
SAGA: A Security Architecture for Governing
AI Agentic Systems

Georgios Syros
Northeastern University

syros.g@northeastern.edu

Anshuman Suri
Northeastern University

ans.suri@northeastern.edu

Jacob Ginesin
Northeastern University

ginesin.j@northeastern.edu

Cristina Nita-Rotaru
Northeastern University

c.nitarotaru@northeastern.edu

Alina Oprea
Northeastern University

a.oprea@northeastern.edu

The increasing autonomy and functionality of AI agents
expand the attack surface of agentic systems, introducing
numerous security risks. As AI agents become more in-
tegrated into critical applications, securing these systems
presents several challenges, as highlighted in a recent OpenAI
white paper [9]. Several key requirements include defining
unique identities for AI agents, authenticating these agents,
and providing secure mechanisms for agent discovery and
communication. These requirements must remain effective
even under adversarial conditions, as malicious actors may
attempt to impersonate agents, intercept communications, or
manipulate agent behavior to extract sensitive information
or subvert intended functionality. Significantly, the OpenAI
white paper emphasizes the necessity of maintaining user
control and supervision throughout all operational phases and
throughout the entire lifecycle of LLM agents to safeguard
against potential harm from malicious agents.

Although various AI agentic system designs have been
proposed that incorporate agent identities [10], attribution [11],
authorization mechanisms and delegation capabilities [12],
these designs largely remain theoretical without implemen-
tation or evaluation. Most critically, they fail to adequately
address the essential component of user-controlled agent man-
agement. Recently, Google’s A2A protocol [13] introduces
a decentralized identity framework where agents advertise
public metadata and initiate direct, encrypted communica-
tion using web-based authentication. While A2A promotes
interoperability and supports verifiable identifiers, it lacks
policy enforcement mechanisms and runtime mediation of
agent interactions, and does not provide mitigation against
adversarial agents.

In this paper, we propose SAGA, a framework for governing
LLM agent deployment, designed to enhance security while
offering user oversight on their agents’ lifecycle (see Figure 1
for an overview). In SAGA users register themselves and
their agents with a Provider service that maintains user
and agent metadata and facilitates controlled communication
establishment between agents. SAGA enables users to control
access to their agents through an Access Contact Policy that
users define for their agents. The enforcement of the policy

Abstract—Large Language Model (LLM)-based agents in-
creasingly interact, collaborate, and delegate tasks to one another 
autonomously with minimal human interaction. Industry guide-
lines for agentic system governance emphasize the need for users 
to maintain comprehensive control over their agents, mitigat-
ing potential damage from malicious agents. Several proposed 
agentic system designs address agent identity, authorization, 
and delegation, but remain purely theoretical, without concrete 
implementation and evaluation. Most importantly, they do not 
provide user-controlled agent management.

To address this gap, we propose SAGA, a scalable Security 
Architecture for Governing Agentic systems, that offers user 
oversight over their agents’ lifecycle. In our design, users register 
their agents with a central entity, the Provider, that maintains 
agents contact information, user-defined access control policies, 
and helps agents enforce these policies on inter-agent commu-
nication. We introduce a cryptographic mechanism for deriving 
access control tokens, that offers fine-grained control over an 
agent’s interaction with other agents, providing formal security 
guarantees. We evaluate SAGA on several agentic tasks, using 
agents in different geolocations, and multiple on-device and cloud 
LLMs, demonstrating minimal performance overhead with no 
impact on underlying task utility in a wide range of conditions. 
Our architecture enables secure and trustworthy deployment of 
autonomous agents, accelerating the responsible adoption of this 
technology in sensitive environments.

I. INTRODUCTION

AI agents with increased levels of autonomy are being
deployed in safety-critical applications, such as healthcare [1],
[2], finance [3]–[5], and cybersecurity [6]–[8]. These agents,
built on top of Large Language Models (LLMs), excel at
automating complex tasks traditionally performed by humans.
Agents powered by LLMs have sophisticated reasoning ca-
pabilities and the ability to understand and generate natural
language. They also leverage access to tools installed on user
devices, external resources, and the ability to interact with
other AI agents autonomously.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230869
www.ndss-symposium.org



Confirmation 

(2) Agent Registration

Provider

User

Agent

User
Information

Contact
Policy

One-time
Keys

LLM
Agent

Certificate

Access
Control
Key

Agent
Information

Legend

User-Registry Agent-Registry

User

(1) User Registration

(3a) Agent
Lookup

Access
Control
Token

(3b) Get Access Control Token

Agent
Conversation

(3c) Agent Communication

Confirmation 

Agent

User

Agent Agent

Fig. 1: System overview of SAGA. (1) A user registers with the Provider. (2) A registered user registers their agent and
receives a confirmation from the Provider. (3a) An initiating agent requests a One-time Key (OTK) and the receiving agent’s
information from the Provider. (3b) The initiating agent contacts the receiving agent with the OTK, after which the agents
derive a shared key and the receiving agent encrypts an access control token under the shared key. (3c) The initiating agent
attaches this token to subsequent communication over TLS. When token expires or reaches limit, a new OTK is retrieved from
the Provider and a new token is obtained from the receiving agent.

is done through cryptographic access control tokens, derived
from agent one-time keys stored at the Provider. Inter-
agent communication over secure TLS channels does not
involve the Provider for scalability, while utilizing access
control tokens to ensure compliance with user-defined policies.
The granularity of access control tokens provides a tradeoff
between potential windows of vulnerability and performance
overhead. The architecture aligns with best practices for secur-
ing agentic AI systems and meets key requirements outlined
in emerging AI governance frameworks.

Contributions. We highlight our main contributions:

• We present SAGA, a Security Architecture for Governing
Agentic systems, that enables users control and oversight
of their LLM-enabled agents.

• We propose a cryptographic mechanism based on access
control tokens encrypted under shared agent keys that al-
lows fine-grained control over inter-agent communication
to balance security and performance considerations.

• We use PROVERIF to formalize the secrecy of the SAGA
token, authentication of communication between agents
and the Provider, and authentication of communica-
tion between any two agents. We automatically prove
these properties with respect to an attacker that can
observe, intercept, modify, replay, reorder, and synthesize
arbitrary messages on the network.

• We evaluate our system across several agentic tasks
(scheduling meetings, submitting expense reports, and
collaborative writing), multiple on-device and cloud LLM

models, and agents placed in diverse geolocations to
demonstrate the scalability of our design.

• We discuss and evaluate the fault-tolerance and scalability
of the Provider. Our results demonstrate that making
the Provider fault-tolerant using RAFT introduces
negligible throughput degradation across key operations.
They also demonstrate that scaling the Provider using
sharding results in linear throughput increase.

The code of our protocol and the formal verification is
available at https://github.com/gsiros/saga and the full paper,
including protocol sequence diagrams and additional security
analysis, at https://arxiv.org/abs/2504.21034.

II. BACKGROUND AND PROBLEM STATEMENT

We provide background on agentic systems, their security
requirements, and define our problem statement.

A. Agentic AI Systems

Agentic AI systems represent an advancement in au-
tonomous systems, enabled by generative AI. These agents
independently devise execution plans for tasks, leveraging
their underlying models for strategic planning and reasoning.
As part of the planned steps for completing the assigned tasks,
agents might need to leverage additional tools installed on user
devices, interact with cloud services, or communicate with
external agents running on other devices. LLM agents can
automate both professional tasks like scheduling and personal
activities such as trip planning. For example, Alice’s calendar
agent might contact Bob’s calendar agent to arrange a meeting,

2

https://github.com/gsiros/saga
https://arxiv.org/abs/2504.21034


then use an email tool to send confirmations. We formulate the
following definitions and terminology that we use in the rest
of the paper.

Definition 1. A User owns one or more agents and is
responsible for assigning them tasks. A user has only one agent
instance running on each device (e.g., only one Calendar agent
running on a particular device).

Definition 2. An Agent is an autonomous software entity
using LLMs for decision making. Upon receiving a user query,
agents use LLMs for planning, store information in memory,
and execute plans to complete assigned tasks. Agents can
access tools installed on user machines. Each agent operates
under a specific user’s authority and may interact with other
agents to fulfill complex objectives. Agents can be ”initiating”
(starting communication) or ”receiving” (accepting communi-
cation) with other agents.

Definition 3. A task is defined as a sequence of actions that
an Agent must plan and execute to achieve a User-defined
goal. Actions might involve interacting with an LLM, invoking
other tools, or communicating with other agents.

B. Requirements and Challenges for Secure Agentic Systems

An OpenAI white paper [9] outlines several guidelines
and open problems in designing secure agentic systems. Key
requirements include defining unique identities for AI agents
with verification capabilities, providing secure mechanisms for
agents to discover and communicate with each other, and
enabling agents to make informed decisions about resource
access and collaboration with other agents. Agentic systems
must also implement protections against adversarial or rogue
agents to limit their influence and prevent harm to benign
agents. Crucially, [9] advocates for users’ control and oversight
throughout the lifecycle of LLM agents.

Challenges: An agent management system must address
three key challenges: (1) discovery—how agents discover each
other; (2) secure communication—how agents communicate
with each other; and (3) remote access control—which agents
are allowed to interact with a specific agent, for what tasks,
and for how long. While inter-agent communication should be
performed automatically by agents, access control and agent
discovery should remain under the user’s control for better se-
curity. Existing solutions address only one of these challenges
and are not specifically designed for agents. For example,
secure messaging protocols like Signal or Matrix provide peer
discovery and secure communication, but lack fine-grained
access control; protocols like TLS or QUIC enable secure
communication, but offer no agent discovery or fine-grained
access control; and systems like Kerberos provide high-
granularity access control, but lack secure communication
capabilities. The recent A2A protocol [13] is the only agent-
specific work we are aware of that ensures communication
between agents, but provides no security guarantees or access
control functionality.

C. Problem Statement

Our goal is to design a system that addresses all the
above challenges by providing agent discovery, secure agent
communication, and fine-grained access control to the services
provided by an agent, while allowing users to retain control
over the management of their agents.

We first address the fundamental requirement of creating
and managing agent identities while providing effective mech-
anisms for agent discovery within the ecosystem. We design
secure inter-agent communication protocols, which represents
a critical functionality of any agentic system, and address the
challenge of how to limit the influence of adversarial agents on
benign ones. We also aim to enable user control on an agent’s
entire lifecycle, including agent registration in the system,
managing agent’s contacts, and agent’s deactivation at any
time, according to the user’s preferences and policies.

With the rapid evolution of agentic systems and emerging
regulations, our goal is to design a modular, extensible frame-
work that can support new security properties with minimal
changes to core components.

III. SYSTEM ARCHITECTURE

We begin by outlining the desirable goals for a secure
agentic system (Section III-A), followed by an overview of our
proposed architecture SAGA (Section III-B). We also discuss
the system assumptions (Section III-C) and the considered
threat model (Section III-D).

A. System Goals

Although the requirements for secure agentic systems are
still evolving, we outline several desirable goals:
Agent lifecycle managed by users. An agent’s lifecycle
should be established by a user. The user installs the agent on
their device, registers it in the system, and retains the authority
to terminate the agent at any time. Termination is performed
by deactivating the agent and preventing other agents from
locating it in the ecosystem.
Agent access controlled by user policies. While LLM agents
can autonomously decide to contact other agents to perform
user-assigned tasks, communication between agents should be
controlled by user-defined access control policies.
Limited trust. Agents should have limited trust in other
third-parties in the system, including any centralized service
provider or other agents.
Scalability. Design the system to efficiently manage a large
number of agents with minimal performance overhead.
Limited influence on other agents. An agent can control
only its own participation in the system and cannot arbitrarily
remove other agents from the ecosystem.
Limited vulnerability window. It is crucial to limit the
vulnerability window when compromised agents are still active
in the system. The length of this window can be controlled by
cryptographic mechanisms and depends on factors such as the
agent’s communication patterns, the nature of the task, and the
sensitivity of the exchanged data.

3



Maintain system utility. We aim to preserve the utility of
the system, as measured by task completion, without compro-
mising system security. Additionally, the framework should be
agnostic to various agent implementations and LLM models
that serve as the backbone.

B. Architecture Overview

We provide an overview of our SAGA system architecture
in Figure 1. A critical consideration in designing a secure
agentic framework is the mechanism for agent discovery. The
implementation of an agent registry facilitates this discovery
process, with architectural options ranging from centralized
to distributed registry models. In our design, we choose to
use a centralized registry, maintained by an entity called
Provider. The Provider manages agent and user identi-
ties, ensures authentication, and facilitates controlled commu-
nication establishment between agents.

To ensure user oversight over an agent’s lifecycle, we del-
egate the agent registration process to users themselves, with
the Provider maintaining the agent information. Users must
be registered in the system and authenticate before registering
any agents and retain the ability to deactivate their agents, for
example as a protective measure when abuse is detected. Each
agent is assigned a unique identifier, linked to the user and
the device it is installed on. The Provider thus maintains
the User Registry (DU ) holding user identity records,
and the Agent Registry (DA) storing agent metadata,
cryptographic credentials, endpoint information, and agent
communication policies.

While communication between agents can be implemented
using standard secure protocols such as TLS, we would like
the ability to enforce limits on agent access, controlled by
users. Governed by the same principle of users managing
access to their agents, each user can specify an Access
Contact Policy for each agent defining which agents are
permitted to initiate contact. To enable fine-grained access
control and limit the vulnerability window, access to agents
needs to be cryptographically bounded. For scalability and
reduced reliance on the Provider, once an agent obtains the
necessary connection details for another agent, all subsequent
communication should proceed directly, without Provider
involvement.

An important design consideration is how to manage agent
access control in a fine-grained manner while reducing the
burden on the Provider. Towards this goal, each agent
registers a number of public one-time keys (OTKs) with
different quotas for each initiating agent (and locally stores
the corresponding secret information linked to these OTKs).
In principle, an OTK could be used only once for an inter-
agent interaction, but that would require generating and storing
a large number of OTKs, presenting significant operational
overhead. We extend the lifetime of these one-time keys
by the receiving agent generating an Access Control Token
that is encrypted using a dynamically derived shared key
between the agents. The shared key must be unique to each
initiating–receiving agent pair and derivable only by those

two agents. To support the shared key computation, each
agent maintains a long-term Access Control Key, which serves
as the basis for deriving the shared key and binding it to
the specific agent pair. The public component of the access
control key is stored in the Agent Registry, while each agent
maintains the secret part. We then use the Diffie-Hellman key
exchange protocol, in which the initiating agent contributes
the access control key, and the receiving agent the OTKs as
public keys. The receiving agent encrypts the Access Control
Token under the derived shared key. The token includes an
expiration timestamp and a limit on the number of permitted
requests. The token is reused for inter-agent communication,
without involving the Provider. When the token expires, a
new one is created after the initiating agent obtains another
OTK from the Provider. This design balances the security
and performance overhead in the system, by allowing users
to tune access to their agents through the number of keys
they register and the lifetime of Access Control Tokens. Note
that the protocol is asymmetric, as access control is enforced
for receiving agents, according to user-specified policies for
initiating agents.

Below, we outline the main components of our system;
protocol details are provided in Section IV.
User Registration (Section IV-B). Users must register with
the Provider using a persistent identity mechanism, such
as OpenID Connect [14]. Upon successful registration, users
authenticate to the Provider and provision agents for par-
ticipation in the SAGA ecosystem.
Agent Registration (Section IV-C). A user registers its
agents with the Provider. During registration, the user
generates cryptographic keys for its agents, including TLS
certificates and access control keys. The user also signs the
agent metadata, such as hostname, port, and device identifiers,
to bind it to its identity and specific device. Additionally, the
Provider signs the agent’s metadata.
Agent Management (Section IV-D). The Provider enables
users to define and update an Agent Contact Policy for each
of their agents, which governs the policy for permissible
incoming communication. This policy allows users to restrict
which other agents can initiate contact with their agent, and to
impose access control constraints. The Provider enforces
these policies during initial contact requests, ensuring that
agent interactions are governed by user-defined rules. Users
can deactivate their own agents at any time, but cannot
deactivate agents owned by others.
Agent Communication (Section IV-E). To initiate contact
with another agent, the initiating agent queries the Provider
with the receiving agent’s identifier. The Provider responds
with metadata, including the receiving agent’s device, IP
address, and a one-time key (OTK) for access control. Sub-
sequently, the initiating agent establishes a shared key with
the receiving agent using the Diffie-Hellman protocol. The
receiving agent generates an access control token, encrypted
under the shared key, which is included in any communication
by the initiating agent. When a token expires or reaches its

4



request limit, the initiating agent obtains a new OTK from
the Provider. Note that the Provider does not mediate
inter-agent communication, but it is critical in enforcing each
receiving agent’s Access Control Policy by distributing OTKs
to initiating agents.

C. System Assumptions

The correctness and security guarantees of SAGA rely on
a set of clearly defined system assumptions, outlned below.
Secure User Authentication and Human Verification. We
assume that the Provider implements a robust user authen-
tication mechanism (e.g., OpenID Connect) and that user cre-
dentials are not compromised. Crucially, we assume that agent
registration is restricted to authenticated human users, enforced
through human verification during user account creation. This
verification process is delegated to a trusted external identity
service, which certifies the user’s human status on behalf of
the Provider.
Agent Identity Control. We assume that attackers can create
and register agents under their own identities but cannot imper-
sonate other users. That is, while adversaries may instantiate
and operate malicious agents, they cannot register agents under
the identity of a benign user.
Public IP Addressing. All agents and providers are assumed
to operate under globally routable, public IP addresses. This
design avoids NAT traversal and local discovery, assuming that
agents are reachable at their registered endpoints.
Cryptographic Soundness. We assume that all cryptographic
primitives used by the system—signature schemes, key ex-
change protocols, encryption schemes, and key derivation
functions—are secure. Secret keys are assumed to remain
confidential and outside adversarial control.
Secure Channels. All communication, both between agents
and between agents and the Provider, is protected by
TLS. We assume that TLS provides confidentiality, integrity,
and authenticity against network-level adversaries performing
message tampering, eavesdropping, and replay.
Network Protections. We assume that the network infras-
tructure enforces basic protections against denial-of-service
attacks and packet flooding.

D. Threat Model

The Provider is expected to adhere to the SAGA protocol
logic, including enforcing contact policies, issuing keys, and
performing registry operations. However, it may be honest-
but-curious: capable of observing agent metadata and traffic
patterns without actively attempting to subvert the protocol.
The user and agent registries are assumed to be securely stored
and not vulnerable to adversarial control or tampering. We
consider several adversarial capabilities:
C1: Adversaries might create agents and register them with the
Provider. These adversarial agents could deviate from the
protocol when communicating with other agents. They could
also add themselves to the contact policy of benign agents by
performing social engineering on users.

C2: A legitimate agent registered with the Provider could
be compromised by an adversary. This attack could occur
when agents interact with external resources, such as websites,
or tools installed on user devices, which might trigger a
compromise.
C3: Adversaries may instruct an agent to self-replicate on the
same device or on another user’s device without registering the
child agent with the Provider. Prior work has demonstrated
such self-replication of agents [15]. The parent agent can share
TLS keys, access control keys, and existing access control
tokens with the child agent.
C4: An adversarial agent may share its TLS public keys,
access control keys, and access control tokens with another
adversary-controlled agent, enabling communication with a
benign victim agent.
C5: An adversary could attempt to mount a Sybil attack, by
creating agents with multiple identities.
C6: An adversary may overhear, intercept, and synthesize any
message, and is only limited by the computational hardness
constraints of the employed cryptographic primitives.

IV. SAGA PROTOCOL SPECIFICATION

In this section, we begin with a description of the cryp-
tographic primitives involved in our protocol, followed by a
description of the key protocols involved in SAGA: user regis-
tration (Section IV-B), agent registration (Section IV-C), agent
management (Section IV-D), and inter-agent communication
(Section IV-E).

A. Cryptographic Primitives and Notation

We leverage the following cryptographic primitives:

Signature schemes. A signature scheme consists of three
algorithms: KeyGen() – a key generation function that outputs
a (public, private) signing key pair (PK,SK),

SignSK (m) – a signing algorithm that outputs a signature σ
on message m using SK, and VerifyPK (m,σ) – an algorithm
that verifies if the signature σ on message m is correct. We
assume that the signature scheme is Existential Unforgeable
under Chosen Message Attack [16], such as ECDSA [17] and
Ed25519 [18]. A certificate generation function GenCertX(m)
involves entity X creating a certificate for content m as:
GenCertX(m) = ⟨m,SignSKX (m)⟩
Hash function. We use a collision-resistant hash function H(·),
such as SHA-256 or SHA-3 [19].

Diffie-Hellman Key Exchange. The Diffie-Hellman Key Ex-
change protocol [16] is a cryptographic method that allows two
parties to establish a shared secret key. Each party generates
a (secret, public) key pair, and exchanges with the other
party the public component. We denote by DH the function
that takes as input the secret key of one party and public
key of the other party and computes the shared secret key
DH(x, gy) = DH(y, gx) = gxy mod p. The security of
Diffie-Hellman is based on the Computational Diffie-Hellman
(CDH) assumption.

5



Key Derivation Function. A Key Derivation Function (KDF) is
a cryptographic algorithm that derives one or more secret keys
from a master secret. We use the HMAC-based Extract-and-
Expand Key Derivation Function (HKDF) [20] with SHA-256
as the underlying hash function.

Notation. We introduce formal notation throughout the proto-
col specification. For convenience, Table I provides a summary
of all symbols used.

Symbol Description

PK,SK Public/private signing keys
Cert Certificate issued by CA

uidU User identifier
aidA Agent A identifier
EDA Agent A endpoint descriptor
(PKA,SKA) Agent A public/private TLS credentials
(PACA,SACA) Agent A public/private access control keys
(OTKiA,SOTK

i
A) Agent A one-time public/private keys

CPA Contact policy of agent A

token Access control token
σY
X Entity Y-issued signature regarding entity X.

DU Provider’s user registry
DA Provider’s agent registry

TABLE I: Notation used in the SAGA protocol.

B. User Registration

The first step for any user seeking to deploy agents is to
register with the Provider. This process establishes the
user’s identity and enables them to link future agents to
their identity and manage them securely. The user obtains a
certificate signed by an external certificate authority CA on
their public key, sent to the Provider. We assume that the
user can establish a TLS connection with the Provider and
that the provider can verify the user’s identity with the help
of an external service such as OpenIDConnect. The protocol
follows these steps:

1) User Account Setup. The user selects a public
identifier uidU corresponding to their email address,
e.g., uidU = ‘alice@domain.com’, and a secret
passphrase passwd to authenticate to the Provider.

2) User signature key generation: The user generates a
signature key pair (PKU,SKU) for signing agent infor-
mation. The user contacts CA to generate its certificate
CertU = GenCertSKCA(⟨uidU,PKU⟩), and shares it with
the Provider.

3) Connection establishment. The user obtains the
Provider’s certificate and public key PKProv from
the CA and verifies them. A TLS session is established
between the user and the Provider.

4) Sending user information. The user submits
(uidU,passwd) and CertU to the Provider.

5) User identity verification. The Provider verifies the
user’s identity using an external service S (see Sec-
tion III-C). If verification is successful and the account
does not exist, the Provider finalizes the registration.

6) User account storage and confirmation:
The Provider updates the user registry:
DU [uidU] = ⟨H(passwd),CertU⟩ and sends a
confirmation to the user.

After the user registration is completed successfully, the user
can proceed to register its agents with the Provider.

C. Agent Registration by User

The agent registration process ensures that each agent is
cryptographically bound to its user and a specific user’s device.
The cryptographic information generated by a user for its
agents is stored by the Provider and subsequently used
to establish secure agent communication mediated by the
Provider. The following protocol is executed by user U
to register their agent A.
1) Generating agent information. The user selects an iden-

tifier nameA for the agent, forming a unique agent ID in
combination with their username: aidA = uidU:nameA.
The user specifies the agent’s device name deviceA and
networking details IPA and portA. These comprise the
agent’s “endpoint descriptor”:

EDA = ⟨deviceA,IPA,portA⟩

2) Generating cryptographic keys. The user generates the
following keys for the agent:
• TLS credentials (PKA,SKA) to establish secure com-

munication channels with other agents and a signed
certificate by the CA:

CertA = GenCertSKCA(⟨aidA,PKA⟩)

• A public-private key pair: (PACA,SACA) for access
control. These long-term keys are used for the receiving
agent to derive a shared key with the initiating agent
for encrypting the access control token in inter-agent
communication (Section IV-E).

• A batch of N one-time public and secret key pairs
(OTK1A,SOTK

1
A), . . . , (OTK

N
A,SOTK

N
A), used for deriving

tokens for controlling access to the agent. Each public
one-time key is signed by the user:

σUOTKi = SignSKU
(
⟨aidA,OTKiA⟩

)
The user also signs the agent’s device and networking
information, along with its long-term keys:

σUA = SignSKU (⟨aidA,EDA,PKA,PACA,PKProv⟩)

The inclusion of PKProv in the signature indicates that the
agent is registered with the specified Provider.

3) Specifying the contact policy: The user specifies the
agent’s contact policy CPA (discussed in Section IV-D).

4) User authentication to Provider. The user establishes
a secure TLS connection with the Provider, and au-
thenticates by providing credentials ⟨uidU,passwd⟩. The
Provider verifies the credentials and proceeds if suc-
cessful.

6



5) Registration submission. The user submits to the
Provider: the agent’s information (aidA,EDA,CPA),
the TLS certificate CertA, the public access control and
one-time keys PACA, {OTK1A,...,OTKNA}, and signatures
σUA , σUOTKi for i ∈ [1, N ]. The agent stores locally all
the private keys corresponding to the public keys submitted
to the provider: (SKA, SACA, {SOTK1A,...,SOTKNA}).

6) Provider verification. The Provider processes the reg-
istration request by checking that aidA and EDA are
globally unique, and verifying CertA and signatures:

VerifyPKU(⟨aidA,EDA,PKA,PACA,PKProv⟩, σ
U
A)

VerifyPKU(⟨aidA,OTK
i
A⟩, σUOTKi)

7) Completion. Upon successful verification, the Provider
stores in the agent registry the agent’s metadata MA, the
contact policy CPA, the agent’s signatures σUA and σUOTKi ,
along with uidU to associate the agent A with user U:

MA = {EDA,CertA,PACA,OTKiA, i ∈ [1, N ]}
DA[aidA] = ⟨uidU,MA,CPA, σUA , σUOTKi⟩

The Provider then signs the agent A’s information

σProv
A = SignSKProv

(
⟨aidA,CertA,EDA,PACA, σUA⟩

)
and returns it as confirmation to the user. The user stores
this signature, which it uses when initiating agent commu-
nication (Section IV-E).

The agent A is now officially registered and can securely
communicate within the ecosystem.

D. Agent Management

Agent management in SAGA involves managing access
control polices, policy updates, and cryptographic key man-
agement.

Access control management. There are two fundamental
capabilities in SAGA for managing access control: (1) specifi-
cation and enforcement of the Agent Contact Policy (CP), and
(2) provisioning of fresh One-Time Keys (OTK) to facilitate
user-controlled communication.

1) Agent Contact Policy: In SAGA, each agent is associated
with a contact policy CP that specifies which initiating agents
are authorized to establish contact. This policy is defined by
the user when registering their agent, and is enforced by the
Provider during contact resolution. CP consists of a set of
declarative rules, along with the number of OTKs that should
be allotted to an agent that matches that rule. These rules may
use pattern matching over agent identifiers to allow flexible yet
controlled specification of acceptable contacts. For instance,
the rule ("*@company.com:email_agent", 10) per-
mits any email-handling agent from a specified domain to
initiate contact and be allotted at most 10 OTKs.

If multiple rules match, the one with the highest
specificity is selected. For instance, in Listing 1, agent
alice@company.com:calendar_agent attempts to
contact another agent. The agent’s identifier matches the top

// Agent C's Contact Policy
[
{
"agents": "alice@company.com:calendar_agent",
"budget": 15

},
{
"agents": "*@company.com:calendar_agent",
"budget": 10

},
{
"agents": "bob@mail.com:*",
"budget": 100

}
]

Listing 1: Example contact policy for an agent. More specific
patterns take precedence over general ones.

three patterns, but the first rule is the most specific and
therefore determines the OTK budget, resulting in 15 OTKs.

Formally, for a receiving agent A with contact policy CPA
and an initiating agent B with identifier aidB, the number of
OTKs issued is defined as:

BudgetOTK(aidA,aidB) =

{
−1 if R = ∅
B(r∗) if R ≠ ∅

,

where r∗ is the most specific rule among all rules R in CPA
that match aidB, and B(r∗) corresponds to the budget for rule
r∗ indicated in CPA. The distinction for R = ∅ helps the user
distinguish between no match in policy and an expired OTK
budget.

2) One-Time Key Generation: To control communication
to registered agents, the Provider facilitates the distribution
of OTKs: one-time keys generated and uploaded by each user
for their agents. Each OTK is consumed when an initiating
agent contacts the Provider to obtain information for a
receiving agent. OTKs are defined for receiving agents, as
the protocol is asymmetric. Additionally, the Provider
maintains the number of OTKs remaining for a particular agent
communicating with another agent. While it might be possible
for the initiating agent to receive multiple OTKs from the
Provider, thereby reducing the number of times the agent
must contact the Provider, we chose a more conservative
design. In our approach, the agent receives only one OTK per
request to limit the vulnerability window in case the agent is
compromised.

When an initiating agent B queries the Provider to
contact a recipient agent A, the Provider first verifies that
the initiating agent satisfies A’s Agent Contact Policy (CPA),
as detailed above. If this is the first time B is contacting A,
the Provider creates a counter CounterOTK[aidA][aidB] to
keep track of the number of remaining OTKs, and initializes
it with BudgetOTK(aidA,aidB).

If the policy check succeeds and a valid OTK is available
(indicated by a positive value for CounterOTK[aidA][aidB]),
the Provider returns an OTK to the initiating agent (along
with the recipient’s metadata and its signature, discussed in
Section IV-E) and decreases the counter by one.

7



Obtaining an OTK at this stage may fail due to: (a) exhaus-
tion of aidA’s overall OTK pool, or (b) depletion of aidB’s
OTK quota as defined by CPA. The user of agent A can update
the contact policy and refresh the OTKs at any time.

Policy Updates and Revocation. Users can dynamically
update their agents’ contact policies via the Provider in-
terface. Updates may include adding rules (e.g., to onboard
collaborators) or removing them (e.g., to revoke access),
allowing policies to adapt as trust relationships shift or threats
emerge.

It is important to allow users to block contact from specific
agents, as they might detect abusive behavior. To block specific
agents, a receiving agent can update its contact policy with
a rule that assigns a B(·) score of −1. The modified CP is
then pushed to the Provider. Alternatively, to completely
disable incoming contact, a user can request the Provider
to deactivate their agent at any time. This functionality is
motivated by our design goal of giving the user full control
over their agent’s entire lifecycle. Crucially, we do not allow
users the ability to deactivate agents registered by other users,
as they should control only their own agents.

Cryptographic key management. Cryptographic keys for
agents should be managed by users according to best prac-
tice principles for key management and key rotation [21].
In particular, users should periodically rotate their agents’
TLS key and access control keys. Best practices should also
be followed by the Provider for user authentication and
password management [22].

E. Inter-Agent Communication

We describe how two registered agents can communicate
with each other securely, while respecting the Access Contact
Policy defined by users for their agents.

When an agent B (initiating agent) wants to contact agent A
(receiving agent), it first queries the Provider to verify A’s
registration. If permitted by A’s contact policy, B receives A’s
metadata and a one-time key (OTK) from the Provider. This
OTK is used by both agents to derive a shared key, which the
receiving agent A will use to encrypt an access control token
(ACT) for B. The ACT is scoped to a specific task, but the
granularity of tokens can be adjusted further if desired. The
token will have limited validity, as well as a limit on the total
number of requests.

The following steps outline the agent communication pro-
tocol involving initiating agent B contacting receiving agent
A to obtain an access control token. This protocol runs either
the first time B contacts A, or when tokens have expired or
exceeded their usage limits.
1) Establishing a TLS connection with the Provider:

This step follows a standard TLS session establishment
between B and the Provider.

2) Receiving agent information retrieval: B requests per-
mission to contact A by specifying their identity (aidB)
and the identity of the receiving agent (aidA). The
Provider verifies that B is in A’s contact policy

and has sufficient OTKs allotted to it (by making sure
CounterOTK[aidA][aidB] > 0). It returns A’s access in-
formation: user’s certificate CertU1, agent’s device and
network information (aidA,EDA), agent’s TLS and access
control keys (CertA,PACA) and a signed one-time key
OTKiA, σ

U1
OTKi . Subsequently, the Provider decrements the

counter CounterOTK[aidA][aidB] by one.
3) Receiving agent information verification: B first verifies

A’s user’s certificate CertU1 including the user’s public
key PKU1. B also verifies the signatures on agent’s A
information and the received OTK as follows:

VerifyPKU1(⟨aidA,EDA,PKA,PACA,PKProv⟩, σ
U
A)

VerifyPKU1(⟨aidA,OTK
i
A, ⟩, σUOTKi)

4) Establishing a TLS connection between agents: B initi-
ates a TLS connection with A, and both agents verify each
other’s certificates (CertA,CertB).

5) Token request sent: B sends A its information and a
signature σProv

B from the Provider (generated during
agent registration: step 7), along with one-time key OTKiA,
requesting access.

6) Token request received: A verifies U2’s certificate, as well
as σProv

B :

VerifyPKProv(⟨aidB,CertB,EDB,PACB, σ
U2
B ⟩, σProv

B )

If OTKiA is valid, both agents perform a Diffie-Hellman
(DH) key exchange protocol to derive a shared key:

DHA = DH(SOTKiA,PACB), DHB = DH(SACB,OTK
i
A)

SDHK = KDF (DHA) = KDF (DHB)

7) Token generation: A creates the access token with a
randomly generated nonce (N $←− R), issue (Tissued) and
expiration (Texpire) timestamps, the maximum number of
requests linked to this token (Qmax), and B’s access control
key (PACB):

token = EncSDHK(⟨N,Tissued,Texpire,Qmax,PACB⟩).

A stores the token and sends it to B.
8) Inter-Agent communication: B receives the token and

initiates the conversation to complete its task. For each sub-
sequent request to A, B attaches the token. Upon receiving
a request, A verifies that the token was issued for B (not for
another agent), has not expired, and has not exceeded its
usage quota. Once a task is deemed completed, the token
is discarded by both parties.

Token reuse. Once an Agent obtains a token, it can reuse
it as long as it remains valid and hasn’t exceeded its request
limit. If B holds a valid token for A, it can skip ahead to step 8
to initiate secure communication. If the agents’ existing TLS
session is reset, the agents will establish a new TLS session
(step 1) and proceed directly to agent communication (step
8). The expiration time and request limit in the token offer
a balance between security and performance considerations.

8



A larger number of requests Qmax reduces the overhead of
contacting the Provider to obtain OTKs, but increases the
potential exposure in case an agent is compromised.

F. Formal Protocol Analysis

We formalized SAGA using the state-of-the-art symbolic
cryptographic analysis tool, PROVERIF, to reason about cryp-
tographic attackers [23]. Our PROVERIF model precisely
captures the SAGA protocol description, using standard
PROVERIF protocol modeling techniques and assumptions.
Within our PROVERIF model of SAGA, we encoded formal
properties specifying the secrecy of the SAGA token, authen-
tication of communication between agents and the provider,
and authentication of communication between any two agents.
Using PROVERIF’s automated reasoning capabilities, we au-
tomatically proved each of the afformentioned properties with
respect to an attacker that can observe, intercept, modify,
replay, reorder, and synthesize arbitrary messages on the
network. This directly corresponds to the Dolev-Yao symbolic
cryptographic protocol model [23]. For details on formal
verification, see Appendix C. We also empirically validate the
protocol by implementing eight distinct attacker behaviors,
i.e., malicious agents that deviate from the protocol within
the capabilities defined in the threat model (Section III-D).
Our evaluation demonstrates that SAGA reliably enforces
its security guarantees under all tested scenarios, confirming
the correctness of the implementation and reinforcing the
conclusions of our formal analysis. A detailed description of
the empirical evaluation is provided in Appendix E of the full
version of the paper1.

V. EXTENSIONS TO THE SAGA ARCHITECTURE

We discuss several extensions to SAGA to enable fault
tolerance, scalability and resilience to server compromise
in Section V-A, and describe the integration with the A2A
protocol in Section V-B.

A. Provider Architecture Design

In our proposed architecture, the Provider is trusted, a
model similar to that in existing systems as Active Directory
[24] (based on Kerberos). We discuss below how the design

can be augmented to enable fault-tolerance, resilience to
attacks and server compromises, and scalability.

Fault-tolerance. The centralized Provider design we pro-
pose can be made fault-tolerant by using standard distributed
systems techniques. Specifically, the Provider functionality
can be implemented as a RAFT [25] or Paxos [26] cluster,
where the agent registry is replicated across the RAFT nodes.
Operations such as agent registration, policy update, and OTK
retrieval are submitted to the leader of the RAFT cluster.
Such systems are provisioned to tolerate a certain number of
failures, for example typical deployments consist of 5 servers
tolerating 2 faulty servers. We present fault tolerance results
in Section VI-D.

1https://arxiv.org/abs/2504.21034

Protection against denial-of-service (DoS). Additionally,
protection against DoS can be achieved by using rate limiters
that control the volume and frequency of incoming requests,
preventing attackers from overwhelming server resources with
excessive traffic. Advanced rate limiters can detect abnormal
traffic patterns, adapt their restrictions based on current server
load, and implement tiered responses like introducing delays
rather than complete blocking. While particularly effective
against single-source attacks, rate limiters serve as a crucial
first line of defense that maintains system availability during
attacks, though they work best when combined with other pro-
tective measures like firewalls and DDoS protection services
for comprehensive security against sophisticated distributed
attacks.

Resilience to compromised servers. A compromised
Provider might refuse agent registration, refuse to forward
agent metadata, register malicious agents, or not follow agent
policies. The Provider can be made resilient to these
types of attacks by implementing it as a Byzantine-resilient
service using existing protocols such as PBFT [27]. In this
design, a quorum of servers is required to participate in each
operation ensuring that a majority of honest servers make the
decision. Such a system can tolerate f compromised servers
out of 3f + 1 participating servers. An alternative, more
lightweight design is using fault-tolerant algorithms (RAFT
or Paxos), augmented with proactive auditing mechanisms to
detect server compromises.

Scalability. Finally, the scalability of the system can be
elastically increased by using a standard technique in
databases [28]–[30] called sharding [31], [32]. In this approach
the agent registry is partitioned across several entities called
sharders, and we can partition based on the space of agent
ID. Each sharder can be made fault-tolerant with a RAFT
cluster, and a set of load-balancers forwarding the requests
for different agent entries to the corresponding sharder. We
present scalability results in Section VI-D.

Federation. The Provider service can be further decen-
tralized by using federation, where several organizations each
managing their own provider, participate in the protocol. Sim-
ilar to cross-realm Kerberos [33], multiple providers establish
trust relationships via shared cryptographic keys or certificates,
enabling cross-domain agent authentication where agents from
one provider can securely communicate with agents from other
providers. This model allows organizations to maintain control
over their agent registries and policies while enabling inter-
organizational communication, with each provider validating
its local agents during cross-boundary interactions.

B. Integration with the A2A Protocol

We discuss the integration of SAGA with Google’s
Agent2Agent (A2A) protocol [13]. A2A defines an agentic
framework where AI agents advertise public metadata and
establish secure communication with other agents. While
A2A defines a unified interface for structured task exchange
via “agent cards”, it lacks support for authentication, access

9

https://arxiv.org/abs/2504.21034


control, and agent governance. Our integration bridges this gap
by protecting agent cards with SAGA access control policies
and by encapsulating A2A messages within SAGA’s secure
communication layer. We highlight below the changes that
enable integration with SAGA.

The Provider stores agent cards in the agent registry as
part of each agent’s metadata entry as per Step 7 of Agent
Registration in Section IV-C.

DA[aidA] = ⟨uidU,MA,CPA,A2ACardA, σUA , σUOTKi⟩

Unlike A2A’s recommended deployment via public URLs,
SAGA protects these cards under user-specified access control
policies. This ensures that only authorized agents may retrieve
the agent cards. Additionally, the integrity of the agent cards
are protected with user signatures (Step 2, Section IV-C).

σUA = SignSKU (⟨aidA,EDA,PKA,PACA,PKProv,A2ACardA⟩)

For inter-agent communication, the standard message in the
msg field is wrapped into an A2A Request during Step 8
of Section IV-E.

⟨token,msg⟩ → ⟨token,A2ARequest(msg)⟩

In addition to the message content, A2A Requests include
internal metadata such as task and message IDs, and the
content type (e.g., text, image). Before forwarding the request
to the agent’s A2A stack, the SAGA stack verifies the token
for authenticity, freshness, and contact authorization as per
Step 8 of Section IV-E. If any check fails, the message
is discarded and never reaches the A2A layer, effectively
preventing unauthorized task execution.

SAGA integrates with A2A through minimal changes that
preserve the protocol’s functionality, while augmenting its
security. The integration remains agnostic to agent design and
task semantics, enabling secure, interoperable agent commu-
nication controlled by user policies.

VI. EVALUATION

To evaluate SAGA, we implement the full protocol (VI-A),
measure its overhead in VI-B, and evaluate it on three agentic
tasks in VI-C. We measure the cost of fault tolerance and
protocol scalability in VI-D.

A. Implementation

The Provider is implemented as an HTTPS service. Inter-
agent communication is conducted over TLS configured with
mutual authentication, with protocol-level authentication and
encryption enforced via ephemeral session keys. Our frame-
work is agnostic to the underlying LLM-agent implementation.
This design enables seamless integration with arbitrary agent
implementations. We also implemented the integration of
SAGA with A2A, described in V-B.

All cryptographic operations in the protocol are built on
Curve25519 [34]. Both long-term and ephemeral keys are
generated using the X25519 elliptic-curve Diffie-Hellman
(ECDH) [35] scheme, using 256-bit shared secrets. Certificates

adhere to the X.509 PKI standard [36] and are issued by
an internal certificate authority (CA) deployed as part of the
provider. All digital signatures and key derivation steps utilize
the SHA256 hash function [19].

For LLM agents, we experimented with a local Qwen-2.5
[37] 72B model running on NVIDIA H100, as well as two
OpenAI models hosted in the cloud and accessed via API.

B. Overhead Evaluation

Cryptographic Overhead. We begin with measuring the
cryptographic overhead of core protocol operations at the
user, Provider, and agents. These costs cover cryptographic
primitives such as hashing, key generation, signing, verifica-
tion, and Diffie-Hellman key exchange. As shown in Table III
(Appendix A) most operations are lightweight, on the order
of several ms.

Key Management Overhead. SAGA relies on three classes
of cryptographic keys, each with distinct lifetimes and ro-
tation patterns: short-term one-time keys (OTK), medium-
term access control keys (PAC,SAC), and long-term identity
keys (PK,SK). OTKs are ephemeral and rotated frequently
once consumed for the derivation of access control tokens.
On the other hand, access control keys are medium-term,
typically rotated on a weekly or biweekly basis to balance
security with operational stability. Long-term identity keys are
rotated infrequently, commonly every 30 to 90 days, following
established key management guidelines [21].

every 5 min 10 min 15 min 30 min 1 hr 8 hrs
OTK Generation Frequency

0

2

4

6

8

10

C
om

pu
ta

ti
on

al
O

ve
rh

ea
d

(s
ec

)

Number of OTKs

10

100

1000

Fig. 2: Computational overhead of OTK generation for the user,
as a function of frequency and key-chain length. Even with
frequent generation (every 5 minutes) and long key-chains
(1000 OTKs), the total cost remains low.

Figure 2 measures the overhead for OTK generation at
the user, showing that even under frequent generation (1000
OTKs every 5 minutes over an 8-hour period) the total com-
putational cost remains under 10 seconds for a single user.
The computational cost at the Provider (validation and
storage of the OTKs) does not exceed 0.5 seconds under the
same conditions (1000 OTKs/5min). In contrast, both access
control and identity key pairs require only 0.11 milliseconds to
generate on commodity hardware, and due to their infrequent
rotation, their cost is effectively amortized.

Figure 3 reports the total cost of deriving access control
tokens with different configurable lifetimes (L) from OTKs

10



for a single initiating agent with 1, 10 and 100 receiving
agents. The process includes a Diffie-Hellman handshake,
the encryption and decryption (validation) of the token as
described in Section IV-E. Even for very short lifetimes (1
minute), the total cost of derivation of 144K tokens is just
below 400 seconds over the span of 1 day for a single agent.

We conclude that a longer lifetime reduces reliance on the
Provider but increases the window for compromised agents
to operate without interruption. Shorter lifetimes mitigate secu-
rity risks by requiring more frequent cryptographic validation,
at the expense of additional overhead.

1 min 3 min 6 min 12 min 1 hr 8 hrs 1 day
Token Lifetime (L)

0

100

200

300

400

C
om

pu
ta

ti
on

al
O

ve
rh

ea
d

(s
ec

)

Receiving Agents

1

10

100

Fig. 3: Computational overhead of access control token deriva-
tion between one initiating agent and 1, 10 and 100 receiving
agents, varying by token lifetime (L). Even for short lifetimes
(1 minute), the total cost remains low.

Importantly, all aforementioned overheads are very small
compared to the total task execution times (Section VI-C),
which typically last at least a few minutes, depending on task
complexity and LLM backend latency.

Protocol Overhead. We measure the overhead introduced by
SAGA’s access control and provider coordination mechanisms
(Section VI-B). Specifically, we analyze the overhead incurred
by an initiating agent B issuing m requests to a receiving
agent A. This includes a network component for establishing
secure communication, and a cryptographic component tcrypto
for certificate validation, signature verification, Diffie-Hellman
key exchange, key derivation, token encoding, and symmetric
encryption. The total protocol overhead is modeled as:

cproto(m) = (RTTB,P + tcrypto) ·
⌈

m

Qmax

⌉
, (1)

where P is the Provider, and RTTB,P is the round-trip
time for agent B contacting the Provider and receiving a
response. Each authorization cycle involves agent B retrieving
metadata and a one-time key for agent A from the Provider.
This round-trip, along with local cryptographic operations,
must be performed once every Qmax requests, as the token
quota is exhausted.

We sample round-trip times (RTTB,P ) from empirical
measurement distributions using monitors in US-East, US-
West, Europe and Asia, made available by CAIDA [38] and
AWS [39], and use these to approximate protocol overhead.
Figure 4 shows the amortized protocol setup overhead:

c̄proto(m) =
cproto(m)

m

1 10 20 30

Maximum number of requests per token (Qmax)

0

50

100

150

200

250

A
m

or
ti

ze
d

O
ve

rh
ea

d
(m

s)

Provider Location

US-West

US-East

EU

Asia

Fig. 4: Amortized protocol overhead per request c̄proto(m) as a
function of maximum number of requests token is reused. We
measure the overhead for several geographic locations for the
Provider. The shaded region reflects variability for agents
position worldwide.

1 10 20 30

Maximum number of requests per token (Qmax)

0

25

50

75

100

125

150

175

A
m

or
ti

ze
d

O
ve

rh
ea

d
(m

s)
Agent Location

US-West

US-East

EU

Asia

Fig. 5: Amortized protocol overhead per request c̄proto(m) as a
function of maximum number of requests token is reused. We
measure the overhead for several geographic locations for the
initiating agent, where the Provider is fixed in US-West.
The shaded region captures variability under sampled network
conditions.

as a function of token quota Qmax, using m = 100 requests,
where the measured cryptographic overhead tcrypto = 7ms.
As shown, the protocol overhead decreases sharply with in-
creasing token quota Qmax, demonstrating how it can be effec-
tively amortized across inter-agent interactions. Moreover, the
overhead is low for all Provider geolocations, with slightly
higher overhead for Europe and Asia.

We also evaluate the effect of geolocation on protocol
overhead by varying the placement of the initiating agent
under a fixed Provider location (US-West). The overhead
is very low—under 25ms when agents interact for at least 4–5
requests (Figure 5). This effect is even more pronounced when
the agent and Provider are geographically close.

11



C. Task Completion

SAGA operates as a protocol layer above the underlying
LLM agents, whose communications are not impacted by the
protocol. To illustrate SAGA in realistic agent interactions,
we deploy three types of agents: (a) Calendar agents that
determine a mutually available time and schedule a meeting,
(b) Email agents that extract relevant expense-related emails
and collaborate to submit an expense report, and (c) Writing
agents with different expertise areas collaborating to write a
blogpost. As expected, all agents successfully complete their
tasks. See Appendix B for more details.

Task LLM Backend Standard Cost SAGA
LLM Networking Overhead

Calendar GPT-4.1-mini 50.001 0.791 0.165
Email GPT-4.1 26.862 1.319 0.165
Writing Qwen-2.5 363.563 1.319 0.165

TABLE II: Task execution time (in seconds). A, B, and
the Provider are located in Asia, Europe, and US-West,
respectively, and the token quota is 10. Standard Cost is
the minimum runtime for two agents communicating directly
without SAGA, including LLM cost and network latency.

We measure the standard task completion cost i.e., the
time taken by the LLM to generate responses, and the net-
work latency (Table II, under Standard Cost). The LLM
response time depends on both model execution speed and
task complexity. For example, using a local Qwen-2.5 model
instead of the cloud-based GPT-4.1 model for the Email task
increases the runtime from 26.862 to 43.730 seconds, as the
Qwen-2.5 (72B) model is slower than the highly optimized
models served by OpenAI. Tasks like blog post writing require
substantially more input and output tokens and result in longer
runtimes, as observed for the Writing task. Since most of
the task completion time is spent by LLM-agents during
intermediate planning [40], and tool calls [41], the amortized
overhead of our protocol is significantly lower in comparison.
For example, even when agents and the Provider are
geographically distant, the protocol overhead accounts for less
than 0.6% of the end-to-end cost of completing the fastest
calendar task.

D. Fault Tolerance and Scalability

We evaluate SAGA’s scalability and fault tolerance under
varying deployment configurations. Specifically, we measure
the throughput of the Provider for core operations; agent
registration, OTK request (i.e., issuance of one-time keys to
agents), and OTK refresh (i.e., generation of new OTKs by the
user). We vary system parameters such as replication factor
(RAFT nodes), number of sharding workers NS , OTK key-
chain length, and access control token lifetime. Our findings
show that SAGA maintains high throughput under replication,
scales linearly with added compute, and supports large agent
populations through configurable token lifetimes.
Setup. We deploy a Provider backed by a replicated
RethinkDB cluster. RethinkDB [42] is a distributed, open-

source database using the RAFT consensus algorithm for
strong consistency and fault tolerance. For replication cost
evaluation, we consider typical cluster configurations with 3
and 5 RAFT nodes (supporting 1 and 2 crash faults), and as
baseline a configuration with only 1 node (no fault tolerance).
For scalability evaluation, we vary the number of sharders
and observe throughput assuming that each sharder (consisting
of a RAFT cluster) runs on a separate machine and requests
are routed by a proxy to the right sharder. To analyze the
system’s sensitivity to storage-related operations, we vary
the number of submitted OTKs between 10, 100, and 1000
keys. Experiments are conducted on a workstation with a 16-
core AMD Threadripper PRO 5955WX CPU and Samsung’s
MZ1L21T9HCLS-00A07 SSD.

Fault Tolerance. Figures 6a, 6b, and 7 demonstrate that
making the Provider fault-tolerant (3, 5 RAFT nodes)
introduces negligible throughput degradation across key op-
erations. For example, for OTK Requests (Figure 6a), the
No-RAFT (1-node) setup achieves 242K requests per minute,
compared to 212K for 3-node and 204K for 5-node RAFT
configurations, which translates to a throughput decrease of
12-15%. In Figure 6b, the cost of replication for OTK refresh
is lower, dropping from 173K (No-RAFT) to 153K (3-node
RAFT), a difference of just 20K requests per minute (∼11%).
For more I/O-intensive operations such as refreshing large key-
chains (1000 OTKs), the tradeoff shrinks further to only 2K
requests per minute. Agent registration performance remains
largely stable even under 5-node replication, regardless of
the number of OTKs provisioned per agent achieving 511K
requests per minute. Similarly, OTK request and refresh incur
minimal overhead.

Scalability. As expected, throughput scales linearly with the
number of sharders. As shown in Figures 6a, 7 and 8 adding
just 10 sharders increases OTK throughput nearly tenfold,
indicating no early saturation and achieving 178K to 511K
requests per minute depending on the operation. We omit the
latency of forwarding the request to the right sharder, as within
the same datacenter this would be very small. Experiments on
AWS including the cloud latency show a similar trend (see
Appendix E). We expect that in production, Provider can
scale to hundreds of sharders.

Agent Capacity. We seek to answer the question: How many
active agents can the system support at any given time?
We define this as the number of agents a Provider can
continuously serve with OTKs. Let L = Texpire − Tissue
denote the token lifetime. Each agent needs to contact the
Provider only once per L to obtain an OTK, which it
then uses to generate a token and communicate with another
agent throughout the interval. Hence, the provider’s total
supported population is: C = T (NS) · L where T (NS) is
the Provider ’s OTK issuance throughput with NS sharder
nodes. As shown in Figure 6c, with 10 sharders and 24-hour
tokens, the system can support up to 300 million agents. These
results demonstrate SAGA’s ability to operate under realistic,
large-scale deployment scenarios.

12



1 2 3 4 5 10
Sharders

0K

100K

200K

T
hr

ou
gh

pu
t

(r
eq

s/
m

in
)

Replicas

No-RAFT (1-node)

RAFT (3-node)

RAFT (5-node)

(a) OTK Request Throughput

10 100 1000
One-Time Keys (OTKs)

0K

50K

100K

150K

T
hr

ou
gh

pu
t

(r
eq

s/
m

in
)

Replicas

No-RAFT (1-node)

RAFT (3-node)

RAFT (5-node)

(b) OTK Refresh Throughput

1 min 1 hr 6 hr 12 hr 24 hr
Token Lifetime (L)

20K

100M

200M

300M

T
ot

al
A

ge
nt

s
(C

) Sharders (NS)

1

5

10

(c) Total Capacity C of the system.
Fig. 6: SAGA’s Throughput and Capacity for different protocol operations.

Sensitivity to the OTK Key-Chain Length. We analyze the
effect of increasing the OTK key-chain length (number of
OTKs submitted to the Provider) on the throughput for
agent registration and OTK refresh. We omit OTK request,
as each request consumes exactly one OTK by design. As
expected, Figures 7 and 6b show a gradual throughput decrease
as the number of submitted OTKs increases. This is due to the
increased payload size and the cost of writing more state to
the replicated agent registry.

While longer OTK key-chains incur higher cost, SAGA
maintains high throughput across practical configurations. For
example, agent registration with 1000 OTKs still exceeds 40K
requests per minute with 10 sharders (Figure 7c), and OTK
refresh remains comparably efficient across RAFT configu-
rations (Figure 6b). Despite processing the same number of
OTKs, registration outperforms OTK refresh due to differences
in storage operations: registration involves appending to the
registry whereas OTK refresh updates existing entries. These
results confirm that users can pre-provision large key batches
with small performance penalties, enhancing resilience under
intermittent connectivity.

VII. RELATED WORK

This section reviews existing frameworks for secure agent
interactions and current implementation landscapes, highlight-
ing the gaps our work addresses. We also explore existing
multi-agent attacks, highlighting their limited scope.

High-Level Designs for Inter-Agent Interaction. Several
frameworks and protocols have been proposed to govern AI
agent interactions securely. South et al. [12] introduce a
framework for authenticated delegation using OAuth 2.0 de-
sign patterns, where users register their agents with providers
and issue delegation tokens. Chan et al. [11] outline agent
infrastructure protocols defining interaction standards, focused
on three core functions: attribution, interaction, and response,
Chan et al. [10] propose a system for agent identification
that tracks AI systems along with their context windows and
initial users. Shavit et al. [9] discuss governance practices for
agentic systems, highlighting unique agent identification and
interruptibility as critical features. None of these designs are
actually implemented and evaluated in a real system.

LLM Agent Development Frameworks. LangChain [43],
AutoGen [44], and smolagents [45] are development libraries

that help build LLM agents, but do not address gover-
nance—how users control their agents or how agents securely
discover and communicate with each other. We used smola-
gents in our experiments, but SAGA is compatible with any
other agent development framework. SAGA provides user-
level control of agent interaction with other agents and secure
agent communication.

Inter-Agent Protocol Implementations. Recent surveys [46]
reveal that implementations typically assume pre-established
connections between agents with static communication pat-
terns. Smyth OS2 offers a portal for agent creation and
integration limited within an particular organization. Current
software implementations for agent interactions generally fall
short of enabling secure cross-organizational communication.
While frameworks like LangChain’s Agent Protocol3 provide
specifications for interactions, they do not address critical
aspects like authentication or access control mechanisms.
Commercial platforms like Amazon Bedrock [47] enable
agent orchestration but assume all agents belong to the same
restricted environment. Packages like AutoGen [44] support
multi-agent interactions, but only when agents are all running
locally. AACP [48] introduces a cryptographic foundation
using verifiable credentials but adopts a fully peer-to-peer
architecture without mediation layers to govern agent inter-
actions.

Key Pre-Distribution and Trust Models. Users of Signal
and Matrix provide a server with signed one-time keys and
ephemeral keys in-advance to allow offline shared key estab-
lishment; users either choose to trust the central server, or
verify identity keys off-band in the case server compromise
is a concern. [49], [50]. SAGA employs a similar technique,
allowing users to register their agents and provide one-time
keys with a Provider to enable fine access control to agents,
in the spirit of Kerberos [33]. Similar to Signal, users who do
not trust the identity service (third party in SAGA) must verify
identity keys off-band. Additionally, the Provider can be
made resilient to compromise, as discussed in Section V-A.

Attacks on Multi-Agent Systems. Several works examine
adversarial propagation in multi-agent communication [51]–
[55], where rogue agents can propagate malicious outputs via
interactions with other agents. Other works consider fixed

2https://smythos.com/
3https://github.com/langchain-ai/agent-protocol

13

https://smythos.com/
https://github.com/langchain-ai/agent-protocol


communication patterns with slightly different goals, such
as multi-agent debate [53] and question-answer collaboration
[56]. In orchestrated multi-agent systems, Triedman et al.
[57] describe attacks against orchestrator agents using ad-
versarial content via metadata. Khan et al. [58] introduce
an attack approach for pragmatic multi-agent LLM systems
operating under real-world constraints like token bandwidth
limits and message latency. SAGA provides protection against
such attacks through its token-driven system, which explicitly
limits the number of interactions between agents. Additionally,
benign agents can easily update their contact policies to block
malicious agents, preventing any widespread “outbreak.”

VIII. CONCLUSION

SAGA establishes a scalable framework for secure inter-
agent communication that balances security, autonomy, and
governance through a Provider-mediated architecture en-
forcing user policies. Unlike prior works that only offer
conceptual designs or high-level architectures for agent gov-
ernance [9]–[12], SAGA provides the first concrete protocol
specification with strong formal security guarantees and a
reference implementation. SAGA is compatible with existing
agent protocols, such as A2A and Model Context Protocol [59]
for standardized tool-use and it can be integrated with defenses
against prompt-injection attacks [60], and privacy-preserving
data minimization techniques [61].

REFERENCES

[1] N. Mehandru, B. Y. Miao, E. R. Almaraz, M. Sushil, A. J. Butte, and
A. Alaa, “Evaluating large language models as agents in the clinic,” NPJ
digital medicine, vol. 7, no. 1, p. 84, 2024.

[2] W. Wang, Z. Ma, Z. Wang, C. Wu, W. Chen, X. Li, and Y. Yuan,
“A survey of LLM-based agents in medicine: How far are we from
baymax?” arXiv preprint arXiv:2502.11211, 2025.

[3] S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann,
P. Kambadur, D. Rosenberg, and G. Mann, “BloombergGPT: A large
language model for finance,” arXiv preprint arXiv:2303.17564, 2023.

[4] Y. Nie, Y. Kong, X. Dong, J. M. Mulvey, H. V. Poor, Q. Wen, and
S. Zohren, “A survey of large language models for financial applications:
Progress, prospects and challenges,” arXiv preprint arXiv:2406.11903,
2024.

[5] T. Zhou, P. Wang, Y. Wu, and H. Yang, “Finrobot: Ai agent for equity
research and valuation with large language models,” arXiv preprint
arXiv:2411.08804, 2024.

[6] J. Zhang, H. Bu, H. Wen, Y. Liu, H. Fei, R. Xi, L. Li, Y. Yang, H. Zhu,
and D. Meng, “When llms meet cybersecurity: A systematic literature
review,” Cybersecurity, vol. 8, no. 1, pp. 1–41, 2025.

[7] M. Rigaki, C. Catania, and S. Garcia, “Hackphyr: A local fine-
tuned LLM agent for network security environments,” arXiv preprint
arXiv:2409.11276, 2024.

[8] M. Kobayashi, M. Fuchi, A. Zanashir, T. Yoneda, and T. Takagi,
“Construction and evaluation of LLM-based agents for semi-autonomous
penetration testing,” arXiv preprint arXiv:2502.15506, 2025.

[9] Y. Shavit, S. Agarwal, M. Brundage, S. Adler, C. O’Keefe, R. Campbell,
T. Lee, P. Mishkin, T. Eloundou, A. Hickey et al., “Practices for
governing agentic AI systems,” Research Paper, OpenAI, 2023.

[10] A. Chan, N. Kolt, P. Wills, U. Anwar, C. S. de Witt, N. Rajkumar,
L. Hammond, D. Krueger, L. Heim, and M. Anderljung, “IDs for AI
systems,” arXiv preprint arXiv:2406.12137, 2024.

[11] A. Chan, K. Wei, S. Huang, N. Rajkumar, E. Perrier, S. Lazar, G. K.
Hadfield, and M. Anderljung, “Infrastructure for ai agents,” arXiv
preprint arXiv:2501.10114, 2025.

[12] T. South, S. Marro, T. Hardjono, R. Mahari, C. D. Whitney, D. Green-
wood, A. Chan, and A. Pentland, “Authenticated delegation and autho-
rized AI agents,” arXiv preprint arXiv:2501.09674, 2025.

[13] R. Surapaneni, M. Jha, M. Vakoc, and T. Segal, “Announcing
the agent2agent protocol (A2A),” Google Developers Blog, April
2025, accessed: 2025-04-10. [Online]. Available: https://developers.
googleblog.com/en/a2a-a-new-era-of-agent-interoperability/

[14] N. Natarajan, J. Bradley, N. Sakimura, M. B. Jones, and E. Jay, “Openid
connect core 1.0 incorporating errata set 1,” https://openid.net/specs/
openid-connect-core-1 0.html, 2014, openID Foundation.

[15] S. Cohen, R. Bitton, and B. Nassi, “Here comes the AI worm: Unleash-
ing zero-click worms that target GenAI-powered applications,” arXiv
preprint arXiv:2403.02817, 2024.

[16] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second
Edition, 2nd ed. Chapman & Hall/CRC, 2014.

[17] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-
nature algorithm (ecdsa),” International journal of information security,
vol. 1, pp. 36–63, 2001.

[18] B. Harris and L. Velvindron, “RFC 8709: Ed25519 and ed448 public
key algorithms for the secure shell (SSH) protocol,” USA, 2020.

[19] M. J. Dworkin et al., “SHA-3 standard: Permutation-based hash and
extendable-output functions,” 2015.

[20] H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key
Derivation Function (HKDF),” RFC 5869, May 2010, https://datatracker.
ietf.org/doc/html/rfc5869.

[21] E. Barker, “Recommendation for Key Management, Part 1: General
(Revision 5),” National Institute of Standards and Technology, NIST
Special Publication 800-57 Part 1 Rev. 5, May 2020, provides
foundational guidance on cryptographic key lifecycle management,
including cryptoperiod determination and key rotation practices.
[Online]. Available: https://doi.org/10.6028/NIST.SP.800-57pt1r5

[22] P. A. Grassi, M. E. Garcia, and J. L. Fenton, “Digital identity guidelines,”
NIST special publication, vol. 800, pp. 63–3, 2017.

[23] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “Proverif 2.00:
automatic cryptographic protocol verifier, user manual and tutorial,”
Version from, vol. 16, pp. 05–16, 2018.

[24] B. Desmond, J. Richards, R. Allen, and A. G. Lowe-Norris, Active
Directory: Designing, Deploying, and Running Active Directory. ”
O’Reilly Media, Inc.”, 2008.

[25] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14). Philadelphia, PA: USENIX Association, Jun. 2014, pp.
305–319. [Online]. Available: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/ongaro

[26] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, p. 133–169, May 1998. [Online]. Available:
https://doi.org/10.1145/279227.279229

[27] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
3rd Symposium on Operating Systems Design and Implementation
(OSDI 99). New Orleans, LA: USENIX Association, Feb.
1999. [Online]. Available: https://www.usenix.org/conference/osdi-99/
practical-byzantine-fault-tolerance

[28] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data,” ACM Trans.
Comput. Syst., vol. 26, no. 2, Jun. 2008. [Online]. Available:
https://doi.org/10.1145/1365815.1365816

[29] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s Globally-
Distributed database,” in 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12). Hollywood, CA: USENIX
Association, Oct. 2012, pp. 261–264. [Online]. Available: https://www.
usenix.org/conference/osdi12/technical-sessions/presentation/corbett

[30] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh,
“Megastore: Providing scalable, highly available storage for interactive
services,” in Proceedings of the Conference on Innovative Data
system Research (CIDR), 2011, pp. 223–234. [Online]. Available:
http://www.cidrdb.org/cidr2011/Papers/CIDR11 Paper32.pdf

[31] A. Silberschatz, H. F. Korth, and S. Sudarshan, “Database system
concepts,” 2011.

[32] S. Solat, “Sharding distributed databases: A critical review,” arXiv
preprint arXiv:2404.04384, 2024.

14

https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/279227.279229
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://doi.org/10.1145/1365815.1365816
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf


[33] C. Neuman, S. Hartman, K. Raeburn, and T. Yu, “The kerberos network
authentication service (v5),” RFC 4120, 2005. [Online]. Available:
https://www.rfc-editor.org/info/rfc4120

[34] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in
Public Key Cryptography - PKC 2006, M. Yung, Y. Dodis, A. Kiayias,
and T. Malkin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 207–228.

[35] A. Langley, M. Hamburg, and S. Turner, “Elliptic Curves for Security,”
RFC 7748, Jan. 2016. [Online]. Available: https://www.rfc-editor.org/
info/rfc7748

[36] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, May 2008. [Online].
Available: https://www.rfc-editor.org/info/rfc5280

[37] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu,
F. Huang, H. Wei, H. Lin, J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang,
J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang, L. Yu, M. Li, M. Xue,
P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Xia, X. Ren, X. Ren, Y. Fan,
Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu, “Qwen2.5
technical report,” arXiv preprint arXiv:2412.15115, 2024.

[38] CAIDA, “The CAIDA archipelago monitor statistics,” https://www.
caida.org/projects/ark/statistics/, accessed April 2025.

[39] M. Adorjan, “cloudping.co: Aws inter-region latency monitoring,” 2025,
accessed: 2025-04-18. [Online]. Available: https://github.com/mda590/
cloudping.co

[40] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” in
International Conference on Learning Representations, 2023.

[41] T. Schick, J. Dwivedi-Yu, R. Dessı̀, R. Raileanu, M. Lomeli, E. Hambro,
L. Zettlemoyer, N. Cancedda, and T. Scialom, “Toolformer: Language
models can teach themselves to use tools,” Advances in Neural Infor-
mation Processing Systems, 2023.

[42] L. Walsh, V. Akhmechet, and M. Glukhovsky, “Rethinkdb-rethinking
database storage,” Hexagram 49, Inc, p. 85, 2009.

[43] “Agent Protocol — langchain-ai.github.io,” https://langchain-ai.github.
io/agent-protocol/api.html, 2024, [Accessed 26-03-2025].

[44] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang,
S. Zhang, J. Liu et al., “Autogen: Enabling next-gen LLM applications
via multi-agent conversations,” in Conference on Language Modeling
(COLM), 2024.

[45] A. Roucher, A. V. del Moral, T. Wolf, L. von Werra, and E. Kau-
nismäki, “smolagents: a smol library to build great agentic systems.”
https://github.com/huggingface/smolagents, 2025.

[46] K.-T. Tran, D. Dao, M.-D. Nguyen, Q.-V. Pham, B. O’Sullivan, and
H. D. Nguyen, “Multi-agent collaboration mechanisms: A survey of
LLMs,” arXiv preprint arXiv:2501.06322, 2025.

[47] A. Sempf, J. Toth, and S. v. d. Moosdijk, “Creating asynchronous
AI agents with Amazon Bedrock — Amazon Web Services —
aws.amazon.com,” https://aws.amazon.com/blogs/machine-learning/
creating-asynchronous-ai-agents-with-amazon-bedrock/, 2025,
[Accessed 21-04-2025].

[48] K. Royce, “AI agent-to-agent communications pro-
tocol,” kossisoroyce.com, 2025, accessed: 2025-04-
10. [Online]. Available: https://kossisoroyce.com/2025/03/28/
ai-agent-to-agent-communications-protocol/

[49] M. R. Albrecht, B. Dowling, and D. Jones, “Device-oriented group
messaging: a formal cryptographic analysis of matrix’core,” in 2024
IEEE Symposium on Security and Privacy (SP). IEEE, 2024, pp. 2666–
1685.

[50] E. Kret and R. Schmidt, “The pqxdh key agreement protocol,” 2024.
[Online]. Available: https://signal.org/docs/specifications/pqxdh

[51] X. Gu, X. Zheng, T. Pang, C. Du, Q. Liu, Y. Wang, J. Jiang, and M. Lin,
“Agent smith: A single image can jailbreak one million multimodal
LLM agents exponentially fast,” in International Conference on Machine
Learning, 2024.

[52] D. Lee and M. Tiwari, “Prompt infection: Llm-to-llm prompt injection
within multi-agent systems,” arXiv preprint arXiv:2410.07283, 2024.

[53] A. Amayuelas, X. Yang, A. Antoniades, W. Hua, L. Pan, and W. Y.
Wang, “Multiagent collaboration attack: Investigating adversarial attacks
in large language model collaborations via debate,” in Findings of the
Association for Computational Linguistics: EMNLP 2024, 2024, pp.
6929–6948.

[54] P. He, Y. Lin, S. Dong, H. Xu, Y. Xing, and H. Liu, “Red-teaming
llm multi-agent systems via communication attacks,” arXiv preprint
arXiv:2502.14847, 2025.

[55] W. Yu, K. Hu, T. Pang, C. Du, M. Lin, and M. Fredrikson, “Infecting
LLM agents via generalizable adversarial attack,” in Red Teaming
GenAI: What Can We Learn from Adversaries?, 2024.

[56] T. Ju, Y. Wang, X. Ma, P. Cheng, H. Zhao, Y. Wang, L. Liu, J. Xie,
Z. Zhang, and G. Liu, “Flooding spread of manipulated knowledge in
llm-based multi-agent communities,” arXiv preprint arXiv:2407.07791,
2024.

[57] H. Triedman, R. Jha, and V. Shmatikov, “Multi-agent systems execute
arbitrary malicious code,” arXiv preprint arXiv:2503.12188, 2025.

[58] R. M. S. Khan, Z. Tan, S. Yun, C. Flemming, and T. Chen, “Agents Un-
der Siege: Breaking pragmatic multi-agent LLM systems with optimized
prompt attacks,” arXiv preprint arXiv:2504.00218, 2025.

[59] “Model context protocol,” https://modelcontextprotocol.io/, 2025, [Ac-
cessed 26-03-2025].

[60] E. Debenedetti, I. Shumailov, T. Fan, J. Hayes, N. Carlini, D. Fabian,
C. Kern, C. Shi, A. Terzis, and F. Tramèr, “Defeating prompt injections
by design,” arXiv preprint arXiv:2503.18813, 2025.

[61] E. Bagdasarian, R. Yi, S. Ghalebikesabi, P. Kairouz, M. Gruteser, S. Oh,
B. Balle, and D. Ramage, “Airgapagent: Protecting privacy-conscious
conversational agents,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’24.
Association for Computing Machinery, 2024, p. 3868–3882.

[62] S. Abdelnabi, A. Gomaa, E. Bagdasarian, P. O. Kristensson, and
R. Shokri, “Firewalls to secure dynamic LLM agentic networks,” arXiv
preprint arXiv:2502.01822, 2025.

APPENDIX

A. More Cryptographic Overhead Results

We provide details about the cryptographic cost of key
operations in the SAGA protocol in Table III.

Protocol Component Overhead (ms)

User Registration

User Registration (User) 2.34
User Registration (Provider) 194.09

Agent Registration

Agent Registration (User) 15.09
Agent Registration (Provider) 212.85

Agent Communication

Contact Resolution (Provider) 1.46
Setup Phase (Initiator) 2.14
Setup Phase (Receiver) 1.83

Access Control Tokens

Token Generation (Initiator) 1.03
Token Decryption (Receiver) 1.20
Token Validation (Initiator) 0.24
Token Validation (Receiver) 0.26

TABLE III: Computational overhead of key operations.

B. Agent-Interaction Task Details

We implement our LLM-agent using the smolagents library
[45], specifically leveraging the CodeAgent class. This class
enables agents to write and execute Python code during
their reasoning process, significantly reducing the number of
interactions required with the user—which, in our setup, is
another agent. To support autonomous agent-to-agent com-
munication, we modify the system prompts provided to each
agent, tailoring the instructions slightly based on whether the
agent is in the initiating or receiving role.

15

https://www.rfc-editor.org/info/rfc4120
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc5280
https://www.caida.org/projects/ark/statistics/
https://www.caida.org/projects/ark/statistics/
https://github.com/mda590/cloudping.co
https://github.com/mda590/cloudping.co
https://langchain-ai.github.io/agent-protocol/api.html
https://langchain-ai.github.io/agent-protocol/api.html
https://github.com/huggingface/smolagents
https://aws.amazon.com/blogs/machine-learning/creating-asynchronous-ai-agents-with-amazon-bedrock/
https://aws.amazon.com/blogs/machine-learning/creating-asynchronous-ai-agents-with-amazon-bedrock/
https://kossisoroyce.com/2025/03/28/ai-agent-to-agent-communications-protocol/
https://kossisoroyce.com/2025/03/28/ai-agent-to-agent-communications-protocol/
https://signal.org/docs/specifications/pqxdh
https://modelcontextprotocol.io/


To emulate realistic tool usage, we implement database-
backed services for email, calendar, and document read/write
operations. For the email and calendar tools, we implement
end-to-end functionality: sending an email or calendar invite
causes the content to actually appear in the recipient’s inbox or
calendar. This stands in contrast to recent agent-agent interac-
tion work, which typically simulates tool use via another LLM
rather than through explicit, stateful updates. We initialize
each user profile (and corresponding agent) with synthetic data
adapted from Abdelnabi et al. [62], extending it as needed to
suit the scope of our tasks.

Each task (such as one agent requesting another to find
a common meeting time) spawns a fresh instance of the
agent class. While the underlying LLM remains the same
across tasks, no prior context or conversation history is shared
between them. This ensures a clean isolation layer between
tasks, without introducing any additional overhead.
Calendar. In this task, one agent contacts another to schedule
a meeting on a specific date. Both agents inspect their respec-
tive calendars to determine availability, negotiate a mutually
agreeable time, and then create a calendar event. Task success
is defined by the following criteria:

1) the calendar invite appears in both agents’ calendars for
the correct duration, listing both as attendees,

2) there are no scheduling conflicts with pre-existing events,
and

3) the meeting is scheduled for a future date and time.
We use GPT-4.1-mini as the LLM backbone for this task.
Email. In this task, one agent reaches out to another for
help compiling information to submit an expense report. Both
agents search their respective inboxes for expenses related to
a shared event. The receiving agent extracts relevant entries
and sends them to the initiator, who combines the results and
submits a final report using a tool-call. We evaluate success
based on:

1) whether the total amount submitted matches the expected
value (as all data is synthetic and fully known),

2) whether both users are listed as participants in the ex-
pense report, and

3) whether no extraneous users are included.
We use GPT-4.1 as the LLM backbone for this task.
Writing. In this task, two agents collaborate on writing a blog
post about the privacy implications of AI. Each agent repre-
sents a user with expertise in either law or machine learning.
They begin by reading existing blog posts associated with
their respective users and then engage in a multi-step writing
process to produce a unified article. Agents are encouraged
to both internally reflect and externally revise across multiple
interaction rounds. Once the final blog post is agreed upon,
one of the agents uses a tool-call to save the document under
a specified filename. Success is measured by whether the blog
post is saved correctly with the expected filename. We use
Qwen2.5-72B-Instruct [37] as the LLM backbone. Due to the
length of messages involved (often exceeding 2000 words),
we omit the full example here.

// required types
type key [data].
type skey [data].
type pkey [data].
fun pk(skey): pkey.

// DH formalized as a symmetric equation
fun dh(pkey, skey): key.
equation forall a: skey, b: skey;

dh(pk(a), b) = dh(pk(b), a).

// key signing
fun sign(skey, bitstring): bitstring.
reduc forall m: bitstring, sk: skey;

checksign(pk(sk), m, sign(sk, m)) = m.

// symmetric encryption
fun senc(key, bitstring): bitstring.
reduc forall m: bitstring, k: key;

sdec(k, senc(k,m)) = m.

// hashing/key derivation
// (recall, proverif functions are uni-directional
// unless [data] is specified
fun hash(bitstring): bitstring
fun kdf(bitstring): key

Listing 2: Cryptographic primitives for SAGA modeled in
PROVERIF.

C. Verification Details

To formally verify the SAGA protocol, we employ
PROVERIF, an automated cryptographic protocol verifier in
the symbolic Dolev-Yao model. In the Dolev-Yao model,
attackers are assumed to be capable of arbitrarily observing,
intercepting, replaying, and synthesizing on-network mes-
sages. We construct two models: one model for reasoning
about the authentication of agent registration, and another for
reasoning about both the authentication and secrecy of agent
communication.

We model the required cryptographic primitives for SAGA
in PROVERIF, including Diffie-Hellman, key signing, sym-
metric encryption, hashing, and key derivation, as shown in
Listing 2.

To formally model SAGA, we precisely replicated the
cryptographic operations of the agent registration and agent
communication handshakes as described in Section IV-C and
Section IV-E respectively. Within PROVERIF, we specified
secrecy, authentication, and reachability queries for SAGA.

Secrecy. To specify secrecy, we simply employ PROVERIF’s
attacker primitive, which soundly determines whether a
Dolev-Yao attacker can obtain any given term. In this case,
we specify the attacker to check whether it can obtain the
token term.

Authentication and Reachability. To specify authentication
and reachability, we employ PROVERIF’s event functional-
ity. We construct six events in our model:

• EndAuthA and EndAuthB, which trigger once agents
A and B complete authentication with the provider.

• EndProviderAuthA and EndProviderAuthB,
which trigger once the provider completes authenticating
A and B respectively.

16



• EndAgentAuthA and EndAgentAuthB, which trig-
ger once agents A and B complete communication with
each other.

To specify authentication queries using these events, we
employ the general pattern of proving that received content
must have been sent in exactly the same form. That is, Peer
A receives a token X, Peer B must have sent exactly the
token X. To formulate this in PROVERIF, we employ the
implies primitive as such. For example, agent A as described
in Section IV-C is authenticated against the provider with the
following PROVERIF query:

query x: bitstring, k:pkey; inj-event(EndAuthA(x, k))
==> inj-event(EndProviderAuthA(x, k)).

And, to specify reachability, we simply query PROVERIF to
check if each specified event occurs.

Finally, our PROVERIF models are open source, and our
testing environment is fully declared and reproducible using
a nix flake. Using a 6th-generation i7 laptop with 16 GB of
RAM, PROVERIF terminates in approximately 10 minutes.

D. Additional Fault Tolerance & Scalability Results

Figure 7 and Figure 8 provide extended throughput results
for two core SAGA operations: agent registration and OTK
refresh, across varying key-chain lengths and fault-tolerant
configurations.

Figure 7 shows that agent registration throughput remains
high and scales linearly with the number of sharders, even as
the number of provisioned OTKs increases from 10 to 1000.
Although higher key-chain lengths reduce throughput due to
larger payload sizes and increased registry writes, the system
still achieves over 40K registrations per minute with 1000
OTKs and 10 sharders. Additionally, the impact of RAFT-
based replication remains marginal across all configurations.
This confirms that the append-only nature of agent registration
enables efficient write performance.

Figure 8 reports OTK refresh throughput under the same
settings. As expected, throughput decreases with larger key-
chains due to the more I/O-intensive update operations. How-
ever, even with 1000 OTKs, the system sustains nearly 20K
refreshes per minute at 10 sharders, even with 5 RAFT repli-
cas. This demonstrates that agents can efficiently pre-provision
large key bundles under realistic deployment conditions.

E. Experiments on Amazon Web Services

This section presents additional experiments evaluating the
system’s Agent Capacity (C) under realistic cloud deployment
conditions. Recall that Agent Capacity is defined as the total
number of active agents that the system can support concur-
rently.

We deploy the Provider registry service on Amazon
Web Services (AWS)4. The deployment consists of a single

4https://aws.amazon.com/

1 2 3 4 5 10
Sharders

0K

200K

400K

T
hr

ou
gh

pu
t

(r
eq

s/
m

in
)

Replicas

No-RAFT (1-node)

RAFT (3-node)

RAFT (5-node)

(a) 10 OTKs

1 2 3 4 5 10
Sharders

0K

50K

100K

150K

200K

T
hr

ou
gh

pu
t

(r
eq

s/
m

in
)

Replicas

No-RAFT (1-node)

RAFT (3-node)

RAFT (5-node)

(b) 100 OTKs

1 2 3 4 5 10
Sharders

0K

10K

20K

30K

40K

T
hr

ou
gh

pu
t

(r
eq

s/
m

in
)

Replicas

No-RAFT (1-node)

RAFT (3-node)

RAFT (5-node)

(c) 1000 OTKs
Fig. 7: Agent Registration Throughput for varying OTK key-
chain sizes.

proxy node and up to seven sharder nodes, each hosted on a
dedicated EC2 instance in the US-East region. The proxy node
routes incoming requests to the appropriate sharder to ensure
balanced workload distribution across the cluster. Sharders
are configured to run RAFT with 5-node replication for fault
tolerance.

The proxy instance uses a virtual machine of type
c7i.xlarge (4 vCPUs) optimized for compute, while the
sharder instances use i4i.xlarge (4 vCPUs) for storage-
intensive workloads. Due to AWS account limits, we were
constrained to 8 total EC2 instances, 32 vCPUs, and ap-
proximately 100K IOPS in total (4 vCPUs/12GB of attached
storage per instance). Within these limits, we selected the
best available configuration for high-throughput, fault-tolerant
deployment. The proxy is configured with 128 threads to max-
imize request concurrency and dispatches 80,000 requests per

17

https://aws.amazon.com/


1 2 3 4 5 10
Sharders

0K

50K

100K

150K

T
hr

ou
gh

pu
t

(r
eq

s/
m

in
)

Replicas

No-RAFT (1-node)

RAFT (3-node)

RAFT (5-node)

(a) 10 OTKs

1 2 3 4 5 10
Sharders

0K

25K

50K

75K

100K

T
hr

ou
gh

pu
t

(r
eq

s/
m

in
)

Replicas

No-RAFT (1-node)

RAFT (3-node)

RAFT (5-node)

(b) 100 OTKs

1 2 3 4 5 10
Sharders

0K

5K

10K

15K

20K

T
hr

ou
gh

pu
t

(r
eq

s/
m

in
)

Replicas

No-RAFT (1-node)

RAFT (3-node)

RAFT (5-node)

(c) 1000 OTKs
Fig. 8: OTK Refresh Throughput for varying OTK key-chain
sizes.

1 min 1 hr 6 hr 12 hr 24 hr
Token Lifetime (L)

31K

50M

100M

150M

200M

250M

300M

T
ot

al
A

ge
nt

s
(C

) Sharders (NS)

1

3

5

7

Fig. 9: Total Capacity C of the system for various numbers
of sharders on AWS. Each sharder is running RAFT with 5
nodes.

experiment. These parameters were tuned to avoid triggering

AWS rate limits during evaluation.
Figure 9 reports the system’s agent capacity for varying

token lifetimes (L) and number of sharders (NS). Results
confirm the scalability trends shown in Figure 6c, reinforcing
the validity of our analysis. With 7 sharders and a 24-hour
token lifetime, the system supports up to 260 million agents.
We note that as expected, the absolute values for C are
slightly lower than those reported in Figure 6c, due to practical
constraints: our AWS experiments were limited to 7 sharders
(versus 10), and despite co-locating all instances in the same
geographic region, we cannot guarantee placement within
the same physical datacenter, introducing additional network
latency. Nevertheless, the observed trends align closely with
our previous analysis. Increasing the number of sharders
or extending the token lifetime yields a predictable, nearly
multiplicative increase in supported agent population. This em-
pirical validation confirms that SAGA remains performant and
scalable under realistic cloud-based infrastructure conditions.

18


	Introduction
	Background and Problem Statement
	Agentic AI Systems
	Requirements and Challenges for Secure Agentic Systems
	Problem Statement

	System Architecture
	System Goals
	Architecture Overview
	System Assumptions
	Threat Model

	SAGA Protocol Specification
	Cryptographic Primitives and Notation
	User Registration
	Agent Registration by User
	Agent Management
	Agent Contact Policy
	One-Time Key Generation

	Inter-Agent Communication
	Formal Protocol Analysis

	Extensions to the SAGA architecture
	Provider Architecture Design
	Integration with the A2A Protocol

	Evaluation
	Implementation
	Overhead Evaluation
	Task Completion
	Fault Tolerance and Scalability

	Related Work
	Conclusion
	References
	Appendix
	More Cryptographic Overhead Results
	Agent-Interaction Task Details
	Verification Details
	Additional Fault Tolerance & Scalability Results
	Experiments on Amazon Web Services




