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Abstract—Modern serverless platforms enable rapid applica-
tion evolution by decoupling infrastructure from function-level
development. However, this flexibility introduces a fundamental
mismatch between the decentralized, function-level privilege
configurations of serverless applications and the centralized cloud
access control systems. We observe that this mismatch commonly
incurs risky permissions of functions in serverless applications,
and an attacker can chain multiple risky-permissioned functions
to escalate privileges, take over the account, and even move
laterally to compromise other accounts. We term such an attack
a risky permission chaining attack.

In this work, we propose an automated reasoning system that
can detect risky permissions that are exploitable for chaining
attacks. First, we root in attacker-centric modality abstraction,
which explicitly captures how independent permissions from
different functions and accounts can be merged into real at-
tack chains. Based on this abstraction, we build a modality-
guided detection tool that uncovers exploitable privilege chains
in real-world serverless applications. We evaluate our approach
across two major cloud platforms — AWS and Alibaba Cloud
— by analyzing serverless applications sourced from their
official, production-grade application repositories. As a result,
our analysis uncovers 28 vulnerable applications, including five
confirmed CVEs, six responsible vulnerability acknowledgments,
and one security bounty. These findings underscore that the risky
permission chaining attack is not only a theoretical risk but also
a structural and exploitable threat already present in commercial
serverless deployments, rooted in the fundamental mismatch
between decentralized serverless applications and centralized
access control models.

I. INTRODUCTION

As an increasingly adopted computing model [1], [2], [3],
serverless computing allows customers to build and run ap-
plications without managing any servers [4], which is instead
fully handled by cloud vendors through managed serverless
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platforms. As a result, customers can focus solely on compos-
ing serverless applications — modular systems built from fine-
grained, event-driven functions. Famous enterprises, such as
Coca-Cola, Telecom Argentina, Mitsubishi Heavy Industries,
and Swire Properties, all develop and deploy their own server-
less applications in production [5], [6], [7], [8]. Consequently,
serverless applications have become a core component of
modern cloud-based service architectures.

In a cloud serverless platform, serverless applications are
deployed by different customers. Each customer manages
her/his own serverless applications. This deployment model
gives rise to two distinct dimensions: a vertical dimension
within each account and a horizontal dimension across ac-
counts. Vertically, each account may host multiple serverless
applications, which are internally composed of event-driven
functions. Besides, permission policies are attached to each
function of an application to provide resource-level access
control. Horizontally, cloud platforms support resource-sharing
mechanisms, e.g., Lambda Layers, Amazon Elastic Container
Registry (ECR) images, that allow components to be reused
across accounts for efficiency and modularity. Note that in
such a deployment model, permission policies play a critical
role as the primary enforcement mechanism for access control
across both the vertical and horizontal dimensions. Improp-
erly scoped or inconsistently maintained policies may expose
sensitive resources, violate function isolation, and ultimately
undermine the security of the entire system.

The decentralized nature of serverless applications and the
centralized design of existing permission management systems
often lead to risky permissions at the function level. On one
hand, serverless architectures employ finer-grained privilege
configurations compared to traditional architectures [9], [1],
[10]: each individual function is assigned its own execution
role, creating a highly distributed permission landscape across
multiple functions within a single application. On the other
hand, traditional permission systems such as AWS Identity
and Access Management (IAM) [11] or Alibaba Cloud re-
source access management (RAM) [12], while compatible
with serverless, are primarily designed for centralized man-
agement of long-lived cloud resources (e.g., EC2 instances,



ECS instances, S3 buckets). Their configurations are largely
manual, coarse-grained, and centralized, lacking native support
for the fine-grained, function-level privilege assignment model
of serverless applications.

Prior works on serverless access control have focused on
analyzing and reducing unnecessary intra-application permis-
sions. However, determining whether a permission is ‘“un-
necessary” or not often has limited practical meaning from
the attacker’s perspective. More critically, certain necessary or
seemingly legitimate risky permissions can still be exploited
as part of risky permission chains. These risky permissions
from individual functions of different applications or accounts,
though benign in isolation, can be systematically chained to-
gether by an attacker both vertically (to compromise an entire
account) and horizontally (to propagate across accounts).

Specifically, we consider an attacker who compromises a
single serverless function — whether through external attack
vectors for internet-facing functions or internal user compro-
mise within isolated environments [13], [14]. A compromised
function may escalate its privileges either directly (e.g., by
leveraging permissions that grant administrative access) or
indirectly, by abusing permissions that allow it to reconfigure
functions from the same or different apps to run with higher-
privileged roles. Such risky permission chains allow the at-
tacker to move vertically across applications and take control
of the account.

Furthermore, serverless platforms provide dynamic resource
sharing mechanisms (e.g., Lambda Layers, container images)
that enable automatic code composition across account bound-
aries. These mechanisms create novel opportunities for how
risky permissions can be abused across accounts due to
dynamic resource sharing. Once an attacker compromises one
account, they can exploit these shared resources to propagate
malicious code or configurations to functions in other ac-
counts. When such target functions hold risky permissions, the
attacker can systematically abuse these permissions within the
newly compromised environment, effectively extending their
privilege escalation capabilities across account boundaries
through the platform’s native sharing mechanisms.

Although this insight shifts us from abstract least-privilege
principles toward the detection of concretely exploitable per-
mission chains, determining which function combinations
across applications and accounts are exploitable for chaining
attacks is a challenging task. This challenge stems from the
complexity of serverless privilege landscapes: permissions are
fragmented across hundreds of functions, roles are reused
across different functions with different intents, and attack
paths may span multiple accounts through dynamic resource
sharing mechanisms.

Existing IAM analysis tools [15], [16], [17] typically op-
erate at the role level, focus on identifying individual risky
permissions to roles, and are scoped to single-account settings.
They lack the semantic reasoning of how functions with
risky permissions can be chained together to make potential
exploitation paths between apps and accounts. As a result,
emergent privilege escalation paths, which are composed of

seemingly benign permissions, often remain invisible to tradi-
tional static analysis tools.

To address this gap, in this paper, we propose a reason-
ing framework from the perspective of a serverless attacker,
who can potentially chain permissions across functions and
accounts. We first abstract common privilege escalation be-
haviors into a set of formal attack modalities, and then use
these modalities to guide the detection of exploitable risky
permission chains in real-world serverless applications.

To systematically capture how risky permissions can be
chained into practical escalation paths, we define three formal
attack modalities. These modalities are derived by consid-
ering two orthogonal dimensions from the attacker aspect:
(1) the attacker’s capability in a single account — whether
they can escalate privileges directly or indirectly (e.g., by
leveraging other functions); and (2) the serverless architecture
topology — whether the escalation occurs within an account
(vertical) or across accounts (horizontal). Based on the two
dimensions, we abstract three formal attack modalities. First,
in the direct-vertical case, the attacker-controlled function
possesses risky permissions and can directly escalate to take
over the account (modality 1). Second, in the indirect-vertical
case, the function lacks direct escalation capability, but can
indirectly escalate by creating or reconfiguring other functions
to run under higher-privileged roles (modality 2). Third, in the
horizontal case, after compromising one account, the attacker
leverages cross-account resource sharing and risky permissions
to propagate laterally into other accounts (modality 3). While
two dimensions could yield four combinations, in practice,
the semantics of horizontal escalation do not meaningfully
distinguish between direct and indirect patterns. Therefore, we
abstract horizontal escalation as a unified modality and define
three representative attack modalities in total.

To translate formal attack modalities into practical imple-
mentation, we design a two-phase detection framework based
on a filtering-and-instantiation paradigm. The key insight is
to treat the detection problem as a form of privilege vector
space pruning. More specifically, we first reduce the search
space by filtering out permissions that are unlikely to par-
ticipate in compositional escalation chains. Then, we apply
structured modalities to identify meaningful escalation chains.
This “filter-and-instantiate” approach enables our system to
scale to real-world deployments while preserving semantic
fidelity in capturing compositional attack paths.

In the first phase, we extract all execution roles, function
configurations, and permission assignments from serverless
deployments. We then identify functions that are granted risky
permissions that are known to be exploitable in privilege
escalation. This phase reconstructs the fragmented privilege
landscape induced by function-scoped IAM bindings, and
prunes the privilege space to retain only high-risk nodes that
are likely to participate in escalation chains.

In the second phase, we apply a modality-based algorithm
to evaluate whether these functions can be composed into
concrete privilege escalation chains. Our modality-based
exploitability reasoning approach checks for direct privilege



escalation (modality 1), escalation via hijacked privileged
functions (modality 2), and cross-account propagation through
shared resources (modality 3). The analysis produces potential
privilege escalation chains, detailing how permissions from
multiple functions and accounts can compose into exploitable
attack paths. As a result, our approach reconstructs full
attack chains rooted under serverless semantics — capturing
how benign permissions, when composed across loosely
coupled functions and services, lead to emergent privilege
amplification.

To evaluate the effectiveness of our approach, we test it
against real-world serverless applications deployed in actual
commercial cloud environments. However, large-scale, de-
ployed, and production-grade serverless applications are often
difficult to access. Among major cloud providers, only AWS
and Alibaba Cloud offer officially maintained serverless appli-
cation repositories [18], [19], which host reusable, customer-
facing applications actively used in practice. Accordingly, for
each of the two cloud vendors, we install those applications
provided by their repository and run our tool to detect potential
privilege escalation paths. As a result, our approach suc-
cessfully identifies 28 vulnerable real applications exhibiting
privilege escalation chains and covers all attack modalities. We
report our findings to related developers and cloud vendors.
Finally, we have obtained five CVEs, six acknowledgments,
and one security bounty. Our results show that the risky
permission chaining attack is both prevalent and exploitable
in real-world serverless environments.

Overall, this paper makes the following contributions:
Novel attack scope: We show how serverless intrinsic
function-level granularity, and cross-account resource sharing
mechanisms can lead to risky permissions into broader, multi-
stage escalation chains, which we term risky permission chain-
ing attacks. When exploited, attackers can escalate privileges
both inter-apps and inter-accounts.

Modality-based reasoning: We introduce a layer modal-
ity framework, which generalizes beyond pattern matching
by modeling semantically valid privilege transitions across
functions, applications, and accounts, extending the search
space from single permission risk to novel chaining attacks.
We open-source our tool at: https://doi.org/10.5281/zenodo.
16957393.

Real security impact: By applying our tool to production-
grade serverless applications deployed on AWS and Alibaba
Cloud, we detect and uncover multiple previously unknown
privilege escalation vulnerabilities, with five new CVEs, sev-
eral acknowledgments, and a security bounty.

II. BACKGROUND

In this section, we present the necessary background knowl-
edge of our work, including the serverless applications, archi-
tecture, and access control.

A. Serverless Applications

Serverless applications are the central abstraction and op-
erational unit in serverless architecture, built and executed
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Fig. 1: Serverless application architecture.
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atop serverless platforms provided by major cloud vendors.
Rather than managing underlying infrastructures intrinsic to
traditional cloud services, developers only focus on imple-
menting business logic in lightweight functions or directly
deploying pre-built serverless applications from repositories.
These applications are executed within managed serverless
platforms provided by major cloud vendors such as AWS,
Microsoft Azure, Google Cloud, IBM Cloud, and Alibaba
Cloud [20], [21], [22], [23], [24], enabling rapid development
and scalable deployment.

To accelerate adoption, cloud vendors support not
only customer-developed application development, but also
application-level reuse through application repositories.
Among major platforms, only AWS and Alibaba Cloud pro-
vide production-grade serverless application repositories —
the AWS Serverless Application Repository (SAR) and Al-
ibaba Serverless Application Center — where customers can
directly deploy reusable applications maintained by cloud
vendors or third-party developers [25], [19]. These repositories
play a critical role in our study: they host realistic, production-
facing applications that reflect how serverless functions deploy,
update, and assign permissions in practice. Compared to toy
examples offered by other platforms [26], [27], [28], these ap-
plications exhibit complex permission bindings, cross-function
interactions, and shared resources — making them suitable
targets to analyze exploitable risky permission chains in server-
less applications. Therefore, we select serverless applications
from these two repositories as the primary data source for our
analysis and tool evaluation (see §V). The application structure
and permission assignments that they reveal also guide our
following architectural model and permission management.

B. Serverless Application Architecture

Serverless applications adopt a function-centric architecture.
As shown in Figure 1, there are multiple serverless appli-
cations deployed by different customers. A typical server-
less application (or app) is composed of multiple functions,
each representing a discrete unit of code execution. More
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specifically, a typical function consists of the deployment
package [29] and execution role [30]. The deployment package
contains the code and dependencies needed to perform its
functionalities. And the execution role is the permissions
granted to this function by developers, which determine which
other services or resources this function can interact with.

Besides, serverless platforms promote resource-sharing
mechanisms to optimize code reuse and deployment effi-
ciency. These mechanisms (e.g., Lambda layers [31], ECR
images [32], etc.) enable multiple functions or even functions
across different accounts to share the same code and depen-
dencies on demand. Lambda Layers and container images
exhibit automatic execution behavior that distinguishes them
from traditional resource sharing. When a function attaches
a Lambda Layer or uses a shared container image, any code
within these resources is automatically loaded and executed
during function initialization without explicit user intervention.

While beneficial for development efficiency, these mecha-
nisms introduce a cross-tenant attack surface when combined
with risky function-level permissions. More specifically, a
shared resource from one account can automatically propagate
code execution to other tenants or applications, enabling at-
tackers to establish footholds across multiple accounts through
the platform’s native sharing infrastructure.

C. Access Control

Access control plays a critical role in securing serverless
applications. To support access control, cloud providers inter-
act serverless applications with existing access management
systems, such as AWS Identity and Access Management
(IAM) [11] and Alibaba Cloud Resource Access Management
(RAM) [12]. These two mechanisms follow the same principle.

Instead of granting permissions directly to functions, devel-
opers define execution roles with attached policies, and assign
them to functions at deployment. In practice, this decoupling,
while flexible, leads to role reuse and permission over board
across multiple functions. As functions are added or modified
over time, the shared roles often accumulate privileges to ac-
commodate diverse execution needs. This pattern significantly
expands the privilege surface and creates opportunities for
unexpected permission composition.

More specifically, each function in a serverless environment
is bound to an execution role defined in IAM (or RAM), which
governs its operations on resources via attached policies. For
example, the aws—deployment—-framework, a serverless
application developed by AWS, contains six functions: Stack-
Waiter, DetermineEventFunction, RoleStackDeploymentFunc-
tion, UpdateResourcePoliciesFunction, MovedToRootAction-
Function, and CrossAccountExecuteFunction. All of them
share the same execution role LambdaRole. As shown
in Figure 2, the StackWaiter function (line 4) is assigned an
execution role named LambdaRole (line 5). This role has a
customer-managed [33] policy named LambdaPolicy attached
to it (line 33). This policy includes the “sts:AssumeRole”
action of “*” resources (line 29), which allows the StackWaiter

to assume any role within the customer’s account, including
the admin role.

StackWaiterFunction:
Type: "AWS::Serverless::Function"

1
2
3 :
4 nName: StackWaiter

5 !GetAtt LambdaRole.Arn
6

7

8 LambdaRole:

9 Type: "AWS::IAM::Role"

10 Properties:

11 AssumeRolePolicyDocument :

12 Version: "2012-10-17"

13 Statement:

14 — Effect: "Allow"

15 Principal:

16 Service:

17 .

18 - "lambda.amazonaws.com"

22
23

24 cument :

25 "2012-10-17"
26 Statement:

27 Effect: "Allow"
28 Action:

29 - "sts:AssumeRole"
30 e

31 Resource: "«"
32 Roles:

33 - !Ref LambdaRole
34

Fig. 2: The StackWaiter function.

Customers typically manage execution roles and policies
at deployment time, but rarely reason about how these per-
missions may be composed and abused from an attacker’s
perspective. While role reuse simplifies deployment, it often
leads to risky permissions to individual functions that ap-
pear benign in isolation. However, in large-scale serverless
deployments, these risky permissions can become exploitable
when systematically chained across functions, applications,
and accounts.

Specifically, when multiple serverless applications coexist
in a single cloud account, disjoint risky permissions from
different apps may be inadvertently composable. This enables
inter-application privilege escalation paths, where permissions
intended for one application are unintentionally exposed to or
leveraged by others, forming what we define as exploitable
chains. Even worse, when these risky permission roles are
combined with cross-account resource sharing mechanisms
(e.g., Lambda layers), attackers may further escalate their
reach to compromise resources in other accounts — creating
a multi-layered attack surface that spans multiple functions,
applications, and even cloud tenants. We discuss more in §III.

III. MOTIVATION
A. Threat Model

In this paper, we assume an attacker who gains control over
a single compromised function and aims to escalate her/his
privilege within the customer’s cloud account. Beyond this,
the attacker can even pursue cross-account privilege escalation
to compromise other accounts under the same cloud provider.



We consider two distinct attack scenarios that reflect re-
alistic serverless deployment scenarios. First, for Internet-
facing functions that are directly accessible from external net-
works, outside attackers can exploit vulnerabilities to achieve
function-level compromise [13], [34], [35], [36], [37]. Second,
for functions deployed in isolated environments without direct
Internet connectivity, compromise can occur through internal
attack vectors such as malicious insiders. In both scenarios,
once initial function compromise is achieved, our privilege
escalation analysis applies regardless of the function’s network
accessibility.

In contrast to the weak initial capability, the attacker’s
potential impact is significant. We demonstrate that compro-
mising a single function can lead to intra-account privilege
escalation and even cross-account compromise, highlighting
the disproportionate security risks in serverless environments.

B. Attack Definition

Prior works on serverless access control have focused on

analyzing and reducing unnecessary intra-application permis-
sions. However, determining whether a permission is ‘“un-
necessary” or not often has limited practical meaning from
the attacker’s perspective. More critically, certain necessary
or seemingly legitimate permissions can still be exploited
when systematically composed across functions from differ-
ent apps and accounts. This insight shifts us from abstract
least-privilege principles toward the detection of concretely
exploitable permission chains.
Risky permission chaining attack: A risky permission chain-
ing attack occurs when an attacker compromises a function
and systematically composes risky permissions from different
functions, applications, and accounts into exploitable escala-
tion paths that span privilege boundaries.

Existing concepts such as “IAM misconfiguration” or
“multi-IAM attacks” [38] fall short of describing this risk,
as they focus on static policy mistakes or overly permissive
roles. In contrast, risky permission chaining attacks arise from
a structural insight: the ability of attackers to weaponize the
risky permissions in serverless systems to transform isolated
permissions into exploitable paths.

C. Motivating Example: A Real Attack in AWS

We now illustrate a real-world multi-stage, cross-account
risky permission chaining attack observed in AWS. This attack
emerges from the composition of loosely-scoped permissions
and the sharing semantics of serverless platforms, forming
executable attack chains across functions and cloud tenants.
This case, which affected production applications from AWS
and Coralogix, has been acknowledged via a CVE and a public
patch.

Detailed analysis: We consider a real scenario where two
serverless accounts have different applications. As shown
in Figure 3, the customer AWS account A has installed the
aws-deployment-framework (ADF for short) application. The
AWS account B has installed the Coralogix-Lambda-Manager
and ADF applications. As we discussed in §II-C, the attacker

/ Customer account B

Coralogix
-Lambda-
Manager

/ Customer account A "\

Malicious Layer

—— |®Auto execute]
'malicious code

@Update ADF |to attach Layer

(@Create malicious
shareable Layer

(MAssume|admin role

®Assume |admin role

Account A compromised 7— Account B compromised

Fig. 3: A real attack in AWS.

who controls one of ADF’s functions (e.g., the StackWaiter)
can abuse the “sts:AssumeRole” of “*” to assume the admin
role within the customer’s account. As a result, the attacker
can escalate vertically and take over the customer account A
(® in Figure 3).

Based on this, the attacker further leverages the compro-
mised account A to create a malicious Lambda Layer [31]
embedded with backdoor code (@ in Figure 3). The AWS
Lambda Layer mechanism exhibits two features that make it
an effective attack vector. First, it can be used to share and
attach an executable code module across serverless functions
in different accounts. Second, once a layer is attached to a
function, any module imported from the layer will be executed
automatically as part of the function’s initialization process. As
a result, if a function in account B (e.g., Coralogix-Lambda-
Manager) attaches this malicious layer — intentionally or in-
advertently — the embedded backdoor logic will be triggered
automatically during function startup. This enables the attacker
to escalate horizontally and gain a function-level foothold in
account B (@ in Figure 3).

Moreover, the Coralogix-Lambda-Manager’s function in
account B also has risky permissions that can be
exploited to compromise this account. More specifi-
cally, it is granted “lambda:UpdateFunctionConfiguration” of
“${AWS::Accountld}:function:*”, which allows the attacker
to reconfigure any function in the account — including ADF
— to attach the same malicious layer and control ADF’s
function in account B (® in Figure 3). Similarly, as in the
first stage of the attack, this enables the attacker to use the
infected ADF’s function to assume an admin role and take
full control of account B (® in Figure 3).
Acknowledgment: We responsibly disclosed our findings to
the affected vendors. The ADF is developed by AWS, which
has acknowledged the issue and assigned us a high-severity
CVE (CVE-2024-37293). In addition, the Coralogix team con-
firmed the vulnerability in their Coralogix-Lambda-Manager
application and released a public patch via a GitHub pull
request. These acknowledgments demonstrate the practical
impact and severity of the discovered issue.

Lessons learned: This two-stage attack illustrates the core
insight behind risky permission chaining attacks: in serverless



environments, removing unnecessary permissions to follow
the least privilege rules can not fundamentally solve prob-
lems. From the attacker’s perspective, an attacker can chain
risky permissions inter-applications, no matter necessary or
unnecessary, into systematic compromise — first vertically,
by involving sts:AssumeRole permission and escalating within
an account; then horizontally, by propagating across tenants
through lambda:UpdateFunctionConfiguration and layer at-
tachment.

Such escalation paths are neither explicitly granted nor
statically visible — they emerge from the mismatch between
the decentralized function with resource sharing of modern
serverless deployments and the centralized feature of capable
but misaligned permission management mechanisms (e.g.,
IAM). The resulting compromise of two real applications
demonstrates that risky permission chaining attacks are not
only hypothetical — they are structural, exploitable, and
already deployed in the wild.

IV. SYSTEMATIC EXPLOITABILITY REASONING FOR RISKY
PERMISSIONS

A. Detection Framework Overview

Our goal is to detect concrete exploitable instances of
risky permission chains in real-world serverless deployments.
However, this task is challenging due to the combinatorial
nature of privilege composition: permissions are scattered
across hundreds of functions and roles, often spanning multiple
services and accounts. As a result, the potential space of
privilege escalation paths is vast, and most paths are benign
or irrelevant.

To address this issue, we design a two-phase detection
framework based on a filtering-and-instantiation paradigm.
The key insight is to treat the detection problem as a form
of privilege vector space pruning. That is, we first reduce the
search space by filtering out permissions that are unlikely to
participate in chaining attacks. This step collapses the vast
search space into a tractable set of high-risk privilege nodes.
Then we apply a structured modality reasoning algorithm
to identify meaningful escalation chains. This “filter-and-
instantiate” approach enables our system to scale to real-world
deployments while preserving semantic fidelity in capturing
compositional attack paths.

In the first phase, we extract all execution roles and policy
bindings, and identify functions granted sensitive permissions
that are known to be exploitable in privilege escalation. This
produces a refined privilege graph that retains only attacker-
relevant operations and potential entry points (i.e., risky per-
mission identification in Figure 4).

In the second phase, we instantiate our formal attack
modalities as permission composition algorithms. It encode
the structural and semantic requirements of risky permission
chaining attacks — such as role assumptions, function recon-
figurations, or cross-account infection — and search for valid
paths in the refined graph that satisfy these patterns. This
enables us to detect concrete, multi-stage exploitable paths

from the attacker aspect (i.e., modality-based exploitability
reasoning in Figure 4).

B. Risky Permission Identification

TABLE I: Capability Comparison of IAM Analysis Tools

Tool name Rislf Attack Cross
detection | chains | account

IAMGraph X

TAMSpy X

PMapper v

Cloudsplaining v X X
Red-Shadow X

AWS Access Analyzer v

AWS Policy Simulator X

Our Approach v v v

While our analysis focuses on reasoning the exploitable
risky permission chains in serverless scenarios, we inten-
tionally build on existing research to define sensitive IAM
actions. These well-established sets of high-risk permissions
provide a reliable foundation for filtering out unlikely escala-
tion paths, allowing us to concentrate on the unique privilege
propagation behaviors enabled by serverless systems, such
as function reconfiguration, implicit role chaining, and cross-
account propagation. Our contribution, therefore, does not lie
in redefining what permissions are dangerous, but in showing
how risky permissions can be composed into novel escalation
paths that are specific to serverless architectures and typically
invisible to traditional IAM analyses.

Concretely, we scan all execution roles in the target cloud
environments and extract their associated policies. We then
flag as “risky” for any role that includes one or more actions
from the pre-defined sensitive permission set [38], [39], [40].
These permissions are summarized in Table V and Table VI.
As a result, we match each risky role to the serverless
functions that actually assume it at runtime. This role-to-
function mapping enables us to localize potential escalation
points to concrete execution targets, providing the necessary
entry points for subsequent modality-based identification.

C. Exploitability Analysis for Risky Permissions

After identifying functions with risky permissions, we
proceed to determine whether they can be composed into
exploitable paths. To achieve this, we adopt a layer-based
detection approach guided by our formal attack modalities.
Each modality is instantiated as a structured detection pattern
that captures the semantic and structural preconditions of a
specific class of privilege escalation.

1) Challenges: To systematically analyze whether risky
permissions are susceptible to chaining attacks in serverless
applications, we must move beyond ad-hoc case studies and
instead develop a generalizable analysis approach. While ex-
isting IAM analysis tools [17], [41], [42], [15], [43], [16],
[44] have proven effective for identifying individual risky
permissions within single accounts, they exhibit fundamental
limitations when applied to serverless environments.
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Fig. 4: Detection framework overview.

As summarized in Table I, we conducted a systematic
comparison of seven existing tools across three key capa-
bilities: risky permission detection (Risk detection), attack
chain detection (Attack chains), and cross-account detection
support (Cross account). Our experiments reveal that while
some tools (e.g., Cloudsplaining, PMapper, AWS Access An-
alyzer) can successfully detect individual privilege escalation
risks, none support multi-stage attack chain analysis or cross-
account privilege propagation — two critical attack vectors
in modern serverless deployments. This limitation stems from
their design focus on role-level policy analysis, without ac-
counting for how permissions are actually composed, reused,
and propagated across functions, applications, and accounts in
serverless environments.

To address these limitations, we need to extract and gen-
eralize formal attack modalities by systematically analyzing
real-world cases from the attacker’s perspective. After that,
we implement these attack modalities as a structured detection
algorithm to reason the potential exploitation paths in real-
world accounts. Each step is non-trivial and raises distinct
technical challenges:

Challenge 1: It is hard to build formal attack modalities
beyond individual attacks.

Systematically detecting risky permission chaining attacks
requires generalizing beyond individual case studies. Prior
works — both academic and industry [38], [40], [39], [45]
— have uncovered concrete examples of privilege escalation
in serverless applications. However, these efforts remain case-
by-case, lacking a unified model for reasoning about how such
attacks arise. Without such abstraction, the detection is limited
to manually discovered instances and cannot scale to unseen
deployments.

In serverless systems, privileges are assigned at the gran-
ularity of individual functions — each bound to its own
execution role and policies. Yet risky permission chaining
attacks emerge from privilege chains that span multiple roles,
functions, and even accounts. This creates a fundamental
mismatch in analysis granularity: the privilege boundary is
local, while the attack surface is global. Capturing these
behaviors in a reusable model requires reasoning about how
isolated permissions can be composed into emergent privilege
escalation paths — across loosely coupled components that

evolve independently.

To solve this challenge, our key observation is that risky
permission escalation behaviors exhibit recurring structural
patterns, which can be systematically modeled. We elaborate
on this model in §IV-C2.

Challenge 2: It is hard to realize attack modalities in tools
to identify real exploitable paths.

While attack modalities offer a structured abstraction for
modeling our attack, they cannot identify actual attack in-
stances on their own. Real-world detection requires instan-
tiating these modalities over the concrete configurations of
cloud deployments, i.e., roles, policies, functions, and their
relationships. Unfortunately, existing IAM tools are not de-
signed for this: they operate at the level of individual roles or
policies, and cannot reason about cross-function, cross-account
privilege composition. To bridge this gap, a dedicated analysis
mechanism is needed.

To solve this challenge, our key observation is that attack
modalities exhibit a natural hierarchical structure that en-
ables layered reasoning about privilege escalation paths. Each
modality can be formalized as a set of structural and semantic
patterns, where higher-level modalities build upon lower-level
ones to form increasingly sophisticated attack chains. This
enables us to transform the exploitability reasoning problem
into a layer-based identification task — searching for attacker-
reachable privilege chains that match each mode under server-
less semantics. We describe more details in §IV-C3.

2) Attack modalities modeling: As we discussed in the first
challenge of §I1V-C1, systematically reasoning the exploitation
paths of risky permissions first requires abstracting the core
attack behaviors into generalizable modalities. To achieve
this, our key observation is that the privilege escalation risks
can be abstracted along two orthogonal dimensions. The first
is attacker capability — whether a function under attacker
control can directly perform privilege escalation (direct), or
needs to rely on compromising additional functions (indirect).
The second is the topology of privilege propagation — whether
escalation occurs within a single account (vertical) or spans
across multiple accounts (horizontal).

Combining these dimensions, we observe three formal at-
tack modalities that are repeatedly exploitable in real-world
deployments. First, an attacker can escape from a function and
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Fig. 5: Attack modalities of the risky permission chaining attack.

compromise a single account by exploiting critical permissions
directly (® in Figure 5). Second, the attacker can abuse the
permissions of a compromised function to hijack other critical
functions, and then abuse the new granted critical permissions
to take over the account indirectly (@ in Figure 5). Third,
serverless platforms enable horizontal privilege propagation
via cross-account sharing of components such as Lambda
Layers; once an attacker leverages a shared resource and
compromises a function in a new account, previously used
vertical escalation techniques can be recursively applied, al-
lowing the attacker to expand control across multiple accounts
(® in Figure 5).

Notably, the horizontal propagation modality presumes that
the attacker has already compromised an account via vertical
escalation. It focuses on cross-tenant movement — how at-
tackers reuse their foothold to infect other accounts — rather
than on the method of escalation itself. As such, it does
not introduce a separate attacker capability dimension, but
rather extends the impact of existing vertical modalities across
accounts. This design results in three representative modalities,
as shown in Figure 5, instead of a full 2x2 combination.

a) Obtaining account admin directly: Our first modality
is to abuse the risky permission of a serverless function
to directly take over the entire account. Specifically, if the
attacker-controlled function is granted permissions that allow
it to escalate to administrative privileges (e.g., assuming the
admin role, attaching the AdministratorAccess policy, etc.), the
attacker can abuse the function to escalate privileges without
additional steps. This pattern is demonstrated in the first stage
of our motivating example. The attacker-controlled ADF’s
function leverages the ‘“‘sts:AssumeRole” permission of “*”
to directly obtain the admin role and take over the customer
account A.

b) Hijacking critical function in the same account: Our
second modality is to abuse the permissions of a compromised
function to hijack other critical functions, and then exploit their
critical permissions to take over the account indirectly.

For example, api-gateway-dev-portal (AGDP for short) is
another AWS serverless application, and one of its functions
has an execution role that is granted both “iam:PassRole”

and “lambda:CreateFunction”. If an attacker gains control of
this function, he/she can use it to create a new Lambda
function and specify the execution role of another existing
high-privilege function (e.g., from the ADF application) during
creation. Once the new function is deployed, it inherits the
“sts:AssumeRole” capability from the ADF’s function’s exe-
cution role, enabling the attacker to escalate privileges without
accessing the ADF’s function directly.

c) Infecting other accounts via resource sharing mecha-
nism: Our third modality extends the attack surface across ac-
count boundaries by abusing serverless platforms’ support for
cross-account resource sharing. An attacker who compromises
one account based on the former two modalities can craft and
share a malicious payload with other accounts to infect their
functions. Once a foothold is established in the new account,
previously described privilege escalation modalities can be
recursively applied to control other accounts horizontally. This
pattern is demonstrated in the second stage of our motivating
example, where a malicious layer created from account A
is used to compromise account B, eventually allowing the
attacker to take over both accounts.

3) Modality-based exploitability analysis: To detail our
analysis approach, we first discuss the attack graph construc-
tion. Based on that, we give a detailed algorithm analysis.
Attack graph construction: Our system is designed with
scalability and completeness in mind via a two-stage node-
edge analysis.

In our attack graph, each node represents a function that
holds at least one risky permission. To identify such nodes, we
traverse all IAM roles and policies, and associate each function
with its execution role. As a result, we can extract permissions
granted to each function and build the node. To avoid a
combinatorial explosion, we prune the graph by retaining only
functions with risky permissions, and only include those risky
permissions per function.

In the attack graph, each edge represents a potential privi-
lege escalation chain from one function to another, constructed
based on our layered modality framework. Each modality
defines a specific class of escalation logic used to determine
whether an edge should be added between two functions.



Algorithm 1: Modality-Based Exploitable Path Detec-
tion
Input: A set of accounts A = {4, A, ..., A, }, each
with functions and execution roles
Output: Three sets of attack paths:
Modality ®@Set, Modality @sSet,
Modality ®@Set
1 foreach account acc in A do

2 foreach function f in acc.functions do
3 if f.permissions 2
RequiredPermissions O then
4 Modality ®@Set[acc] «
Modality @Set[acc] U{f}
5 end
6 end
7 foreach function f in acc.functions do
8 if f.permissions O Hi jackPermissions
then
9 foreach fi;rgct in
Modality ®Set [acc] do
10 if CanHijack (f, fiarget) then
11 Modality @Set [acc] «
Modality @Set [acc]
U{(fa ftarget)}
12 end
13 end
14 end
15 end

16 end

17 foreach account pair (accA,accB) in A x A,

accA # accB do

18 if Modality ®Set[accA] # () or
Modality ®@Set [accA] # () then

19 if

HasFunctionWithInfectionCap (accB)
and (Modality ®Set [accB] # () or
Modality @Set [accB] # () then

20 Modality ®Set < Modality ®Set
U{accA — aceB}

21 end

22 end

23 end

More specifically, modality @ adds an edge when a function’s
risky permissions can be directly abused to perform escalation.
Modality @ adds an edge when a function controlled by the
attacker can hijack another function that satisfies Modality
@, combining hijack and privilege actions into a compound
escalation chain. Modality ® adds a cross-account edge when
a function in the source account satisfies modality @ or
@ and holds cross-account access permissions. The target
account must also contain functions satisfying modality @ or
@, allowing the attack chain to continue after the transition.
This layered logic ensures that the algorithm remains tractable

across multiple functions/accounts, while the modality seman-
tics ensure comprehensive coverage of potential escalation
chains.

Algorithm analysis: To achieve this graph-based construction,
we design a hierarchical inference engine to reason composi-
tionally and recursively, uncovering multi-stage exploit paths
that would be missed by flat or isolated analysis approaches.

More specifically, modality @ serves as the foundational
layer in our hierarchical inference framework. It corresponds
to a single-function privilege escalation condition: if a function
possesses critical permissions such as sts:AssumeRole,
the engine directly marks it as an escalation point (lines 2-
6 in Algorithm 1). Building on this, modality @ represents
the next level in attacker capability: it captures a two-stage
escalation path in which an attacker first hijacks a function
that satisfies modality @, and then leverages its permissions
to escalate privileges further. Accordingly, our engine first
identifies functions that match modality @ (line 9 in Al-
gorithm 1), and then searches for candidate functions with
hijacking permissions (lines 10-12 in Algorithm I).

At the highest level of our hierarchical inference framework,
modality ® captures cross-account privilege propagation. This
attack path begins with local privilege escalation in a source
account (account A), achieved via modality @ or @. The at-
tacker then attempts to compromise a second account (account
B) by leveraging shared resources, such as Lambda Layers,
that enable code execution across account boundaries.

To be vulnerable, account B must contain at least one
function that, once compromised, has the ability to modify or
overwrite other functions within the same account, e.g., via
the permission “lambda:UpdateFunctionConfiguration.” This
infection capability allows the attacker to establish a foothold
in account B and recursively trigger modality @ or @ within
the new account, effectively extending the privilege escalation
chain across accounts.

To detect such paths, our system first checks
whether both  the source and target accounts
contain  valid local escalation chains (line 17

in Algorithm 1). Then it invokes the predicate function
HasFunctionWithInfectionCapability (accB)

to determine whether account B includes any function that,
once infected, can propagate the infection to other functions
via permissions such as lambda:UpdateFunctionConfiguration
(line 19 in Algorithm 1). If all conditions are satisfied, the
engine concludes that cross-account escalation is achievable
(line 20 in Algorithm 1), and continues the recursive inference
process within account B.

This recursive, multi-account reasoning completes the top
layer of our hierarchical model, enabling the detection engine
to uncover transitive, cross-tenant privilege escalation chains
that go beyond traditional per-role or per-account analysis.
For example, consider the real-world attack scenario we dis-
cussed in §III-C. In this case, account A has deployed the
ADF application, and account B hosts both the Coralogix-
Lambda-Manager and ADF applications. Our tool identi-
fies a risky execution role LambdaRole in both accounts,



which includes sts:AssumeRole permission, and maps
it to multiple real functions (e.g., StackWaiter) in the
ADF application. In account B, the tool specifically identifies
another function in Coralogix-Lambda-Manager that holds
“lambda:UpdateFunctionConfiguration” permission.

Based on these findings, the detection engine confirms
that both accounts independently satisfy the conditions for
modality @, namely, privilege escalation through sensitive role
permissions. Furthermore, since the function in account B
allows unrestricted updates to function configurations, once
it is infected by the malicious Lambda Layer deployed from
account A, it can infect other functions (ADF’s function) and
assume the admin role. This cross-account propagation path
satisfies the criteria for modality ®. This confirms the practical
applicability of our modality-guided detection approach in
identifying multi-stage, cross-account exploitation paths.

V. EVALUATION

To evaluate the effectiveness of our detection system and
assess the real-world security impact of risky permission
chaining attacks in production-grade applications, we deploy
and analyze applications from official repositories provided
by cloud vendors. Through responsible disclosure, we have
obtained 5 CVEs, one security bounty, and six confirmations
from two cloud vendors, demonstrating both the practicality
and security relevance of the identified risks.

A. Evaluation Scope and Methodology

For the evaluation scope, since our detection system is the
first to target risky permission abuse in serverless applications,
there is no existing tool or benchmark dataset to serve as a
direct baseline for comparison. Moreover, due to the complex-
ity of privilege composition across functions and accounts, it
is difficult to construct synthetic ground truth datasets that
comprehensively cover all possible attack paths.

Therefore, we evaluate our system by applying it to a
wide range of real-world serverless applications deployed
on public cloud platforms. Our evaluation focuses on the
system’s capability to uncover concrete attack chains in the
wild, demonstrating both its practical effectiveness and the
severity of our attack.

For the evaluation methodology, since our goal is to assess
the existence and severity of risky permission chaining attacks
in real-world serverless applications, we should avoid using
toy examples that do not reflect realistic serverless configu-
rations. Furthermore, we should evaluate those apps officially
recommended or maintained by cloud vendors, as these appli-
cations are more likely to reflect production-grade configura-
tions and widely used deployment practices. In contrast, appli-
cations from public aggregators or open-source communities
(e.g., Serverless Framework [46], Awesome Serverless [47],
OpenFass FunctionStore [48], etc.) often vary in quality and
may not be representative of real-world deployments.

Therefore, we first select and install applications from
the official serverless applications repositories provided by
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TABLE II: Result summary of serverless applications.

Cloud vendor
AWS
Alibaba Cloud

Serverless apps
308
55

Identified apps
26
2

Confirmed apps
10
2

major cloud vendors (i.e., AWS Serverless Application Repos-
itory [18] and Alibaba Cloud Serverless Application Cen-
ter [19]). Our detection system is then applied to analyze
each application and extract potential issues and associated
attack chains. Finally, we privately report each confirmed
security issue to the corresponding vendors through respon-
sible disclosure channels. This methodology enables us to
evaluate our system’s effectiveness in identifying meaningful,
exploitable security risks in real-world serverless applications
while maintaining ethical and responsible research practices.

B. Real-World Attack Discovery

Rather than describing individual cases in detail, we or-
ganize our findings to demonstrate systematic patterns. Since
modalities @ and @ were illustrated in §I1I, we only describe
the technical details and result summary of different cloud
environments. In addition, we discuss one modality @ case to
complete the coverage.

Ethical Considerations: All experiments in this section were
conducted under strict ethical guidelines to ensure no harm to
real-world systems or users. We operated entirely within cloud
accounts that are fully owned and controlled by us. All identi-
fied risks were responsibly disclosed to the respective vendors
before any public discussion. For more detailed discussion of
ethical procedures, see VIII.

AWS result summary: There are thousands of apps provided
by AWS. To ensure that our analysis targets both popular and
security-critical applications, we focus on those that are both
widely deployed and explicitly configure their custom access
control policies. More specifically, applications with high
deployment counts are more likely to be used in production
settings, and custom IAM policies introduce a greater risk of
risky permission chaining attacks compared to default platform
configurations.

Based on these insights, we selected serverless applications
from the AWS Serverless Application Repository based on two
criteria: (1) the application has been deployed more than 10
times, and (2) it defines custom IAM roles or resource policies.
Applying these criteria, we analyzed 308 applications and
identified 26 ones with potentially exploitable issues (listed
in Table II). Among these, 10 applications (7 developed by
AWS and 3 by third-party developers) were confirmed by
their developers through responsible disclosure, including four
assigned CVEs. See detailed results summary in Table III.
Alibaba Cloud result summary: Compared to AWS, Alibaba
Cloud’s Serverless Application Center hosts a smaller number
of serverless applications and does not expose public deploy-
ment metrics or detailed IAM configurations in application
metadata. As a result, we adopted an exhaustive analysis
approach and installed all 55 available applications listed in
the repository.



TABLE III: Result summary of risky permission chaining attacks via serverless apps.

Developer Serverless app Function Execution role Attached policy Permission Modality | Disclosure status
awsf_rgill);i;)v}g:lf nt- StackWaiter LambdaRole LambdaPolicy sts:AssumeRole of * @ CVE-2024-37293
measure cold- Loop LoopRole | LoopRolcPolicy0 | *MvadrUpdatebunction g cyp 505 45471
AWS start S Configuration o
A A eploy loExisting . .
autodeploy- DeployToEmstmg DeployToEx1st1ng FunctionsRole lambda.Upda_teFunctlon ® CVE-2025-45472
Functions FunctionsRole . Configuration of *
layer Policy0
experimental- ExtractCarbon ExtractCarbon
. ExtractCarbon . L . 4
programmatic- . . Emissions EmissionsFunction|  sts:AssumeRole of * @
EmissionsFunction . .
access-ccft FunctionRole RolePolicy0 confirmed
aws-lambda- . rLambda Administrator . !
rLambdaFunction . * of * )
ecs-run-task FunctionRole Access
cloudFront of confi CloudFront iam:CreateRole and
Extensions .~ & . ConfigManager iam:AttachRolePolicy ]
version_manager ConfigVersion
Console of *
api-gateway- CloudF.r ont CloudFrontEdge . lam’:l.)assgole anq
dev-portal Security ReplicatorRole root lambda:CreateFunction @
HeadersLambda of *
LogicloadEc2 LogicLoadEc2 LogicLoadEc2
LoadZilla LoadLogic Deglo Lambda DeployLambda DeployLambda sts:AssumeRole of * ) CVE-2024-46511
ploy Role RolePolicy0
Salesforce ServiceCloud ContactLens KinesisStream SCVConnect
Service VoiceLambdas KinesisStream StorageAssociate Configurator iam:PutRolePolicy of * ) confirmed
Cloud Voice AssociateFunction FunctionRole RolePolicy T
Coralogix- lambda:UpdateFunction
e . . LambdaFunction | LambdaFunction Configuration
Coralogix Ii/?amnzd:; LambdaFunction Role RolePolicy0 of ${AWS::Accountld}: ®
& function:*
Alibaba fc-1lm-api IIm-server fcdeployrole AliyunFCFull ram:Pa‘ssRol? and security bounty
Cloud Access fc:* of *
fe-stable- «d Alhyu]gFCierlver Ah)meCFull ram:ilf‘a'isR?l: and CVE-2025-45468
diffusion-plus essDevsRole ceess c*o
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Fig. 6: AGDP attack in AWS.

Among these, our tool identified 2 applications with po-

tentially exploitable paths (listed in Table II). Notably, one
of them was developed by Alibaba Cloud itself and has been
acknowledged via Alibaba Security Response Center [49] with
a bounty awarded. And the other one assigned us a new
CVE (i.e., CVE-2025-45468). The risky permissions are listed
in Table III.
Modality @ case: api-gateway-dev-portal: This application
is a serverless app developed by AWS. It brings a func-
tion called CloudFrontSecurityHeadersLambda and carries
“iam:PassRole” and “lambda:CreateFunction” of “*” resource
in version 4.0.0. An attacker can create a new Lambda
function with arbitrary code and assign it a high-privilege
role using iam:PassRole. After that, by invoking the newly
created function, the attacker can indirectly escalate privileges
within the account (modality @).

More specifically, as shown in Figure 6, the attacker can
leverage this privilege combination to launch a two-step
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escalation. First, the attacker uses the compromised AGDP
function to create a new Lambda function, and during creation,
specifies the high-privilege execution role of an existing func-
tion, such as one from the aws-deployment-framework (ADF),
which possesses the permission sts:AssumeRole:x (@
in Figure 6). Then, the attacker invokes the newly created
function, which runs under the stolen role and gains access to
its permissions. Through this role, the function can assume the
admin role and take over the account (@ in Figure 6). Notably,
this attack achieves indirect privilege escalation without ever
directly interacting with the original high-privilege ADF’s
function. We responsibly reported this issue to AWS, and they
confirmed the underlying permission misuse.

Modality ablations: Our evaluation demonstrates the
modality-based framework successfully identified recurring
vulnerability patterns across multiple applications, covering
all three modalities proposed by us. Furthermore, our ab-
lation experiments show that removing any modality leads
to a measurable drop in the number of detected vulnerable
applications. More specifically, removing modality @ reduce
the identification of 7 cases, removing modality @ reduce
the identification of 4 cases, and removing @ reduces the
identification of all cases, which serve as the basic unit
of our layered modality approach. This result confirms that
each modality contributes uniquely to uncovering multi-stage
privilege escalation chains.



C. Real-World Tool Deployment

These CVEs, bounty, and multiple confirms demonstrate
how we, as researchers, apply our detection framework to
analyze security risks. However, for end users, several practical
aspects regarding the deployment and use of the tool in real-
world settings remain unclear. More specifically, key questions
may arise from end users regarding responsibility, usage
frequency, and computational overhead of using our tool in
real-world scenarios. Here, we address the first two aspects,
while overhead evaluations are discussed in detail in §V-D.

TABLE IV: Scalability performance results in AWS.

Scenario App count Time (s)

1 22.55

5 24.50

10 25.06

Vulnerable only 15 2834

20 31.47

26 34.71

50 (26+24) 39.92

Mixed environment 100 (26+74) 93.26
200 (26+174) 146.46

First, for practical usage, according to the shared responsi-
bility model widely accepted by cloud vendors [50], [51], [52],
[53], securing application logic and configurations falls under
customers (i.e., “security on the cloud”), not cloud vendors.
Therefore, the primary responsibility for running our tool lies
with serverless application developers and cloud tenants. Our
tool serves two main usage scenarios: (1) Serverless app devel-
opers can integrate it into development workflows to eliminate
privilege misconfigurations, and (2) Cloud tenants can use
it to perform security audits on all installed applications,
particularly those with custom IAM roles and cross-account
resource-sharing capabilities.

Second, for usage frequency, based on our two primary
usage scenarios, we recommend different execution patterns:
(1) for serverless application developers, the tool should be
executed before each application release or update to identify
and eliminate risky permission chains in the development
pipeline; (2) for cloud tenants, considering that many server-
less applications are developed and maintained by different
teams and may contain vulnerabilities, the tool should be
run after installing new serverless applications to ensure no
exploitable privilege escalation paths are introduced.

D. Performance Evaluation

To evaluate the scalability of our approach, we conduct
experiments in both cloud environments. Specifically, for
the AWS environment, which contains a larger application
corpus and better reflects large-scale serverless deployments,
we design two complementary experiments: (1) vulnerable ap-
plication scalability, where we gradually increase the number
of risky applications to assess core algorithm performance,
and (2) mixed environment scalability, where we simulate
realistic deployment scenarios where both vulnerable and
benign applications coexist. For Alibaba Cloud, given the
total repository size of 55 applications, we directly measure
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the analysis time for the complete mixed scenario to validate
cross-platform consistency.

For the AWS environment, the performance results are
summarized in Table I'V. For the vulnerable applications only
scenario, our algorithm demonstrates nearly linear scalability,
with analysis time increasing from 22.55 seconds for a single
application to 34.71 seconds for all 26 vulnerable applications.
This modest time increase indicates efficient processing of
security-critical applications. For the mixed AWS environ-
ment, our algorithm maintains reasonable performance with
analysis time scaling from 39.92 seconds for 50 apps (26
vulnerable + 24 benign) to 146.46 seconds for 200 apps (26
vulnerable + 174 benign). For Alibaba Cloud, analyzing all 55
applications takes less than 80 seconds. Results demonstrate
that our algorithm exhibits favorable scalability characteristics
across different deployment scales and cloud platforms.

VI. DISCUSSIONS
A. Scope Discussion

Our focus on serverless environments is motivated by two
distinctive characteristics that amplify cross-account privilege
escalation risks: (1) decentralized privilege configuration at the
function level, and (2) automatic consumption of cross-account
shared resources.

For example, in AWS, there are 7 major types of cross-
account resource sharing mechanisms: Lambda Layers [31],
ECR container images [54], S3 buckets [55], EventBridge
event buses [56], Step Functions [57], Secrets Manager [58],
and CloudFormation StackSets [59]. Among these, only
Lambda Layers and ECR images enable automatic code exe-
cution in target accounts without explicit user intervention. As
the real example discussed in §III, once a malicious layer is
installed in the victim account, the malicious code will be ex-
ecuted and the account will be automatically compromised. In
contrast, although ECR images can also be used in traditional
EC2 environments, the images must be manually pulled and
deployed by users. Furthermore, the fine-grained, function-
level permission assignment dramatically increases the attack
surface compared with traditional instance-level permissions
in environments like EC2.

While our analysis focuses on serverless environments, we
acknowledge that if we relax the requirement for automatic
execution and consider manual triggering of shared resources,
similar attack surfaces could exist in other environments.
Consequently, our detection framework could potentially be
extended to analyze privilege escalation risks in other cloud
paradigms with comparable resource-sharing mechanisms.

B. Mitigation Discussion

The risky permission chaining attack poses a systemic threat
in serverless environments due to its ability to compose and
propagate privileges across apps and accounts. As a result,
mitigation is critical to prevent exploitation in practice. Based
on our findings and communications with multiple developers
and cloud vendors, we propose several suggestions.



Restrict high-privilege capabilities: Developers should
avoid assigning high-privilege permissions such as
“AdministratorAccess”,  “sts:AssumeRole” on  wildcard
resources, or risky combinations like “iam:PassRole” and
“lambda:CreateFunction” to the same function. These
permissions, individually or in combination, can lead to direct
or indirect privilege escalation. As observed in modalities @
and @, such overly permissive configurations are the root
cause of many real-world serverless vulnerabilities.

Apply fine-grained resource constraints: As shown in real
attacks, multiple risks we discussed before are carried by
granting permissions to wildcard resources (e.g., “*”). Devel-
opers should always specify “Resource” and “Condition” fields
in IAM policies to prevent wildcard-based privilege abuse.
Avoid sharing high-privilege execution roles: As we illus-
trated in real cases, developers usually grant multiple functions
with the same permission sets for rapid deployment and
carry potential risks. We believe they should prevent multiple
functions from sharing the same high-privilege execution role
to reduce lateral movement risk.

Integrate our detection tool into CI/CD pipeline: Existing
permission analysis tools focus on general IAM risks. They are
not designed with serverless evolutions in mind, and often fail
to capture dynamic privilege composition and cross-account
escalation paths. Developers can leverage our automated de-
tection system to identify privilege escalation paths before
deployment, especially in CI/CD pipelines.

Cloud-vendor collaboration: Although the shared respon-
sibility model claims that securing serverless applications
belongs to customers, cloud vendors should provide native
support to help developers reason about privilege composition.
This includes surfacing privilege inheritance paths during
deployment, warning against high-privilege role reuse, and
enabling visualization tools for permission propagation. These
platform-level capabilities, integrated into CI/CD and permis-
sion management workflows, would help developers identify
privilege chains before deployment.

VII. RELATED WORK

A. Serverless Security

Attacks in serverless. Multiple works discuss attacks via
weak spots of serverless platforms or applications. Wang
et al. [60] analyzed the serverless platforms and revealed
that the placement vulnerabilities of Azure Function and the
accounting flaws of Google Cloud Function. Yelam et al. [61]
demonstrated a practical covert channel in AWS Lambda that
can be leveraged to launch co-residence attacks. Xiong et
al. [62] debuted the Warmonger attack, a novel attack vector
that can trigger platform-wide denial-of-service by abusing
shared egress IPs in serverless platforms. Shen et al. [63]
performed a real-world internal Denial-of-Wallet attack on
commodity serverless platforms to evaluate its severity. Al-
though they only revealed various security issues in serverless
platforms and applications, they mostly focus on traditional
attack vectors or their serverless variants.
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Defenses in serverless. There are multiple works on se-
curing serverless environments. Datta et al. [64] presented
Valve, a serverless platform that enables developers to exert
complete fine-grained control of information flows in their
applications by auditing network-layer flows and restricting
function behavior. Sankaran et al. [65] proposed WILL.IAM,
a workflow-aware access control model and reference monitor
that can reduce the attack surface of the serverless application.
Datta et al. [66] introduced ALASTOR, a provenance-based
auditing framework that enables precise tracing of suspicious
events in serverless applications. Similarly, Chen et al. [67]
presented CLARION for auditing serverless containers. Jegan
et al. [14] presented Kalium, an extensible security framework
that leverages local function state and global application state
to enforce control-flow integrity (CFI) in serverless applica-
tions. Polinsky et al. [68] identified opportunities for hardening
serverless application policies and highlighting potential exfil-
tration channels. Rostamipoor et al. [69] presented LeakLess,
combining in-memory encryption with a separate I/O module
to safely transmit protected data between serverless functions
and external hosts.

While prior works do excel in serverless defense mecha-
nisms, they focused on securing or analyzing intra-application
permissions, e.g., the ability of one function to invoke another
or to access an S3 bucket, while deprioritizing the potential
danger of how risky permissions can be chained across appli-
cations and accounts, due to dynamic resource sharing.

B. IAM Misconfiguration Detection

Prior research has extensively explored misconfiguration
detection in cloud IAM systems, particularly within AWS.
Shevrin et al. [38] modeled TAM transitions as finite-state
machines to discover multi-step privilege escalation chains.
Van Ede et al. [70] applied graph embedding and anomaly
detection over policy graphs to identify over-privileged roles.
Other tools, such as TAMGraph [I5] and PMapper [43],
construct privilege graphs to model user-role-resource relation-
ships. Cloudsplaining [41], Red-Shadow [42], and AWS Ac-
cessAnalyzer [17] focus on flagging dangerous policies(e.g.,
wildcard use, known escalation patterns). IAMSpy [16] and
the AWS Policy Simulator [44] use constraint solvers to reason
about complex policy combinations.

While these tools effectively analyze privilege escalation
within traditional cloud environments, they primarily focus
on user-centric and role-centric analysis within single ac-
counts. The key distinction in serverless environments is the
prevalence of dynamic resource sharing mechanisms (e.g.,
Lambda Layers, container images) that enable automatic code
composition across account boundaries. This creates novel
cross-account privilege propagation paths that extend beyond
traditional intra-account IAM analysis, as risky permissions
can be systematically chained through shared resources to
compromise multiple accounts.



VIII. CONCLUSION

In this paper, we reveal a fundamental mismatch between
decentralized serverless applications and centralized permis-
sion management. This mismatch gives rise to an ampli-
fied attack surface, i.e., risky permission chaining attacks,
where loosely scoped permissions can be chained vertically
to compromise a single account, or propagated horizontally to
compromise multiple accounts. To systematically analyze this
new attack vector, we propose three general attack modalities
and implement an automated analysis tool to detect such
exploitable paths by matching against modality templates. To
evaluate the impact, we apply our approach to AWS and
Alibaba Cloud repositories. As a result, we have uncovered
28 vulnerable applications, including five new CVEs, six
developer confirmations, and one security bounty. Finally, we
provide several actionable suggestions to mitigate the risks.

ETHICAL CONSIDERATIONS

In this paper, we evaluate the security impact and identify

risks introduced by chaining risky permissions in serverless
applications. To align with ethical research standards, we
adhere to two key principles: (1) the principle of minimiz-
ing harm, and (2) responsible disclosure. Specifically, we
ensure that our research does not cause unintended real-
world consequences and that any identified vulnerabilities are
communicated securely and responsibly.
Environment Setup: All experiments are conducted in iso-
lated environments that do not involve any other real users or
deployed systems. This ensures that our evaluation does not
interfere with operational serverless applications.

More specifically, for each cloud vendor we evaluate, we
create multiple isolated customer accounts that are fully
owned and managed by us. Within each account, we deploy
serverless applications obtained from the serverless appli-
cation repository, following official deployment guidelines.
All intra-account experiments are confined strictly within a
single self-owned account. For cross-account attack scenarios,
we simulate the environment by creating multiple accounts
ourselves; no experiments target or interact with any third-
party or uninvolved tenants on the cloud platforms.
Responsible Disclosure: All discovered security risks have
been disclosed to the relevant vendors or platform maintainers
before the public release of our findings, to mitigate any
potential abuse by malicious actors.

More specifically, for each potentially serverless application
identified by our approach, we privately report the findings to
the corresponding developers through appropriate disclosure
channels. In this paper, we discuss only applications for which
we have received formal acknowledgments (e.g., CVE assign-
ment, bounty, or formal confirmation from the developers).
For those applications with unconfirmed risks, we refrain from
disclosing any technical details until we obtain confirmation
from the developers.
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APPENDIX A
HIGH-RISK PERMISSIONS

In this appendix, we summarize high-risk permissions dis-
cussed in this paper in two tables, i.e., Table V for AWS
and Table VI for Alibaba Cloud, respectively. These permis-
sions are critical as they grant significant access or control
over cloud resources and, if misused, can lead to privilege
escalation, unauthorized resource access, or other security
threats.
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TABLE V: High-Risk Permissions in AWS

Platform Single Account/Cross-account Action Semantics
iam:CreateUser Turns on a to-be-created user resource flag
iam:UpdateUser Updates the name attribute of the user
iam:CreateLoginProfile Adds the user to the attacker’s credentials list
iam:UpdateLoginProfile Adds the user to the attacker’s credentials list
iam:PutUserPolicy Updates user’s inline policy to fully privileged (updated state)
iam:DeleteUserPolicy Removes user’s inline policy (deleted state)
iam:AttachUserPolicy Adds a given managed policy to user’s attached policies list
iam:DetachUserPolicy Removes a given managed policy from user’s attached policies list
iam:PutUserPermissionsBoundary Updates user’s permissions boundary policy
iam:DeleteUserPermissionsBoundary Removes user’s permissions boundary policy
iam:CreateGroup Turns on a to-be-created group resource flag
iam:UpdateGroup Updates the name attribute of group
iam:PutGroupPolicy Updates group’s inline policy to fully privileged (updated state)
iam:DeleteGroupPolicy Removes group’s inline policy (deleted state)
iam:AttachGroupPolicy Adds a managed policy to group’s attached policies list
iam:DetachGroupPolicy Removes a managed policy from group’s attached policies list
iam:AddUserToGroup Adds the group to a user’s groups list
iam:RemoveUserFromGroup Removes the group from a user’s groups list
iam:CreateRole Turns on a to-be-created role resource flag
iam:AssumeRole Adds the role to the attacker’s credentials list with a new session name
iam:UpdateAssumeRolePolicy Updates role’s trust policy to fully privileged (updated state)
iam:PutRolePolicy Updates role’s inline policy to fully privileged (updated state)
iam:DeleteRolePolicy Removes role’s inline policy (deleted state)
iam:AttachRolePolicy Adds a managed policy to role’s attached policies list
iam:DetachRolePolicy Removes a managed policy from role’s attached policies list
Single Account iam:PutRolePermissionsBoundary Updates role’s permissions boundary policy

iam:DeleteRolePermissionsBoundary Removes role’s permissions boundary policy
iam:CreatePolicy Turns on a to-be-created policy resource flag
iam:CreatePolicy Version Updates the policy to fully privileged (must have less than 5 versions)
iam:DeletePolicy Version Deletes an arbitrary policy version (to have less than 5 versions)
iam:SetDefaultPolicy Version Updates the default version of the policy
iam:CreateInstanceProfile Turns on a to-be-created instance profile resource flag
iam:AddRoleToInstanceProfile Updates instance profile’s role
iam:RemoveRoleFromInstanceProfile Removes instance profile’s role
iam:Create AccessKey Adds the user’s access key to the attacker’s credentials list
sts:AssumeRole Grants permission to assume roles.
organizations:UpdatePolicy Updates the service control policy to fully privileged (updated state)
organizations:AttachPolicy Adds an SCP to account’s or to organizational unit’s SCP list

AWS organizations:DetachPolicy Removes an SCP from account’s or from organizational unit’s SCP list

lambda:InvokeFunction

Adds the function’s execution role to the attacker’s credentials list

lambda:AddPermission

Updates function’s resource policy to fully privileged (updated state)

lambda:UpdateFunctionCode

Updates function’s code to reveal role credential on execution

lambda:CreateEventSourceMapping

Adds the EventSourceMapping’s execution role to the credentials list

lambda:UpdateEventSourceMapping

Adds the EventSourceMapping’s execution role to the credentials list

ec2:Runlnstances

Turns on a to-be-created instance resource flag

ec2-instance-ssh ("SSH into instance”)

Adds the instance’s role to the attacker’s credentials list

ec2:AssociatelamInstanceProfile

Updates instance’s instance role in case it was empty

ec2:DisassociatelamInstanceProfile

Removes instance’s instance role

ec2:ReplacelamInstanceProfile Associatior]

Updates instance’s instance role in case it was already set

s3:PutBucketPolicy

Updates bucket’s resource policy to fully privileged (updated state)

s3:DeleteBucketPolicy

Removes bucket’s resource policy (deleted state)

kms:PutKeyPolicy

Updates key’s resource policy to fully privileged (updated state)

kms:Decrypt

Must be allowed when accessing encrypted resources such as S3 buckets

glue:CreateDevEndpoint

Adds the DevEndpoint’s role to the attacker’s credentials list

glue:UpdateDevEndpoint

Updates the DevEndpoint’s role

cloudformation:UpdateStack

Adds the stack role to the attacker’s credentials list

cloudformation:CreateStack

Adds the stack role to the attacker’s credentials list

datapipeline:CreatePipeline

Turns on a to-be-created pipeline resource flag

datapipeline:PutPipelineDefinition

Updates pipeline’s role

datapipeline:ActivatePipeline

Adds the pipeline’s role to the attacker’s credentials list

iam:PassRole

An action needed for assigning roles, like Lambda execution or instance profiles

lambda:CreateFunction

Turns on a to-be-created function resource flag

Cross-account

lambda:UpdateFunctionConfiguration

Updates function’s execution role (Lambda Layers)

ecr:BatchGetImage

Allows retrieval of container images (ECR container images)

ecr:GetDownloadUrlForLayer

Allows downloading image layers (ECR container images)

s3:PutObject

Allows uploading objects to an S3 bucket (S3 buckets)

s3:GetObject

Allows retrieving objects from an S3 bucket (S3 buckets)

events:PutEvents

Allows putting events into an EventBridge event bus (EventBridge)

states:CreateStateMachine

Allows creation of Step Functions state machines (Step Functions)

states:PutResourcePolicy

Allows setting resource policy for Step Functions (Step Functions)

states:StartExecution

Allows starting execution of a Step Functions state machine (Step Functions)

secretsmanager:PutResourcePolicy

Allows attaching a resource policy to a secret for cross-account access (Secrets
Manager)

secretsmanager:PutSecretValue

Allows writing/updating secrets in Secrets Manager (Secrets Manager)

secretsmanager:GetSecretValue

Allows reading secrets from Secrets Manager (Secrets Manager)

cloudformation:CreateStackSet

Allows creation of CloudFormation StackSets (CloudFormation StackSets)
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TABLE VI: High-Risk Permissions in Alibaba Cloud

Platform

Single Account/Cross-account

Action

Semantics

Alibaba Cloud

Single Account

ram:CreateUser

Turns on a to-be-created user resource flag

ram:UpdateUser

Updates the name attribute of the user

ram:CreateLoginProfile

Adds the user to the attacker’s credential list

ram:UpdateLoginProfile

Adds the user to the attacker’s credential list

ram:PutUserPolicy

Updates user’s inline policy to fully privileged (updated state)

ram:DeleteUserPolicy

Removes user’s inline policy (deleted state)

ram:AttachPolicyToUser

Adds a given managed policy to user’s attached policies list

ram:DetachPolicyFromUser

Removes a given managed policy from user’s attached policies list

ram:CreateGroup

Turns on a to-be-created group resource flag

ram:UpdateGroup

Updates the name attribute of group

ram:PutGroupPolicy

Updates group’s inline policy to fully privileged (updated state)

ram:DeleteGroupPolicy

Removes group’s inline policy (deleted state)

ram:AttachPolicyToGroup

Adds a managed policy to group’s attached policies list

ram:DetachPolicyFromGroup

Removes a managed policy from group’s attached policies list

ram:AddUserToGroup

Adds the group to a user’s groups list

ram:RemoveUserFromGroup

Removes the group from a user’s groups list

ram:CreateRole

Turns on a to-be-created role resource flag

ram:UpdateRole

Updates the trust policy document of a RAM role

ram:PutRolePolicy

Updates role’s inline policy to fully privileged (updated state)

ram:DeleteRolePolicy

Removes role’s inline policy (deleted state)

ram:AttachPolicyToRole

Adds a managed policy to role’s attached policies list

ram:DetachPolicyFromRole

Removes a managed policy from role’s attached policies list

ram:CreatePolicy

Turns on a to-be-created policy resource flag

ram:CreatePolicy Version

Updates the policy to fully privileged (must have less than 5 versions)

ram:DeletePolicy Version

Deletes an arbitrary policy version (to have less than 5 versions)

ram:SetDefaultPolicy Version

Updates the default version of the policy

ram:CreateAccessKey

Adds the user’s access key to the attacker’s credentials list

ram:AssumeRole

Grants permission to assume roles

ram:PassRole

An action required for setting function execution or instance profile roles.

sts:AssumeRole

Grants permission to assume roles.

fc:InvokeFunction

Adds the function’s execution ram role to the attacker’s credential list

fc:PutFunctionInvocationPermission

Updates function’s resource policy to fully privileged (updated state)

fc:UpdateFunctionCode

Updates function’s code to reveal role credential on execution

fc:CreateTrigger

Adds the Trigger’s execution role to the credentials list

fc:UpdateTrigger

Adds the Trigger’s execution role to the credentials list

fc:CreateFunction

Turns on a to-be-created function resource flag

ecs:RunlInstances

Turns on a to-be-created instance resource flag

ecs:AttachInstanceRamRole

Updates instance’s instance role in case it was empty

ecs:DetachInstanceRamRole

Removes instance’s instance role

ecs:ReplacelnstanceRamRole

Updates instance’s instance role in case it was already set

oss:PutBucketPolicy

Updates bucket’s resource policy to fully privileged (updated state)

oss:DeleteBucketPolicy

Removes bucket’s resource policy (deleted state)

kms:PutPolicy

Updates key’s resource policy to fully privileged (updated state)

kms:Decrypt

Must be allowed when accessing encrypted resources such as OSS buckets

Cross-account

fc:UpdateFunctionConfiguration

Updates function’s execution role (Function Compute Layers)

oss:PutObject

Allows uploading objects to OSS buckets (OSS buckets)

oss:GetObject

Allows reading/downloading objects from OSS buckets (OSS buckets)

eventbridge:PutEvents

Allows sending events to EventBridge event buses (EventBridge)

ros:CreateStackGroup

Allows creating ROS StackGroups (Resource Orchestration Service)

ros:CreateStackInstances

Allows deploying StackGroup instances (Resource Orchestration Service)

ros:UpdateStackGroup

Allows updating StackGroups (Resource Orchestration Service)
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APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

This appendix presents a comprehensive roadmap for setting
up and evaluating the permission chaining attack of serverless
apps provided by cloud vendors. This artifact mainly consists
of two scanning tools designed for Amazon Web Service
(AWS) serverless platforms and Alibaba Cloud Serverless
platforms. Besides, we also provide our detailed scanning
results for validation.

The tools enumerate all roles and their attached policies in
the account, analyze serverless applications along with their
associated roles, assess privilege escalation paths, simulate
cross-account compromise scenarios, and generate detailed
reports of confirmed attack paths, including function-based
vectors and locations of sensitive permissions.

1) How to access: The artifact is hosted at: https://zenodo.
org/records/16957393.

Artifact DOI: https://doi.org/10.5281/zenodo.16957393.

It contains:

aws_escalate.py (Scanner for Amazon Web Services)
aliyun_escalate.py (Scanner for Alibaba Cloud)
requirements.txt (Python libraries for aliyun_escalate.py)
fc2 (a Python library folder for aliyun_escalate.py)
Example output files (aws_output.txt, aliyun_output.txt)
LICENSE

README.md

2) Hardware dependencies: Our artifact experiments are
conducted on both serverless platforms provided by AWS and
Alibaba Cloud. Accessing these cloud environments requires
only standard laptops or desktops.

3) Software dependencies:

o Scanner for Amazon Web Services:

The scanning tool for AWS serverless platform operates
directly within the AWS CloudShell environment, an
integrated terminal provided by the AWS cloud platform.
To use this tool, you will need your AWS account
credentials and access keys for AWS users or roles to
authenticate and perform the required operations.
Scanner for Alibaba Cloud:

The scanning tool for the Aliyun serverless platform
is executed locally in a Python environment, requiring
Python version 3.10 or higher. It utilizes the fc2 library
and other dependencies specified in the requirements.txt
file. While the tool runs locally, it interacts with the
Alibaba Cloud platform using access keys for Aliyun
users or roles for authentication.

4) Benchmarks: For data validation, we also provide the
repositories of the installed application, which can be installed
and scanned as a benchmark to run our tool and validate the
results. For the AWS environment, these applications originate
from two primary sources: the AWS Serverless Application
Repository and repositories from the AWS Samples organiza-
tion on GitHub, which contains thousands of serverless apps,
including dozens of vulnerable serverless applications, such
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as aws-deployment-framework and measure-cold-start, among
others.

For the scanning tool targeting Alibaba Cloud, we use the
Alibaba Serverless Application Center as the data source. It
provides almost one hundred serverless applications, which
contain several vulnerable serverless applications, including
fc-llm-api and fc-stable-diffusion-plus.

B. Artifact Installation & Configuration

1) Scanner for AWS (aws_escalate.py):

e Sign up for an AWS account and log in to the AWS
Management Console. Our AWS account username and
password have been included in the "Hardware and other
requirements’ field of the artifact submission page. (The
AWS website is https://console.aws.amazon.com/)
Deploy serverless applications. Open the Lambda page
on the AWS platform, click “Applications” in the right
sidebar, then click “Create application” on the left. On
the page that opens, select “Serverless application” and
choose an application template to create your serverless
application. Taking measure-cold-start as an example,
direct deployment from the AWS Serverless Application
Repository may result in a runtime mismatch error, in-
dicating incompatibility with the current AWS platform.
The solution involves modifying the ’runtime’ parameter
in the application template to specify a supported runtime
version, after which the application can be successfully
redeployed.

Upload aws_escalate.py file to the /home/cloudshell-user
directory in AWS CloudShell.

e Update the ’credentials’ file located in the
/home/cloudshell-user/.aws directory with the following
format:

[default]
aws_access_key_id = <AccessKeyID>
aws_secret_access_key = <SecretAccessKey>

The user or role associated with the access key must have
sufficient permissions to enumerate IAM roles, Lambda
functions, and their associated policies. We have provided
the actual values for AccessKeyID and SecretAccessKey
in the ’Hardware and other requirements’ field of the
artifact submission page.
2) Scanner for Aliyun (aliyun_escalate.py):
o Sign up for an Aliyun account. (The Aliyun website is
https://home.console.aliyun.com/)
Deploy serverless applications. Open the Function Com-
pute page on the Aliyun platform, click “Applications” in
the right sidebar, then click “Create Application” on the
left. On the page that opens, click ’Create Application
from Template’ and select an application template to
create your serverless application. For instance, to deploy
the fc-stable-diffusion application, first locate it in the
Alibaba Serverless Application Center, click to access its
deployment page, configure the required parameters, and
proceed with deployment.


https://zenodo.org/records/16957393
https://zenodo.org/records/16957393
https://doi.org/10.5281/zenodo.16957393

o Use the following command to install the required Python
libraries within the local Python environment, instead of
Aliyun CloudShell:

pip install —-r requirements. txt

Copy the folder "fc2’ to the corresponding location of the
reference function library. Ensure you have installed all
necessary Python libraries for running the scanner.
Create aliyun_input.txt file with the appropriate values
corresponding to your environment. The ’Hardware and
other requirements’ field on the artifact submission page
contains the specific values we have provided. The con-
tent format of aliyun_input.txt is as follows:

<Access Key ID>
<Secret Access Key>
<Region ID>
<Account ID>

Note: There must be a newline after *<Account ID>".
Place aliyun_input.txt in the same directory as
aliyun_escalate.py.

C. Major Claims

¢ (C1): We characterize a direct privilege escalation attack
in one account where over-privileged serverless functions
can be abused to immediately obtain account administra-
tive access. As depicted in Modality 1 of Subsection 2,
Section C, Part IV of the paper. The functionality is tested
in (El).

(C2): We characterize an indirect privilege escalation
attack where compromised functions hijack critical func-
tions by abusing over-privileged permissions to create
new functions that inherit high-privilege roles. After
that, the attacker can abuse the hijacked high-privileged
functions to make privilege escalations similar to C1. As
depicted in Modality 2 of Subsection 2, Section C, Part
IV of the paper. The functionality is tested in (E2).
(C3): We characterize a cross-account infection attack
where compromised accounts abuse resource sharing
mechanisms to spread malicious payloads to other ac-
counts, enabling recursive privilege escalation across
multiple account boundaries. As depicted in Modality 3
of Subsection 2, Section C, Part IV of the paper. The
functionality is tested in (E3).

D. Evaluation

1) (EI): [Confirmed Modality 1] [2 compute-minutes (with
pre-installed apps)]: Deploy a serverless application with priv-
ilege escalation capabilities for modality 1. The scanner will
identify these elevated permissions and generate the corre-
sponding attack paths. Since Alibaba Cloud Serverless does
not have a modality 1 application, we have only conducted
evaluations on the AWS platform.

[Preparation]

Deploy serverless applications on the AWS platform.

[Execution]
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Run command ’python ./aws_escalate.py -p default >
aws_output.txt’ in AWS CloudShell.

[Results]

It will output the sensitive permissions related to Modality
1 for all roles and functions in the account, and ultimately
provide privilege escalation paths based on Modality 1.

2) (E2): [Confirmed Modality 2] [2 compute-minutes (with
pre-installed apps)]: Deploy multiple serverless applications
with privilege escalation capabilities for modality 2. The
scanner will identify these elevated permissions and generate
the corresponding attack paths.

[Preparation]

Deploy serverless applications on both the AWS and Aliyun
platforms.

[Execution]

« AWS: Run command ’python ./aws_escalate.py -p default
> aws_output.txt” in AWS CloudShell.

o Aliyun: Run command ’python ./aliyun_escalate.py <
aliyun_input.txt > aliyun_output.txt’ in the directory con-
taining aliyun_escalate.py.

[Results]

For AWS, it will identify and display the sensitive permis-
sions related to Modality 1 and Modality 2 for all roles and
functions in the account, and will ultimately present privilege
escalation paths based on these modalities.

For Aliyun, it will display the sensitive permissions related
to Modality 2 for all roles and functions in the account.

3) (E3): [Confirmed Modality 3] [2 compute-minutes (with
pre-deployed environment)]: Configure an environment capa-
ble of cross-account contamination. The scanning tool will
output cross-account attack paths.

[Preparation]

Repeat the steps from (E2).

[Execution]

Repeat the steps from (E2).

[Results]

For AWS, it will identify and display the sensitive permis-
sions related to Modality 1, Modality 2 and Modality 3 for all
roles and functions in the account, and will ultimately present
privilege escalation paths based on these modalities.

For Aliyun, it will display the sensitive permissions related
to Modality 3 for all roles and functions in the account.
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