasing with the execution of the
PSO-based policy optimization algorithm. We set up a total
of 5 particle swarms, each with 300 particles. Each particle
represents a policy, and its position represents the sampling
probability of the policy, and all the particle positions are the

probability distribution of the policy sampling. Each particle
explores its local optimal position and all particles approach
the global optimal position. Our objective function is the
cracking rate, so during the execution of the algorithm, the
cracking rate gets higher and higher. It can also be seen from
the figure that the set of policies applicable to each dataset is
different. When we are unknown about the target dataset, it is
necessary to perform the optimization of the policy distribution
so as to quickly obtain the policy set adapted to the target.
Since our policies are data-driven and automatically generated,
most of them are valid. Thus a small number of policies
have a very low probability of being sampled in the policy
probability distributions shown in the figure. In summary,
the PSO-based policy distribution optimization algorithm is
effective in optimizing the policy distribution, generating more
hit passwords, and further improving the cracking rate. In
addition, by increasing the search space (600 policies × 10
swarms) from the original 300 policies × 5 swarms, the
success rate of guessing increases slightly, but significantly
increases the overhead (+400%). To balance the overhead and
performance, we chose the parameters of 300 policies and 5
swarms.

Overhead analysis. We conduct rigorous cost analysis
covering training time and generation rate on a server with
a single RTX 3090 GPU. The results are shown in Table III.

11

(a) 000webhost (b) Linkedin (c) ClixSense

(d) 7k7k (e) Csdn (f) Dodonew

(g) BookCrossing (h) Craftrise

Fig. 6. Complete guessing curves of different methods in dynamic password guessing after 7 iterations. We compare two approaches to dynamic password
guessing that use only feature-level password locality for incremental learning and iterative learning using the dual-locality. We also compare our method with
the state-of-the-art PassGAN (DPG), PassBERT (ARPG), and GuessFuse.

CoT-F, CoT-M, CoT-P, and CoT-G methods under the CoT-
DPG framework are 1.2 to 2.4 times faster than the itera-
tively updated FLA, Markov, PCFG and PassGPT methods.
This is due to the fast training process of PSO-based policy
optimization and the fast password generation process based
on the transformation policy. The CoT-DPG framework does
not introduce more overhead, but instead reduces the time
overhead while improving the guessing performance.

V. DISCUSSION

Password dual-locality. The dual locality of passwords
is an important property found in this paper. Existing work
has presented the locality of passwords at the feature level,

which guides dynamic password guessing through GANs.
However real-world dictionary attacks and transformations via
mangling rules actually exploit the locality of passwords at
the character level. Thus more passwords can be guessed by
local transformations at the character level. The experiments
in this paper also confirm that single-level locality is not
comprehensive enough and that fusion of feature and character
level locality can achieve better DPG performance. The local-
ity of passwords stems from the fact that the distribution of
passwords is clustered rather than uniformly distributed. The
distance between the clustered passwords in character space
and feature space is small.

12

(a) 000webhost (b) Linkedin

(c) ClixSense (d) 7k7k

(e) Csdn (f) Dodonew

(g) BookCrossing (h) Craftrise

Fig. 7. Crack rate increase curves during a total of 50 iterations of the PSO algorithm and the probability distribution figures of 300 password transformation
policies after the algorithm has been executed.

TABLE III
THE TIME OVERHEAD OF DIFFERENT METHODS.

Method Item Rate Total Time Method Total Time Speedup

FLA-dyn Training 2hours 26hours (7iters) CoT-F 11hours (7iters) 2.4times
Generation 1.6×103 pw/s

Markov-dyn Training 1hour 10hours (7iters) CoT-M 6hours (7iters) 1.7times
Generation 7.1×103 pw/s

PCFG-dyn Training 10mins 1.5hours (7iters) CoT-P 1.3hours (7iters) 1.2times
Generation 6.7×104 pw/s

PassGPT-dyn Training 30mins 8hours (7iters) CoT-G 5hours (7iters) 1.6times
Generation 4.8×103 pw/s

Policy-dyn Training 10mins 2hours (7iters) PassGAN (DPG) 4hours ——
Generation 1.4×106 pw/s PassBERT (ARPG) 8hours ——

Co-training framework. The co-training based DPG
framework proposed in this paper makes full use of password
dual-locality. The co-training algorithm utilizes models con-
structed from different views for iterative learning to comple-
ment each other’s knowledge. The locality of passwords at the
feature level and the character level are exactly the properties

that passwords exhibit in the two different views, which can
complement each other. This naturally applies to co-training.
Co-training is a multi-view learning method, and multi-view
learning aims to improve learning performance by exploiting
different views of the same input data. From this perspective,
the password dataset can then be observed from different

13

views. The representation of password data in different feature
spaces is from different views, and different password guessing
models also model the password distribution from different
views.

View independence. The co-training method requires two
views that are sufficiently redundant and satisfy conditional
independence. The sufficiently redundancy of the two views
is obvious, as password generation models can be constructed
from both character space and feature space. For view inde-
pendence, we analyse as follows: (1) We perform statistical
tests by calculating the Jaccard correlation coefficients of
generated and hit passwords from different views, as shown in
Table IV. The Jaccard coefficient is a measure of the similarity
of sets, calculating the ratio of the intersection size to the
union size, with values ranging from 0 to 1, with larger values
indicating a higher degree of similarity. From the 7 rounds
of iterations, the Jaccard coefficients of the password guesses
generated by the policy transformation based method and the
FLA method are very low, indicating that the percentage of
same passwords generated is very small. The hit passwords
only overlap by 50.6% to 64%. The above results illustrate the
mutual independence property of character space and feature
space in generating passwords. (2) Empirically, the feature-
level locality captures the proximity of the password in vector
space, whereas the character-level locality acts directly on the
original character sequence, and their sources of information
are different. (3) As the results show in Table II and Fig. 6,
our co-training framework significantly outperforms the model
using only a single view. This improvement strongly suggests
that the two views carry complementary information, which is
an important indication of view (approximate) independence
and a necessary condition for co-training to be effective.

TABLE IV
JACCARD CORRELATION COEFFICIENTS OF THE GENERATED PASSWORD

SETS AND HIT PASSWORD SETS FOR THE FLA METHOD AND THE POLICY
METHOD.

Jaccard iter 1 iter 2 iter 3 iter 4 iter 5 iter 6 iter 7
Jgen 0.018 0.015 0.024 0.026 0.025 0.026 0.027
Jhit 0.640 0.546 0.524 0.516 0.511 0.508 0.506

Suggestions. Our work explores the process of how to
perform dynamic password guessing on unknown websites.
Even if the distribution of the target is unknown, it is still
possible to continuously expand the threat to the target by
relying on other information as well as model learning. This
is because there are some habitual behaviors of people in
constructing passwords: (1) Users don’t update their passwords
for a long time. (2) Users tend to use the same or similar
passwords at multiple sites. (3) Users are accustomed to
making simple modifications to popular passwords. Therefore,
users need to avoid several of the above mentioned behaviors
of constructing passwords. In addition to this, users need to
be aware of common passwords and their substrings to avoid
adopting them when constructing passwords..

Future work. In future work, we will explore the following
components: (1) Further explore the essential properties of

password data and investigate the applicable methods based on
the properties. (2) Explore approaches for better integration of
multi-view features of passwords. (3) Co-training is actually
a semi-supervised learning approach, and we will further
explore how to better introduce semi-supervised learning into
password guessing.

VI. CONCLUSION

In this paper, we propose CoT-DPG, a co-training based
dynamic password guessing framework for efficient guessing
of unknown sites. We make full use of the password dual-
locality at the feature level and the character level, and con-
struct password generation models from different views. At the
feature level, we design a feedback-based password learning
approach based on incremental training. At the character level,
we design an automatic password policy generation algorithm
and a PSO-based password policy distribution optimization
algorithm. Based on co-training algorithm, models from dif-
ferent views iteratively learn and complement each other. CoT-
DPG effectively combines multiple password guessing models
and employs co-training, a semi-supervised learning method,
to achieve efficient dynamic password guessing.

REFERENCES

[1] D. Wang and P. Wang, “Two birds with one stone: Two-factor authenti-
cation with security beyond conventional bound,” IEEE transactions on
dependable and secure computing, vol. 15, no. 4, pp. 708–722, 2016.

[2] W. Li, J. Tan, W. Meng, and Y. Wang, “A swipe-based unlocking mecha-
nism with supervised learning on smartphones: Design and evaluation,”
Journal of Network and Computer Applications, vol. 165, p. 102687,
2020.

[3] A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information
security,” IEEE transactions on information forensics and security,
vol. 1, no. 2, pp. 125–143, 2006.

[4] A. Z. Zaidi, C. Y. Chong, Z. Jin, R. Parthiban, and A. S. Sadiq,
“Touch-based continuous mobile device authentication: State-of-the-
art, challenges and opportunities,” Journal of Network and Computer
Applications, vol. 191, p. 103162, 2021.

[5] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “Passwords
and the evolution of imperfect authentication,” Communications of the
ACM, vol. 58, no. 7, pp. 78–87, 2015.

[6] ——, “The quest to replace passwords: A framework for comparative
evaluation of web authentication schemes,” in 2012 IEEE symposium on
security and privacy. IEEE, 2012, pp. 553–567.

[7] D. Freeman, S. Jain, M. Dürmuth, B. Biggio, and G. Giacinto, “Who
are you? a statistical approach to measuring user authenticity.” in NDSS,
vol. 16, 2016, pp. 21–24.

[8] C. Herley and P. Van Oorschot, “A research agenda acknowledging the
persistence of passwords,” IEEE Security & privacy, vol. 10, no. 1, pp.
28–36, 2011.

[9] S. Oesch and S. Ruoti, “That was then, this is now: A security evaluation
of password generation, storage, and autofill in browser-based password
managers,” in Proceedings of the 29th USENIX Conference on Security
Symposium, 2020, pp. 2165–2182.

[10] J. Steube, “Hashcat,” 2018. [Online]. Available:
https://hashcat.net/hashcat/

[11] A. Peslyak, “John the ripper password cracker,” 2021. [Online].
Available: https://www.openwall.com/john/

[12] M. Weir, S. Aggarwal, B. De Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in 2009 30th IEEE
symposium on security and privacy. IEEE, 2009, pp. 391–405.

[13] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in Proceedings of the 12th ACM conference
on Computer and communications security, 2005, pp. 364–372.

14

[14] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin,
and L. F. Cranor, “Fast, lean, and accurate: Modeling password guess-
ability using neural networks,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 175–191.

[15] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “Passgan: A deep
learning approach for password guessing,” in Applied Cryptography and
Network Security: 17th International Conference, ACNS 2019, Bogota,
Colombia, June 5–7, 2019, Proceedings 17. Springer, 2019, pp. 217–
237.

[16] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,
“Improving password guessing via representation learning,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp. 1382–
1399.

[17] D. Pasquini, M. Cianfriglia, G. Ateniese, and M. Bernaschi, “Reducing
bias in modeling real-world password strength via deep learning and
dynamic dictionaries,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 821–838.

[18] M. Xu, J. Yu, X. Zhang, C. Wang, S. Zhang, H. Wu, and W. Han,
“Improving real-world password guessing attacks via bi-directional
transformers,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 1001–1018.

[19] R. Morris and K. Thompson, “Password security: A case history,”
Communications of the ACM, vol. 22, no. 11, pp. 594–597, 1979.

[20] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,”
in Advances in Cryptology-CRYPTO 2003: 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003. Proceedings 23. Springer, 2003, pp. 617–630.

[21] J. Yan, A. Blackwell, R. Anderson, and A. Grant, “Password memora-
bility and security: Empirical results,” IEEE Security & privacy, vol. 2,
no. 5, pp. 25–31, 2004.

[22] M. Dell’Amico and M. Filippone, “Monte carlo strength evaluation:
Fast and reliable password checking,” in Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security, 2015,
pp. 158–169.

[23] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri,
D. Kurilova, M. L. Mazurek, W. Melicher, and R. Shay, “Measuring
{Real-World} accuracies and biases in modeling password guessability,”
in 24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
463–481.

[24] D. Wang, D. He, H. Cheng, and P. Wang, “fuzzypsm: A new password
strength meter using fuzzy probabilistic context-free grammars,” in
2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2016, pp. 595–606.

[25] E. Liu, A. Nakanishi, M. Golla, D. Cash, and B. Ur, “Reasoning analyt-
ically about password-cracking software,” in 2019 IEEE SYMPOSIUM
ON SECURITY AND PRIVACY (SP 2019), ser. IEEE Symposium on
Security and Privacy. IEEE; IEEE Comp Soc; CS Financial, 2019, pp.
380–397.

[26] A. M. Di Campi, R. Focardi, and F. L. Luccio, “The revenge of password
crackers: Automated training of password cracking tools,” in European
Symposium on Research in Computer Security. Springer, 2022, pp.
317–336.

[27] J. Eckroth, L. Hough, and H. ElAarag, “Oneruletofindthem: Efficient
automated generation of password cracking rules,” Journal of Computing
Sciences in Colleges, vol. 39, no. 3, pp. 226–248, 2023.

[28] D. Wang, Y. Zou, Z. Zhang, and K. Xiu, “Password guessing using
random forest,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 965–982.

[29] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito, and A. Chaabane,
“Omen: Faster password guessing using an ordered markov enumer-
ator,” in Engineering Secure Software and Systems: 7th International
Symposium, ESSoS 2015, Milan, Italy, March 4-6, 2015. Proceedings 7.
Springer, 2015, pp. 119–132.

[30] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted on-
line password guessing: An underestimated threat,” in Proceedings of
the 2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 1242–1254.

[31] X. Guo, Y. Liu, K. Tan, W. Mao, M. Jin, and H. Lu, “Dynamic markov
model: Password guessing using probability adjustment method,” Ap-
plied Sciences, vol. 11, no. 10, p. 4607, 2021.

[32] H. Cheng, W. Li, P. Wang, and K. Liang, “Improved probabilistic
context-free grammars for passwords using word extraction,” in ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2021, pp. 2690–2694.

[33] H.-C. Chou, H.-C. Lee, H.-J. Yu, F.-P. Lai, K.-H. Huang, C.-W. Hsueh
et al., “Password cracking based on learned patterns from disclosed
passwords,” IJICIC, vol. 9, no. 2, pp. 821–839, 2013.

[34] R. Veras, C. Collins, and J. Thorpe, “A large-scale analysis of the
semantic password model and linguistic patterns in passwords,” ACM
Transactions on Privacy and Security (TOPS), vol. 24, no. 3, pp. 1–21,
2021.

[35] S. Houshmand, S. Aggarwal, and R. Flood, “Next gen pcfg password
cracking,” IEEE Transactions on Information Forensics and Security,
vol. 10, no. 8, pp. 1776–1791, 2015.

[36] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural
networks: Lstm cells and network architectures,” Neural Computation,
vol. 31, no. 7, pp. 1235–1270, 07 2019. [Online]. Available:
https://doi.org/10.1162/neco a 01199

[37] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE
signal processing magazine, vol. 35, no. 1, pp. 53–65, 2018.

[38] Z. Xia, P. Yi, Y. Liu, B. Jiang, W. Wang, and T. Zhu, “Genpass: A multi-
source deep learning model for password guessing,” IEEE Transactions
on Multimedia, vol. 22, no. 5, pp. 1323–1332, 2019.

[39] M. Zhang, Q. Zhang, X. Hu, and W. Liu, “A password cracking method
based on structure partition and bilstm recurrent neural network,” in
Proceedings of the 8th International Conference on Communication and
Network Security, 2018, pp. 79–83.

[40] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” neural information processing systems, 2014.

[41] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential
stuffing: Password similarity models using neural networks,” in 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 2019, pp. 417–
434.

[42] L. Xu, C. Ge, W. Qiu, Z. Huang, Z. Gong, J. Guo, and H. Lian,
“Password guessing based on lstm recurrent neural networks,” in Com-
putational Science and Engineering, 2017.

[43] Y. Fang, K. Liu, F. Jing, and Z. Zuo, Password Guessing Based on
Semantic Analysis and Neural Networks: 12th Chinese Conference,
CTCIS 2018, Wuhan, China, October 18, 2018, Revised Selected Papers.
Trusted Computing and Information Security, 2019.

[44] J. Luo, J. Deng, C. Lu, and H. Liu, “Recurrent neural network based
password generation for group attribute context-ware applications,”
in 2019 IEEE 21st International Conference on High Performance
Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), 2019.

[45] Y. Zhang, H. Xian, and A. Yu, “Csnn: Password guessing method based
on chinese syllables and neural network,” Peer-to-peer Networking and
Applications, vol. 13, no. 6, pp. 2237.0–2250.0, 2020.

[46] J. Zhang, C. Yang, Y. Zheng, W. You, R. Su, and J. Ma, “A preliminary
analysis of password guessing algorithm,” in International Conference
on Computer Communications and Networks, 2020, pp. 1–9.

[47] X. Guo, Y. Liu, K. Tan, M. Jin, and H. Lu, “Pggan: Improve password
cover rate using the controller,” in Journal of Physics: Conference Series,
vol. 1856, no. 1. IOP Publishing, 2021, p. 012012.

[48] D. Huang, Y. Wang, and W. Chen, “Rlpassgan: Password guessing model
based on gan with policy gradient,” in International Conference on
Security and Privacy in New Computing Environments. Springer, 2021,
pp. 159–174.

[49] S. Nam, S. Jeon, and J. Moon, “Generating optimized guessing can-
didates toward better password cracking from multi-dictionaries using
relativistic gan,” APPLIED SCIENCES-BASEL, vol. 10, no. 20, 2020.

[50] T. Zhou, H.-T. Wu, H. Lu, P. Xu, and Y.-M. Cheung, “Password guessing
based on gan with gumbel-softmax,” Security and Communication
Networks, vol. 2022, 2022.

[51] Y. Liu, Z. Xia, P. Yi, Y. Yao, T. Xie, W. Wang, and T. Zhu, “Genpass:
A general deep learning model for password guessing with pcfg rules
and adversarial generation,” in Intelligent Cloud Computing, 2018.

[52] T. Yang and D. Wang, “Rankguess: Password guessing using adversarial
ranking,” in 2025 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 2024, pp. 40–40.

[53] K. Xiu and D. Wang, “{PointerGuess}: Targeted password guessing
model using pointer mechanism,” in 33rd USENIX Security Symposium
(USENIX Security 24), 2024, pp. 5555–5572.

[54] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

15

[55] J. Rando, F. Perez-Cruz, and B. Hitaj, “Passgpt: Password modeling
and (guided) generation with large language models,” in European
Symposium on Research in Computer Security. Springer, 2023, pp.
164–183.

[56] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[57] X. Su, X. Zhu, Y. Li, Y. Li, C. Chen, and P. Esteves-Verı́ssimo,
“Pagpassgpt: Pattern guided password guessing via generative pretrained
transformer,” in 2024 54th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2024, pp. 429–
442.

[58] Z. Xie, F. Shi, M. Zhang, H. Ma, H. Wang, Z. Li, and Y. Zhang, “Guess-
fuse: hybrid password guessing with multi-view,” IEEE Transactions on
Information Forensics and Security, vol. 19, pp. 4215–4230, 2024.

[59] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-international conference on neural networks, vol. 4.
ieee, 1995, pp. 1942–1948.

[60] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the eleventh annual conference on
Computational learning theory, 1998, pp. 92–100.

[61] Z.-H. Zhou, M. Li et al., “Semi-supervised regression with co-training.”
in IJCAI, vol. 5, 2005, pp. 908–913.

[62] Y. Wang and T. Li, “Improving semi-supervised co-forest algorithm in
evolving data streams,” Applied Intelligence, vol. 48, no. 10, pp. 3248–
3262, 2018.

[63] Z.-H. Zhou and M. Li, “Semi-supervised learning by disagreement,”
Knowledge and Information Systems, vol. 24, no. 3, pp. 415–439, 2010.

[64] S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille, “Deep co-training
for semi-supervised image recognition,” in Proceedings of the european
conference on computer vision (eccv), 2018, pp. 135–152.

[65] G. Katz, C. Caragea, and A. Shabtai, “Vertical ensemble co-training
for text classification,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 9, no. 2, pp. 1–23, 2017.

[66] J. Bonneau, “The science of guessing: analyzing an anonymized corpus
of 70 million passwords,” in 2012 IEEE symposium on security and
privacy. IEEE, 2012, pp. 538–552.

[67] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large scale
incremental learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[68] J. He, R. Mao, Z. Shao, and F. Zhu, “Incremental learning in online
scenario,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[69] K. Huang, P. Li, J. Ma, T. Yao, and Y. Liu, “Knowledge transfer
in incremental learning for multilingual neural machine translation,”
in Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), A. Rogers, J. Boyd-
Graber, and N. Okazaki, Eds. Toronto, Canada: Association for
Computational Linguistics, Jul. 2023, pp. 15 286–15 304.

[70] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 6,
pp. 1091–1095, 2007.

[71] B. Berger, M. S. Waterman, and Y. W. Yu, “Levenshtein distance,
sequence comparison and biological database search,” IEEE transactions
on information theory, vol. 67, no. 6, pp. 3287–3294, 2020.

[72] E. Bonabeau, “Swarm intelligence: From natural to artificial systems,”
Oxford University Press google schola, vol. 2, pp. 25–34, 1999.

[73] Y. Del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez,
and R. G. Harley, “Particle swarm optimization: basic concepts, variants
and applications in power systems,” IEEE Transactions on evolutionary
computation, vol. 12, no. 2, pp. 171–195, 2008.

[74] S. Li, X. Chi, and B. Yu, “An improved particle swarm optimization
algorithm for the reliability–redundancy allocation problem with global
reliability,” Reliability Engineering & System Safety, vol. 225, p. 108604,
2022.

[75] Z. Parish, C. Cushing, S. Aggarwal, A. Salehi-Abari, and J. Thorpe,
“Password guessers under a microscope: an in-depth analysis to inform
deployments,” International Journal of Information Security, vol. 21,
no. 2, pp. 409–425, 2022.

[76] D. Wang, Y. Zou, Y. Tao, and B. Wang, “Password guessing based on
recurrent neural networks and generative adversarial networks,” Chin. J.
Comput, pp. 1519–1534, 2021.

[77] M. Xu, C. Wang, J. Yu, J. Zhang, K. Zhang, and W. Han, “Chunk-level
password guessing: Towards modeling refined password composition

representations,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 5–20.

16

