BACnet or “BADnet”? On the (In)Security of
Implicitly Reserved Fields in BACnet

Qiguang Zhang ", Junzhou Luo ™, Zhen Ling™, Yue Zhang?,
Chongging Lei, Christopher Morales®, Xinwen Fu®
TSoutheast University, Email: {qgzhang, jluo, zhenling, leicq} @seu.edu.cn
¥Shandong University, Email: zyueinfosec @gmail.com
§University of Massachusetts Lowell, Email: christopher_moralesgonzalez@student.uml.edu, xinwen_fu@uml.edu
IFuyao University of Science and Technology

Abstract—Building Automation Systems (BASs) are crucial
for managing essential functions like heating, ventilation, air
conditioning, and refrigeration (HVAC&R), as well as lighting
and security in modern buildings. BACnet, a widely adopted
open standard for BASs, enables integration and interoperabil-
ity among heterogeneous devices. However, traditional BACnet
implementations remain vulnerable to various security threats.
While existing fuzzers have been applied to BACnet, their
efficiency is limited, particularly due to the slow bus-based
communication medium with low throughput. To address these
challenges, we propose BACSFuUzz, a behavior-driven fuzzer
aimed at uncovering vulnerabilities in BACnet systems. Unlike
traditional fuzzing approaches focused on input diversity and
execution path coverage, BACSFUZZ introduces the token-seize-
assisted fuzzing technique, which leverages the token-passing
mechanism of BACnet for improved fuzzing efficiency. The
token-seize-assisted fuzzing technique proves highly effective in
uncov-ering vulnerabilities caused by the misuse of implicitly
reserved fields. We identify this issue as a common vulnerability
affecting both BACnet and KNX, another major BAS protocol.
Notably, the BACnet Association (ASHRAE) confirmed the
presence of a protocol-level token-seize vulnerability, further
validating the significance of this finding. We evaluated
BACSFuUzz on 15 BAC-net and 5 KNX implementations from
leading manufacturers, including Siemens, Honeywell, and
Johnson Controls. BACS-Fuzz improves fuzzing throughput
by 272.49% to 776.01%over state-of-the-art (SOTA) methods.
In total, 26 vulnerabilities were uncovered—18 in BACnet and
8 in KNX—each related to implicitly reserved fields. Of
these, 24 vulnerabilities were confirmed by manufacturers,
with 9 assigned CVEs.

I. INTRODUCTION

Building Automation Systems (BASs) are integrated net-
works of hardware and software designed to monitor, control,
and automate various building systems. These systems manage
key functions such as HVAC&R, lighting, and security. As an
open standard, Building Automation and Control Networks
(BAChnet) facilitates seamless integration and interoperability
among diverse devices—an essential feature in the rapidly

*Corresponding author: Prof. Zhen Ling of Southeast University, China.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230794
www.ndss-symposium.org

growing smart building technology market. According to a
ReportLinker forecast [1]], the global BAS market is projected
to reach $277 billion by 2027, driven by the increasing
demand for energy efficiency, safety, and comfort. BACnet
International [2]] reports that BACnet holds a 77% global
market share, with 1,539 official manufacturers worldwide [3l],
underscoring its critical role in this evolving sector.

While many known threats to BACnet stem from the lack
of security measures such as encryption and integrity in the
specification, our study has identified a class of implicitly
reserved fields that may introduce software and system security
issues. Although the protocol carefully defines field names
and their corresponding lengths, their practical utilization may
not fully leverage the theoretical maximum capacities. For
instance, the Actual Window Size field (as specified on
Page 847 of the BACnet standard [4]) is designed to occupy
8 bits, yet its values are limited to the range between 0
and 0x7F (127), implicitly leaving the upper range unused
(i.e., up to OxXFF or 255). If manufacturers fail to implement
proper input validation, inputs beyond the expected range
could trigger undefined behavior, resulting in data corruption,
system crashes, or arbitrary code execution by attackers.

Fuzzing is an intuitive and widely adopted approach for
uncovering BAS vulnerabilities arising from poor input val-
idation. However, existing techniques [S]—relying on ran-
dom mutations and neglecting BAS network transmission
overhead—often suffer from inefficiency and limited effec-
tiveness. We observe that BACnet devices commonly use the
Master-Slave/Token-Passing (MS/TP) link layer, which suffers
from extremely low data throughput. The low throughput exac-
erbates the inefficiencies of fuzzing BACnet. As a result, even
well-crafted mutated inputs experience prolonged transmission
times, significantly reducing overall fuzzing efficiency.

To address the inefficiency of fuzzing BACnet, we con-
ducted a protocol-level analysis of MS/TP and identified the
token-passing mechanism as the primary bottleneck. At one
time, only a single token exists on the network, and all devices
must compete for it. Only the device holding the token is al-
lowed to transmit. As a result, a fuzzer must acquire the token
prior to transmitting mutated packets to the target, substantially
limiting execution speed. Further analysis identified a critical
protocol behavior: if the token holder detects unauthorized

transmissions, it voluntarily relinquishes the token to preserve
network integrity. We utilize this behavior and develop the
token-seize-assisted fuzzing technique: A fuzzer injects unau-
thorized frames, forces legitimate token holders to abandon
control, prevents other devices from regenerating the token,
and effectively monopolizes network access. This enables
continuous and uninterrupted transmission of test cases and
boosts the efficiency of fuzzing implicitly reserved fields.

In this paper, we propose BACSFuzz, a token-seize-
assisted fuzzer to explore the impact of implicitly reserved
fields. By exploiting BACnet’s unique network protocol behav-
ior, BACSFuZzz generates and injects test cases targeting these
fields. Compared to existing SOTA methods, BACSFuzz
improves fuzzing throughput by at least 272.49% and up to
776.01%. We also extend BACSFuzz to KNX [6], another
major BAS protocol. Since the token-passing mechanism
is unique to BACnet, the token-seize-assisted fuzzer cannot
be applied to KNX. For KNX, we focus on validating the
impact of implicitly reserved fields. We evaluate BACSFuzz
on 15 BACnet and 5 KNX implementations from leading
manufacturers, including Siemens, Honeywell, and Johnson
Controls. We uncovered 26 vulnerabilities: 18 in BACnet and 8
in KNX, all linked to implicitly reserved fields. Manufacturers
confirmed 24 vulnerabilities, and 9 were assigned CVEs. This
finding highlights that the misuse of implicitly reserved fields
is a general issue affecting major BAS protocols.

We further demonstrate the impact of these vulnerabilities
through three representative attack case studies. The first case
involves the PPM-1U32.BPF I/O module, where mutating the
SLEN field causes the device to forward attacker-controlled
messages to downstream devices, enabling command injection
via a trusted intermediary. The second case targets the BASRT-
B router, where manipulating the Service Choice field
results in a persistent Denial-of-Service (DoS) that disrupts
communication between BACnet/IP and MS/TP. The third case
examines a BACnet Secure Connect (BACnet/SC)-enabled
management system. Although BACnet/SC secures BACnet
traffic using certificate-based encryption over TLS-encrypted
WebSockets, we demonstrate that malformed MS/TP mes-
sages can traverse legacy paths and crash the management
software—without requiring a valid certificate. These vulnera-
bilities have serious consequences: attackers could manipulate
physical security controls, router failures may delay critical
gas or smoke alerts, and DoS attacks on management software
could reduce system visibility. These findings emphasize the
need to secure both cryptographic channels and legacy, unau-
thenticated trust boundaries.

Our major contributions can be summarized as follows:

e Novel Attack Surface with Domain-Specific Insights.
Our work highlights a previously underexplored class of
vulnerabilities in the BACnet protocol, stemming from the
misuse of implicitly reserved fields. These fields, although
defined with specific lengths in the BACnet specification, are
often underutilized or improperly handled by manufacturers.
The misuse of implicitly reserved fields is a general issue

«— - — » BACnet/SC «— .. —» BACnet/IP eoeenend » MS/TP
BAS Workstation Router
———————————————— < i Bttt TP
i vt RN
I A || il |
: 0 -— = - —:» - |
| o !
| Management Secure Hub ! | SC-IP Router IP-MS/TP |
\ Software // \ Router //
e __ __? __________ Q-
local/remote .
(non-BACnet) | i
R | AR AN
o / L ce 0, \
; EEET
I s SO PM10
! IP Device MS/TP Device /'
User = & @ e~
BACnet Device

Fig. 1: Typical BACnet Network Topology.

affecting BACnet as well as KNX, two major BAS protocols.

e Advancing Protocol Fuzzing for BAS. We propose BACS-
Fuzz El, the first behavior-driven fuzzer tailored for BACnet
security analysis. We introduce three key techniques: an
implicitly reserved field-based mutation policy, a token-seize-
assisted throughput optimization, and a byte stream format-
oriented field consistency verification, enabling efficient and
effective security testing of BACnet implementations.

Discovery of Real-World Vulnerabilities. Our evaluation
of BACsFuzz on 20 BAS implementations uncovered 26
unknown vulnerabilities, 24 confirmed by manufacturers, in-
cluding 9 CVEs. The token-seize vulnerability was acknowl-
edged by ASHRAE as a protocol-level flaw, while Honeywell
underscored the broader impact: “This vulnerability is part
of a standardized protocol used by billions of devices.”

II. BACKGROUND

A. BACnet Network Topology

BACnet supports a flexible network topology that can
integrate diverse devices. illustrates the topology of a
typical BACnet network, which consists of a BAS workstation,
routers, and various BACnet devices:

e BAS Workstation: The workstation runs the central manage-
ment software responsible for configuring, monitoring, and
diagnosing BACnet field devices. It serves as the operator’s
interface and, in secure deployments, communicates with the
network over BACnet/SC through the Secure Hub, which acts
as a message broker for encrypted communication.

e Router: BACnet routers act as protocol bridges between
heterogeneous network segments. Specifically, SC-IP routers
translate secure WebSocket-based BACnet/SC traffic into
BACnet/IP, while IP-MS/TP routers translate BACnet/IP traf-
fic into MS/TP.

e BACnet Devices: These devices include sensors, actuators,
and controllers that implement BAS functions over different
data link layers, most commonly BACnet/IP and MS/TP.
These field devices perform automation tasks in response

Uhttps://github.com/isZzzz/BACsFuzz,

https://github.com/isZzzz/BACsFuzz

BACnet Layers

?]AC BACnet Application Layer

{"'\/\\ BACnet Network Layer
NG

«
150 8802-2(1EEE 802.3) e/ = BVLL B Bz1L BVLL
Type 1 (AnnexJ) (Annex U) (Annex AB)

LonTalk

150 8802-3 5
(IEEE 802.3) ARCNET EIA-485 EIA-232 1Pva 1Pv6 ZigBee WebSocket

0SI Model

Overlay Model

Fig. 2: BACnet Architecture. (Note: The concept of overlay is
introduced by the authors and does not exist in the specifica-
tion.)

to control commands from the management software and

transmit operational data through the network.

This represents the most recent secure BACnet network
topology enabled by BACnet/SC. However, in real-world
deployments, most systems include only the management
software, IP-MS/TP routers, and BACnet devices—without
implementing the full secure infrastructure.

B. BACnet Protocol Architecture

BACnet adopts a four-layer architecture consisting of the
Physical, Data Link, Network, and Application layers, and
also can work as an overlay over other protocols as illustrated
in [Figure 2]. The color shading indicates typical protocol
groupings across layers, tailored for different deployment sce-
narios. To support diverse networking environments, BACnet
operates atop existing communication technologies through
protocol overlays. For example, BACnet over IPv4 is referred
to as BACnet/IP, over IPv6 as BACnet/IPv6, over ZigBee as
BAChnet/ZigBee, and over secure WebSocket as BACnet/SC.

e The Application Layer provides the communication ser-
vices required by the applications to perform their functions,
such as monitoring and control of HVAC&R.

e The Network Layer provides the translation of global
addresses to local addresses, routes messages through one
or more networks, and accommodates differences in network
types and maximum permissible message sizes.

e The Data Link Layer organizes data into frames and
regulates access to the medium. BACnet supports multiple
protocols, with MS/TP being one of the most commonly used
for inter-device communication [7]].

e The Physical Layer provides a means of connecting the
devices and transmitting the signals that convey data.

BAChnet utilizes Protocol Data Units (PDUs) for network
communication, encapsulating data and control information for
transmission across various layers:

e Application Protocol Data Unit (APDU): Located at the
application layer, the APDU manages application-specific
messages, such as requests to read or write device attributes,
facilitating communication between devices.

e Network Protocol Data Unit (NPDU): Operating at the
network layer, the NPDU encapsulates the APDU and incor-

BACnet/SC Packet
[]
Data TLs- BACnet
Physical | Link IP TCP Virtual
WebSocket| ~ .
Layer | Layer |Header |Header Link
Header
Header Control

BACnet | BACnet
NPDU | APDU

TLS-Secured Data

Fig. 3: BACnet/SC Packet Structure.

porates addressing and routing information, ensuring proper
delivery across local and wide-area networks.

e Link Protocol Data Unit (LPDU): At the data link layer,
the LPDU encapsulates the NPDU, managing framing and
transmission across various physical media. In BACnet/IP,
the BACnet Virtual Link Control (BVLC) handles this role
over IP networks, while in MS/TP, the LPDU manages
physical connections, framing, and error control.

e Physical Protocol Data Unit (PPDU): Situated at the
physical layer, the PPDU encapsulates the LPDU and rep-
resents the actual transmission signals, whether electrical
or wireless, that carry the higher-layer units through the
network’s physical media to complete data transmission.

Layering Ambiguity in the Specification: The classification

of lower-layer protocols in the BACnet standard is ambiguous

and potentially confusing. For example, IPv4 and WebSocket
are designated as physical layer protocols for BACnet/IP and

BACnet/SC, respectively. This classification likely reflects the

BACnet packet structure. As shown in [Figure 3}—based on

our experiments—BACnet/SC encapsulates a TLS-encrypted

BAChnet packet within a WebSocket payload. From BACnet’s

perspective, the WebSocket layer lies beneath the virtual link

control layer of BACnet/SC (i.e., its data link layer), and is
therefore treated as physical. A similar rationale applies to
classifying IPv4 under BACnet/IP. We clarify the architecture
in and treat BACnet/IP, BACnet/IPv6, BACnet/Zig-

Bee, BACnet/SC and LonTalk as overlay protocols since these

protocols run BACnet over underlay networks such as IP. We

have submitted a request to ASHRAE to clarify this layering
ambiguity.

III. MOTIVATION AND CHALLENGES

In this section, we outline the motivations, threat model, and
challenges. We also provide a brief summary of our solutions,
with detailed discussions deferred to

A. Motivation

Firmware analysis can reveal security vulnerabilities, but
is often impractical for mainstream BAS devices due to
proprietary constraints and hardware protections. Therefore,
we adopt black-box network fuzzing, which remains broadly
applicable. We observe that existing BACnet fuzzers exhibit
significant limitations in efficiency. As described in
management software typically communicates with field de-
vices through BACnet routers that convert BACnet/IP traffic to
MS/TP. For ease of deployment, most fuzzers inject mutated
BACnet/IP packets at the management software, relying on

routers to forward them downstream. However, this architec-
ture introduces two major bottlenecks: malformed packets may
be dropped by intermediates, and the MS/TP link imposes
severe throughput constraints. These issues significantly hinder
fuzzing coverage and effectiveness. To date, no solution has
effectively addressed these limitations. The most relevant prior
effort, BASE [5]], functions as a black-box random fuzzer.
Although it heuristically identifies sensitive fields, its effec-
tiveness is constrained by the semantic complexity of BACnet.
[ll-formed packets are often rejected silently, resulting in low
yield and long discovery times. Furthermore, while BASE
uncovered vulnerabilities in BAS devices, it lacked analysis
of the underlying protocol-level semantics that caused them.
In contrast, our work advances BACnet fuzzing by introduc-
ing a semantically guided approach tailored to the protocol
specification, enabling discovery of deeper and previously
overlooked flaws.

B. Threat Model

BACnet-based building automation systems are widely de-
ployed in large-scale environments such as offices, hotels, and
campuses. In such settings, hundreds to thousands of field
devices—including sensors, actuators, and controllers—are
installed throughout buildings and often remain operational
for decades without removal or rewiring. These devices are
typically located in inaccessible areas (e.g., ceilings, mechan-
ical rooms, rooftops), making it impractical to isolate or test
them individually in situ. To this end, our experimental setup
involves multiple concurrently connected devices on a shared
MS/TP network, mirroring real-world BAS architectures and
operating conditions. While we recognize the value of single-
device lab setups for component-level testing—and agree they
are preferable when feasible—our strategy is necessary for
penetration testing and offers greater flexibility.

We assume that the fuzzer has access to the MS/TP net-
work—a realistic condition in adversarial scenarios. While
most field devices are physically inaccessible, MS/TP inter-
faces are often exposed in semi-public locations (e.g., behind
wall-mounted panels in hotel rooms or inside breakout boxes
in conference facilities). An attacker with brief physical access
to such points could connect to the network and inject mal-
formed traffic, potentially affecting devices across zones. Im-
portantly, this setup is also critical for evaluating BACnet/SC
deployments. Complete systems feature end-to-end commu-
nication between the management software and field devices,
traversing components such as Secure Hubs, SC-IP routers, IP-
MS/TP routers, and MS/TP endpoints. Single-device lab setups
cannot replicate this layered architecture or reveal end-to-
end vulnerabilities. Although BACnet/SC encrypts BACnet/IP
traffic via WebSocket tunnels, the encrypted messages are
ultimately routed to field devices over MS/TP. We leverage this
architecture by injecting malformed packets at field devices
so that these packets can traverse the router chain in reverse
and encrypted channels, and reach BACnet/SC endpoints,
bypassing encryption with no need of a valid certificate and
exposing vulnerable components within BACnet/SC.

BACnet has a strict requirement for a secure network and
does not aim to protect against attackers already present on the
same network as the device. However, prior researchh [8], [9]],
[1O] has demonstrated that once an attacker gains access to a
BAS network, they can exploit network-level vulnerabilities
to control devices using normal commands. The vulnerabil-
ities uncovered through our fuzzing efforts are system- and
implementation-level flaws that persist even in security deploy-
ments, thereby significantly complementing existing work.

C. Challenges and Solutions

We now outline the challenges (C) we encountered and the
solutions (S) we devised to overcome them.
(C-1) Complexity in BACnet Message Field Mutation.
BACnet messages typically consist of over 30 fields. Assuming
each field’s data type is a byte (with a value range of O-
O0xFF), the mutation space for an entire message can reach
256%0. Traversing all possible mutations across all fields is
computationally infeasible, necessitating the identification of
key fields for targeted mutation. Existing mutation strategies
primarily focus on well-defined fields, such as control com-
mands [11], [12] and syntax-related fields [5], which directly
affect protocol functionality. However, these approaches often
implicitly assume that field value definitions are clear and
complete, overlooking vulnerabilities arising from unclear and
incomplete value definitions. Such gaps can lead to implemen-
tation errors that existing methods fail to detect.
(S-1) Implicitly Reserved Field-Based Mutation Policy
(§IV-A) To address the challenges arising from protocol design
and implementation inconsistencies, we introduce a novel per-
spective on field mutation by focusing on implicitly reserved
fields—fields that are not explicitly significant in protocol
functionality but exhibit undefined or poorly specified value
ranges. Such fields can act as potential attack vectors, as their
undefined nature often leads to implementation inconsistencies
or errors. Our strategy systematically identifies these fields
and develops targeted test cases to explore their impact. To
facilitate testing, we leverage specialized APDUs for error
handling, enabling controlled violation scenarios to probe
the protocol’s error-handling mechanisms. By triggering these
APDUs through precise mutations, we can observe deviations
from expected behavior, thereby revealing weaknesses stem-
ming from improperly handled or incomplete value definitions.
(C-2) Low Data Throughput in Bus Networks. Higher
throughput—generating and testing more inputs per unit
time—is crucial for timely security assessments, as it increases
the likelihood of rapidly discovering vulnerabilities. However,
our analysis reveals that despite the fuzzer transmitting a high
volume of mutated packets at a rapid pace, only a small
fraction successfully reaches the bus network. Traditional bus-
based Industrial Control System (ICS) protocols, such as Mod-
bus, can process hundreds of packets per second [13], while
CAN can handle thousands [14]. In stark contrast, the MS/TP
protocol processes only a few packets per second, making
it significantly slower. This throughput limitation becomes
increasingly pronounced as the number of devices connected to

the bus network increases, further exacerbating the bottleneck.
These challenges underscore the urgent need for a comprehen-
sive analysis of the factors constraining throughput.

(S-2) Token-Seize-Assisted Throughput Optimiza-
tion(§IV-B) To address low throughput in bus networks, we
analyzed the MS/TP protocol and identified the token-passing
mechanism as the primary bottleneck. This mechanism
enforces a single-token policy, where only one token exists on
the network at any given time. The token-holding device is the
only one permitted to initiate requests, while all other devices
must compete for the token, causing throughput limitations.
Our analysis uncovered an exploitable protocol behavior:
If the token-holding device detects network activity from
another device—such as when a malicious device transmits
data without holding the token—it erroneously assumes the
presence of multiple tokens and relinquishes its own token to
maintain network integrity. By exploiting this behavior, the
fuzzer can seize and retain the token, monopolizing network
resources for continuous and rapid data transmission.

(C-3) Black-Box Nature in Monitoring Fuzzing Status.
Effective fuzzing requires precise monitoring of the target
device’s execution state for reliable exception detection. How-
ever, the diversity and proprietary nature of hardware and
firmware introduce variability in responses to erroneous inputs,
complicating robust monitoring. Traditional techniques [11],
[12] often rely on device liveness checks to monitor DoS.
While effective for identifying DoS, these methods fail to
detect logical vulnerabilities that violate protocol semantics.

(S-3) Byte Stream Format-Oriented Field Consistency Ver-
ification(§IV-C) To address the limitations of traditional mon-
itoring approaches, we analyze the target device’s response
packets directly, leveraging the unique characteristics of the
BACnet message format. BACnet messages are transmitted
as a continuous byte stream, where the position and value
of fields are critical for correct parsing and interpretation.
Our method defines the expected positions and valid value
ranges of fields in response packets based on the BACnet
specification. Comparing actual field values to their expected
ranges reveals flaws, such as violations of protocol semantics.

IV. BACsFuzz DESIGN

As shown in[Figure 4 BACSFUZz is designed to accelerate
fuzzing and evaluate the impact of implicitly reserved fields
on devices. First, BACSFUZz employs an implicitly reserved
field-based mutation policy (referred to as the mutation policy)
to optimize input generation by identifying such fields and
linking them to protocol-defined error-handling mechanisms
(§IV-A). Once inputs are generated, BACSFUZZ leverages
token-seize-assisted throughput optimization (referred to as
throughput optimization). This is achieved by bypassing the
token-passing mechanism (§[V-B)), effectively exploiting key
protocol behaviors and significantly improving throughput.
This optimization allows BACSFuzz to test various muta-
tion strategies efficiently, revealing that implicitly reserved
fields can lead to major security issues in BACnet. Finally,
BACsFuzz incorporates byte stream format-oriented field

§4.1 Mutation Policy §4.27 Optimizatic

@NEntRmelEickislD GA;Iy;ng_Th;ug?pl;) /. ______

— [Str|[str]str]fstr] . @
=3 @ Iii T Jol

=[] lo o o |
T @r@ggtirgsﬁuatic;) ﬂa@a
___I"Mapping Errors) \ e N
______ ! - i -
[S,"]40 [S}r]a“ i Ry A | G.Validating Responses)
[[FOET-@ | R)
! ! i ~ T T T T -~ } |’~’ ‘ W
i N iii.Optimizing States) |
|

T T
N iii.Generating Inputs

Generated d Inputs Ent

d Fuzzing Throughp B

Vulnerability Reports
Fig. 4: Architecture of BACSFuzz.

consistency verification (referred to as consistency verifica-
tion), which defines expected response patterns based on the
protocol specification (§IV-C). Deviations from these patterns
are flagged as anomalies, enabling vulnerability detection.

A. Mutation Policy

The mutation policy explores the BACnet field mutation
space. By focusing on implicitly reserved fields—those under-
or partially defined—it targets implementation ambiguities
and evaluates the robustness of error-handling mechanisms.
Specifically, these implicitly reserved fields are characterized
by incomplete or undefined value ranges in the BACnet speci-
fication. Such under-specification can lead to boundary checks
being overlooked, potentially exposing security vulnerabilities.
To illustrate how these fields are classified, consider a one-byte
field that can be divided into three categories:

e Fully Defined Fields: These fields utilize the entire value
range (0-0xFF). For example, as shown in the
Hop Count field, specified on Page 57 of the BACnet
specification [4] in Section “6.2.3 Hop Count”, is designed
to occupy one byte (8 bits). The specification restricts its
values to the range of 0 to OxFF.

Explicitly Reserved Fields: These fields explicitly define
reserved values (e.g., 0x80—-0xFF) alongside currently used
values (e.g., 0-0x7F), thus covering the entire value range.
For instance, as specified in Section “6.2.4 Network Layer
Message Type” on Page 57 of the BACnet specification [4],
the Message Type field is one octet and specifies all pos-
sible values, including currently used values (0-0x09, 0x12,
0x13) and reserved ranges (0x0A-0x11, 0x14-0xFF).

Implicitly Reserved Fields: These fields define only a
portion of the value range (e.g., 0-Ox7F), leaving the
remainder (e.g., 0x80-0xFF) undefined. For example,
the SLEN field in Section “6.2.2 Network Layer Protocol
Control Information” (Page 55 [4]) occupies one octet
(0-0xFF) but only accepts the values 0x01, 0x02, 0x03,
and 0x06. Fields with completely undefined value ranges
also fall into this category. For instance, the DADR and

TABLE I: Partial Field Analysis Results for NPDU.

TABLE II: Some Error Codes in Protocol Implementation.

Field Len. Range Spec. Val. Category Type Error Field Error Code Description
Version 8 [0x0,0xFF] 0x1 Implicitly Reserved 1 buffer-overflow
NSDU 1 [0x0,0x1] [0x0,0x1] Fully Defined 2 inconsistent-parameters
Reservedl 1 [0x0,0x1] 0x0 Explicitly Reserved 3 invalid-parameter-data-type
Des. Spec. 1 [0x0,0x1] [0x0,0x1] Fully Defined 4 invalid-tag
Reserved2 1 [0x0,0x1] 0x0 Explicitly Reserved . . 5 missing-required-parameter
Src. Spec. 1 [0x0,0x1] [0x0,0x1] Fully Defined BACnet-Reject-PDU reject-reason 6 parameter-out-of-range
Exp. Reply 1 [0x0,0x1] [0x0,0x1] Fully Defined 7 too-many-arguments
Priority 2 [0x0,0x3] [0x0,0x3] Fully Defined 8 undefined-enumeration
DNET 16 [0x0,0xFFFF] [0x1,0xFFFF] Implicitly Reserved 9 unrecognized-service
DLEN 8 [0x0,0xFF] [0x0,0x3],0x06,0x07 Implicitly Reserved 10 invalid-data-encoding
DADR / / / Implicitly Reserved -

SNET 16 [0xO,0XFFFF] [Ox1,0xFFFE] Implicitly Reserved 4 segmentation-not-supported
SLEN 3 [0x0,0xFF] [0x1,0x3],0x06 Implicitly Reserved BACnet-Abort-PDU abort-reason 7 window-size-out-of-range
SADR / / / Implicitly Reserved 1 apdu-too-long
Hop Count 8 [0x0,0xFF] [0x0,0xFF] Fully Defined

Message Type 8 [0x0,0xFF] [0x0,0xFF] Fully Defined

Vendor ID 16 [0x0,0xFFFF] / Implicitly Reserved

“/”: not defined in the protocol specification.

SADR fields in Section “6.2.2.2 DADR and SADR Encoding”
(Page 56 [4]]) are not specified with any value information.

To mitigate potential issues, BACnet introduces redundancy
mechanisms, including a general error-handling framework to
manage invalid field values. However, device manufacturers
may not fully or correctly implement these mechanisms
due to misinterpretation of the specification or oversight
of undefined value ranges, leading to unexpected device
behavior or security vulnerabilities. Consequently, assessing
the completeness of error-handling implementations across
devices is critical. The specification defines several APDUs,
including BACnet-Reject-PDU, BACnet—-Abort-PDU,
and BACnet-Error-PDU, which notify the sender
when a request is invalid. These APDUs serve as observable
indicators, revealing whether a device has internal mechanisms
for managing such errors. Each APDU includes an associated
error code (as shown in that specifies the nature of
the error, but not all fields can trigger every type; different
fields activate only specific subsets of these errors.

To identify implicitly reserved fields, we employ a Large
Language Model (LLM) to extract structural field definitions,
including length, value ranges, and reserved indicators. We
manually verify the LLM-generated results for both accuracy
and completeness, achieving 95.77% correctness (Figure 10),
and further analyze misclassified cases. Details of the LLM-
based extraction methodology and its evaluation are provided
in For each implicitly reserved field, we first
identify the specific error types it can trigger based on the
specification. If a field is linked to one or more error types,
we deliberately mutate its value to provoke these errors
and observe how the device responds. For fields with no
associated error types, we inject values outside their defined
range to assess how the device processes undefined inputs.
Since vulnerabilities can emerge from interactions among
multiple fields, testing them in isolation may overlook such
compound effects. To address this, we iteratively mutate com-
binations of fields and monitor device behavior under these
compound input conditions. Although devices typically return
only a single error code—often corresponding to the first fault

D Fully Defined D Explicitly Reserved D Implicitly Reserved

Preamble |Frame Type De;;g‘fits':n :g;:::s Length |Header CRC‘
MS/TP
Data Data CRC
Version NSDU Reserved1 Destln.a.tlon Reserved?2 S°“T°.e
Specifier Specifier
NPDU Expecting
Priority SNET SLEN SADR APDU
Reply
APDU Segmented More Segmented Reserved3 Max
Type Request Segments | Accepted Segments
APDU Max Invoke Sequence | Proposed Service Object
Accepted ID Number Size Choice Identifier
Property
Identifier

Fig. 5: Field Identification in ReadProperty Requests.

encountered—this approach still enables the detection of inter-
field vulnerabilities that would otherwise remain hidden.

For example, as shown in[Figure 5] the ReadProperty re-
quest must include two parameters: Object Identifier
and Property Identifier. The correct data type for
Object Identifier is BACnetObjectIdentifier.
To evaluate the device’s error-handling for incorrect
data types or missing parameters, we design two cases:
First, we construct a ReadProperty request where
the Object Identifier is erroneously set to the
BACnetPropertyIdentifier. We expect the device to
return a BACnet-Reject-PDU with error code = 3
(invalid-parameter-data-type). Failure to do so indicates a
weakness in handling parameters with incorrect types. Second,
we construct a ReadProperty request with the Object
Identifier parameter deliberately omitted. We expect
the device to return a BACnet—-Reject-PDU with error
code = 5 (missing-required-parameter). Failure to do so
reveals a deficiency in handling missing required parameters.

B. Throughput Optimization

The throughput optimization addresses performance
bottlenecks inherent in BACnet’s token-passing mechanism.
By eliminating inefficiencies like token waiting and idle
states, it accelerates data transmission for rapid execution of
fuzzing test cases. Specifically, the MS/TP data link layer,
based on the EIA-485 physical standard, operates under a

2 & Ed B

9 Data Expecting Reply
@Data Not Expecting Reply

A S S S S e RS eSS e e

9 Poll Master
p ¥ T O

O rolliMaster
9 Reply Poll
@ Token
o Poll Master
@ Reply Poll
9 Token

@ Data Expecting Reply
@ Data Not Expecting Reply

@ Poll Master
@® Reply Poll

@ Token

Fig. 6: Token-Passing Process.

Master-Slave architecture with a token-passing mechanism
to regulate network access. The MS/TP network supports up
to 255 devices, with master nodes E] assigned addresses in
the range 0 to 0x7F, and slave nodes from 0x80 to OxFF.
The core feature of this mechanism is the foken, a unique
privilege identifier that ensures fair access by allowing only
the token-holding master node to initiate data transmissions.
A token-holding master node may transmit up to OxFF data
frames before passing the token to the next master node.
Both master and slave nodes must transmit data frames in
response to requests from master nodes. Since slave nodes
are not permitted to hold the token, MS/TP allows them to
reply immediately upon receiving a request. Likewise, master
nodes may respond without needing to reacquire the token.
MS/TP defines five standard frame types. Two frames,
BACnet Data Expecting Reply and BACnet Data
Not Expecting Reply, are used for data transmission,
while the other frames are essential for network coordination.
The token-holding master node determines the next token
recipient by transmitting a Token. After completing data
transmission, the master sends a Poll For Master to
identify the next eligible master node. Upon receiving a
Reply To Poll For Master from another master node,
the token is transferred to that node. Consider a scenario in an
MS/TP network with master nodes A, C, and D, as illustrated
in Node A sends a request to node C while holding
the token (Step 1). Node C, although not holding the token,
can respond to the request (Step 2). After completing its data
transmission, node A sends a Poll For Master to node
B to determine if it requires the token (Step 3). If node B
is absent and does not respond, node A continues polling
subsequent addresses until reaching node C (Step 4). Even
if node C has no data to transmit, it must respond with a
Reply To Poll For Master, after which node A passes
the token to it (Steps 5-6). Node C then polls the next node

2The term “node” is used to refer to “device” in the specification [4].
Therefore, these terms are used interchangeably.

D (Steps 7-9). After node D finishes its data transmission
(Steps 10-11), it continues polling until reaching address
0x7F, then wraps around to start polling from address 0. This
cycle repeats until node A responds with a Reply To Poll
For Master, regaining the token (Steps 12-14). While the
token-passing mechanism ensures fair access, it introduces
throughput limitations. Even in this simplified scenario with
only three master nodes, the mechanism introduces significant
delays—only 4 out of 14 steps involve actual data transmission
(Steps 1, 2, 10, and 11). In real-world networks, where up to
127 master nodes can be present, these delays are exacerbated,
leading to severe throughput inefficiencies.

The token-passing mechanism ensures that only one token
exists on the bus network at any given time, preventing
collisions and ensuring orderly communication. Each node
operates under a Master Node Finite State Machine (MN-
FSM), which governs its behavior and status, as shown in
To maintain network stability, the MNFSM includes
a SilenceTimer to monitor periods of network silence. Ac-
cording to the specification, if a master node without the
token detects prolonged silence, it assumes the token is lost
and autonomously generates a new one. To prevent multiple
tokens from existing simultaneously, the MNFSM ensures that
a token-holding master node relinquishes its token if it detects
data transfers from other nodes (as data transfer can only
occur when the token is held). However, if a (malicious)
node continuously sends data, it can force the token-holding
node to relinquish its token. As per the specification, nodes
without the token assume it is still in use and continue
waiting for it to be passed. Due to the (malicious) node’s
persistent data transmission, the token is never passed to the
waiting nodes, leaving them unable to generate a new token
or participate in normal communication. provides
detailed information on the impacted node.

This protocol behavior presents unique opportunities for
fuzzing. In this context, the goal of fuzzing is to continuously
seize the token and inject malformed inputs. By exploiting this
behavior, a fuzzer can bypass the token-waiting process with-
out disrupting responses from target devices, thereby ensuring
uninterrupted network activity and maximizing throughput.
To leverage this, we developed a simulator that bypasses
routers to directly interact with MS/TP devices. The simulator
optimizes the MNFSM to force token-holding nodes to
relinquish their tokens, preventing other nodes from acquiring
or generating a new token. As a result, the remaining nodes
are locked in a perpetual waiting state, enabling the fuzzer to
maximize throughput and significantly improve efficiency.
Step (I): Simulated Device Integration. We first implement
a simulated device that directly connects the fuzzer to BACnet
nodes. As discussed in traditional BACnet commu-
nication typically involves routers that translate BACnet/IP
packets into MS/TP packets, introducing unnecessary com-
plexity and overhead during fuzzing. By simulating direct
MS/TP connections with our fuzzer, we eliminate router
dependencies, simplifying the fuzzing process. Specifically,
our setup uses open-source projects such as bacnet-stack [[15]]

O Desired States
O Irrelevant States

O Undesired States
— Transitions in the Original State Machine
D .

-~ Transitions Requiring Adj

N ReceivedPFM
ReceivedUnwantedFrame

ReceivedlnvalidFrame ReceivedDataNoReply

ReceivedDataNeedingRepl,
IDLE) Reply’

BroadcastDataNeedingReply
RetrySendToken

FOR SendMaintenancePFM
MASTER NextStationUnknown TOKEN

Sol

leMasterRestarMaintenancePFV endAnotherFrame
SoleMaster
oleMaster

SendNextPFM De(‘lxreSoleMaster

Fig. 7: Master Node Finite State Machine.

and BACpypes [[16], installed on a computer to handle BACnet
communication across all protocol layers. This allows for
comprehensive simulation of BACnet operations. Access to
the bus network is established via a USB-to-EIA-485 adapter,
which converts USB signals into bus-level signals and allows
the fuzzer to function as a legitimate BACnet device.

Step (II): State Machine Optimization. This step enhances
the state machine by prioritizing states essential for the
fuzzer’s operation, thereby improving throughput. The states
are organized into three categories:

1) Desired States. Desired states are those that the fuzzer must
maintain to ensure maximum throughput.

o INITIALIZE: Configures node settings on reset or power-
up, establishing parameters for network communication.

e USE_TOKEN: Enables the node to transmit data frames,
maintaining token control for uninterrupted transmission.

e WAIT _FOR_REPLY: Pauses operations to receive re-
sponses, which are critical for managing expected com-
munication. This state allows the fuzzer to analyze target
device feedback, informing subsequent actions.

2) Irrelevant States. Irrelevant states do not contribute to the
effectiveness of fuzz testing.

e [DLE: Waits for incoming frames when the node lacks
the token, determining the next steps based on frame type.
Since the fuzzer continuously sends data without needing
token possession, this state is redundant.

e NO_TOKEN: Activates when no network activity is de-
tected, potentially generating a new token. As the fuzzer

runs continuously without token, this state is unnecessary.

o ANSWER_DATA_REQUEST: Responds to frames that re-
quire a reply to maintain network communication. Since
the fuzzer initiates requests requiring responses from other
devices, this state is redundant.

3) Undesired States. Undesired states hinder the fuzzing
process and should be avoided to maintain effectiveness.

e POLL_FOR_MASTER: Monitors responses to node
polling to identify or verify nodes on the network. Min-
imizing this state helps prevent network resets or token
reassignments, thereby stabilizing token control and im-
proving fuzzing performance.

e DONE_WITH_TOKEN: Decides whether to pass the token
or initiate a poll. Eliminating this state aligns with the
goal of maintaining continuous token possession, thereby
enhancing fuzzer performance.

e PASS_TOKEN: Manages token passing to the next node
to ensure equitable network access. Removing this state
guarantees uninterrupted token control by the fuzzer.

Adjustments to the state machine are critical for efficient
data transfer. Directly transitioning from INITIALIZE to
USE_TOKEN bypasses the initial IDLE state, expediting the
initiation of fuzzing activities. In the USE_TOKEN state, the
node either remains or transitions to WAIT _FOR_REPLY,
depending on whether a reply is required. After receiving
a reply, the node immediately returns to USE_TOKEN,
maintaining seamless and uninterrupted operation.

C. Consistency Verification

The consistency verification method ensures the accuracy of
protocol implementations by systematically analyzing device
responses. It derives expected field positions and values from
the specification, flagging any deviations as potential vulnera-
bilities. Specifically, the BACnet protocol utilizes a byte stream
format for message transmission. Unlike structured formats
such as JSON or XML—where fields are explicitly separated
and identifiable using tags or magic words—BACnet messages
adopt a continuous byte stream format. In this format, the
position and value of each field are critical for accurate parsing
and interpretation. Modifications, deletions, or insertions of
fields can significantly alter the interpretation of subsequent
bytes. We observe that errors or discrepancies in field ordering
can propagate through the byte stream, disrupting downstream
fields, as BACnet messages are parsed sequentially from start
to end. For example, an error in the first byte may compromise
the interpretation of the entire message, while an error in the
penultimate byte can affect the final byte, potentially triggering
a cascade of failures. This error propagation highlights the
importance of strict adherence to byte positioning and field
values. If the protocol implementation is flawed, such modifi-
cations can initiate a chain reaction, leading to parsing failures
or deviations from expected behavior.

To leverage this feature, we define the expected positions
of fields (e.g., identifiers and sequence numbers) in response
packets, emphasizing fields that must maintain consistent

values between requests and responses. For each field, a
valid value range is strictly defined based on the protocol
specification. By comparing the actual values at these positions
in the response to the expected ranges, any deviations are
flagged as potential implementation errors or non-compliance.
If no response is received, it is classified as a potential DoS.
For instance, the specification requires the Version field to
be 0x01, and the APDU Type field to fall between O and
0x07. Discrepancies in these values may indicate vulnerabil-
ities or errors in the protocol’s implementation. To validate
an exception, we replay the exploit packet multiple times
and observe the resulting behavior. If anomalous responses
persist across repeated attempts, the exception is confirmed as
a potential vulnerability.

V. EVALUATION

In this section, we introduce the experimental setup and
present the evaluation to address the following five questions:

e RQ1: Can BACsFuzz effectively uncover vulnerabilities in
BAS implementations?

e RQ2: To what extent does BACSFUZz enhance fuzzing
throughput compared to SOTA approaches?

e RO3: What is the contribution of each BACSFUZZ compo-
nent to efficient vulnerability discovery?

e RO4: How does BACSFuzz perform in terms of detection
capability compared to existing tools?

e RO5: Are the vulnerabilities caused by implicitly reserved
fields generalizable to other BAS protocols?

Convenonal BACnet testbed

BACnet/SC testbed

Fig. 8: BACnet Devices Used in Our Experiments.

A. Experiment Setup

We implement a prototype of BACSFUZz using bacnet-
stack [13]], BACpypes [16l, and Misty [17)], with the latter
serving as a bridge between bacnet-stack and BACpypes to
facilitate seamless integration. Our implementation follows
the ISO 16484-5 specification [4] for BACnet. For KNX,
we develop a generation-based fuzzer grounded in the KNX

Standard v3.0.0 [18]. Field analysis is supported by the
ChatGPT Team as the underlying LLM. Our setup includes
an Ubuntu workstation with a 2.80 GHz Core i7 CPU, 16 GB
of RAM, and a USB-to-EIA-485 adapter to interact with field
devices. We evaluate 20 widely deployed BAS devices from
9 leading manufacturers—6 of which rank among the global
top 10—providing representative coverage of the mainstream
BAS market [[19]. Each device was fuzzed for 10 hours while
monitoring for potential vulnerabilities (see [Figure §).

B. Vulnerability Detection in Devices (RQI)

After analyzing and deduplicating the observed anomalies,
BACsFuzz successfully uncovered 26 previously unknown
vulnerabilities across 20 BAS devices, as summarized in
Among these, 8 vulnerabilities were found in 5
KNX devices (see §V-F), demonstrating the generalizability
of our approach to other BAS protocols. For the BACnet
evaluation, BACSFuUzz identified 18 vulnerabilities across
15 distinct implementations. All findings were responsibly
disclosed to the respective manufacturers. Seventeen BAC-
net vulnerabilities have been confirmed, with nine assigned
CVEs: CVE-2024-4292, CVE-2024-4511, CVE-2024-4791,
CVE-2024-9787, CVE-2025-0xxx, CVE-2025-0xxx, CVE-
2025-24510, CVE-2025-40555, and CVE-2025-40556. The
evaluated devices span diverse link layers and device types.
To illustrate the security implications of these vulnerabilities,
we present three detailed cases (CS).

(CS-I) Command Injection Attacks against PPM: PPM-
1U32.BPF devices are expansion I/O modules that bridge
sensors and actuators in BAS networks. They collect input
signals and manage output commands, playing a central role
in control logic. Using BACSFuzz, we discover that mu-
tating the SLEN field to an out-of-spec value triggers an
exception in the PPM. Rather than discarding the malformed
message, the PPM constructs and transmits a new packet,
using a specific byte in the original APDU as the destination
address. Crucially, the forwarded packet is generated by the
PPM itself and conforms to BACnet packet formatting. For
example, if BACSFuzz (address 0x37) sends a message
to the PPM (0x01) with a specific APDU byte set to
0x04—the address of an alarm actuator—the PPM constructs
and forwards a packet containing attacker-controlled data (e.g.,
0x567...FF) to device 0x04. This enables BACSFuzz to
indirectly issue arbitrary commands to downstream devices via
a trusted intermediary. Experiments show that the target device
accepts the relayed command without validation, as MS/TP
lacks peer authentication. This vulnerability could allow an
attacker to manipulate the I/O module, potentially disrupting
legitimate control flows. For example, a maliciously crafted
packet might exploit the PPM’s behavior to suppress alarm sig-
nals. Such interference with sensor-actuator coordination could
result in unauthorized access or delayed critical responses,
thereby increasing operational risk.

(CS-II) DoS Attacks against BASRT-B: Following a similar
approach, we evaluate the BASRT-B, a router bridging BAC-
net/IP and MS/TP. When the fuzzer sends a malformed packet,

TABLE III: Vulnerability Detection Result by BACSFuzz.

Device Type Device Model Manufacturer Protocol Firmware Version Vulnerability Type

v(V1) DoS
1 Router BASRT-B Contemporary Controls MS/TP & BACnet/IP 272 v(V2) DoS

V(V3) DoS
2 Router HMI1002-ARM Sunfull Automation MS/TP & BACnet/IP 2.04 v(V4) BOF
3 Controller PXC163-UCM.A Siemens MS/TP PAACV3.3 BAChetd.3g sggz Unkng‘;i

v(V7) DoS
4 1/0 Module PPM-1U32.BPF Siemens MS/TP Digital PPM V1.00 v(V8) Unknown

v (V9) CI
S Controller ATEC 550-440 Siemens MS/TP BZ39 Rev 2.0 “;gi(g ggg
6 Controller Pub6438s Honeywell MS/TP 1.00 (build 9b) v (V12) LE
7 1/0 Module VYKON 10-22U Honeywell MS/TP 1.2.00 X /
8 Controller VMA1632 Johnson Controls MS/TP 6.2.0.1054 X /
9 Controller DFM-B800 Delta MS/TP 1 v/(V13) Unknown
10 Controller Zone Controller Company X MS/TP ok v/ (V14) DoS
11 Controller PXC4.E16 Siemens BACnet/IP 02.20.152.15 X /
12 Controller PXC36.E.A Siemens BACnet/IP EX36V3.3 BACnet4.3g v/(V15) Unknown
13 Router BACnet Router Company X BACnet/IP & BACnet/SC ok v/ (V16) DoS
14 Software BMS Company X BACnet/SC ok v(VI7) DoS
15 Software Secure Hub Company X BACnet/SC ok v/ (V18) DoS
16 Router Secure N 146/03 Siemens KNX IP & KNX TP V3 & V4 “;EX%; pnown
17 Interface Secure N 148/23 Siemens KNX IP & KNX TP V4 v(V21) Unknown
18 Interface IPS/S3.1.1 ABB KNX IP & KNX TP 01 v/(V22) Unknown
19 Router BNIPR-00/00.S GVS KNX IP & KNX TP 0.1.19 “:gﬁ; Dos
20 Interface BNIP-00/00.S Gvs KNX IP & KNX TP 17.8 “;g% Pos

Note () Sensitive information for entries #10, #13, #14, and #15 has been anonymized at Company X’s request, in line with their disclosure preferences.

Note (i) AJ] yylnerabilities, except for V13 and V22 (which are still under investigation), have been confirmed by the respective manufacturers.

Note (i) “DS” denotes Denial-of-Service, “BOF” denotes Buffer Overflow, “CI” denotes Command Injection, and “LE” denotes Logic Error. The
“Unknown” category refers to vulnerabilities where abnormal behavior was observed during testing, but the underlying cause (e.g., BOF or LE)
could not be determined. This is mainly due to the lack of access to device firmware, which prevents in-depth analysis. Furthermore, as of the
submission date, the corresponding manufacturers had not yet provided clarifications regarding the root causes.

 The firmware version field was left blank because the information was unavailable or undisclosed.

the router enters a fault state and becomes unresponsive. The
only recovery method is a manual power cycle—physically
unplugging and reconnecting the device. Until then, the router
stops forwarding all traffic, resulting in a persistent DoS.
Upon investigation, we find that this vulnerability stems from
the implicitly reserved field Service Choice. Each device
declares supported services by specifying the valid range of
this field. Injecting a specific unsupported value triggers the
crash. An attacker could exploit this flaw to paralyze rout-
ing functionality, severing communication between IP-based
systems and MS/TP field devices. For example, safety-critical
sensors—such as gas or smoke detectors—communicate via
MS/TP and rely on routers to relay alerts to supervisory
systems. A router crash would break this channel, potentially
delaying emergency responses and increasing safety risks.

(CS-III) DoS Attacks against BACnet/SC: BACsFuzz
demonstrates its ability to affect BACnet/SC deployments
without a valid certificate. As shown in the BAC-
net Management Software (BMS) (#14) connects to a Se-

10

cure Hub (#15), which routes messages through an SC-IP
Router (#13) and an IP-MS/TP Router (#1) to reach the
Zone Controller (#10), an MS/TP field controller. In nor-
mal operation, messages follow the path: BMS — Secure
Hub — SC-IP Router — IP-MS/TP Router — Zone Controller.
While BACnet/SC secures BACnet/IP traffic via WebSocket
tunnels, this protection ends at the IP-MS/TP Router and
does not extend into the MS/TP domain. Exploiting this
trust model, BACSFUZZ injects malformed MS/TP messages
with valid LPDU/NPDU frames that propagate upstream,
ultimately reaching the BMS without requiring certificate-
based authentication. Testing revealed a DoS vulnerability
in the BMS triggered by repeated malformed messages tar-
geting an implicitly reserved field. Specifically, the BMS’s
Device Object process crashed after encountering multi-
ple ArrayIndexOutOfBoundsExceptions, each caused
by malformed inputs. Internally, once a crash counter ex-
ceeded a threshold, the process was terminated, disrupting
management functionality. Given that the BMS is typically

responsible for device coordination and system monitoring,
such a DoS condition can impair supervisory control and
visibility. Notably, this attack does not require a valid cer-
tificate and bypasses BACnet/SC’s intended trust boundary—
highlighting a critical gap between encrypted IP channels and
the unprotected MS/TP domain. While the vulnerability does
not cause an immediate full-system failure, it reveals how
adversaries may exploit architectural boundaries to degrade
availability in BACnet/SC deployments.

C. Throughput Improvement (RQ2)

To evaluate the effectiveness of BACSFUZZ in improving
fuzzing throughput, we conducted controlled experiments with
seven out of ten devices that support the MS/TP data link layer.
Device #1, functioning as a router to establish the experimen-
tal environment, was excluded from the experimental goals.
Device #9, an MS/TP slave node that does not participate in
token-passing, was also excluded. Additionally, Device #10
was reserved for other experiments and thus excluded from
this evaluation. For the control group, we employed a method
similar to BASE [3]], a SOTA tool for fuzzing BACnet. In this
setup, mutated BACnet/IP packets were generated by the man-
agement software and transmitted to the router (Device #1),
which then forwarded them to the target BACnet devices. In
contrast, the experimental group utilized our simulated device
with an optimized state machine to send packets directly. In
BAChnet networks with multiple devices, a significant portion
of time is often consumed acquiring the token rather than
transmitting packets (see §[V-B). To simulate such challenging
scenarios, we incrementally increased the number of devices
and measured the number of fuzzing packets successfully
processed by Device #3 within a fixed time frame based on the
responses received. A ReadProperty request is sent from
the fuzzer to the target device, with the fuzzer pausing to wait
for a response before issuing the next request. This request
type is chosen because most mutated packets fail to qualify
as valid BACnet-Confirmed-Request—-PDU packets and
therefore do not trigger device responses. As a result, the
fuzzer frequently waits for a timeout before proceeding to the
next iteration, which can significantly distort throughput mea-
surements. By contrast, using a valid ReadProperty request
ensures a response from the device, enabling a more accurate
assessment of throughput. We conduct experiments over three
time spans: 5 minutes, 10 minutes, and 30 minutes, resulting
in 42 experiments in total (i.e., 7 x 2 x 3). Based on the
experimental data, we first examine the throughput degradation
observed in BASE due to token seizing and how BACSFuzz
mitigates this issue, followed by a quantitative evaluation of
the throughput improvement provided by BACSFuzz.
Throughput Degradation in SOTA Approaches. We calcu-
late throughput changes relative to the single-device setup as
the number of devices increases, with the results summarized
in [Table TV] Even in the single-device setup, BASE requires a
router for packet delivery, introducing two nodes—the router
and the target—which already trigger token-passing. Similarly,
when a fuzzer connects directly to the target, the two still

11

TABLE IV: BASE Throughput Degradation Analysis.

Min. Type 2 vs.l 3 vs.l 4 vs.1 5 vs.1 6 vs.1 7 vs.1
s BASE -4T2% -1231% -2093% -28.52% -44.36% -5741%
- BACsFuzz 150% -1.56% 023% -035% 0.00% 0.02%
10 mi BASE -3.97% -12.66% -25.35% -3121% -48.37% -58.83%
M BACsFuzz 0.08% 0.04% 0.06% 0.09% -0.04% 0.08%
30min BASE 411% -13.59% -1948% -2983% -4745% -51.77%
BACSFuzz -130% 0.11% 0.13% 005% -1.06% -0.68%

TABLE V: BACSFuzz Throughput Improvement Analysis.

Min. Type 1dev 2devs 3 devs 4devs 5devs 6 devs 7 devs

BASE 1,357 1,293 1,190 1,073 970 755 578

5 min BACsFuzz 5,122 5,199 5,042 5,134 5,104 5122 5,123
L 277.45% 302.09% 323.70% 378.47% 426.19% 578.41% 786.33%

BASE 2,820 2,708 2,463 2,105 1,940 1456 1,161

10 min BACsFuzz 10,239 10,247 10,243 10,245 10,248 10,235 10,247
1 263.09% 278.40% 315.87% 386.70% 428.25% 602.95% 782.60%

BASE 8240 7,901 7,120 6,635 5,782 4330 3,480

30 min BACsFuzz 30,693 30,295 30,728 30,732 30,708 30,367 30,485
| 272.49% 283.43% 331.57% 363.18% 431.10% 601.32% 776.01%

ndevls) : number of devices in the MS/TP network.
. throughput improvement of BACSFUZz, compared to BASE.

form a minimal BAS network where token-passing remains
necessary. Nonetheless, thanks to BACSFuUzz’s strategy, high
throughput is preserved even in such minimal configurations.
As shown, BASE suffers significant throughput degradation as
the number of devices increases—dropping by 4.11% with two
devices and by 57.77% with seven devices over a 30-minute
period. In contrast, BACSFUZZz maintains stable throughput,
fluctuating within a ~2% range. Furthermore, our strategy is
essential for practical penetration testing scenarios and enables
flexible deployment across diverse BAS environments.
Throughput Improvement by BACSFUZZ. To evaluate the
improvement achieved by BACSFuUzz, we report the number
of exchanged packets in The comparison demon-
strates BACSFUZZ ’s superior performance in packet delivery.
Over a 30-minute trial, BACSFUzZz improves throughput
by 272.49% in the single-device setup and by as much as
776.01% when scaled to seven devices.

D. Ablation Study (RQ3)

To evaluate BACSFuzz ’s impact on vulnerability dis-
covery efficiency, we assessed several strategies: the Implic-
itly Reserved Field-Based Mutation Policy (S;y), the Token-
Seize-Assisted Throughput Optimization (S;,), and the Byte
Stream Format-Oriented Field Consistency Verification (Spy).
For comparison, we also included a random mutation strategy
(S;m) and a router-based transmission method (S,;). These
strategies were combined into different variants, each eval-
vated for its effectiveness in discovering vulnerabilities. For
instance, S;, , represents a combination of S;,, and S;,. Each
fuzzer variant incorporated Sp, to detect vulnerabilities. A
full list of possible variants is provided in Each
fuzzer variant was executed for 10 hours on the devices listed
in Devices corresponding to vulnerabilities V15-
V18 do not support native MS/TP, but can be reached via
intermediate routing (e.g., SC-IP and IP-MS/TP routers). To

TABLE VI: Number of Fuzzing Packets Needed to Expose
Vulnerabilities (Lower is Better)

Vuln. Sy v Srmto.bv Simrtpv Simito,by
V1 X X X 1,74
V2 28,705 75,264 5,344 6,668
V3 X X 91 53
V4 X X 5,28 288
V5 X X 113,599 26,524
Vo6 X 235,133 X 528
v7 X 19,612 X 70
A\ X 4,928 X 190
\'%A% X X X 365
V10 X X X 2,301
Vil X 66,614 X 309
V12 X X X 63
V13 X 780 X 146
V14 56,189 X X 4,707

X the vulnerability is not found.

TABLE VII: Comparison with BASE, AFLnet, and BooFuzz.

V1 V2 V3 V5 V7 V10 Vil V14 V16
BACsFuzz 174 6,668 53 26,524 70 2,301 309 4,707 146
BASE X 8521 X X X X X X X
BASE(S;,) X X X X 80,403 X 366,791 X X
AFLnet X X X X X X X X X
AFLnet (S;,) X X X X X X X X X
BooFuzz X X X X X X X X X
BooFuzz (S,,) X 16,067 X X 29,700 X X X X

ensure a fair comparison, Sy, was only applied to devices with
native MS/TP connectivity. Additionally, experiments were
conducted in a single-device configuration to prevent multiple
devices from influencing the performance of the router-based
transmission method. A 70 ms timeout, based on the average
50 ms response latency, was selected to balance responsiveness
and fuzzing throughput. The number of packets required to

trigger each vulnerability is summarized in [Table VI|

The results highlight the effectiveness of BACSFUZZ in en-
hancing vulnerability discovery. The Implicitly Reserved Field-
Based Mutation Policy (S;,) consistently outperforms baseline
strategies, uncovering more vulnerabilities with fewer packets.
This supports BACSFuzz’s hypothesis that implicitly reserved
fields are highly vulnerable. Complementing this, the Token-
Seize-Assisted Throughput Optimization (S;,) significantly im-
proves packet delivery speed and increases the likelihood of
triggering vulnerabilities by bypassing token-passing delays
and enabling continuous packet transmission. However, S;,
alone is limited by routing restrictions during BACnet/IP to
MS/TP conversion. Routers strictly validate NPDU fields such
as DNET, DLEN, and DADR to perform address resolution.
Mutated packets with malformed NPDU headers are discarded
before reaching the target device, even if their payloads are
valid. As a result, many effective test cases are lost in transit.
By combining S;, with S;,, BACSFUZZ bypasses the router
and delivers packets directly to field devices, eliminating
routing constraints and enabling unrestricted mutation across
the entire packet. This ensures that test cases reach their
destination and can execute fully. The synergy between S;,,
and S, is essential for uncovering deep-seated vulnerabilities
in constrained BACnet network environments.

12

E. Comparison with SOTA Fuzzers (RQ4)

We compared BACSFuzz with three most relevant SOTA
fuzzers: BASE [5], AFLnet [20], and BooFuzz [21]. BASE is a
BAS-specific fuzzer that probes packet structures without prior
protocol knowledge. AFLnet is a grey-box fuzzer that extends
AFL [22] to support network protocols, relying on source or
binary code for coverage guidance. BooFuzz is a black-box
fuzzing framework, and Fuzzowski [23] is a BooFuzz-based
tool targeting industrial protocols, like BACnet. However,
Fuzzowski is still under development.

To ensure a fair comparison, we extended and adapted these
tools as follows: (i) Since BASE is not open-source, we re-
implemented partial functionality based on its paper, manu-
ally specifying packet structures and applying its mutation
strategies. (ii)) We modified AFLnet to remove its reliance on
source code, enabling fuzzing with only response codes. (iii)
We followed the Fuzzowski approach to complete BooFuzz.
(iv) We enabled BooFuzz’s “fullrange” option, which tests all
possible field values. (v) Each tool was given tailored inputs:
AFLnet used a raw request corpus, and BooFuzz was config-
ured with precise BACnet packet structures. (vi) To overcome
BACnet router filtering, we integrated Token-Seize-Assisted
Throughput Optimization (S;,) into all tools, allowing direct
interaction with MS/TP devices. While BASE, AFLnet, and
BooFuzz are capable of detecting DoS vulnerabilities, they fail
to identify non-DoS vulnerabilities. Therefore, our comparison
focuses on DoS detection in devices. As shown in [Table VII|
BASE detected vulnerability V2 with 8,521 packets, while
AFLnet and BooFuzz failed to detect vulnerabilities in their
original configurations. After incorporating S;,, BASE(S;,)
detected vulnerabilities V7 (80,403) and V11 (366,791), while
BooFuzz(S;,) identified vulnerabilities V2 (16,067) and V7
(29,700). In comparison, BACSFUZzz detected all vulnerabil-
ities, including V2, V7, and V11, with far fewer packets.

A detailed analysis of the inefficiencies in existing fuzzers
reveals a common limitation: both AFLnet and BooFuzz face
issues with BACnet packets containing magic fields, such
as the length field, which indicates the total packet length.
Mutation strategies that modify these fields can inadvertently
create invalid packets, causing the target device to discard
them. Furthermore, each tool has its own set of limitations:
BASE identifies some magic fields, but these identifications
are often inaccurate, leaving many fields untested. BooFuzz
has a “fullrange” option that could theoretically identify all
vulnerabilities by exploring all possible scenarios, but the
excessive time required makes this approach impractical.
With the “fullrange” option disabled by default, BooFuzz
focuses primarily on boundary values (e.g., minimum,
maximum, null), potentially overlooking vulnerabilities
arising from non-boundary values. Additionally, BooFuzz
generates redundant test cases, treating combinations such as
A=0,B=1,C=0and B=1, A=0, C=0 as distinct, even
though they represent equivalent inputs. On the other hand,
AFLnet, which relies solely on response codes, is ineffective
for messages that do not generate responses.

F. Impact of Implicitly Reserved Fields in KNX (RQS5)

To demonstrate the generality of our approach, we extend
the analysis to KNX. The KNX Association provides its offi-
cial specifications (V3.0.0), along with the KNX Specifications
Navigator—a ChatGPT-based assistant trained on the standard
that enables direct querying of field information. We evaluated
five KNX-certified router-type devices supporting both KNX
IP and TP communication. Similar to BACnet, KNX allows
packet injection at the IP layer via the management software.
Using our method, we identified eight previously unknown
vulnerabilities in these devices, seven of which have been
acknowledged by the respective manufacturers.

These findings highlight a critical gap in the KNX certifica-
tion process. Although KNX devices pass conformance testing
using tools like EITT [24], which conduct tests based on
clearly defined field semantics, our tool uncovered bugs caused
by implicitly reserved fields. Thus, despite passing standard
certification tests, devices remain vulnerable to malformed
inputs targeting these implicitly reserved fields. For example,
our disclosure to Siemens confirmed this gap and acknowl-
edged that certain reserved fields lack semantic definitions
beyond fixed binary values (e.g., zero) in the specification.
This ambiguity hampers both implementation and testing,
reinforcing our conclusion that implicitly reserved fields pose
a systemic weakness in protocol design and validation. Our
results demonstrate that the issues identified in BACnet also
manifest in KNX, and that our methodology generalizes well
to other BAS protocols, uncovering similarly latent flaws.

VI. DISCUSSION

BACsFuzz presents certain limitations that also suggest
promising directions for future research. First, although we
considered firmware analysis, firmware images were unavail-
able. Major manufacturers like Siemens restrict firmware
access to certified engineers, and most devices implement
protections such as locked debug interfaces and flash readout
prevention, rendering firmware extraction infeasible. Under
these constraints, black-box network fuzzing remains the most
practical approach. Second, our mutation strategy targets se-
mantic ambiguities—particularly those in implicitly reserved
fields, a category largely overlooked by existing fuzzers. In
contrast, prior work in domains such as LTE [25], [26]] focuses
on injecting invalid values into well-defined fields to assess
implementation robustness. Our approach goes one step further
by evaluating the completeness of protocol design, uncovering
vulnerabilities that stem from under-specified or ambiguous
fields. While this strategy effectively reveals semantic flaws,
it may miss low-level implementation bugs such as memory
corruption. Future extensions could incorporate more advanced
fuzzing techniques to broaden the scope of detection. We
discuss complementary methods and recent advances in

VII. RELATED WORK

BACnet Security. Studies reveal vulnerabilities in BACnet
across multiple layers [27], [28], [29], [30]], including eaves-
dropping, DoS attacks [30], weak authentication [31[], [32],

13

[33], and lack of encryption [34]. Intrusion detection is ex-
plored in [35], [36], [37], [38], [39], [40], while data manipu-
lation is demonstrated by Peacock et al. [41]]. Device discovery
risks and network mapping attacks are discussed in [42],
[43]. Recent work by Zhang et al. [5] introduced BASE, a
protocol-aware fuzzer. Our work complements this direction
by targeting two previously overlooked issues: the security
implications of implicitly reserved fields and the throughput
bottlenecks caused by the token-passing mechanism.

Network Fuzzing. Network protocol fuzzing has been widely
studied. Some approaches [44], [45] model protocol states
and message sequences to generate semantically valid inputs.
Others [[L1], [12], [46] infer protocol semantics from compan-
ion apps or hub-device traffic. Response-guided fuzzers [47],
[48] use observable feedback to guide mutation. With the
emergence of LLMs, recent work [49], [50] automates protocol
grammar extraction from textual specifications. Other stud-
ies [S1]], [S2], [S3]] focus on prioritizing semantically critical
message fields to improve precision. Despite this progress,
prior efforts largely overlook implicitly reserved fields. We
are the first to systematically investigate their impact and
demonstrate practical exploits in real-world BAS deployments.

Medium Monopolization. Several works examine medium
access monopolization attacks, where adversaries exploit pro-
tocol logic or low-level behavior to block legitimate commu-
nication. CANflict [54] uses peripheral conflicts to win CAN
arbitration and suppress others. CANAttack [55] injects high-
priority messages to dominate the bus. BROKENWIRE [56]
disrupts EV charging by jamming CCS communications.
Miller et al. [57] disable ECUs via CAN error-handling abuse.
Although these works use medium monopolization primarily
to cause DoS, we repurpose this behavior to optimize through-
put. Our design removes token wait cycles and enables uninter-
rupted injection, significantly boosting fuzzing performance.

VIII. CONCLUSION

In this paper, we present BACSFuzz, a behavior-driven
fuzzing tool designed to uncover vulnerabilities in BACnet, a
widely adopted BAS protocol. By leveraging protocol-specific
behaviors such as the token-passing mechanism, BACSFuzz
overcomes BACnet’s low-throughput limitation, significantly
enhancing fuzzing efficiency. This approach uncovers vul-
nerabilities, particularly those related to implicitly reserved
fields, which are common in both BACnet and KNX. Our
experiments show throughput improvements ranging from
272.49% to 776.01% over SOTA methods. Testing 20 BAS de-
vices, BACSFuUZzz identifies 26 vulnerabilities—24 confirmed
by manufacturers, including nine with CVEs. Additionally,
BACsFuzz successfully fuzzes KNX devices, confirming the
widespread presence of implicitly reserved field vulnerabili-
ties. This is the first to apply protocol-specific behaviors to
address fuzzing limitations in constrained BACnet environ-
ments, demonstrating potential to enhance BAS security.

ETHICS CONSIDERATIONS

To ensure safety, all experiments were conducted in a
controlled lab environment (see [Figure), not in operational
building systems. Following responsible disclosure practices,
we reported the token-seize vulnerability to ASHRAE, which
confirmed and escalated it to the SSPC 135 Chair for formal
discussion during the in-person meeting in Plantation, Florida
(April 28-May 2, 2025). We also disclosed the implicitly
reserved field issues to ASHRAE and the KNX Association;
both are investigating. All vulnerabilities have been reported
to the respective manufacturers. To date, 24 have been con-
firmed, with nine CVEs assigned. Siemens and Honeywell
acknowledged our findings and invited us to their Recogni-
tion Programs. We strictly follow applicable regulations and
OpenAlT’s enterprise privacy policy [58], which ensures user
conversations are not used for training and remain confidential.
Our research is academic and non-commercial, compliant
with the fair use provisions defined by copyright law in the
U.S. [59], the EU [60], and China [61].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their construc-
tive comments and suggestions. This research was supported
in part by National Natural Science Foundation of China
Grant Nos. 62232004 and 92467205, by US National Sci-
ence Foundation (NSF) Award 2325451, Jiangsu Provincial
Key Laboratory of Network and Information Security Grant
No. BM2003201, Key Laboratory of Computer Network and
Information Integration of Ministry of Education of China
Grant Nos. 93K-9, and Collaborative Innovation Center of
Novel Software Technology and Industrialization. Any opin-
ions, findings, conclusions, and recommendations in this paper
are those of the authors and do not necessarily reflect the views
of the funding agencies.

REFERENCES
(1]

ReportLinker, “Building automation systems market - growth,
trends, covid-19 impact, and forecasts (2022 - 2027),” hhttps://
www.reportlinker.com/p06360537/, October 2022.

BACnet International. (2023) Bacnet protocol expands dominant
market share in latest ~market research report. [On-
line]. Available: |https://bacnetinternational.org/news/bacnet-protocol-
expands-dominant-market-share-in-latest- market-research-report/
(2025) Assigned vendor ids. [Online]. Available:
/Ibacnet.org/assigned- vendor-ids/

I. O. for Standardization, Building automation and control systems
(BACS) — Part 5: Data communication protocol, 1SO 16484-
5:2022 ed. Vernier, Geneva, Switzerland: International Organization
for Standardization, 2022. [Online]. Available: https://www.iso.org/
standard/84964.html

Y. Zhang, Z. Ling, M. Cash, Q. Zhang, C. Morales-Gonzalez, Q. Z.
Sun, and X. Fu, “Collapse like a house of cards: Hacking building
automation system through fuzzing,” in Proceedings of the 2024 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2024, Salt Lake City, USA, October 14-18, 2024. ACM, 2024.

I. O. for Standardization, Information technology — Home Electronic
System (HES) architecture, ISO/IEC 14543-3-10:2020 ed. Vernier,
Geneva, Switzerland: International Organization for Standardization,
2021. [Online]. Available: https://www.iso.org/standard/80934.html

A. Inc. (2024) Bacnet ms/tp communication protocol. [Online]. Avail-
able: |https://www.accuenergy.com/support/reference-directory/bacnet-
mstp/

[2]

[3]

https:

[4]

[5]

[6]

14

[8]

[9]

(10]
[11]

[12]

[13]

[14]

[15]
[16]
(17]
[18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

J. Molina, “Learn how to control every room at a luxury hotel remotely:
The dangers of insecure home automation deployment,” Black Hat USA,
2014.

T. Brandstetter and K. Reisinger, “security in building automation how
to create dark buildings with light speed,” Black Hat USA, 2017.

C. Vacherot, “Sneak into buildings with knxnet/ip,” DEF CON, 2021.
J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions in
iot through app-based fuzzing,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018.

N. Redini, A. Continella, D. Das, G. D. Pasquale, N. Spahn, A. Machiry,
A. Bianchi, C. Kruegel, and G. Vigna, “Diane: Identifying fuzzing
triggers in apps to generate under-constrained inputs for iot devices,” in
42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021. IEEE, 2021.

M. Organization. (2006) Modbus over serial line specification and
implementation guide v1.02. [Online]. Available: https://modbus.org/
docs/Modbus_over_serial_line_V1_02.pdf

1. O. for Standardization, Road vehicles — Controller area network
(CAN) — Part 1: Data link layer and physical coding sublayer,
ISO 11898-1:2024 ed. Vernier, Geneva, Switzerland: International
Organization for Standardization, 2024. [Online]. Available: https:
/Iwww .150.org/standard/86384.html

S. Karg. (2019) Bacnet stack an open source bacnet protocol stack for
embedded systems. [Online]. Available: https://bacnet.sourceforge.net/
J. Bender. (2015) Bacpypes. [Online]. Available: |https:
/Ibacpypes.readthedocs.io/en/latest/

RiptideIO. (2020) Misty: BACnet MS/TP Support for BACpypes.
[Online]. Available: https://github.com/riptideio/misty

KNX Association, “KNX Support and Developer Resources,” https://
support.knx.org/, 2025, accessed: 2025-04-19.

Emergen Research. (2023) Top 10 leading companies
in the building automation system market in 2023.
[Online]. Available: |https://www.emergenresearch.com/blog/top-10-

leading-companies-in-the- building-automation-system-market-in-2023
V. Pham, M. Bohme, and A. Roychoudhury, “AFLNET: A greybox
fuzzer for network protocols,” in 13th IEEE International Conference
on Software Testing, Validation and Verification, ICST 2020, Porto,
Portugal, October 24-28, 2020. 1EEE, 2020.

J. Pereyda, “Boofuzz: Network protocol fuzzing for humans,” https://
github.com/jtpereyda/boofuzz, 2016, accessed: 2025-04-23.

Google, “Afl - american fuzzy lop,” https://github.com/google/AFL|
2021, accessed: 2025-04-23.

N. Group, “Fuzzowski: A protocol fuzzing framework for industrial con-
trol systems,” https://github.com/nccgroup/fuzzowski, 2020, accessed:
2025-04-23.

KNX Association. (2025) Eitt 4.4. [Online]. Available:
/Isupport.knx.org/hc/en-us/articles/10732232002194-EITT-4-4

Y. Chen, Y. Yao, X. Wang, D. Xu, C. Yue, X. Liu, K. Chen, H. Tang, and
B. Liu, “Bookworm game: Automatic discovery of LTE vulnerabilities
through documentation analysis,” in 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. 1EEE,
2021.

C. Park, S. Bae, B. Oh, J. Lee, E. Lee, I. Yun, and Y. Kim, “Doltest:
In-depth downlink negative testing framework for LTE devices,” in 31st
USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022. USENIX Association, 2022.

W. Granzer and W. Kastner, “Security analysis of open building au-
tomation systems,” in Computer Safety, Reliability, and Security, 29th
International Conference, SAFECOMP 2010, Vienna, Austria, Septem-
ber 14-17, 2010. Proceedings. Springer, 2010.

A. Ozadowicz, “Generic iot for smart buildings and field-level automa-
tion - challenges, threats, approaches, and solutions,” Comput., vol. 13,
no. 2, p. 45, 2024.

P. Ciholas, A. Lennie, P. Sadigova, and J. M. Such, “The secu-
rity of smart buildings: a systematic literature review,” CoRR, vol.
abs/1901.05837, 2019.

D. G. Holmberg and D. Evans, BACnet wide area network security
threat assessment. US Department of Commerce, National Institute
of Standards and Technology, 2003.

V. Graveto, T. Cruz, and P. Simdes, “Security of building automation
and control systems: Survey and future research directions,” Comput.
Secur., vol. 112, p. 102527, 2022.

https:

https://www.reportlinker.com/p06360537/
https://www.reportlinker.com/p06360537/
https://bacnetinternational.org/news/bacnet-protocol-expands-dominant-market-share-in-latest-market-research-report/
https://bacnetinternational.org/news/bacnet-protocol-expands-dominant-market-share-in-latest-market-research-report/
https://bacnet.org/assigned-vendor-ids/
https://bacnet.org/assigned-vendor-ids/
https://www.iso.org/standard/84964.html
https://www.iso.org/standard/84964.html
https://www.iso.org/standard/80934.html
https://www.accuenergy.com/support/reference-directory/bacnet-mstp/
https://www.accuenergy.com/support/reference-directory/bacnet-mstp/
https://modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://www.iso.org/standard/86384.html
https://www.iso.org/standard/86384.html
https://bacnet.sourceforge.net/
https://bacpypes.readthedocs.io/en/latest/
https://bacpypes.readthedocs.io/en/latest/
https://github.com/riptideio/misty
https://support.knx.org/
https://support.knx.org/
https://www.emergenresearch.com/blog/top-10-leading-companies-in-the-building-automation-system-market-in-2023
https://www.emergenresearch.com/blog/top-10-leading-companies-in-the-building-automation-system-market-in-2023
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://github.com/google/AFL
https://github.com/nccgroup/fuzzowski
https://support.knx.org/hc/en-us/articles/10732232002194-EITT-4-4
https://support.knx.org/hc/en-us/articles/10732232002194-EITT-4-4

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

T. Sasaki, A. Fujita, C. H. Gaidn, M. van Eeten, K. Yoshioka, and
T. Matsumoto, “Exposed infrastructures: Discovery, attacks and reme-
diation of insecure ICS remote management devices,” in 43rd IEEE
Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA,
May 22-26, 2022. 1EEE, 2022.

O. Gasser, Q. Scheitle, C. Denis, N. Schricker, and G. Carle, “Security
implications of publicly reachable building automation systems,” in 2017
IEEE Security and Privacy Workshops, SP Workshops 2017, San Jose,
CA, USA, May 25, 2017. 1EEE, 2017.

G. Stamatescu, I. Stamatescu, N. Arghira, and 1. Fagarasan, “Cy-
bersecurity perspectives for smart building automation systems,” in
12th International Conference on Electronics, Computers and Artificial
Intelligence, ECAI 2020, Bucharest, Romania, June 25-27, 2020. 1EEE,
2020.

W.-H. Choi and J.-H. Lewe, “Advancing fault detection in building
automation systems through deep learning,” Buildings, vol. 14, no. 1, p.
271, 2024.

M. Caselli, E. Zambon, J. Amann, R. Sommer, and F. Kargl, “Speci-
fication mining for intrusion detection in networked control systems,”
in 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016. USENIX Association, 2016.

D. Fauri, M. Kapsalakis, D. R. dos Santos, E. Costante, J. den Hartog,
and S. Etalle, “Leveraging semantics for actionable intrusion detection
in building automation systems,” in Critical Information Infrastructures
Security - 13th International Conference, CRITIS 2018, Kaunas, Lithua-
nia, September 24-26, 2018, Revised Selected Papers. Springer, 2018.
Z. Zheng and A. L. N. Reddy, “Safeguarding building automation
networks: The-driven anomaly detector based on traffic analysis,” in 26th
International Conference on Computer Communication and Networks,
ICCCN 2017, Vancouver, BC, Canada, July 31 - Aug. 3, 2017. 1EEE,
2017.

C. Valli, M. N. Johnstone, M. Peacock, and A. Jones, “Bacnet-bridging
the cyber physical divide one hvac at a time,” in 2017 9th IEEE-GCC
Conference and Exhibition (GCCCE). 1EEE, 2017.

H. Esquivel-Vargas, M. Caselli, and A. Peter, “Automatic deployment
of specification-based intrusion detection in the bacnet protocol,” in
Proceedings of the 2017 Workshop on Cyber-Physical Systems Security
and PrivaCy, Dallas, TX, USA, November 3, 2017. ACM, 2017.

M. Peacock, M. N. Johnstone, and C. Valli, “Security issues with bacnet
value handling,” in Proceedings of the 3rd International Conference
on Information Systems Security and Privacy, ICISSP 2017, Porto,
Portugal, February 19-21, 2017. SciTePress, 2017.

M. Cash, S. Wang, B. Pearson, Q. Zhou, and X. Fu, “On automating
bacnet device discovery and property identification,” in /CC 2021 - IEEE
International Conference on Communications, Montreal, QC, Canada,
June 14-23, 2021. 1IEEE, 2021.

H. Esquivel-Vargas, M. Caselli, and A. Peter, “Bacgraph: Automatic
extraction of object relationships in the bacnet protocol,” in 51st An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2021, Taipei, Taiwan, June 21-24, 2021 - Supplemental
Volume. 1EEE, 2021.

M. E. Garbelini, V. Bedi, S. Chattopadhyay, S. Sun, and E. Kurniawan,
“Braktooth: Causing havoc on bluetooth link manager via directed
fuzzing,” in 31st USENIX Security Symposium, USENIX Security 2022,
Boston, MA, USA, August 10-12, 2022. USENIX Association, 2022.
X. Ma, Q. Zeng, H. Chi, and L. Luo, “No more companion apps
hacking but one dongle: Hub-based blackbox fuzzing of iot firmware,”
in Proceedings of the 21st Annual International Conference on Mobile
Systems, Applications and Services, MobiSys 2023, Helsinki, Finland,
June 18-22, 2023. ACM, 2023.

K. Liu, M. Yang, Z. Ling, Y. Zhang, C. Lei, J. Luo, and X. Fu,
“Riotfuzzer: Companion app assisted remote fuzzing for detecting
vulnerabilities in iot devices,” in Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security, CCS
2024, Salt Lake City, UT, USA, October 14-18, 2024. ACM, 2024.
H. Liu, S. Gan, C. Zhang, Z. Gao, H. Zhang, X. Wang, and G. Gao,
“Labrador: Response guided directed fuzzing for black-box iot devices,”
in 2024 IEEE Symposium on Security and Privacy (SP). 1EEE, 2024.
X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and
Y. Xiang, “Snipuzz: Black-box fuzzing of iot firmware via message
snippet inference,” in CCS ’'21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021. ACM, 2021.

15

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

J. Wang, L. Yu, and X. Luo, “LLMIF: augmented large language model
for fuzzing iot devices,” in IEEE Symposium on Security and Privacy,
SP 2024, San Francisco, CA, USA, May 19-23, 2024. 1EEE, 2024.
X. Ma, L. Luo, and Q. Zeng, “From one thousand pages of specification
to unveiling hidden bugs: Large language model assisted fuzzing of
matter iot devices,” in 33rd USENIX Security Symposium, USENIX
Security 2024, Philadelphia, PA, USA, August 14-16, 2024. USENIX
Association, 2024.

M. Ren, H. Zhang, X. Ren, J. Ming, and Y. Lei, “Intelligent zigbee
protocol fuzzing via constraint-field dependency inference,” in Computer
Security - ESORICS 2023 - 28th European Symposium on Research
in Computer Security, The Hague, The Netherlands, September 25-29,
2023, Proceedings, Part II. Springer, 2023.

H. Wanyan, Y. Lai, J. Liu, and H. Chen, “Ncmfuzzer: Using non-critical
field mutation and test case combination to improve the efficiency of ICS
protocol fuzzing,” Comput. Secur., vol. 141, p. 103811, 2024.

S. Kim and T. Shon, “Field classification-based novel fuzzing case
generation for ICS protocols,” J. Supercomput., vol. 74, no. 9, pp. 4434—
4450, 2018.

A. de Faveri Tron, S. Longari, M. Carminati, M. Polino, and S. Zanero,
“Canflict: Exploiting peripheral conflicts for data-link layer attacks
on automotive networks,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los
Angeles, CA, USA, November 7-11, 2022. ACM, 2022.

D. Oladimeji, A. Rasheed, C. Varol, M. Baza, H. Alshahrani, and A. Baz,
“Canattack: Assessing vulnerabilities within controller area network,”
Sensors, vol. 23, no. 19, p. 8223, 2023.

S. Kohler, R. Baker, M. Strohmeier, and 1. Martinovic, “Brokenwire :
Wireless disruption of CCS electric vehicle charging,” in 30th Annual
Network and Distributed System Security Symposium, NDSS 2023, San
Diego, California, USA, February 27 - March 3, 2023. The Internet
Society, 2023.

M. Rogers and K. Rasmussen, “Silently disabling ecus and enabling
blind attacks on the CAN bus,” CoRR, vol. abs/2201.06362, 2022.
OpenAl, “Enterprise privacy at openai,” 2024, accessed: 2024-10-22.
[Online]. Available: https://openai.com/enterprise-privacy/

U.S. Copyright Office, “Limitations on exclusive rights: Fair use
(section 107),” 2024, accessed: 2024-10-22. [Online]. Available:
https://www.copyright.gov/title17/92chap1.html#107

European Parliament and Council, “Directive 2001/29/ec of the european
parliament and of the council of 22 may 2001 on the harmonisation
of certain aspects of copyright and related rights in the information
society,” 2001, accessed: 2024-10-22. [Online]. Available: https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32001L0029
The State Council of the People’s Republic of China, “Copyright law
of the people’s republic of china (2010 amendment),” 2010, accessed:
2024-10-22. [Online]. Available: https://english.www.gov.cn/archive/
laws_regulations/2014/08/23/content_281474982987430.htm

S. Sun, Y. Liu, D. Iter, C. Zhu, and M. Iyyer, “How does in-context
learning help prompt tuning?” in Findings of the Association for
Computational Linguistics: EACL 2024, St. Julian’s, Malta, March 17-
22, 2024. Association for Computational Linguistics, 2024.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Advances
in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurlPS 2020, December
6-12, 2020, virtual, 2020.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” in Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022.

P. Sancheti, K. Karlapalem, and K. Vemuri, “LLM driven web profile
extraction for identical names,” in Companion Proceedings of the ACM
on Web Conference 2024, WWW 2024, Singapore, Singapore, May 13-
17, 2024. ACM, 2024.

S. Wang, X. Sun, X. Li, R. Ouyang, F. Wu, T. Zhang, J. Li, and G. Wang,
“GPT-NER: named entity recognition via large language models,” CoRR,
2023.

https://openai.com/enterprise-privacy/
https://www.copyright.gov/title17/92chap1.html#107
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32001L0029
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32001L0029
https://english.www.gov.cn/archive/laws_regulations/2014/08/23/content_281474982987430.htm
https://english.www.gov.cn/archive/laws_regulations/2014/08/23/content_281474982987430.htm

[67] Python Software Foundation. (2024) Pypdf2. [Online]. Available:
https://pypi.org/project/PyPDF2/

[68] J. Singer-Vine, “pdfplumber,” https://github.com/jsvine/pdfplumber,
2020, accessed: 2025-04-23.
APPENDIX
APPENDIX A

IDENTIFY IMPLICITLY RESERVED FIELDS USING LLM
A. Methodology

Identifying fields requires first understanding and recog-
nizing the structure they belong to. The definition, value,
and position of fields are inherently tied to their respective
structures. BACnet message structures are highly complex,
complicating the task of identifying implicitly reserved fields.

To address this, we leverage LLMs for their advanced nat-
ural language processing capabilities. The process begins by
pre-processing the specification to extract relevant information
for LLM analysis (Step I). To improve performance, we apply
in-context few-shot learning [62f], [63], eliminating the need
for fine-tuning or additional training. This involves embedding
detailed task instructions and representative examples into
each prompt, allowing the model to learn from context. After
Step 1, prompt engineering (as shown in guides the
LLM’s reasoning process using Chain-of-Thought (CoT) [64]]
prompting for multi-step analysis. In (Step II), we match field
names to the specification and extract relevant descriptions.
CoT divides the task into two parallel reasoning chains: (Step
III) identifies message structures and dependencies within
BAChnet fields, while (Step IV) determines field lengths and
value ranges to identify implicitly reserved fields.

Each prompt acts as a Named Entity Recognition
(NER) [65], [66] system tailored to the BACnet domain, with
the output format defined as a list of dictionaries containing
‘T’ (type of entity) and ‘E’ (entity). For example, in Step
I, ‘7" may be FIELD_NAME (indicating we are identifying
field names in specification), and ‘E’ identified from the
specification is DNET, a specific field name. Steps III and IV
are executed in parallel, interconnected through a shared ‘7,
i.e., FIELD_NAME, allowing BACSFuzz to effectively parse
message structures and identify implicitly reserved fields.
Step (I): Document Pre-processing. Directly inputting the
entire ISO 16484-5 PDF (23.9 MB) into an LLM is inef-
ficient due to input size limits and irrelevant content. We
use PyPDF2 [67] to extract first-level headings and filter
chapters based on keywords like “Application”, “Network”,
“MS/TP” and “BACnet/IP”. These chapters are merged into
four thematic PDFs. Given that LLMs are not well-suited for
reliably recognizing PDF content, we convert the PDFs into
four text files using pdfplumber [68]], reducing the total size to
605 KB with a compression rate of 2.47%. After verification,
all token counts fall within the LLM’s input limit.

Step (II): Field Matching. Directly extracting field names
from the specification using an LLM can result in false
positives or false negatives. To mitigate this, we leverage
field names from open-source projects like BACpypes [16],
which adhere to the BACnet specification. These projects

16

annotate field names to indicate their inclusion in message
structures. Since direct matching between project field names
and the specification is inefficient due to naming differ-
ences, we use the LLM to establish semantic correlations,
as shown in Prompt 1 in For instance, npduDNET
in BACpypes corresponds to DNET in the specification. We
compile four field lists for each text file.

Step (III): Structure Resolution. BACnet defines a layered
message architecture and we analyze each layer
individually before integrating the results. For layers with
fewer fields, the specification provides explicit message
structures, allowing the LLM to identify them accurately (see
Prompt 2 in [Figure 9). The APDU, MS/TP, and BACnet/IP
structures follow this pattern. However, for layers with more
fields, the method’s efficiency decreases. BACnet fields can
be classified as mandatory or optional. Mandatory fields
are essential for protocol execution, while optional fields
are included under specific conditions. For example, the
Destination Specifier in NPDU is mandatory for
basic communication, whereas fields like DNET, DLEN,
and Hop Count are included only when Destination
Specifier is set to 0x01. By matching FIELD_NAME
and FIELD_Description from Prompt I, the LLM
can accurately identify both fields and their dependencies,
as shown in Prompt 3 in Once fields and their
dependencies are identified, BACSFUZZ uses this structured
data to automate the recognition of message structures and
resolve dependencies between fields. For each mandatory field,
(Mandatoryy, , ...,Mandatory,,), LLM-inferred dependencies
help identify the optional fields, (Optionaly,,...,Optional,,),
required for a valid message structure. For instance, in NPDU,
mandatory fields include Version, NSDU, Reservedl,
Destination Specifier, Reserved?2, Source
Specifier, Expecting Reply, and Priority. We
first evaluate the Version field and its impact on optional
fields, followed by sequential analysis of other mandatory
fields. In the first iteration, we identify optional fields
influenced by each mandatory field. For example, if NSDU
0x01, the Message Type field must be included.
Similarly, if Destination Specifier 0x01, fields
like DNET, DLEN, and Hop Count must be included. In the
second iteration, we examine pairs of mandatory fields and
their combined influence on optional fields, continuing this
process until all combinations are analyzed.

Step (IV): Implicitly Reserved Fields Identification. The
LLM analyzes FIELD_NAME and FIELD_Description
from Prompt 1 to identify implicitly reserved fields. As
outlined in Prompt 4 and Prompt 5 (Figure 9), the analysis
focuses on field length and protocol-defined value ranges.
Based on these, fields are classified as fully defined, explicitly
reserved, or implicitly reserved. Prompt 4 provides the field
length and value ranges, while Prompt 5 checks if the specified
ranges match the field length. If they match exactly, the field
is classified as fully defined. If there is a mismatch, Prompt
5 checks for explicitly reserved values. If no such values are
found, the field is classified as implicitly reserved.

https://pypi.org/project/PyPDF2/
https://github.com/jsvine/pdfplumber

Task: Match fields and extract key
details.

Input:

® Text Excerpt: A section from the
BACnet specification.

e code_fields List: A predefined list of
field names.

Instructions:

© Match Fields: Locate distinct data
elements or components in the text,
including those matching the

Task: Identify and Extract Message Structures.

Input:
o Text Excerpt: A section from the BACnet specification.

Instructions:
« |dentify Structures: Identify Structures: Locate sequences
that define message structures.
o Extract Details:
* STRUCTURE: Name of the message structure.
© FIELDS: List of fields within the structure, each with:
o FIELD_NAME: Name of the field.

Task: Classify Fields as "Mandatory" or "Optional".

Input:
® FIELD_NAME and FIELD_DESCRIPTION: Extracted from

Instructions:
o For Each Field:
© FIELD_NAME: Name of the field.
© FIELD_CLASSIFICATION:
o "Mandatory" if the field is always present.
o "Optional" if the field's presence depends on certain
conditions.

“code_fields" list. j |
 Extract Details:

* CODE_NAME: Name from
“code_fields'.

* FIELD_NAME: Exact name from the
specification.

© FIELD_LAYER: Protocol layer (e.g.,
Application, Network).

* FIELD_DESCRIPTION: Verbatim
excerpts related to the field.

Output Format:
[{ "CODE_NAME": "<Name from
code_fields>",
"FIELD_NAME": "<Field name>",
"FIELD_LAYER": "<Protocol layer>",
"FIELD_DESCRIPTION": "<Verbatim
description>",

bl

o FIELD_DESCRIPTION: Original description. © FIELD_DEPENDENCE:
* STRUCTURE_PAGE: Page number where the structure is o "None" for mandatory fields.
defined. o Specify condition for optional fields.(e.g., Bit 5 = 1).
Output Format: # Output Format:
[{ "STRUCTURE": "<Structure name>", [{ "FIELD_NAME": "<Field name>",
"FIELDS": ["FIELD_CLASSIFICATION": "<Mandatory or Optional>",
{"FIELD_NAME": "<Field name>", "FIELD_DEPENDENCE": "<Condition or 'None'>",
"FIELD_DESCRIPTION": "<Description>"}, ...], j |
"STRUCTURE_PAGE": "<Page number>",
* Shot N:[Place N examples of Field Classification.]
® Shot N:[Place N examples of Structure Extraction.]
Task: Determine FIELD_LENGTH and SPECIFIED_VALUES. A A O D MR T
- - Reserved", or "Implicitly Reserved".
Input:
#Input: o FIELD_NAME and FIELD_DESCRIPTION: Extracted from
® FIELD_NAME and FIELD_DESCRIPTION: Extracted from . FIELD:NAME, FIELD_LEI;GTH, and SPECIFIED_VALUES:
O B # Instructions:
s * For Each Field:
Dlell il L « FIELD_NAME: Name of the field
© FIELD_NAME: Name of the field. - . :
o FIELD_LENGTH: * MAXIMUM_RANGE:
=) - . N o Calculate as "0x00 - (2AFIELD_LENGTH - 1)".
0 Use data type or explicit mentions (e.g., 2-octet, 8 bits, g r s N
Unsigned integers, BOOLEAN) o If FIELD_LENGTH is "Variable", set to "Variable".
4 3G W\ fmi gt © SPECIFIED_VALUES: As extracted from Prompt
o If unspecified, set to "Variable". —_— -

® Shot N:[Place N examples of Field o Express in bit form.

o FIELD_TYPE:
o "Fully" If SPECIFIED_VALUES match the
MAXIMUM_RANGE.
o "Explicitly" if the FIELD_DESCRIPTION explicitly

declares reserved values that, combined with current
values, fully cover the MAXIMUM_RANGE.

o "Implicitly" if SPECIFIED_VALUES do not fully match
the MAXIMUM_RANGE and no explicit declaration in the
FIELD_DESCRIPTION covers the unspecified values..

Output Format:
[{ "FIELD_NAME": "<Field name>",
"MAXIMUM_RANGE": "<Range or 'Variable'>",
"FIELD_TYPE": "< 'Fully', 'Explicitly' or 'Implicitly' >"}, ...]
* Shot N:[Place N examples of Field Identification .]

Prompt I enables the LLM to correctly match 71
fields extracted from open-source projects to their correspond-

Matching.] o SPECIFIED_VALUES:
o Extract possible values from the description.
o Use h | | notation if applicabl
o If unspecified, set to "Variable".
Output Format:
[{ "FIELD_NAME": "<Field name>",
"FIELD_LENGTH": "<Length or 'Variable'>",
"SPECIFIED_VALUES": "<Values or 'Variable'>",
b
o Shot N:[Place N examples of Values Determine.]
Fig. 9: Prompt Templates.
90
Prompt1:Field Layer S\?S\pg\?,e\g
Prompt4:Field Length SN Py
80 Prompta:Specified Values YA
Prompt5:Implicitly Reserved Fields Identification RS
oo

60

vapennnn

Prompt2:Structure Extraction (Placeholder)

w
8

Field Count
S
8

30

20

o

2
Prompt3:Mandatory/Optional Field Classification (Placeholder) =
Prompt3:Mandatory/Optional Field Classification
Prompt2:Structure Extraction NN

Fig. 10: LLM Analysis Results.

B. Evaluation

To assess the accuracy of the LLM, we manually validate
all results for correctness and completeness, as summarized in

17

ing specification entries and identify the relevant communi-
cation layers. Prompt 2 achieves 100% accuracy (24/24) in
identifying APDU, MS/TP, and BACnet/IP message structures,
all of which exhibit relatively simple formats. Despite the
increased complexity of NPDU structures, Prompt 3 success-
fully extracts both mandatory and optional fields, yielding
81 distinct NPDU types. In total, the analysis yields 550
message structures, comprising 136 MS/TP messages and 414
BACnet/IP messages. All 136 MS/TP messages are manually
verified as correct, demonstrating the LLM’s effectiveness in
identifying BACnet message structures. Prompt 4 and Prompt
5 extract field lengths with 100% accuracy, while identifying
field values and implicitly reserved fields with a verified
accuracy of 95.77%. Since this classification is based on a
manually validated and complete field set, it also substantiates

the overall completeness of our field identification process.

We manually verify misidentified instances. For example,
the DLEN and SLEN fields of the NPDU are mistakenly
classified with a value range of 0-OxFF. In reality, the DLEN
values are 0x01, 0x02, 0x03, 0x06, 0x07, and the
SLEN values are 0x01, 0x02, 0x03, 0x06, which are
listed only in 7able 6-2 [4] and not in the specification text.
pdfplumber does not retain table information when converting
a PDF file to text, causing the table to be omitted. The LLM
infers a value range of 0-OxFF due to the 1-octet length of
these fields, leading to the incorrect conclusion that they are
not implicitly reserved. This error is caused by the missing
table layout during conversion, not by the LLM’s inference.
A multimodal model could address this by retrieving table
structures, avoiding such errors. In another case, the length
of the List of DNETs field in the NPDU is correctly
identified as ‘“variable”, but its value range is mistakenly
marked as 0x0001-0xFFFF. Although a single DNET is 2
bytes with a range of 0x0001-0xFFFF, the LLM incorrectly
applied this range to the entire List of DNETs due to
the unknown number of DNETs. However, since the field
is labeled as “variable”, the LLM correctly categorizes it as
implicitly reserved, so the hallucination does not affect the
final result. In the MS/TP layer, the Header CRC field is
incorrectly classified as implicitly reserved. Although 8-bit,
it serves as a header verification mechanism, as its name
suggests. This highlights the need to analyze field names
semantically, since function matters more than size, and it
should not be classified as implicitly reserved.

APPENDIX B
TARGET DEVICE STATE TRANSITION DURING FUZZING
PROCESS

As shown in [Figure 7| when a device holding a token is
targeted by BACSFuzz, it may be in one of five states:

1) USE_TOKEN: the device determines how best to utilize
the token. It transitions to DONE_WITH_TOKEN if no
further data needs to be sent, or if the sent data frame does
not require a reply. Conversely, if a reply is necessary, the
device moves to WAIT_FOR_REPLY to await a response.
WAIT _FOR_REPLY: the device awaits responses to pre-
viously issued requests. Detection of abnormal network
activity, such as an attack by BACSFuzz, leads the
device to infer multiple tokens circulating in the network,
prompting it to drop its token and transition to IDLE.
3) DONE_WITH_TOKEN: after completing data transmis-
sion, the device’s next action depends on the current net-
work condition. It either performs POLL_FOR_MASTER
polling if the next token recipient is unknown or passes
the token via PASS_TOKEN if the recipient is known.
4) PASS_TOKEN: the device attempts to pass the token to
the next node. However, due to BACSFUZZ continuously
resetting the device’s SilenceTimer to 0, preventing it
from exceeding the threshold, the device transitions to
the IDLE state, effectively dropping the token.

2)

18

5) POLL _FOR_MASTER: the device seeks to determine or
confirm the network’s master node through polling. If
abnormal token activity is detected during a BACSFuzz
attack, the device drops its token and transitions to IDLE.

For devices without a token, potential states include IDLE
and ANSWER_DATA_REQUEST. In the IDLE state, the de-
vice remains inactive unless a data frame is received that
requires a reply. If this occurs, the device transitions to
ANSWER_DATA_REQUEST, where it quickly responds to
BACsFuzz’s requests before returning to IDLE state.

	Introduction
	Background
	BACnet Network Topology
	BACnet Protocol Architecture

	Motivation and Challenges
	Motivation
	Threat Model
	Challenges and Solutions

	BACsFuzz Design
	Mutation Policy
	Throughput Optimization
	Consistency Verification

	Evaluation
	Experiment Setup
	Vulnerability Detection in Devices (RQ1)
	Throughput Improvement (RQ2)
	Ablation Study (RQ3)
	Comparison with SOTA Fuzzers (RQ4)
	Impact of Implicitly Reserved Fields in KNX (RQ5)

	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Appendix A: Identify Implicitly Reserved Fields Using LLM
	Methodology
	Evaluation

	Appendix B: Target Device State Transition during Fuzzing Process

