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Abstract—Fuzz testing is a cornerstone technique for uncover-
ing vulnerabilities and improving the reliability of software sys-
tems. Recent studies reveal that the primary bottleneck in modern
coverage-guided fuzzing lies not within the fuzzers themselves,
but in the construction of fuzz drivers—particularly their limited
flexibility in exploring option parameters within library APIs.
Existing approaches predominantly focus on mutating input data,
often neglecting configuration options that fundamentally influ-
ence API behavior and may conceal critical vulnerabilities. To
address this gap, we present MUTATO, a new multi-dimensional
fuzz driver enhancement approach that systematically and adap-
tively mutates both input data and option parameters using
a coverage-guided, epsilon-greedy strategy. Unlike prior work
that requires intrusive modifications to fuzzers or targets only
program-level options, MUTATO operates at the driver level,
ensuring fuzzer-agnostic applicability and seamless integration
with both manual and automatically generated drivers. We
further introduce an option parameter fuzzing language (OPFL)
to guide the enhancement of drivers. Extensive experiments on 10
widely used C/C++ libraries demonstrate that MUTATO-enhanced
drivers achieve, on average, 14% and 13% higher code coverage
compared to original AFL++ and LibFuzzer drivers, respectively,
and uncover 12 previously unknown vulnerabilities, including 3
CVEs. Notably, we identified 4 vulnerabilities within 5 hours
in APIs that OSS-Fuzz had failed to detect despite more than
18,060 hours of fuzzing effort.

I. INTRODUCTION

Fuzz testing has emerged as a powerful technique for
identifying vulnerabilities and improving the reliability of
software systems. Recent research by Google [1] has demon-
strated that a primary bottleneck in modern coverage-guided
greybox fuzzing does not reside in the fuzzers themselves (e.g.,
AFL++ [2], LibFuzzer [3]), but rather in the design and im-
plementation of fuzz drivers (or fuzz harnesses) [4], [5]. Their
analysis reveals that many fuzz blockers—particularly those
limiting code coverage—are input-independent and arise from
deficiencies in driver construction, such as missing function
calls or inadequate parameter configurations. This observation
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highlights the importance of enhancing driver flexibility as a
promising direction for overcoming coverage plateaus.

In the context of fuzzing library APIs, a critical challenge
lies in the systematic exploration of option parameters that
fundamentally influence API behavior. Current fuzzing ap-
proaches predominantly focus on mutating input data while
neglecting these configuration options. For example, when
fuzzing the cJSON library, APIs like cJSON_ParseWithOpts()

accept option flags that alter parsing behavior. A fuzz driver
using fixed parsing options while only varying the JSON input
string may fail to explore execution paths that depend on
specific option configurations, potentially leaving vulnerabili-
ties undiscovered. While modifying existing fuzzers to support
option exploration is possible, it typically requires substantial
changes for each fuzzer variant, resulting in increased de-
velopment overhead and reduced generalizability. In contrast,
enhancing fuzz drivers to systematically explore both input
data and option parameters offers a more elegant, scalable, and
fuzzer-agnostic approach that avoids the complexities inherent
in modifying core fuzzing infrastructure.

Prior research on option exploration in fuzzing has pre-
dominantly concentrated on program-level options, such as
command-line arguments and configuration files, rather than
on option parameters within library APIs. Approaches like
POWER [6] and ZigZagFuzz [7] incorporate option mutation
directly into the fuzzer, while CarpetFuzz [8] and Prophet-
Fuzz [9] utilize natural language processing and large language
models to identify high-risk option combinations from docu-
mentation. ConfigFuzz [10] encodes program options within
the fuzzable input to leverage existing mutation operators.
However, these techniques are primarily designed for program-
level configuration and do not address the unique challenges
posed by option parameters in library APIs, such as their
tight coupling with API semantics and the need for systematic
exploration within the driver context. Concurrently, advances
in automatic fuzz driver generation [11], [4], [12], [13] have
improved the construction of fuzzing drivers, but these efforts
typically emphasize basic driver structure and program input
mutation, offering limited support for the systematic explo-
ration of API option parameters.

A straightforward approach to enabling option parameter
mutation is to embed API option values in the first few bytes
of the input. However, this strategy conflates option parameters
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and main input data into a single mutation domain, which can
significantly undermine fuzzing effectiveness. For instance,
AFL and AFL++ employ the auto_extra feature, which
automatically extracts recurring byte patterns—often from the
input prefix—as dictionary tokens for subsequent mutation.
When option values are embedded in the prefix, these tokens
are inappropriately applied to mutating the main input data as
they are only meaningful as option parameters. This misappli-
cation results in wasted mutation efforts, as the semantics of
option parameters and input data are fundamentally distinct.
These observations underscore the necessity of treating option
parameters and main input data as separate mutation domains,
each requiring tailored mutation strategies.

To address this critical gap in effective API option pa-
rameters mutation, we introduce MUTATO, a novel multi-
dimensional fuzzing methodology that advances library API
fuzzing by enabling coordinated, dynamic mutation along
two dimensions: option parameters and input data. MUTATO
augments existing C/C++ API fuzz drivers with embedded
option mutation logic, guided by an adaptive option parameter
mutation strategy based on coverage-based feedback and the
epsilon-greedy algorithm [14], [15], [16], [17], [18]. Specifi-
cally, our adaptive approach intelligently balances exploration
and exploitation: when input mutations under the current
option configuration continue to yield increased coverage,
the driver maintains the existing options; upon encountering
a coverage plateau (e.g., after 10k executions without new
coverage), the driver mutates option parameters to probe
alternative behaviors. This systematic approach enables the
fuzz driver to explore both valid and invalid option values,
thereby uncovering a broader spectrum of API behaviors.

This design confers three principal advantages. First, by
implementing option mutation logic at the driver level, MU-
TATO remains fuzzer-agnostic, requiring no modifications to
existing fuzzers and thus ensuring broad compatibility. Second,
the methodology is independent of specific fuzz driver
generation techniques, allowing seamless integration with
both manually crafted and automatically generated drivers.
Third, MUTATO enables systematic and adaptive explo-
ration of option parameters, as opposed to indiscriminate
random mutation, thereby ensuring that each option variation
is meaningfully evaluated for its impact on API behavior.
By triggering option mutations only upon reaching coverage
plateaus and prioritizing those that facilitate the discovery
of new execution paths, MUTATO avoids the inefficiency
of random option changes while preserving the integrity of
both the fuzzer architecture and the evolving input corpus.
This principled approach directly addresses the limitations
identified in prior work and establishes a rigorous foundation
for comprehensive library API fuzzing.

Our work makes the following key contributions:

• We present MUTATO, a novel fuzz driver enhancement
methodology that is both fuzzer-agnostic and independent of
specific fuzz driver generation techniques, thereby enabling
broad applicability across diverse fuzzing environments.

• We propose a coverage-guided, epsilon-greedy strategy for
adaptive option parameter mutation, enabling efficient ex-
ploration based on coverage feedback.

• We design OPFL, a domain-specific language for specifying
option parameter fuzzing, simplifying user guidance and
integration.

• Our experimental results demonstrate that MUTATO-
enhanced fuzz drivers achieve, on average, 14% and 13%
higher code coverage compared to the original AFL++
and LibFuzzer drivers, respectively. Furthermore, MUTATO-
enhanced drivers discover 12 previously unknown vulner-
abilities, 3 of which have been assigned CVE identifiers.
Notably, we identify 4 vulnerabilities within 5 hours in APIs
that had remained undetected despite over 18,060 hours
of continuous fuzzing by the OSS-Fuzz project. Ablation
studies also validate that MUTATO’s core design choices —
adaptive option selection, exploration of valid and invalid
options, epsilon value selection, and option change fre-
quency — collectively enhance the effectiveness of option-
aware fuzzing.
The source code of MUTATO is available at:

doi:10.5281/zenodo.15909441.

II. BACKGROUND AND PROBLEM FORMULATION

A. Fuzzing for Library APIs

Security vulnerabilities in library APIs pose significant risks
due to the pervasive integration of libraries across diverse
software systems. Traditional fuzzing approaches, which rely
on fuzzing engines [2], [19], [20] alone, are often insufficient
for libraries because APIs typically lack dedicated entry points
and fixed input formats. To address this limitation, fuzz drivers
(or fuzz harnesses) [4], [5], [11] are employed to create a
controlled testing environment for library APIs. These drivers
are responsible for generating inputs, invoking the target APIs,
and processing their outputs, thereby acting as an interface
between the fuzzing engine and the library under test. This
design enables more systematic and effective exploration of
API behaviors. A particular challenge arises when APIs ac-
cept option parameters—user-controllable configuration set-
tings that influence the execution semantics of the API. Such
parameters act as behavioral switches or modifiers, so that,
for the same primary input, varying the option parameter
values can induce divergent execution paths, output formats,
or processing strategies within the API.

B. Problem Formulation

To systematically approach the problem of fuzzing option
parameters, we first need to establish a formal framework that
precisely defines the components involved. This formalization
helps us reason about the problem space and develop effective
strategies for exploring it.

Definition 1: Let L denote the library under test, and let
A = {a1, a2, . . . , an} be the set of APIs in L that accept
option parameters. For each API ai ∈ A, we define:
• Xi: The set of all possible inputs to ai, which may be either

finite or countably infinite.
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• Oi: The set of all possible assignments to the option
parameters of ai, where each element corresponds to a
specific configuration of option values.

• Ovalid
i ⊆ Oi: The subset of option parameter assignments

that conform to the API specification and are considered
valid. Valid values are determined based on (1) predefined
option values explicitly documented in header files or library
documentation, or (2) when no predefined values exist, the
valid range of the parameter’s data type.

• Oinvalid
i = Oi \ Ovalid

i : The subset of type-compatible op-
tion parameter assignments that violate semantic constraints
(e.g., out-of-range integers, malformed strings, or undefined
enumeration values) which may pass compilation but trigger
error handling routines or induce undefined behavior during
execution. Invalid values fall outside these API definitions
and can be derived using standard boundary testing (e.g.,
values slightly outside the allowed range).

The option parameter values Oi are user-controllable con-
figuration settings that influence or direct the execution behav-
ior of an API, distinct from the primary input data Xi. These
parameters serve as behavioral switches or modifiers such that,
for the same input x ∈ Xi, different option parameter values
oj , ok ∈ Oi can induce divergent execution paths, output
formats, or processing strategies within ai.

Similar to program options used in [10], we categorize API
option parameters into the following types:

• Boolean options with values {0, 1} and potential invalid
values {−1, 2, . . .}.

• Enumerated choices with predefined valid values E =
{e1, e2, . . . , ek} where E is a finite enumerated set, and all
other values considered invalid.

• Numeric options with valid ranges [l, u] and invalid values
outside this range.

• String options with predefined valid format patterns S =
{s1, s2, . . . , sj} where S is a set of valid string patterns, and
invalid malformed strings that don’t match these patterns.

Building on this characterization of option parameters, we
formally model each API ai as a function that maps a
pair consisting of an input and an option assignment to an
execution outcome and associated code coverage information:

ai : Xi ×Oi −→ Ri × Covi,

where Ri denotes the result space, encompassing all possible
execution outcomes, including normal results and potential
abnormal behaviors (such as crashes, memory corruption, or
buffer overflows). The set Covi represents program execution
coverage metrics related to ai, which may include branch,
path, basic block, or function coverage.

We formulate the option parameter fuzzing problem as
follows:

Given a library API ai, the objective is to
systematically explore combinations of option values
Oi and inputs Xi in order to (1) maximize code
coverage

∣∣∣⋃(x,o)∈Xi×Oi
Covi(ai(x, o))

∣∣∣, and (2) discover as
many instances as possible of abnormal behavior.

III. A MOTIVATING EXAMPLE

As discussed in [1], a well-designed fuzz driver can sig-
nificantly improve fuzzing efficiency, and many works [11]
have been devoted to automated driver generation to reduce
manual costs. While current fuzzers excel at mutating raw
input data (e.g., files, network packets), they largely treat API
option arguments as static or hardcoded values. This approach
overlooks the critical reality that many API bugs manifest only
under specific combinations of inputs and options.
1 diff --git a/cjson_read_fuzzer.c b/cjson_read_fuzzer.c
2 index 12345678..abcdef01 100644
3 --- a/cjson_read_fuzzer.c
4 +++ b/cjson_read_fuzzer.c
5 @@ -1,3 +1,27 @@
6 + // Tracks previous coverage measurement
7 + unsigned int pre_cov = 0;
8

9 + // initial default option
10 + cJSON_bool cur_require_termination = 1;
11

12 + int check_coverage_growth() {
13 + // Interval-based coverage monitoring: computes

↪→ current coverage metrics and compares against
↪→ baseline (pre_cov) to detect gains

14 + ...omited implementation...
15 + }
16 +
17

18 + cJSON_bool get_require_termination(int cov_growth,
19 + int epsilon)
20 + {
21 + // Option parameter mutation strategy: combines

↪→ coverage feedback with epsilon-greedy strategy
↪→ to decide whether to keep using the current
↪→ option or try a new one

22 + ...omited implementation...
23 + }
24 +
25 int LLVMFuzzerTestOneInput(const uint8_t* data,
26 size_t size)
27 {
28 @@ -9,8 +33,14 @@ int LLVMFuzzerTestOneInput(const

↪→ uint8_t* data,
29 cJSON *json;
30 size_t offset = 4;
31 int require_termination;
32

33 if(size <= offset) return 0;
34 if(data[size-1] != ’\0’) return 0;
35 if(data[0] != ’1’ && data[0] != ’0’) return 0;
36

37 require_termination = data[0] == ’1’ ? 1 : 0;
38

39 + int cov_growth = check_coverage_growth();
40 + new_require_termination =
41 + get_require_termination(cov_growth, 95);
42 - json = cJSON_ParseWithOpts((const char*)data,
43 - NULL, require_termination);
44 + json = cJSON_ParseWithOpts((const char*)data,
45 + NULL, new_require_termination);
46 if(json == NULL) return 0;
47

48 cJSON_Delete(json);
49 }

Listing 1: Comparison of the original and option-aware
fuzz drivers for cjson_read_fuzzer.c [21].
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Limitations of Existing Approaches. Both manually crafted
and automatically generated fuzz drivers predominantly focus
on mutating input data, often neglecting the influence of other
arguments—particularly option parameters—on the behavior
of target APIs. Only a minority of fuzz drivers attempt to vary
option parameters during fuzzing, and even in such cases, the
strategies employed are typically simple and limited in scope.
For example, Listing 1 presents the cjson_read_fuzzer.c [21]
driver, contributed by the cJSON [22] developers to the OSS-
Fuzz project, where ℓ37 illustrates that the third argument,
require_termination, is determined solely by the first byte
of the input data. This approach exemplifies a common pattern
among fuzz drivers that attempt to control option parameters
via prepending option-control bytes in input data (notably,
most fuzz drivers do not vary options at all during fuzzing).
However, such simplistic mechanisms suffer from several
inherent limitations:

• Input Customization Overhead: The cJSON driver requires
customized inputs where option values are encoded in
prefix bytes (e.g., data[0..3]) before the actual JSON
string content like {bf["Sunday",...,"Saturday"]}. This
approach not only increases manual effort but also lacks
generalizability. For instance, it becomes impractical for
file formats with strict header requirements like PDF or
PNG where prepending option-control bytes would inval-
idate the format of the input, causing immediate rejection
by the API due to format non-compliance and preventing
further exploration of API behaviors. Furthermore, when
embedding options within inputs, the fuzzing engine cannot
distinguish which parts represent options versus actual input
data, preventing systematic exploration of the option space
during the fuzzing.

• Stateless Option Selection: Options are selected based solely
on the current input, without considering historical execution
context. When an input achieves higher coverage under a
specific option value (e.g., option=1), the fuzzer should
maintain this value while mutating inputs to thoroughly
explore its impact. However, current approaches may arbi-
trarily switch to different options (e.g., option=0), disrupting
the systematic exploration of API behaviors under promising
option configurations.

• Legal-Only Bias: Fuzz drivers should test both valid and
invalid option values to thoroughly evaluate the robust-
ness of the API under test. Option parameters (e.g.,
file modes or boolean flags) usually have fixed, lim-
ited valid values, unlike non-option parameters (e.g.,
buffer lengths) with dynamic ranges, making option val-
idation simpler but critical. However, most drivers only
focus on legal options, missing potential vulnerabilities
triggered by illegal values. For example, in C where
boolean values are typically represented by integers, the
cJSON_ParseWithOpts assume require_termination is al-
ways 0 or 1 (e.g., require_termination = data[0] == ‘1’

? 1 : 0), but testing invalid values like -1 or large integers
could reveal error handling flaws or undefined behaviors.

Our Solution. To address these limitations, we propose to
enhance existing fuzz drivers by introducing independent
option parameter control mechanisms. Our approach works
by augmenting the original driver with option-aware code that
implements an adaptive option parameter mutation strategy, as
shown in the code example:
• Coverage-Guided Option Selection: Rather than relying

on random option selection, MUTATO adopts a coverage-
guided strategy in which option mutations are initiated
only when coverage growth stagnates (e.g., after 10,000
executions or at 5-second intervals, as implemented in
the check_coverage_growth function). When edge coverage
continues to increase, the system retains the current option
value with high probability (95%, as determined by the
epsilon parameter), thereby enabling in-depth exploration of
promising execution paths.

• Comprehensive Option Space Exploration: MUTATO exam-
ines both valid and invalid option values during fuzzing. As
illustrated by the get_new_require_termination function,
the approach evaluates a range of values, including legal
options (0, 1) as well as boundary and illegal values
(-1, 2). This comprehensive exploration ensures robust
assessment of the API’s behavior under both expected and
unexpected configurations.

Benefits. Our design offers several key advantages:
• Universal Fuzzer Compatibility: By implementing op-

tion control within the fuzz driver itself (as shown in
the LLVMFuzzerTestOneInput function), MUTATO achieves
broad compatibility with different fuzzing engines (e.g.,
AFL++, LibFuzzer) without requiring modifications to the
fuzzer core.

• Input Format Preservation: Unlike approaches that embed
options in input data, our implementation maintains separate
tracking of options (via new_require_termination), allow-
ing the original input format to remain intact while still
controlling API options.

• Comprehensive Option Testing: The system methodically ex-
plores diverse option values through the array of options in
get_new_require_termination, ensuring thorough testing
of the API’s behavior under various configurations.

• Efficient Option Space Exploration: Through the coverage-
based feedback mechanism in check_coverage_growth,
MUTATO balances exploration and exploitation, ensuring
that promising option values receive extended exploration
time while still periodically testing new options to discover
additional vulnerabilities. This function can be customized
based on the specific fuzzer type (e.g., AFL++ or Lib-
Fuzzer), allowing MUTATO to leverage the native coverage
tracking mechanisms of each fuzzer while maintaining a
consistent option mutation strategy.

IV. MUTATO APPROACH

In this section, we present our approach to adaptive fuzzing
with option parameters. We first introduce a domain-specific
specification language that enables the systematic enhance-
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Fig. 1: Overview of MUTATO.

Spec ::= "Target" IDN
OptionGroupBlock+
ConstraintBlock
SelectBlock FeedbackBlock MutateBlock

OptionGroupBlock ::= "OPGroup" IDN "{" OptionField + "}"
OptionField ::= IDN":"Type ["=" DefaultValue]

ConstraintBlock ::= "Constraint" "{" ConstraintExpr + "}"
ConstraintExpr ::= FOLExpr

/* First-order logic expression over OptionFields */

FeedbackBlock ::= "Feedback" "{" FeedbackExpr "}"
FeedbackExpr ::= FeedbackName "(" ParamList? ")"

FeedbackName ::= "coverage" | . . .

SelectBlock ::= "Select" "{" SelectExpr "}"
SelectExpr ::= SelectName "(" ParamList? ")"

SelectName ::= "epsilon_greedy"
| "random_search" | . . .

ParamList ::= Param("," Param)∗
Param ::= IDN "=" Literal

MutateBlock ::= "Mutate" "{" MutateExpr + "}"
MutateExpr ::= MutateName "(" IDN ")"

MutateName ::= "select_from_set" | "enum_switch"
| "bitflip" | "arith" | . . .

IDN ::= letter { letter | digit }
Type ::= "bool" | "choice" | "numeric"

| "string"
DefaultValue ::= Literal

Literal ::= BoolLiteral /* true or false */
| ChoiceLiteral /* user-defined choice */
| NumericLiteral /* A concrete numeric value */
| StringLiteral /* A concrete string value */

Fig. 2: EBNF-like grammar for our option parameter fuzzing
language (OPFL).

ment of existing fuzz drivers, facilitating comprehensive explo-
ration of option parameter spaces (§IV-A). Next, we elaborate
on our methodology for option parameter fuzzing, which
leverages a coverage-guided feedback mechanism and an
adaptive option selection strategy to maximize test coverage
and uncover vulnerabilities in target libraries (§IV-C). Finally,
we describe the code instrumentation process that transforms
existing fuzz drivers into option-aware fuzzing drivers (§IV-D)
based on our specification language. Figure 1 provides an
overview of the MUTATO framework, which accepts an ex-
isting fuzz driver as input and automatically generates an
enhanced, option-aware fuzz driver.

A. Option Parameter Fuzzing Language

We introduce a domain-specific specification language, op-
tion parameter fuzzing language (OPFL), designed to formally
express strategies for producing enhanced, option-aware fuzz
drivers from existing ones. OPFL provides a structured and
expressive mechanism for defining how fuzzing options should
be grouped, constrained, selected, and mutated, thereby en-
abling systematic exploration of the configuration space. The
language is both declarative and semantically rich, allowing
users to precisely guide the enhancement process while ab-
stracting away low-level implementation details. The formal
grammar of the language is presented in Figure 2.

A complete specification, denoted by the non-terminal Spec,
begins with the declaration of the target fuzz driver via the
"Target" keyword, followed by a series of OptionGroup-
Blocks which define the configuration parameters relevant to
the fuzz driver. Optional blocks for constraints (Constraint-
Block), selection strategies (SelectBlock), feedback mecha-
nisms (FeedbackBlock), and mutation strategies (MutateBlock)
can be included to further refine the enhancement process.

Each OptionGroupBlock begins with "OPGroup" keyword
followed by a unique identifier (IDN) and a set of OptionFields
enclosed in braces. An OptionField defines a configuration
parameter by specifying its name (IDN), type (Type), and
optionally a default value. Constraints over these option fields
are expressed using the ConstraintBlock, which contains one
or more ConstraintExpr entries. Each ConstraintExpr is a first-
order logic expression (FOLExpr) defined over the declared
OptionFields. These constraints serve to define the space of
option values to be explored during fuzzing, allowing for
both semantically valid combinations and potentially invalid
but type-compatible ones. The constraints can capture depen-
dencies and mutual exclusivity relationships among option
parameters within the same API or across different APIs,
with the constraint strictness determining the balance between
exploring valid parameter combinations versus investigating
potential boundary conditions and error states.

The FeedbackBlock defines how runtime information is
used to inform the option selection process. A FeedbackExpr
specifies a feedback mechanism (FeedbackName). Feedback
parameters can be fine-tuned via the optional ParamList,
enabling adaptive fuzzing strategies based on execution feed-
back. The SelectBlock allows users to specify a selection
strategy for navigating the configuration space. Each Select-
Expr defines a search algorithm (SelectName) and optionally a
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Algorithm 1: Adaptive Option Selection During
Fuzzing

Input: Option space Oi = {o1, o2, ..., on}, Epoch size N ,
Exploration rate ϵ

Output: Optimized sequence of option values
1 ocurr ← Random option from Oi

2 Cprev ← 0
3 Ccurr ← 0
4 while fuzzing budget not exhausted do

/* Fixed-Option Phase */
5 for i← 1 to B do

/* B can be N executions or time
limit T */

6 Generate mutation with current option ocurr
7 Execute target program
8 Ccurr ← ComputeCurrentCoverage()

/* Decision Phase */
9 if Ccurr > Cprev then

/* Coverage improved with current
option */

10 r ← Random value in [0, 1]
11 if r < ϵ then

/* Explore: try different option
*/

12 ocurr ← Random option from Oi \ {ocurr}
/* Else: exploit by keeping current

option */
13 else

/* Coverage stagnated */
14 ocurr ← Random option from Oi \ {ocurr}
15 Cprev ← Ccurr

list of parameters (ParamList). The detailed option parameter
mutation of MUTATO is described in Section IV-C. Finally, the
MutateBlock specifies how option values should be mutated.
Each MutateExpr defines a mutation strategy (MutationName)
and its parameters. This allows for flexible and customizable
mutation strategies that can be tailored to the specific charac-
teristics of the target API.

B. Integration of OPFL Specification
To apply the OPFL specification to fuzzing, MUTATO an-

alyzes the existing fuzz driver to identify API calls matching
those defined in the "Target" and OptionGroupBlocks of
the OPFL specification. For each matched API call, MUTATO
generates option parameter values based on the Constraint-
Block, which defines valid values and invalid values, as
well as constraints between the option and other options (if
any), including dependencies and mutual exclusivity among
different parameters. Based on the selection strategies (Select-
Block), feedback mechanisms (FeedbackBlock), and mutation
strategies (MutateBlock) defined in the OPFL specification,
MUTATO generates specific logic and embeds it into the orig-
inal fuzz driver. Then this enhanced, option-aware driver can
simultaneously explore both input and option spaces during
the fuzzing process.

C. Adaptive Option Parameter Mutation
Based on the feedback mechanism defined in the Feed-

backBlock, the enhanced driver can dynamically adjust option

values during fuzzing according to the defined feedback met-
ric. In the following discussion, we focus on coverage-guided
fuzzing as the default fuzzing method, where increases in code
coverage (e.g., new branches or paths) serve as the principal
metric for assessing the effectiveness of generated inputs in
exercising new program behaviors. Building upon this foun-
dation, we extend the application of coverage metrics to inform
the selection of option parameters. Rather than selecting option
values randomly for each execution, our approach employs a
structured algorithm that adaptively chooses option parameters
based on their observed contribution to coverage improvement.
This strategy systematically balances the exploitation of option
values that have demonstrated effectiveness with the explo-
ration of alternative values, thereby maximizing the likelihood
of uncovering previously untested behaviors.

Let Covti : Oi → R+ denote the coverage state at time
t, representing code coverage metrics achieved when using
option parameter o ∈ Oi. We maintain a global coverage
snapshot Cprev to track coverage progress for each active
option. As shown in Algorithm 1, the fuzzing process operates
in discrete epochs with two distinct phases (ℓ5-ℓ8):
Fixed-Option Phase. During this phase, we keep the option
parameter fixed while only mutating the input data. This
approach is more efficient than changing option values after
each execution, as it:
• Allows the fuzzer to thoroughly explore input space with

the current option value ocurr.
• Performs consecutive input mutations within a predefined

boundary condition B : mn = µn(mn−1) where B can be
either temporal (e.g., t ≤ T seconds) or quantitative (e.g.,
n ≤ N executions).

• Maintains a mutation counter n and the initial coverage
snapshot Cprev.

• Executes ai(mn, ocurr) without intermediate coverage com-
parisons.
where mn denotes the input data at the n-th mutation, and

µn represents the mutation function applied at this step. This
approach enables the fuzzer to systematically explore the input
space under a fixed option value.
Decision Phase. Upon reaching the execution boundary con-
dition B with a fixed option value, we evaluate the coverage
improvement ∆C and determine the subsequent option selec-
tion strategy (ℓ9-ℓ15). Specifically:
• We compare the current coverage Ccurr = Covti(ocurr) with

the previous coverage snapshot Cprev.
• The coverage gain is computed as ∆C = |Ccurr \ Cprev|.
• The next option value is selected according to the following

rule:

onext =

{
Random(Oi \ {ocurr}) if ∆C = 0

ϵ-Greedy(Oi, ocurr) if ∆C > 0

This means, if no new coverage is observed (∆C = 0),
we select one or more option values from the option space
Oi using the strategy specified in the SelectBlock and
ensure that the selected option(s) satisfy constraints defined
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in the ConstraintBlock. Conversely, if coverage increases
(∆C > 0), we apply the ϵ-greedy strategy specified in
the MutateBlock, balancing continued exploitation of the
current option with exploration of alternative options.

This two-phase approach balances thoroughness with ef-
ficiency, avoiding the overhead of checking coverage after
every execution while still adapting to coverage feedback. By
batching executions with the same option value, we reduce the
computational overhead of coverage comparison and option
selection, which can be significant in high-throughput fuzzing.

We adopt the ϵ-greedy algorithm because it efficiently
balances exploitation of productive option values with ex-
ploration of alternatives, preventing the fuzzer from getting
stuck in local optima. When coverage increases, the algorithm
keeps the current productive option with probability 1 − ϵ
(exploitation) and randomly selects a different option with
probability ϵ (exploration).

For example, with ϵ = 0.1, when an option value success-
fully increases coverage, we continue using it 90% of the time
while occasionally (10% of the time) trying alternative options.
This ensures the fuzzer spends most time on productive con-
figurations while maintaining enough exploration to discover
new code paths that other option values might unlock.

To illustrate our complete approach with a concrete
example, consider fuzzing the cJSON library with the
require_termination option shown in Listing 1. While
the API documentation defines this as a boolean parameter
Oi = {0, 1} which is actually an int type. This creates an
interesting constraint space where we can explore both seman-
tically valid values (0, 1) and type-compatible but potentially
unintended values (-1, 2) to test error handling paths:

1) We start by setting the default option value ocurr = 1
(require termination).

2) During the fixed-option phase, we execute the fuzzer with
this option value.

3) Every 5 seconds (boundary condition), we check if cover-
age has increased.

4) If coverage increases, using ϵ-greedy with ϵ = 0.05,
we have a 95% chance of keeping option 1 (since it’s
productive) and a 5% chance of trying option 0.

5) If coverage stagnates after a check period, we would
randomly switch to another option value.

6) Although the semantic constraint is Oi = {0, 1}, we also
test type-compatible but invalid values (-1, 2, 255) to
explore how the library handles these unintended inputs.

7) When we try a different option value, we might discover
that it reaches different code paths, particularly error han-
dling code, increasing coverage.

8) This process continues adaptively, spending more time on
productive option values while still maintaining the ability
to explore alternatives.

This approach efficiently navigates the option parameter
space by spending more time on productive option values
while still maintaining the ability to explore alternatives when

progress stalls. The key insight is that not all option values are
equally valuable for discovering bugs or increasing coverage,
and our strategy adaptively learns which options are more
promising during the fuzzing process itself.

D. Option-Aware Fuzz Driver Enhancement

OPFL (§IV-A) provides a formal foundation for the au-
tomated enhancement of option-aware fuzz drivers. Given a
user-provided OPFL specification, the enhancement process
proceeds as follows. First, the specification is parsed to ex-
tract the target fuzz driver, option groups, constraints, and
the associated feedback, selection, and mutation strategies.
For each option group, the enhancement engine generates
code to declare and initialize option parameters, incorporat-
ing type checks and default values as specified. Constraints
are systematically enforced through the insertion of runtime
checks or static assertions, ensuring that only semantically
valid option combinations are exercised during fuzzing. The
feedback and selection strategies are mapped to corresponding
code modules, enabling adaptive option selection based on
runtime metrics such as code coverage. Mutation strategies are
realized as dedicated mutator functions, facilitating systematic
exploration of the option parameter space. Finally, the original
fuzz driver is instrumented with the enhanced logic, resulting
in an enhanced, option-aware fuzzing engine capable of jointly
exploring both input data and configuration options in a
principled and automated manner.

Example 1: Consider the following specification for the
cJSON library fuzz driver:

Target: cjson_read_fuzzer
OPGroup ParseOptions {

require_termination: bool = true
}
Constraint {

// Allow both valid boolean values
// and invalid type-compatible values
(require_termination == 0) ||
(require_termination == 1) ||
(require_termination == -1) ||
(require_termination == 2)

}
Feedback {

coverage(branches=true)
}
Select {

epsilon_greedy(epsilon=0.05)
}
Mutate {

select_from_set([0, 1, -1, 2])
}

Given this specification, the enhancement engine will:

• Generate code to declare the require_termination
parameter with appropriate type checks.

• Allow both semantically valid values (0, 1) and type-
compatible but potentially unintended values (-1, 2) to test
error handling.

• Integrate an ϵ-greedy selection strategy with ϵ = 0.05,
guided by branch coverage feedback.

• Implement mutation operators that select from predefined
values for require_termination.
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TABLE I: Basic information of the 10 libraries. API(T)
denotes the total number of APIs. API(O) means the number
of APIs with option parameters. API(U) is the number of APIs
exercised by fuzz drivers.

Library Version LoC Branch API(T) API(O) API(U) Time(min)
cJSON 1.7.18 10K 1.4K 76 6 6 15
lcms 2.17 46K 8.1K 218 16 7 25
libpcap 1.10.5 50K 7.8K 67 14 5 18
lunasvg 3.2.1 25K 8.3K 33 6 5 12
libtiff 4.7.0 91K 16.3K 172 4 4 10
utf8proc 2.10.0 19K 1.5K 36 8 5 14
liblouis 3.33.0 37K 6.6K 34 9 5 16
xlsxio 0.2.35 11K 1.9K 45 4 4 8
libzip 1.11.3 18K 4.2K 113 29 8 22
libvpx 1.14.0 367K 17.6K 7 31 6 20
Total - 674K 73.7K 825 103 55 160

• Inject the generated logic into the original
cjson_read_fuzzer, producing an enhanced driver
similar to Listing 1.
This automated enhancement process allows users to rapidly

generate robust, option-aware fuzz drivers tailored to the se-
mantics of the target API, without manual code modifications.
OPFL thus bridges the gap between high-level fuzzing strate-
gies and low-level driver implementation, enabling scalable
and systematic exploration of complex configuration spaces.

V. EVALUATION

In this section, we evaluate MUTATO to answer the follow-
ing research questions:
• RQ1: How effective is MUTATO at enhancing existing fuzz

drivers in terms of code coverage compared to the original
drivers generated by baseline tools?

• RQ2: Can MUTATO-enhanced drivers discover bugs that are
not found by the original drivers, particularly those triggered
by specific option parameter values?

• RQ3: How does the performance of MUTATO compare with
that of prefix-based option-encoding methods?

• RQ4: What are the impacts of the design choices of MU-
TATO on its effectiveness?

A. Experimental Setup

1) Target Libraries: We evaluated MUTATO on 10 widely-
used C/C++ libraries across diverse application domains:
cJSON [22], lcms [23], liblouis [24], libpcap [25],
libtiff [26], libvpx [27], libzip [28], lunasvg [29],
utf8proc [30], and xlsxio [31]. These libraries repre-
sent a diverse set of widely-adopted open-source components
across various domains including network protocols, JSON
parsing, image processing, compression, text processing, and
file format handling. Most of these libraries are included in
OSS-Fuzz [32] project, which continuously fuzzes critical
open-source software. Notably, these libraries contain many
APIs with option parameters, making them suitable candidates
for our evaluation. The basic statistics of the tested libraries are
summarized in Table II, including their versions, lines of code,
number of branches, total number of APIs (API-T), the number
of APIs with option parameters (API-O), and the subset of
those APIs that were actually used in our evaluation (API-U).

2) Baseline: Since MUTATO enhances original fuzz drivers
by mutating option parameters, we compare it against two
categories of baselines:

• Original Fuzz Drivers: We use original drivers gener-
ated by two SOTA driver generation tools, CKGFuzzer [4]
(CKG) and OSS-Fuzz-Gen [5] (OFG)—without applying
any manual changes or fixes, and exclude drivers that fail
to compile or execute properly, as our primary baselines.

• Prefix-based Option Encoding Method: ConfigFuzz [10]
uses a prefix-based option encoding method to encode pro-
gram option parameters as additional bytes at the beginning
of the input, allowing dynamic variation of options during
fuzzing by processing these prefix bytes within the driver.
Since ConfigFuzz is not open-sourced, we re-implemented
this baseline following their methodology. Our implementa-
tion incorporates the key strategies as follows:
– Prefix-based Encoding: We prepend a small number of

bytes to the fuzzer’s input, following the exact encoding
scheme described in [10]. These prefix bytes are used to
select different options through direct indexing.

– Representative Value Selection: While ConfigFuzz re-
quires manual extraction of representative values from
documentation, we employ the same LLM-manual hybrid
strategy used in our MUTATO tool for efficiency (see
Section V.A.3 for details). For options with finite choices
(e.g., enums), we enumerate all possible values. For
options with infinite ranges (e.g., integers), we select
representative values including boundary conditions (e.g.,
0, 1, INT MAX), commonly used values, and known
problematic values.

– Driver Implementation: We implement a pre-processing
stage in the driver that reads and decodes the prefix before
the main API call, similar to the approach in ConfigFuzz.

We adapt this technique for API drivers by modifying the
CKG/OFG-generated drivers to incorporate these mecha-
nisms. These enhanced drivers are denoted as CKG(∗) and
OFG(∗), respectively.

The CKG and OFG drivers modified by MUTATO are de-
noted as CKG(+) and OFG(+), respectively. It is impor-
tant to emphasize that, whether CKG(∗)/OFG(∗) drivers or
CKG(+)/OFG(+) drivers, all only modify the option parameter
handling within the CKG and OFG drivers. These changes do
not affect any other parts of the drivers, ensuring their core
functionality remains unchanged.

3) Writing OPFL Specifications: To obtain the API OPFL
specification for each library, we first used large language
models (LLMs) with OPFL templates, example specifications,
and header files as inputs to automatically generate initial
specifications covering both valid and invalid options. These
generated specifications then undergo manual verification and
adjustment to ensure accuracy. The manual effort primarily
involves identifying user-controllable option parameters from
library APIs and determining their valid value ranges from
public header files and API documentation. Invalid values
are derived using standard boundary testing techniques. For
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TABLE II: Coverage of original CKGFuzzer and OSS-Fuzz-Gen (OFG/CKG) generated drivers, prefix-based option encoding
method (OFG(∗)/CKG(∗)), and MUTATO’s option-enhanced OFG(+)/CKG(+) using AFL++ and LibFuzzer across 10 libraries.

Library

AFL++ Libfuzzer Exec/Sec

OFG OFG(∗)) OFG(+) CKG CKG(∗)) CKG(+) OFG OFG(∗)) OFG(+) CKG CKG(∗)) CKG(+)
OFG/ OFG(∗))/ OFG(+)/
CKG CKG(∗)) CKG(+)

cJSON 221 255(15%) 257(16%) 276 345(25%) 347(26%) 186 243(31%) 249(34%) 325 334(3%) 334(3%) 5963 8395 7656

lcms 793 901(14%) 910(15%) 640 768(20%) 766(20%) 547 632(16%) 642(17%) 577 643(11%) 652(13%) 4908 4878 4996

libpcap 1281 934(-27%) 1651(29%) 1670 1513(-9%) 1786(7%) 1453 1125(-23%) 1597(10%) 1271 1197(-6%) 1340(5%) 6593 6539 6588

lunasvg 1736 1254(-28%) 1782(3%) 1089 1247(15%) 1589(46%) 1134 1074(-5%) 1197(6%) 1040 1008(-3%) 1159(11%) 3199 3088 2976

libtiff 857 769(-10%) 951(11%) 1078 870(-19%) 1159(7%) 1213 1170(-4%) 1457(20%) 929 834(-10%) 1143(23%) 7156 7508 7548

utf8proc 28 78(179%) 125(345%) 39 128(231%) 130(236%) 39 61(56%) 59(51%) 36 121(236%) 124 (244%) 26984 22295 23415

liblouis 554 571(3%) 579(4%) 221 242(10%) 252(14%) 561 593(6%) 604(8%) 321 340(6%) 342(7%) 5093 4751 4778

xlsxio 1079 1213(12%) 1250(16%) 1402 1529(19%) 1535(9%) 82 94(15%) 98(20%) 172 189(10%) 191(11%) 4423 5002 3496

libzip 503 451(-10%) 583(16%) 720 564(-22%) 955(33%) 489 476(-3%) 611(25%) 834 775(-7%) 848(2%) 12126 11969 11643

libvpx 2437 2443(0.2%) 2451(1%) 1538 1542(0.2%) 1589(3%) 1438 1443(0.3%) 1451(1%) 1073 1274(19%) 1361(27%) 1080 976 1002

Total 9488 8869(-7%) 10538(11%) 8672 8748(1%) 10106(17%) 7142 6911(-3%) 7965(12%) 6578 6585(2%) 7494(14%) 7752 7540 7410

other configuration parameters, we use empirically determined
default values, such as setting the exploration rate to ϵ = 0.05.
The time required to obtain OPFL specifications for each
library (in minutes) is detailed in Table I (Time Column).
These reported times (8-25 minutes) represent the effort of
developers with general programming experience, as the task
primarily involves straightforward API documentation review
and does not require specialized expertise with MUTATO.

For the valid and invalid values of option parameters defined
in the specifications, we employ the following strategies based
on option type (These valid and invalid values are also reused
in the Prefix-based Option Encoding Method): (1) For enumer-
able option types, such as Boolean options and Enumerated
choices, we leverage their finite nature by identifying all
possible valid and invalid values. (2) For non-enumerable
option types, specifically Numeric options and String options,
where the value space can be extremely large or infinite,
a different strategy is employed. We apply principles from
software testing’s boundary testing to select a representative
set of both valid and invalid values.

4) Implementation: We implemented MUTATO using Tree-
Sitter [33], a parser generator framework that enables precise
analysis and modification of baseline fuzz drivers. Following
the driver synthesis methodology described in Section IV-D,
our implementation systematically identifies APIs with option
parameters in the baseline drivers, replaces the original hard-
coded option values with code for dynamic option value gen-
eration, and inserts instrumentation for coverage monitoring
to guide the option selection process.

We evaluated MUTATO with both AFL++ and LibFuzzer to
demonstrate its fuzzer-agnostic design and to assess perfor-
mance improvements across different fuzzing engines. Since
both CKG and OFG generate LibFuzzer-compatible drivers by
default, we adapted these drivers for AFL++ by implementing
wrapper functions that provide a standard main entry point,
which internally invokes LLVMFuzzerTestOneInput with the
fuzzer-supplied inputs. In addtion, although MUTATO produces
fuzzer-independent drivers, certain adaptations were necessary
to accommodate the specific requirements of different fuzzing
engines. Therefore, we implemented distinct coverage data

collection mechanisms for AFL++ and LibFuzzer to ensure
effective guidance of our option selection strategy. In addition,
as described in the Fixed-Option Phase of Section IV-C, the
enhanced drivers do not query coverage every time but instead
use an interval-based strategy to improve efficiency. After each
interval, the newly collected coverage is compared with the
previous coverage to determine whether an option change has
led to increased code coverage. Specifically, for AFL++ en-
hanced drivers, we query coverage every 5 seconds, while for
LibFuzzer enhanced drivers, we collect coverage every 10,000
executions to decide whether to change the options. Crucially,
all such modifications were confined to the driver level,
without necessitating any changes to the underlying fuzzing
engines themselves. This design ensures full compatibility
with standard fuzzing tools and workflows, allowing seamless
integration of MUTATO into existing fuzzing pipelines without
disrupting established testing processes. Section IV-C

5) Evaluation Environments: All experiments were con-
ducted on a server equipped with two AMD EPYC 9254 24-
Core Processors (48 cores total, 96 threads with hyperthread-
ing) and 1TB of RAM. The system runs on a 64-bit version
of Debian GNU/Linux 12. GPT-4o was used to generate fuzz
drivers for both CKG and OFG, as both of them leveraging
large language models in their driver generation process.

Each fuzzing campaign ran for 24 hours to ensure sufficient
time for exploration of the option space. To handle LibFuzzer’s
default behavior of terminating upon crash discovery, the
fuzzing process is set to automatically restart to ensure contin-
uous execution for 24 hours, even after crashes are found. To
account for the randomness inherent in fuzzing, we repeated
each experiment ten times and report the average results. For
all experiments, we used the same seed corpus consisting of
minimal valid inputs for each library to ensure fair comparison
between baseline and option-enhanced approaches.

B. Code Coverage (RQ1)

Table II presents the coverage results of our evaluation
across the 10 libraries using different fuzz drivers (CKG
and OFG) and fuzzing engines (AFL++ and LibFuzzer). We
compare the performance of the original drivers generated
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by OFG and CKG against their option-enhanced versions
created by MUTATO (OFG(+) and CKG(+)). For AFL++, we
measure coverage in terms of edges, while for LibFuzzer, we
use branches as the coverage metric. This difference in met-
rics stems from the underlying instrumentation mechanisms:
AFL++ uses edge coverage (transitions between basic blocks)
to track execution paths, while LibFuzzer’s SanitizerCoverage
instrumentation primarily reports branch coverage (individual
control-flow decisions).

The results in Table II demonstrate overall coverage im-
provements when enhancing fuzz drivers with option pa-
rameter exploration. For AFL++, the option-enhanced drivers
consistently outperform their baseline counterparts across all
libraries. With OFG drivers, MUTATO (OFG(+)) achieves an
average coverage increase of 11%, with the most substantial
improvements in utf8proc (3.45×), libpcap (0.29×), and
xlsxio (0.16×). When applied to CKG drivers, MUTATO
(CKG(+)) achieves a higher average coverage increase of 17%,
with utf8proc (2.36×), lunasvg (0.46×), and libzip
(0.33×) showing the largest coverage gains.

For LibFuzzer, similar patterns emerge with consistent
coverage gains across all tested libraries. The OFG (+)
drivers achieve an average coverage increase of 13%, with
utf8proc (0.51×), cJSON (0.34×), and libzip (0.25×)
showing the largest improvements for OFG fuzz drivers. With
CKG drivers, CKG (+) delivers an average coverage increase
of 14%, with utf8proc (2.44×), libvpx (0.27×), and
libtiff (0.23×) demonstrating the most significant gains.

These consistent improvements stem from MUTATO’s ap-
proach of building upon the original drivers generated by
OFG and CKG. By preserving all functionality of the original
drivers while adding dynamic option exploration capabilities,
MUTATO ensures that all previously covered code paths remain
accessible while significantly increasing the probability of
discovering new paths through option variation. In addition,
the execution speed remains largely unaffected by MUTATO’s
enhancements. As shown in the Exec/Sec measurements of
Table II, MUTATO maintains comparable performance with
only a modest 4.4% decrease (7,410 vs 7,752 executions per
second on average) demonstrating that the dynamic option ex-
ploration introduces negligible computational overhead while
delivering substantial coverage improvements. Although the
fuzzing process inherently involves randomness, our results
demonstrate that systematically exploring the option space
consistently leads to better coverage across different libraries
and fuzzing engines. The box plots in Figures 5 and 6 further
illustrate the coverage distribution across multiple runs for
AFL++ and LibFuzzer respectively, showing that the option-
enhanced drivers consistently achieve higher coverage with
less variance compared to the baseline approaches.

The coverage trends in Figures 3 and 4 (Appendix) demon-
strate that OFG(+)/CKG(+) consistently outperform their base-
line counterparts (OFG/CKG) in coverage growth over the
24-hour fuzzing period. Table VI in Appendix presents the
statistical significance of these improvements using the Mann-
Whitney U test and A12 effect size [34]. For AFL++, MUTATO

(p < 0.05) improves coverage in 90% (9/10) of libraries
compared to the original OFG drivers, and in 100% (10/10) of
libraries compared to CKG drivers. For LibFuzzer, MUTATO
achieves statistically significant improvements in 90% (9/10)
of libraries for both OFG and CKG drivers. The A12 effect
size values, mostly above 0.7, further indicate that the coverage
improvements are not only statistically significant but also
substantial in magnitude.

The coverage improvement may vary between libraries,
reflecting differences in their API design and implementa-
tion. Libraries showing dramatic coverage increases typically
have option parameters that significantly alter execution paths
through function dispatching patterns. For example, the li-
brary API utf8proc_reencode(utf8proc_int32_t *buffer,

utf8proc_ssize_t length, utf8proc_option_t options) in
the library utf8proc reveals that different options val-
ues trigger entirely different code paths by dispatching to
distinct encoding routines like charbound_encode_char or
utf8proc_encode_char, with minimal shared code between
these paths. This pattern of option-driven function dispatching
explains the library’s exceptional coverage gains (3.45× with
AFL++). In contrast, libraries like libvpx (0.01% with
OFG drivers) show small coverage gains because their option
parameters, such as the align parameter in vpx_img_alloc(),
mainly affect performance rather than execution flow. These
options typically result in simple conditional checks without
introducing new code paths.

Answer to RQ1: Systematic exploration of option parame-
ters significantly increases code coverage compared to tradi-
tional fuzzing with fixed option values. This improvement is
consistent across libraries, driver tools, and fuzzing engines,
demonstrating the effectiveness and generality of MUTATO’s
adaptive option mutation strategy.

C. Bug Detection (RQ2)

We further evaluated MUTATO’s effectiveness in discovering
real-world vulnerabilities. Table III quantifies our findings by
presenting the number of unique vulnerabilities (UV) discov-
ered by each approach, highlighting exclusive vulnerabilities
(EV) that were only detected by a specific technique, and
providing detailed information about the vulnerability types
and current remediation status across the evaluated libraries.

The evaluation revealed that MUTATO (OFG(+)/CKG(+))
outperforms original fuzzing drivers (OFG/CKG) in vulnera-
bility discovery. As shown in Table III, MUTATO discovered
a total of 12 unique vulnerabilities across both AFL++ and
LibFuzzer, compared to only 5 vulnerabilities found by the
baseline approaches. Notably, 7 vulnerabilities were exclu-
sively found by MUTATO. The discovered vulnerabilities span
critical security issues, including heap buffer overflows (HBO),
stack buffer overflows (SBO), null pointer dereferences (NPD),
memory leaks (ML), and use of uninitialized variables (UUV).

It also shows that MUTATO encompasses all vulnerabilities
discovered by baseline approaches, whether they were found
by OFG or CKG. This is expected since MUTATO is an
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TABLE III: The vulnerabilities found by original CKG-
Fuzzer and OSS-Fuzz-Gen (OFG/CKG) generated drivers,
prefix-based option encoding method (OFG(∗)/CKG(∗)), and
MUTATO’s option-enhanced OFG(+)/CKG(+) drivers using
AFL++ and LibFuzzer. (UV: Unique vulnerability, EV: Ex-
clusive vulnerability; HBO: Heap Buffer Overflow, UUV: Use
of Uninitialized Variable, NPD: Null Pointer Dereference, ML:
Memory Leak, SBO: Stack Buffer Overflow)

Library
OFG/
CKG

OFG(∗)/
CKG(∗)

OFG(+)/
CKG(+) Vulnerability

Type Status Option
Type

UV/EV UV/EV UV/EV

lcms 0/0 1/0 1/0 HBO Fixed Invalid

lunasvg

1/0 1/0 1/0 HBO Fixed Valid

0/0 1/0 1/0 UUV
(CVE-xxx56)

Confirmed Invalid

libtiff
1/0 1/0 1/0 NPD Confirmed Invalid

0/0 0/0 1/1 ML Reported Valid

utf8proc

1/0 1/0 1/0 HBO Confirmed Valid

0/0 1/0 1/0 HBO Confirmed Valid

0/0 0/0 1/1 HBO Confirmed Valid

liblouis 0/0 1/0 1/0 SBO Fixed Invalid

xlsxio

1/0 1/0 1/0 NPD
(CVE-xxx49)

Confirmed Valid

1/0 1/0 1/0 ML Reported Invalid

libzip 0/0 0/0 1/1 NPD
(CVE-xxx55)

Fixed Valid

Count 5/0 9/0 12/3 - - -

enhancement built on top of the original fuzzing drivers,
preserving their core functionality while extending their ca-
pabilities. By retaining the original source code and adding
option-aware fuzzing mechanisms, MUTATO maintains the
vulnerability detection capabilities of the baseline approaches
while discovering significantly more vulnerabilities that would
otherwise remain hidden when using fixed option values.

Of the 12 vulnerabilities identified, 7 were triggered by valid
option parameters, including two with CVEs: CVE-xxx49 in
xlsxio and CVE-xxx55 in libzip. These vulnerabilities arise
when legitimate option values trigger bugs in under-tested
code paths. Specifically, CVE-xxx49 in xlsxio arises during
XML parsing, causing a null pointer dereference crash due to
untested valid option paths. CVE-xxx55 in libzip also involves
a null pointer dereference triggered only when specific valid
option parameters are enabled, exposing a flaw in the handling
of non-default configurations. The remaining 5 vulnerabilities
were triggered by invalid option parameters, including one
with a CVEs: CVE-xxx56 in lunasvg. These invalid option
vulnerabilities arise from insufficient validation of option
parameters, causing crashes when unexpected values are pro-
cessed. Specifically, CVE-xxx56 in lunasvg occurs during
SVG rasterization, leading to a segmentation fault crash due to
an out-of-bounds memory access triggered by an invalid option
parameter that lacks proper validation. These vulnerabilities
were missed by fuzzing methods that do not explore option
configurations systematically, leaving uncommon valid options
and invalid option values unexplored.

In addition, the distribution of vulnerabilities across libraries
correlates with our coverage improvement results. Libraries
that showed the most significant coverage improvements with

MUTATO, such as utf8proc and lunasvg, also yielded
vulnerabilities that were not found by baseline approaches.
This confirms that improved code coverage through systematic
option parameter exploration translates directly to enhanced
vulnerability discovery.

Answer to RQ2: MUTATO’s option-aware fuzzing uncovers
more real-world vulnerabilities than traditional fuzzing, find-
ing all baseline bugs plus seven additional ones. Systematic
exploration of option parameters is essential for exposing
security issues that fixed option values miss, as both valid
and invalid options can trigger unique vulnerabilities.

D. Prefix-based Option Encoding Method Comparison (RQ3)

To further evaluate the effectiveness of MUTATO, we com-
pared MUTATO (CKG(+)/OFG(+)) against a prefix-based op-
tion encoding method CKG(∗) and OFG(∗). This baseline
approach encodes option parameters as additional bytes at the
beginning of the input, allowing the fuzzer to explore different
option values by mutating these prefix bytes.

For code coverage, MUTATO consistently outperforms the
prefix-based method across all 10 libraries with both AFL++
and LibFuzzer. Table II shows that MUTATO’s OFG(+) and
CKG(+) drivers achieve average coverage increases of 11%
and 17% for AFL++ and 12% and 14% for LibFuzzer over
the original OFG and CKG drivers, respectively. In contrast,
the prefix-based method struggles, with OFG(∗) showing a
7% coverage decrease and CKG(∗) a marginal 1% increase
for AFL++, and a 3% decrease for OFG(∗) and a 2% increase
for CKG(∗) for LibFuzzer compared to the originals. Notably,
the prefix-based method performs even poorly in libraries
with complex input formats than original OFG and CKG
generated drivers, such as libpcap and lunasvg, and only
performs comparably with CKG(∗) and OFG(∗) in simpler
cases like cJSON. This is because the prefix-based method
merges options and data into a single input, causing fuzzers
like AFL++ to treat them as equivalent domains. For instance,
AFL++’s auto extra feature may mistakenly treat prefix bytes
as dictionary tokens for file content mutations, leading to
ineffective mutations and reduced coverage in complex input
formats. MUTATO avoids this by treating option values and
main content as distinct mutation domains, using coverage-
guided adaptive mutations to systematically explore option-
driven paths, resulting in consistent coverage gains with only
a 1.6% reduction in execution speed (7410 vs. 7540 execu-
tions/second for OFG(+)/CKG(+) and OFG(∗)/CKG(∗)).

In vulnerability detection, MUTATO also performs better
than the prefix-based method, as shown in Table III. MU-
TATO’s OFG(+)/CKG(+) drivers uncover 12 unique vulner-
abilities, including 3 exclusive ones in libtiff (mem-
ory leak), utf8proc (heap buffer overflow), and libzip
(null pointer dereference), compared to 9 vulnerabilities for
OFG(∗)/CKG(∗) and 5 for the original OFG/CKG drivers. The
prefix-based method detects additional vulnerabilities over the
originals in lcms, lunasvg, and utf8proc, but misses
critical defects triggered by valid option parameters, such
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TABLE IV: Comparison of coverage-guided vs. random option
mutation and valid vs. invalid option parameters across 10
libraries. OFG(r)/CKG(r) represent drivers with random option
mutation, OFG(v)/CKG(v) represent drivers with valid options
only, OFG(i)/CKG(i) represent drivers with invalid options
only, while OFG(+)/CKG(+) represent the MUTATO-enhanced
drivers. CoV denotes the average coverage across the four
fuzz drivers (OFG(+/r/v/i), CKG(+/r/v/i)) under both AFL++
and LibFuzzer. Vul represents the total number of unique
vulnerabilities discovered by these four drivers.

Library
OFG(+)/CKG(+) OFG(r)/CKG(r) OFG(v)/CKG(v) OFG(i)/CKG(i)

CoV Vul CoV Vul CoV Vul CoV Vul

cJSON 297 0 258(-13%) 0 278(-6%) 0 264(-11%) 0

lcms 742 1 681(-8%) 1 723(-3%) 0 623(-16%) 1

libpcap 1593 0 1549(-3%) 0 1528(-4%) 0 1287(-19%) 0

lunasvg 1432 2 1320(-8%) 2 1428(0%) 1 1145(-20%) 1

libtiff 1177 2 1017(-14%) 2 1003(-15%) 1 975(-17%) 1

utf8proc 109 3 51(-53%) 3 89(-19%) 3 47(-57%) 0

liblouis 444 1 463(4%) 1 432(-3%) 0 345(-22%) 1

xlsxio 768 2 717(-7%) 1 675(-12%) 1 596(-22%) 1

libzip 749 1 712(-5%) 0 698(-7%) 1 685(-9%) 0

libvpx 1713 0 1602(-6%) 0 1735(1%) 0 1327(-23%) 0

Count 9026 12 8371(-7%) 10 8589(-5%) 7 7294(-19%) 5

as CVE-xxx55 in libzip, due to its reliance on random
prefix byte mutations. The fewer vulnerabilities found by
OFG(∗)/CKG(∗) compared to OFG(+)/CKG(+) arises because
the prefix-based method embeds option values within the
input, limiting systematic exploration of option-driven code
paths. In contrast, MUTATO separates option and input do-
mains, enabling targeted exploration that uncovers critical
vulnerabilities, particularly those triggered by valid option
parameters, as seen in libzip and utf8proc.

Answer to RQ3: MUTATO outperforms the prefix-based
method by treating option values and main content as
separate mutation domains, achieving higher coverage and
better vulnerability discovery—especially in complex for-
mats where random prefix mutations often fail.

E. Impact of Designed Choices (RQ4)

To validate the design choices of MUTATO, we conduct
an ablation study examining four key aspects that influence
MUTATO’s performance: (1) adaptive versus random option
selection, (2) the impact of valid versus invalid option values,
(3) different epsilon values, and (4) various time/execution
intervals for option persistence during coverage growth.

1) Adaptive vs. Random Option Selection: To evaluate the
effectiveness of MUTATO’s coverage-guided adaptive option
selection strategy, we compared it against a purely random
approach where new option values are selected at every
execution without considering coverage feedback. Table IV
presents the results comparing MUTATO’s adaptive strat-
egy (OFG(+)/CKG(+)) with random option selection variants
(OFG(r)/CKG(r)). The results show that the adaptive approach
consistently outperforms random selection across all tested
libraries. The coverage-guided option selection achieves 7%

TABLE V: Performance of different epsilon and option change
frequency under AFL++ and LibFuzzer. Cov represents the
average coverage of the OFG(+)/CKG(+) drivers. Vul denotes
the total number of unique vulnerabilities discovered by both
OFG(+)/CKG(+) drivers.

AFL

Epsilon 0.05 0.10 0.15 0.20 0.25 0.30

Cov 10322 10212 10107 9697 9884 9865

Vul 12 12 12 12 10 10

Libfuzzer

Epsilon 0.05 0.10 0.15 0.20 0.25 0.30

Cov 7730 7712 7723 7231 7194 6959

Vul 12 12 12 12 10 10

AFL

Time 1 3 5 7 10 15

Cov 9635 9965 10322 10411 10032 9863

Vul 10 11 12 12 12 12

Libfuzzer

Execution 1 100 1000 10000 100000 1000000

Cov 7107 7023 7676 7630 7732 6942

Vul 9 11 11 12 12 10

higher coverage than random selection (9,026 vs 8,371 on
average) and discovers more vulnerabilities (12 vs 10). This
better performance results from maintaining promising option
configurations to explore newly discovered code paths, instead
of switching options randomly without feedback.

2) Valid vs. Invalid Option Parameters: As shown in Ta-
ble IV, using only valid option parameters (OFG(v)/CKG(v))
achieves 5% less coverage than OFG(+)/CKG(+)’s valid and
invalid options combined approach, while using only invalid
parameters (OFG(i)/CKG(i)) results in significantly reduced
coverage (19% decrease). Valid option parameters target le-
gitimate but under-explored API configurations, revealing im-
plementation flaws in rarely-tested code paths and discovering
7 vulnerabilities. Invalid option parameters examine input
validation and error handling mechanisms, revealing boundary
condition vulnerabilities and insufficient validation checks and
founding 5 vulnerabilities. OFG(+)/CKG(+)’s exploration of
both valid and invalid option spaces achieves comprehensive
vulnerability coverage, revealing distinct vulnerability classes
that single-approach methods would miss.

3) Different epsilon: To evaluate the impact of exploration
probability on fuzzing performance, we conducted experi-
ments with six different epsilon values: 0.05, 0.10, 0.15, 0.20,
0.25, and 0.30. The epsilon parameter controls the probability
of exploring new option configurations even when coverage is
increasing under the current option. Table V shows that when
epsilon is set to 0.05, 0.10, and 0.15, MUTATO achieves similar
performance in both coverage and vulnerability discovery. For
AFL++, these three epsilon values maintain consistently high
coverage (10,107-10,322) and detect all 12 vulnerabilities. The
performance only begins to degrade when epsilon increases
beyond 0.15. Similarly for LibFuzzer, epsilon values of 0.05-
0.15 yield comparable results (7,712-7,730 coverage, 12 vul-
nerabilities). This demonstrates that the fuzzing effectiveness
remains stable across this range of epsilon values. Therefore,
the default epsilon = 0.05 in MUTATO is reasonable. This set-
ting ensures sufficient exploration while avoiding unnecessary
option switches, maintaining stable fuzzing performance.
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4) Option Change Frequency: The frequency of option
changes during coverage growth affects fuzzing efficiency. We
evaluated AFL++ with time intervals of 1s, 3s, 5s, 7s, 10s, and
15s, and LibFuzzer with execution counts of 1, 100, 1,000,
10,000, 100,000, and 1,000,000, as shown in Table V. For
AFL++, intervals of 5s–10s yield comparable high coverage
(10,032–10,411) and detect all 12 vulnerabilities, outperform-
ing shorter (1s: 9,635) or longer (15s: 9,863) intervals. For
LibFuzzer, execution counts of 1,000–100,000 achieve sta-
ble coverage (7,630–7,732) and 11–12 vulnerabilities, with
10,000 executions balancing exploration and efficiency. Lower
counts (1–100) reduce coverage (7,023–7,107), and 1,000,000
executions decrease performance (6,942). Therefore, setting
AFL++ to switch options every 5s and LibFuzzer to switch
after 10,000 executions is reasonable, as these values ensure
effective exploration and timely detection of stagnation while
maintaining high fuzzing performance.

Answer to RQ4: The ablation studies validate that MU-
TATO’s design choices - the adaptive option selection strat-
egy, exploration of valid and invalid options, the designed
epsilon value, and option change frequency - collectively
form an effective approach for option-aware fuzzing.

VI. DISCUSSION

Fuzz Drivers. The quality of baseline fuzz drivers is a
critical factor in the evaluation. We utilized automatic fuzz
driver generation tools such as CKGFuzzer and OSS-Fuzz-
Gen, which represent the state-of-the-art in this domain. How-
ever, despite their advanced capabilities, the quality of the
generated drivers is not always optimal. We observed issues
such as compilation failures and API misuse in many of the
generated drivers. This variability in driver quality explains
the significant performance differences between CKGFuzzer
and OSS-Fuzz-Gen across certain libraries in our evaluation.
It’s important to note that our tool enhances existing drivers
rather than generating them from scratch. Nevertheless, with
higher quality baseline fuzz drivers, the improvements offered
by MUTATO could potentially be even more pronounced.
OSS-Fuzz. We identified 4 vulnerabilities in APIs that have
already been used in manual-written fuzz drivers within OSS-
Fuzz projects, specifically in libzip, lcms, liblouis,
and utf8proc as shown in Table VII (Appendix), and
achieved an overall coverage increase of 12% across all tested
libraries. Despite these projects being continuously fuzzed for
an average of 18,060 hours by OSS-Fuzz, these vulnerabilities
remained undetected. The fact that MUTATO was able to
discover these 4 vulnerabilities in just 24 hours demonstrates
the effectiveness of our approach in exploring API option
combinations that traditional fuzzing approaches miss, even
when the vulnerable APIs are directly targeted in existing
fuzz drivers. This highlights the importance of systematically
exploring API configuration options during fuzzing, rather
than relying solely on input mutation with default or manually
selected API options.

Caching of Seed-Option Pairs. MUTATO employs a stateless
option selection strategy, where the fuzz driver does not
maintain associations between interesting seeds and options.
We explored cached seed-option pairs to restore options for
interesting inputs built on manual-written drivers. Table VII
shows that the caching implementation (MUTATO-Cache),
while achieving only 2,006 executions per second compared
to MUTATO’s 13,471 executions per second (approximately
6× slower), delivers comparable performance on average and
even outperforms MUTATO on some targets in terms of code
coverage. This result demonstrates that the caching mechanism
can be highly effective despite the significant reduction in ex-
ecution throughput. The performance bottleneck in MUTATO-
Cache stems from querying coverage on every execution to
detect coverage gains. Therefore, we adopted interval-based
queries (based on execution time intervals or execution count
intervals) as an initial optimization in MUTATO to reduce costs
while maintaining effectiveness. However, we acknowledge
that with proper optimization — such as more efficient cover-
age tracking mechanisms or selective caching strategies — the
caching approach could potentially outperform our stateless
method. In future work, we plan to investigate optimized
caching mechanisms that could leverage the potential of seed-
option associations, for example by exploring lightweight
coverage tracking, intelligent cache management strategies,
and alternative fuzzing metrics to guide parameter changes
without significantly affecting fuzzing efficiency.

VII. RELATED WORK

Library API Fuzzing. Several research efforts have focused
on automating library API fuzzing to enhance vulnerabil-
ity detection. GraphFuzz [35] builds lifetime-aware dataflow
graphs to create precise inputs for stateful API fuzzing. Hop-
per [13] employs an interpretative fuzzing approach, treating
libraries as domain-specific languages to generate valid API
call sequences. FUDGE [12] focuses on scalable approaches
to fuzzing library APIs. NEXZZER [36] continuously infers
and evolves API relations to generate diverse yet correct
API sequences for effective library fuzzing. FRIES [37] tar-
gets Rust library interactions, using ecosystem-guided target
generation to model API dependencies and improve fuzzing
efficiency. RPG [38] enhances Rust library fuzzing with pool-
based target generation and generic support, automating the
creation of diverse fuzzing targets. DFUZZ [39] leverages
large language models to infer edge cases for comprehensive
fuzzing of deep learning library APIs. These approaches have
made significant contributions to library API fuzzing but
generally do not focus specifically on systematically exploring
API option parameters.
Fuzz Driver Generation. Numerous research efforts have fo-
cused on automatic fuzz driver generation to address the chal-
lenge of creating effective fuzzing harnesses. APICraft [40]
generates fuzz drivers for closed-source SDK libraries by
analyzing API usage patterns from execution traces. [41] em-
ploys control-flow-sensitive techniques to create more effective
drivers. CKGFuzzer [4] leverages code knowledge graphs to
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understand API relationships for better driver generation. Fuz-
zGen [42] constructs an Abstract API Dependence Graph from
consumer code to synthesize fuzz drivers for library APIs. In-
telliGen [43] automatically synthesizes drivers for fuzz testing.
PromptFuzz [11] utilizes prompt engineering techniques to
guide driver generation. UTOPIA [44] generates fuzz drivers
by leveraging existing unit tests, while Winnie [45] focuses
on Windows applications with harness synthesis. Instead of
synthesizing new drivers, our approach augments existing ones
by systematically mutating API option parameters, making it
complementary to prior fuzz driver generation tools.
Option Exploration. Several research efforts have focused
on exploring program options during fuzzing to improve bug
detection. Syzkaller [46] uses API templates to fuzz kernel
system calls with parameter constraints, but its kernel-specific
approach requires deep fuzzer integration, unlike MUTATO’s
lightweight and driver-level solution. ConfigFuzz [10] pro-
posed a systematic approach for fuzzing program config-
urations, targeting command-line options and configuration
files. CarpetFuzz [8] automatically extracts program option
constraints from documentation to guide fuzzing. CrFuzz [47]
focuses on fuzzing multi-purpose programs through input
validation mechanisms. POWER [6] introduces a program
option-aware fuzzer that enhances bug detection ability by
systematically exploring option combinations. More recently,
ProphetFuzz [9] leverages large language models to predict
and fuzz high-risk option combinations using only documen-
tation, while ZigZagFuzz [7] interleaves the fuzzing of pro-
gram options and files to improve effectiveness. While these
approaches have made significant contributions to option-
based fuzzing, they primarily focus on program-level options
(command-line arguments and configuration settings) rather
than API parameter options, which is the focus of our work.

VIII. CONCLUSION

In this paper, we presented MUTATO, a novel fuzz driver
enhancement methodology that enables systematic exploration
of option parameters in library API fuzzing. MUTATO imple-
ments an adaptive option parameter mutation strategy directly
within the fuzz driver, remaining fuzzer-agnostic while ex-
panding API behavior coverage. Our coverage-guided, epsilon-
greedy approach intelligently balances exploration and ex-
ploitation based on coverage feedback, effectively addressing
the limitations of current fuzzing techniques that neglect op-
tion parameters. The evaluation across 10 widely-used C/C++
libraries demonstrates that MUTATO-enhanced drivers achieve
14% and 13% higher code coverage with AFL++ and Lib-
Fuzzer respectively, while discovering 12 previously unknown
vulnerabilities with 3 CVE assignments. These results con-
firm that systematic option exploration significantly improves
vulnerability detection without requiring modifications to the
underlying fuzzing infrastructure.
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Fig. 3: Coverage Trends of CKG, OFG, CKG(∗), OFG(∗), CKG(+), and OFG(+) Under AFL++ Over 24 Hours.
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Fig. 4: Coverage Trends of CKG, OFG, CKG(∗), OFG(∗), CKG(+), and OFG(+) Under LibFuzzer Over 24 Hours.
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Fig. 5: Boxplot of Fuzzing Coverage of CKG, OFG, CKG(∗), OFG(∗), CKG(+), and OFG(+) under different modes with
AFL++.
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Fig. 6: Boxplot of Fuzzing Coverage of CKG, OFG, CKG(∗), OFG(∗), CKG(+), and OFG(+) under different modes with
LibFuzzer.

TABLE VI: A12 and Mann-Whitney U Test Results for Comparing OFG(+) and CKG(+) Against OFG and CKG
(a) AFL++ Fuzzer Results

Library Metric1 Metric2 A12 p value

cjson OFG OFG(+) 1 9.13e-05

cjson CKG CKG(+) 1 9.13e-05

lcms OFG OFG(+) 1 9.13e-05

lcms CKG CKG(+) 1 9.13e-05

libpcap OFG OFG(+) 1 9.13e-05

libpcap CKG CKG(+) 0.88 2.29e-03

lunasvg OFG OFG(+) 0.7 7.02e-02

lunasvg CKG CKG(+) 1 9.13e-05

libtiff OFG OFG(+) 0.89 1.81e-03

libtiff CKG CKG(+) 1 9.13e-05

utf8proc OFG OFG(+) 1 9.13e-05

utf8proc CKG CKG(+) 1 9.13e-05

liblouis OFG OFG(+) 0.71 4.06e-02

liblouis CKG CKG(+) 1 9.13e-05

xlsxio OFG OFG(+) 1 9.13e-05

xlsxio CKG CKG(+) 1 9.13e-05

libzip OFG OFG(+) 1 9.13e-05

libzip CKG CKG(+) 1 9.13e-05

libvpx OFG OFG(+) 0.84 3.96e-03

libvpx CKG CKG(+) 0.74 3.78e-02

(b) Libfuzzer Results

Library Metric1 Metric2 A12 p value

cjson OFG OFG(+) 1 9.13e-05

cjson CKG CKG(+) 0.94 5.04e-04

lcms OFG OFG(+) 0.99 1.23e-04

lcms CKG CKG(+) 1 9.13e-05

libpcap OFG OFG(+) 1 9.08e-05

libpcap CKG CKG(+) 0.86 3.64e-03

lunasvg OFG OFG(+) 0.86 3.64e-03

lunasvg CKG CKG(+) 0.83 7.01e-03

libtiff OFG OFG(+) 1 9.13e-05

libtiff CKG CKG(+) 1 9.13e-05

utf8proc OFG OFG(+) 1 8.98e-05

utf8proc CKG CKG(+) 1 9.08e-05

liblouis OFG OFG(+) 0.92 8.50e-04

liblouis CKG CKG(+) 1 4.17e-05

xlsxio OFG OFG(+) 1 7.69e-05

xlsxio CKG CKG(+) 1 8.15e-05

libzip OFG OFG(+) 1 9.13e-05

libzip CKG CKG(+) 0.98 1.64e-04

libvpx OFG OFG(+) 1 9.13e-05

libvpx CKG CKG(+) 1 9.13e-05
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TABLE VII: Fuzzing statistics of manually craft(OSS-Fuzz) drivers (Manual), MUTATO-enhanced drivers (MUTATO), and
MUTATO-enhanced drivers with Seed-Option Caching (MUTATO-Cache).

Metirc cJSON lcms libpcap lunasvg libtiff utf8proc liblouis xlsxio libzip libvpx Average

Manual

Cov 309 1380 454 2243 3413 272 1657 82 501 2737 1305

Vul 0 0 0 0 0 0 0 0 0 0 0

Exec/Sec 21873 18439 9873 5274 2861 17843 14284 32183 4832 14287 14175

MUTATO

Cov 328 1480 501 2806 3619 319 1976 97 697 2753 1458

Vul 0 1 0 0 0 1 1 0 1 0 4

Exec/Sec 19872 18027 8798 4609 2726 17236 12987 31876 4814 13760 13471

MUTATO
-Cache

Cov 328 1468 503 2712 3587 342 2007 92 684 2718 14441

Vul 0 1 0 0 0 1 1 0 1 0 4

Exec/Sec 3217 1987 736 527 1387 3037 729 4215 1592 2632 2006
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APPENDIX A
ARTIFACT APPENDIX

This artifact contains MUTATO, a novel fuzzing tool that
enhances library API fuzzing by enabling coordinated muta-
tion along two dimensions: option parameters and input data.
The artifact demonstrates MUTATO’s ability to instrument
existing fuzz drivers with adaptive option mutation logic and
execute enhanced fuzzing drivers using LibFuzzer and AFL++.

We are requesting the Available and Functional badges.
The artifact supports the research by providing a complete
implementation that can enhance existing fuzz drivers and
demonstrate the core functionality of adaptive option parame-
ter mutation during fuzzing execution.

A. Description & Requirements

MUTATO is a fuzzer-agnostic methodology that enhances
existing C/C++ API fuzz drivers with embedded option pa-
rameter mutation logic. The artifact includes the complete
MUTATO implementation, demonstration scripts for the libvpx
library, and all necessary components to reproduce the core
functionality described in the paper.

The experimental setup demonstrates MUTATO’s ability
to instrument existing fuzz drivers, compile and execute
enhanced drivers with proper coverage instrumentation that
explore both input data and API option parameters.

1) How to access: The artifact is publicly available on
Zenodo with a permanent DOI: doi:10.5281/zenodo.15909441

The repository contains the complete source code, Docker
configuration files, demonstration scripts, and documentation
required to reproduce the experiments described in this ap-
pendix.

2) Hardware dependencies: Standard x86-64 machine with
the following recommended specifications:

• CPU: x86-64 architecture with 8+ cores
• Memory: 16GB+ RAM
• Storage: 5GB available disk space

No specialized hardware (e.g., GPUs, FPGAs) is required.
3) Software dependencies: Docker Environment (Recom-

mended):
• Docker Engine (version 20.10+)
• Linux host system (Ubuntu 22.04 or compatible)

Manual Installation:
• Ubuntu 22.04 LTS or compatible Linux distribution
• Clang-14 and LLVM-14 toolchain
• Python 3.8+ with pip
• Build tools: cmake, make, yasm, git
• AFL++ (automatically installed by setup scripts)

4) Benchmarks: The artifact uses the libvpx library as the
target for demonstration. All benchmark data and configuration
files are provided in the Demo/ directory, including the libvpx
source code, test corpus, OPFL configuration files, and fuzzing
dictionaries.

B. Artifact Installation & Configuration
The artifact supports two installation methods: Docker (rec-

ommended) and manual installation. The Docker approach
provides a pre-configured environment with all dependencies,
while manual installation allows for more control over the
setup.

Docker Installation (Recommended):
1) Build the Docker image:

./build_docker.sh

2) Launch the container:
docker run -it mutato:latest /bin/bash

Manual Installation:
1) Install system dependencies:

./install_dependencies.sh

2) Create and activate Python virtual environment:
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

C. Experiment Workflow
The experimental workflow demonstrates MUTATO’s com-

plete pipeline from driver enhancement to fuzzing execution.
The workflow consists of four main phases:

1) Driver Generation: MUTATO analyzes existing fuzz
drivers and OPFL configuration files to generate en-
hanced drivers with embedded option parameter muta-
tion logic.

2) Library Compilation: Target libraries (libvpx) are com-
piled with coverage instrumentation to enable feedback-
guided fuzzing.

3) Driver Compilation: Enhanced drivers are compiled
and linked with the instrumented libraries to create
executable fuzz targets.

4) Fuzzing Execution: The enhanced drivers are executed
with LibFuzzer and AFL++ to demonstrate adaptive
option parameter exploration.

Each phase is automated through shell scripts that handle the
complex compilation and configuration steps. The workflow is
designed to be reproducible and can be executed in sequence
or individually for debugging purposes.

D. Major Claims
We make the following major claims (Cx) about MUTATO,

demonstrating that it is a complete and working implemen-
tation of the adaptive API option mutation methodology de-
scribed in our paper:

• (C1): MUTATO implements OPFL (Option Parameter
Fuzzing Language), a domain-specific language for spec-
ifying option parameter fuzzing. The implementation
includes a complete parser that processes OPFL specifi-
cations and supports different option types, as described
in Section IV-A of our paper.

• (C2): MUTATO automatically generates enhanced,
option-aware drivers from existing fuzz drivers based on
OPFL specifications (the first paragraph of Section IV).
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• (C3): MUTATO implements the coverage-guided,
epsilon-greedy strategy that balances exploration and
exploitation based on coverage feedback (Section IV-B).

• (C4): MUTATO maintains fuzzer-agnostic compatibil-
ity by implementing all option mutation logic at the
driver level, requiring no modifications to the underlying
fuzzing engines and works well with both AFL++ and
LibFuzzer (Section V-A).

• (C5): The artifact implements both adaptive (coverage-
guided) and random option mutation modes, enabling
users to compare mutation strategies as described in our
ablation study (Section V-D).

E. Evaluation

To validate MUTATO’s functionality, execute the following
6 scripts in sequence:

1) Generate enhanced drivers:
./Demo/libfuzzer_driver_generate_and \
_move.sh
./Demo/afl_driver_generate_and_move.sh

2) Build instrumented libraries:
./Demo/build_libvpx_libfuzzer.sh
./Demo/build_libvpx_afl.sh

3) Compile executable drivers:
./Demo/compile_libfuzzer.sh
./Demo/compile_afl.sh

4) Execute fuzzing:
./Demo/run_libfuzzer.sh
./Demo/run_afl.sh

Creates enhanced fuzz drivers, compiles instrumented li-
braries, links executable targets, and runs fuzzing demonstra-
tions (2 minutes each).

Random Mutation Selection (Ablation Study): By de-
fault, the scripts above use adaptive (coverage-guided) option
mutation. To reproduce the ablation study results using random
mutation selection instead, add the --without-coverage
flag to the driver generation scripts:

./Demo/libfuzzer_driver_generate_and \
_move.sh --without-coverage
./Demo/afl_driver_generate_and_move.sh \
--without-coverage

This disables coverage-guided selection and uses random
option mutation, allowing comparison between adaptive and
random mutation strategies as presented in the ablation study.

Expected Results: All scripts should complete successfully,
generating enhanced drivers, instrumented libraries, executable
fuzz targets, and fuzzing output with coverage statistics.

F. Customization

The artifact can be customized for different target libraries
and APIs:

• New Target Libraries: Add new OPFL configuration
files in the Demo/ directory to specify option parameters
for different APIs.

• Fuzzing Duration: Modify the -max_total_time
parameter in the run scripts to adjust fuzzing duration.

• Compilation Flags: Edit the environment variables in
the build scripts to customize coverage instrumentation
or sanitizer options.

• Corpus and Dictionary: Replace the seed corpus and
fuzzing dictionary in Demo/fuzz/ directories for dif-
ferent input formats.

G. Notes

Expected Variations: Fuzzing results may vary between
runs due to the non-deterministic nature of fuzzing. Coverage
numbers and execution speeds may differ by 10-20% depend-
ing on the system configuration and random seed.

Troubleshooting: Common issues include Docker build
failures (ensure sufficient disk space), compilation errors
(verify Clang-14 installation), and permission errors (ensure
execute permissions on shell scripts with chmod +x *.sh).
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