Artifact
Evaluated

ANDss

Available

Functional

Kangaroo: A Private and Amortized Inference
Framework over WAN for Large-Scale
Decision Tree Evaluation

Wei Xu*, Hui Zhu*™, Yandong Zheng*, Song Bian!, Ning Sun*, Hao Yuan*, Dengguo Feng?, and Hui Li*
*Xidian University, {xuwei_l,sunning,yuan_hao} @stu.xidian.edu.cn,
{zhuhui,zhengyandong} @xidian.edu.cn,lihui@mail.xidian.edu.cn
TBeihang University, sbian@buaa.edu.cn
fSchool of Cyber Science and Technology, fengdg @263.net

Abstract—With the rapid adoption of Models-as-a-Service,
concerns about data and model privacy have become increasingly
critical. To solve these problems, various privacy-preserving
inference schemes have been proposed. In particular, due to the
efficiency and interpretability of decision trees, private decision
tree evaluation (PDTE) has garnered significant attention. How-
ever, existing PDTE schemes suffer from significant limitations:
their communication and computation costs scale with the num-
ber of trees, the number of nodes, or the tree depth, which
makes them inefficient for large-scale models, especially over
WAN networks. To address these issues, we propose Kangaroo,
a private and amortized decision tree inference framework
build upon packed homomorphic encryption. Specifically, we
design a novel model hiding and encoding scheme, together
with secure feature selection, oblivious comparison, and secure
path evaluation protocols, enabling full amortization of the
overhead as the number of nodes or trees scales. Furthermore,
we enhance the performance and functionality of the framework
through optimizations, including same-sharing-for-same-model,
latency-aware, and adaptive encoding adjustment strategies.
Kangaroo achieves a 14x to 59x performance improvement
over state-of-the-art (SOTA) one-round interactive schemes in
WAN environments. For large-scale decision tree inference tasks,
it delivers a 3x to 44X speedup compared to existing schemes.
Notably, Kangaroo enables the evaluation of a random forest
with 969 trees and 411825 nodes in approximately 60 ms per
tree (amortized) under WAN environments.

I. INTRODUCTION

With the rapid development of machine learning technolo-
gies, “Model as a Service” (MaaS) has been widely applied
across various domains [I]-[3]. By deploying models on
the server, clients can benefit from convenient and efficient
services. Although the approach improves service efficiency,
clients are required to upload sensitive personal data, such
as medical diagnostic records, financial transaction details,
and personal communication information, to the server, which
increases the risk of privacy leakage. In contrast, running

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230892
www.ndss-symposium.org

the model on the client side can effectively protect client’s
privacy. However, since the models hold significant intellectual
property, service providers are often reluctant to share it.
Therefore, achieving Model as a Service while ensuring both
the client’s data privacy and the server’s model security has
become a critical issue [4], [5].

Decision tree inference, as an intuitive and powerful ma-
chine learning tool, has been widely applied in various fields
such as medical diagnosis, financial risk assessment, and cus-
tomer behavior prediction [6]-[8]. Compared to deep neural
networks (DNNGs), decision trees and ensemble models (e.g.,
XGBoost, Random Forest) are often preferred in practice
for their interpretability, better performance on tabular data,
and ease of debugging, which are especially important in
applications requiring transparency and regulatory compli-
ance [6]-[8]. To ensure both the client’s data privacy and
the server’s model security, numerous private decision tree
evaluation schemes (PDTE) have been proposed [9]-[31].
These schemes usually consist of three steps: secure feature
selection, oblivious comparison, and secure path evaluation.
They leverage privacy-preserving techniques such as fully
homomorphic encryption (FHE) [9]-[12] or secure multi-party
computation (MPC) [13]-[31] to realize the three core steps,
and have been widely adopted in client-server [9]-[21] and
outsourced scenarios [22]-[31].

Existing PDTE schemes offer distinct advantages and have
proven effective in safeguarding both model confidentiality
and client data privacy. However, these approaches have not
been thoroughly evaluated for large-scale decision tree evalu-
ation, particularly in wide-area network (WAN) environments.
As task demands grow and accuracy requirements increase,
decision tree models are being deployed at larger scales
to enhance prediction performance and generalization [32]-
[34]. Although some model pruning techniques [35]-[37] have
been proposed to reduce the size of decision trees, the tree
depth and the total number of nodes often remain substantial.
For instance, some pruned models still reach a maximum
depth of 30 and consist of up to 10° nodes [36]. These
observations highlight the continued importance and relevance
of large-scale decision tree evaluation [34]-[36], [38], [39].

However, in the current research on PDTE, most experimental
evaluations are still limited to small-scale decision trees. This
raises important questions about whether existing schemes can
scale effectively to support large, deep, and complex models
under real-world deployment scenarios, particularly in WAN
environments with high latency and limited bandwidth, as
commonly encountered in practical applications [40]-[42].

Motivation: Based on the above questions, we analyze the
current state-of-the-art techniques. According to the number of
communication rounds, existing schemes can be divided into
depth-round evaluation schemes and constant-round evaluation
schemes. Depth-round evaluation schemes [17]-[20], [22]-
[24], [29] achieve sublinear decision tree evaluations, signif-
icantly reducing computation cost. However, as the depth of
the trees increases, these schemes incur a growing number of
communication rounds, leading to significant latency in WAN
setting. Constant-round schemes [9]-[16], [21], [25]-[31] are
immune to such communication cost, but their computation
and communication costs grow linearly as the number of trees
and decision nodes increases. As a result, the main motivation
of this work is to design an efficient constant-round scheme
that overcomes communication round limitations while ef-
fectively amortizing the costs introduced by large-scale tree
models in WAN setting. Moreover, considering that the client-
server model can be naturally extended to outsourced scenar-
ios, this work primarily focuses on the former.

A. Our Contributions

To solve the above problems, we propose Kangaroo,
a privacy-preserving and efficient constant-round inference
framework for large-scale decision tree evaluation. We lever-
age packed homomorphic encryption (PHE) to amortize
both computation and communication costs. Although some
schemes have explored the use of PHE for amortization in
decision tree evaluation, they fail to fully exploit its amortiza-
tion potential and suffer from significant performance degrada-
tion [10], [11], [46]. In contrast, Kangaroo introduces a novel
set of single-instruction-multiple-data (SIMD) PHE protocols
over encoded models, which fully leverage the amortization
capability of PHE while significantly improving inference
efficiency. The key idea is to treat each coefficient in the PHE
ciphertext as a model node and combine it with secret sharing
(SS) to achieve full amortization and scalability. The main
contributions of this work are summarized as follows.

e A new two-party inference framework is proposed for
large-scale decision tree evaluation over WAN. To the
best of our knowledge, Kangaroo is the first scheme that
achieves full amortization over PHE and is specifically
tailored for efficient large-scale decision tree evaluation
in WAN setting. In this framework, a novel model hiding
and encoding technique is introduced, where decision tree
nodes are mapped to polynomial coefficients to enable
efficient amortized inference.

e A novel set of secure components is designed to support
efficient decision tree evaluation. These components
include packed feature selection (PackFeatureSel),

packed oblivious comparison (PackObliviousCom), and
packed path evaluation (PackPathEva), which securely
realize the three basic steps of decision tree inference.
Each component is optimized to enable effective amor-
tization, substantially minimizing both computation and
communication costs.

e Several optimization strategies are introduced to en-
hance the practicality of Kangaroo. Leveraging our
model hiding and encoding technique, a same-sharing-
for-same-model strategy is employed to enable real-time
inference responses. Additionally, a latency-aware strat-
egy is adopted to further optimize inference efficiency.
Building upon our secure components, an adaptive en-
coding adjustment strategy is developed to achieve full
amortization for large-scale decision tree evaluation.

Benchmarks: We have implemented Kangaroo, and the
core code is available on GitHub'. Compared to state-of-
the-art (SOTA) schemes, our secure components demonstrate
superior amortization capabilities and eliminate the need for
any offline preprocessing. We also conducted extensive experi-
mental evaluations over WAN. Specifically, Kangaroo achieves
a 14x to 59x improvement over SOTA one-round interaction
schemes on small-scale datasets. For large-scale decision tree
evaluations, Kangaroo outperforms existing SOTA schemes
by 3x to 44x. In evaluating a random forest consisting of
969 trees and 411825 nodes, Kangaroo achieves an amortized
inference time of approximately 60 ms per tree.

B. Related Works

We summarize several representative schemes in TABLE 1.
Moreover, we provide a comprehensive review of private
decision tree evaluation (PDTE) and their core components:
oblivious comparison and secure path evaluation. Finally, we
summarize the amortization techniques commonly adopted in
privacy-preserving applications.

1) Private Decision Tree Evaluation

e Client Server Model (2PC): Existing 2PC schemes [9]-
[21] can be divided into depth-round evaluation schemes [17]—
[20] and constant-round schemes [9]-[16], [21]. Among depth-
round evaluation schemes, the most representative work is pro-
posed by Ma et al. [19], which enables evaluation by traversing
only one path. At each layer, it requires only one (];{)-
oblivious transfer (OT), one conditional OT (COT), and one
garbled circuit (GC) operation, which significantly improve the
efficiency of the protocol. A limitation of this protocol is that it
requires re-initialization of the decision tree in each evaluation
to ensure security. In constant-round schemes, Kiss et al. [15]
summarize a set of modular components that support the
three key steos of decision tree evaluation, opening up a new
perspective for the design of constant-round protocols. Sub-
sequently, many researchers shifted their focus to one-round
interaction schemes [9]-[12], among which Sortinghat [10]
and Levelup [11] stand out as the most representative works.

Thttps://github.com/pigeon-xw/Kangaroo

TABLE I: A representative survey of private decision tree evaluation schemes for single tree.

Sq[lji;irel S([}z(}ost Fs[gz‘]ree Cl[l;ln]g Zl[lzeg]g Z[lz(]) Y[lg,l]l 1?/1131 (I]-BI?;) (Hji-a;il-l) (:I((i}sls-l) S(]);‘;itng L?lreil]up Ours
201 (41 (15 [10]
Primitives COT LHE RSSESS RSSFsS 5201 AHE ARE SS(’)%C’ AI({)]?F’SS’ AHE AHEGC FHE FHE PHESS
Round o o o o o
Feature O O o o o © o o o o o o o o
Comparison X o(r) O(D) 02P) o0@2P) o@P) o) o) oM o) o) o) o) 0@
Path COTPath Poly OnePath OnePath* Poly OnePath* OnePath OnePath OnePath Path Path Poly Path MixPath

Sparse v v v X X X
OneTime v v X X v X
Amortized v X v v v X

Scenario Fed Fed

0-3pC O-3PC 0O-2PC 0O-2PC 0O-2PC

v v v v v v v v
X X v v v v v v
X v v X v X X v

2PC,
0-2PC

2PC,

2pC 0-2PC

2PC 2PC 2PC 2PC

T Round: communication round,

:0(1); @: O(D); @: O(D+logt); D: the maximum tree depth; ¢: the bit size of feature. Feature: secure feature selection,

O:no support; ©: no oblivious; @: oblivious. Comparison: the complexity of comparison, 7: the number of decision node. Path: the path evaluation, COTPath:

get weight by COT, Poly: polynomial-based evaluation, OnePath: get weight by one path; OnePath™: get weight by one path after tree permutation; Path: Path

cost-based evaluation; MixPath: Combine Path with Poly. Sparse: sparse tree model. OneTime: one-time setup phase. Amortized: calculation amortization.
: support; X: no support. Fed: inference in federated learning; O: outsourcing. In the schemes [10], [11], we only analyze the operation costs of XCMP.

Both schemes optimize the XCMP protocol [9] and propose
other amortizable techniques to accelerate the comparison.

e Two-party Outsourcing Computation (O-2PC): In-
spired by the design of scheme [15], many O-2PC proto-
cols [19], [25]-[27], [30], [45] achieve outsourced compu-
tation by replacing 2PC components [14]-[17], [19]. For
example, Zheng et al. [26] adopt the feature selection method
from [19] and the MSB bit extraction protocol [47] to optimize
the feature selection and comparison. Based on the above op-
timizations, the communication rounds for comparison in [25]
are reduced from O(t) to O(logt). By introducing a trusted
third party (TTP), their scheme supports secure multiplication
to enable polynomial-based evaluation as in [16], with a
communication round of O(D). However, to conceal the
structure of the decision tree, the evaluation must be performed
over a complete binary tree. Zhao et al. [45] adopt the
private data comparison protocol [48] to perform decision tree
evaluation. In this approach, the cloud only decrypts along a
single path to obtain a randomized traversal result, with the
path protected by a tree permutation mechanism [13], [19].
However, the feature selection is not performed obliviously,
as it relies solely on hashing function rather than a formal
oblivious selection protocol. Subsequently, Yuan et al. [23]
employ a pseudorandom function (PRF) [49] to realize secure
feature selection, and leverage the private data comparison
protocol [48] along with tree permutation techniques [13], [19]
to construct a depth-round evaluation scheme.

e Other Scenarios: With the increasing adoption of three-
party secure computation [50]-[53] and function secret shar-
ing (FSS) [54]-[56], many decision tree evaluation proto-
cols have been designed based on three non-colluding cloud
servers (O-3PC) [22], [24], [28], [29], [31]. These protocols
can still be broadly categorized into depth-round [22], [24],
[29] and constant-round [28], [29], [31] schemes. Leverag-

ing the benefits of replicated secret sharing (RSS), several
of these protocols are further enhanced to provide robust-
ness against malicious cloud servers [22], [24]. Meanwhile,
the growing popularity of federated learning [57]-[59] has
sparked significant interest in federated decision tree inference
(Fed) [43], [44], [60]-[62]. However, these schemes often
overlook the privacy of features or comparisons. For instance,
the scheme [43] only performs plaintext comparisons over
decentralized models and requires 2(7 + 1) instances of COT
to obtain the oblivious weight. Subsequently, the scheme [44]
still does not incorporate feature selection. However, it uses
the private comparison protocol [48] and performs polynomial-
based evaluation [16] using a leveled homomorphic encryption
(LHE) scheme [63].

Despite the large number of PDTE schemes that have been
proposed, most of them either overlook the challenges of large-
scale decision tree evaluation under WAN setting or exhibit
poor performance in such scenarios.

2) Oblivious Comparison

As a fundamental building block in decision tree inference,
oblivious comparison has been extensively studied and has
found broad applications in privacy-preserving machine learn-
ing and beyond [9]-[11], [25], [26], [46]-[48], [53], [64],
[65]. Based on their communication complexity, existing com-
parison protocols can be categorized into three types: O(t)-
round protocols [25], O(log t)-round protocols [26], [47], [64],
[66], and O(1)-round protocols [9]-[11], [46], [48], [53], [65].
Considering the efficiency requirements in WAN setting, we
focus on O(1)-round protocols. Among them, Wagh et al. [53]
propose a protocol for computing the ReLU function that
requires five rounds of communication, resulting in notable
communication cost. Furthermore, protocols such as [9]-[11],
[46] achieve non-interactive comparison by performing com-
putations entirely over ciphertexts. While these non-interactive

protocols eliminate communication costs, they suffer from sig-
nificant inefficiencies due to the computation cost associated
with fully homomorphic operations. In contrast, the protocols
in [48], [65] require only a single round of interaction.
However, the protocol in [9] requires bit-wise encryption by
DGK, which imposes a heavy bandwidth burden. On the other
hand, the protocol proposed by Zheng et al. [25] offers a more
balanced trade-off between computation and communication.
However, it might be prone to sign errors caused by numerical
overflow, and it lacks support for amortized computation,
unlike [10], [11], [46], thereby limiting its application and
performance in large-scale deployments.

3) Secure Path Evaluation

The current secure path evaluation for decision tree infer-
ence mainly contains four types: Poly, Path, OnePath, and
OnePath* as TABLE I. The Poly approach requires performing
ciphertext multiplications along each path, which demands
sufficient multiplicative depth and incurs significant computa-
tion cost [10], [12], [16], [21], [25]-[27], [30], [44], [67]. On
the other hand, Path approach necessitate aggregating results
across all paths, followed by perturbation and random shuffling
to obtain the true weight [9], [11], [14], [15], [25], [28], [29].
Such operations are not well-suited for evaluation over packed
ciphertexts (PHE) [11], [46]. In particular, only using a single
rotation to shuffle might inadvertently reveal the comparison
results of individual paths [46]. OnePath* can reduce the
decryption number of Path by enabling single-path evaluation,
but its applicability is limited to outsourcing scenarios and
relies on a complete binary tree to preserve security [13], [31],
[45]. While OnePath achieves sublinear computation cost, its
performance deteriorates with increasing tree depth, leading
to substantial communication cost [17]-[20], [22]-[24], [29].

4) Support Amortized Computation

The amortized computation can be categorized into offline
amortization and online amortization. In offline computation,
the operations are independent of the inputs and can thus be
preprocessed to reduce the cost of online computation. For
example, in secret-sharing-based multiplication, the generation
of multiplication triples can be performed in advance using
TTP, OT, or HE [20], [25], [26], [68]. Similarly, in scenarios
involving a large number of OT operations, a small number
of public-key-based OTs can be used to extend a much larger
number of symmetric-key-based OTs, significantly accelerat-
ing the online phase [64], [69]-[71]. In online computation,
amortization is typically achieved through packed homomor-
phic encryption (PHE) with single instruction multiple data
(SIMD) support, allowing multiple instances to be processed
in parallel in a single execution and significantly improv-
ing computational efficiency. This approach has been widely
adopted in neural network inference [64], [72]-[74], where
it significantly enhances efficiency. Compared to OT-based
protocols, PHE reduces communication cost and eliminates
the need for any offline phase [74]. However, unlike neural
network inference, decision tree evaluation involves strong
inter-node dependencies, which limit the effective use of PHE.
Consequently, PHE are either underutilized [9], [12], [14],

[23], [44], [45] or not fully exploited [10], [11], [46] in PDTE.

II. PRELIMINARIES

In this section, we introduce decision tree evaluation, packed
homomorphic encryption, private data comparison, and path
evaluation.

A. Decision Tree Evaluation

Decision tree is an efficient machine learning model and
has been widely used in classification or regression tasks [75].
A decision tree 7 contains three types of nodes: root node,
internal nodes, and leaf nodes. Both the root node and the
internal nodes are decision nodes. For the n-th decision node,
it owns the m[n]-th feature and a split threshold y,,, where
m[n] € [1,---,M] and M is the total number of features.
For a leaf node, it owns a leaf weight w. A binary tree with 7
decision nodes has 7 + 1 leaf nodes. Moreover, a full binary
tree of depth D has 2 — 1 decision nodes and 27 leaf nodes.

Given a feature vector X = {x1,zo, -+, x5} with M
features, a decision tree evaluation with 7 decision nodes
can map the vector into the corresponding leaf weight. The
evaluation starts from the root node, and it compares the split
threshold y,, of the root node (n = 1) with the feature value
Tp[n)» Where m[n] is the feature index of the n-th decision
node, m[n] € [1,---,M], and n € {1,---,7}. Depending
on whether the comparison result is 0 (T, < yn) or 1
otherwise, the evaluation direction will go left or right to
the next decision node, and continue this comparison until
obtaining the evaluation result 7(X) € {wi, -, wr41}.
Through the above rules, a decision path P with 7 (X)) can be
obtained for the input vector X, and the evaluation is finished.

B. Packed Homomorphic Encryption

Packed homomorphic encryption (PHE), such as BFV [76],
BGV [77], CKKS [78], etc, is a homomorphic encryption tech-
nology that supports batch processing of multiple data. In this
paper, we focus on BFV cryptosystem [76]. It consists of three
algorithms, including Key Generation, Encryption, Decryp-
tion, and it operates over plaintext space R, = Z,[z]/(a"+1)
and ciphertext space R = Zg[z]/(z" + 1), where g is the
plaintext modulo and @ is the ciphertext modulo. Moreover,
there exist several distributions in BFV as follows, 1) D; is
a key distribution; 2) D is an error distribution; 3) Dg is a
uniform random distribution over the ciphertext space Rg.

e KeyGen(\,N). Given a security parameter A
and a polynomial size N, generate the distributions
{D1,D3,Dg}, the private key s+ D; and the public
key pk = (b,a) = (as + e, a), where e <~ D3 and a < Dy.

e Enc(m,pk). Given a plaintext m € ZJ, the algorithm
encodes m into a polynomial m with SIMD [79]. It samples
a random polynomial r < D; and two noise polynomials
e e « D, Then, it encrypts m into the ciphertext
¢ = [m] = (co,c1) = (br +m+ e ar +). Finally,
it returns the ciphertext c.

e Dec(c, s). The polynomial m can be recovered as m =
Co + c1s. Finally, it returns the decoded plaintext m.

We utilize [m] +mg, [m] omy, [mi]+ [ma], and [m;] o [ms]
to represent plaintext-ciphertext addition, plaintext-ciphertext
multiplication, ciphertext addition, and ciphertext multiplica-
tion, where [m,], [my] are two BFV ciphertexts, my is an en-
coded plaintext vector, and my,m; € Z. We utilize Rot(c,7)
to represent the ciphertext rotation, where the ciphertext slots
are shifted by a random integer . We utilize plainRot(m, r)
to represent the plaintext rotation. When r > 0, the slots are
shifted to the right, otherwise left. For simplicity, encoded
vectors are denoted using bold uppercase symbols.

C. Private Data Comparison

The private data comparison has recently gained popular-
ity [44], [45], [48]. It enables one party S7 with {[m4], [m2]}
and the other party Sy with the secret key s to compare m;
and m,. Finally, S; obtains the comparison result. It consists
of two steps.

Step 1. Sy calculates [m] = a - ([my] — [m2]) + b and sends
[m] to Sz, where {a, b} are selected from the plaintext space,
with a > b > 0.

Step 2. After receiving [m], Sz calculates the comparison
result ¢ and sends it to S;. Here, ¢ = 0 if m < 0, indicating
that my < my, and ¢ =1 if m > 0, indicating that my > m,.

D. Path Evaluation

In this section, we introduce the path cost-based evalua-
tion (Path) [14] and polynomial-based evaluation (Poly) [16]
in details. The concept of path cost-based evaluation is as
follows: given a decision tree model 7 and a feature vector
&, we determine the comparison result ¢, (iS Tpy[n)] < Yn ?
0 : 1) for each decision node. For the n-th decision node, the
node—>left.cost is set to ¢, and the node->right.cost is
set to 1 —c,,. As the cost of each node is assigned a value, the
cost from the root node to a corresponding leaf node is defined
as the sum of the costs along the path. It can be observed that
only the sum of the true path equals zero, whereas the sums of
all other paths are greater than zero. Thus, the weight of the
leaf node along this path corresponds to the predicted weight.
Unlike path cost-based evaluation, the n-th node->1left.cost
is set to 1 — ¢, and the n-th node->right.cost is set to c,.
Moreover, the cost from the root node to a corresponding leaf
node is defined as the product of the costs along the path. It
can be observed that only the product of the true path equals
one, while the products of all other paths are zero.

III. FRAMEWORK OVERVIEW

In this section, we begin by formulating the key challenges
addressed by Kangaroo. We then present a high-level overview
of its workflow, followed by a detailed description of our
models and corresponding security analysis. TABLE VIII
presents the corresponding notations used in Kangaroo.

A. Technique Challenges and Observations

While prior studies have explored PHE-based model infer-
ence [9]-[12], [46], many of these solutions fail to fully exploit
the potential of SIMD techniques [9]-[12] or suffer from low

packing utilization and limited execution efficiency [10], [11],
[46]. For example, the schemes [9]-[11] cannot support the
amortized calculation because XCMP cannot support SIMD.
t-SortingHat [10] supports only the comparison amortization,
but its complexity remains high at O(lgg';tT). RCC-PDTE [11]
and the scheme proposed in [46] support amortization for both
comparison and path evaluation. However, due to limitations
in numerical precision and path length, these schemes fail to
fully leverage the parallelism available in each ciphertext slot.
Therefore, we identify two core challenges: amortized utiliza-
tion and computational efficiency. To enhance the amortization
capability of PHE, we should treat each ciphertext slot as a
representation of a decision tree node and avoid redundant
node representations. Consequently, node information must
be encoded into the coefficients of the ciphertexts, enabling
efficient feature selection and secure comparison directly over
packed ciphertexts. However, even with successful packing,
efficient path evaluation over packed ciphertext remains a non-
trivial problem, leading to many existing schemes to favor Pail-
lier (AHE) [14], [23], [45] over PHE for constructing constant-
round evaluation schemes. In what follows, we elaborate on
the technical challenges and observations.

e Challenge and Observation 1: When using HE to en-
crypt each feature eliminates the need for feature selection and
enables direct comparison. Therefore, using PHE introduces
the first challenge: how to perform parallelized and secure
feature selection within packed ciphertexts and efficiently
complete the comparison. To tackle this, we quantize the
feature vectors and redundantly encode them into polynomials.
Furthermore, we design a non-interactive feature selection
algorithm to enable batch processing of feature selection
across nodes. It supports feature selection across arbitrary
dimensions and places the results at fixed positions to hide
the features of the nodes. To further enhance the amortization
capability of PHE, we encode the nodes of multiple trees into
a single polynomial and simultaneously pack multiple selected
feature vectors into a single polynomial. This design allows us
to treat each coefficient in the polynomial as a unique, non-
redundant node, thereby fully leveraging the SIMD parallelism
and amortization potential offered by PHE. Based on the
packed selected features and thresholds, we integrate secret
sharing and propose a packed oblivious comparison protocol
to achieve correct and secure comparisons, which solve the
limitation of the scheme [48] mentioned in Section I-B.
Moreover, our protocol performs comparisons using SIMD in
a single round of interaction, which further amortizes both
computation and communication costs.

e Challenge and Observation 2: After obtaining the
encrypted comparison results, the server typically performs
either path cost-based evaluation or polynomial-based eval-
uation to determine the final path selection. For path cost-
based evaluation over packed ciphertexts, it is necessary to
sum the evaluation results across all nodes along each path,
which requires a significant number of rotation and summation
operations. Additionally, to conceal the final selected path,
the selected weight must undergo extensive rotations, lead-

D [XN] D D [N N] D D (X N} D [N N] D [N} D
B [N] D D o0 D B (XN} D [XN] D (X N} D
D LN] D D LN D D LN] D LN] D LN] D
l:li.A“‘ I:l lA:l [XX] D l:l ...A [XX] |:| LN] |;|
[={,,,<)=<,'_,,,>=(,,)w
= ..} = - =) ={.) T
Model Extraction | t '
@ Dumey Nodes I @ Permute Model 24 1
D 6, E . G v
&@® © GJG6) 0G0 O e
® 060 O &0 X
oy Dl Da Encrypon ““'"""“g@ (=
: @ Model Inference @B @ 00O O Cj
é erver @ @ O O

Fig. 1: High-level workflow of Kangaroo for client-server
model, where K = M.

ing to an impractically high computation cost. In contrast,
polynomial-based evaluation can generate a one-hot vector to
get the selected weight, eliminating the aforementioned costs.
However, it requires a multiplication depth corresponding to
the tree depth for each path, and its computation cost cannot
be amortized. As a result, both methods impose significant
computation cost. To address this challenge, we propose a
novel path evaluation protocol that enables the client and
server to perform plaintext evaluations on an obfuscated tree
model, yielding results similar to those of path cost-based eval-
uation. Simultaneously, we employ the oblivious comparison
protocol to convert the evaluation result into a polynomial
representation, thereby avoiding excessive rotations.

B. Kangaroo Workflow

The processing flow of Kangaroo consists of four stages,
model hiding and extraction, model encoding and packing,
client data encryption, and model inference. Below, we provide
a concise overview of the main operations involved in each
phase, which are also depicted in Fig. 1.

e Model Hiding and Extraction: To finish the path evalu-
ation, the server needs to share the tree model structure with
the client. Directly sharing the model structure might expose
the server’s model privacy [72], [73], [80]. Expanding decision
nodes into a full binary tree [13], [17], [25], [26], [45] offers a
potential solution but introduces significant computation costs.
To address it, we introduce a more efficient solution to hide
the model structure. It avoids the need to expand the nodes
into a full binary tree, and instead only requires publishing an
obfuscated model structure to effectively protect the original
model structure. Specifically, the server needs to generate some
dummy nodes to hide the model structure. We assume that the
total number of decision nodes, after padding with dummy
nodes, is 7°. When a dummy node is created, its left leaf

inherits the weight of the parent node, while its right leaf’s
weight is randomly generated. Then, the server confuses the
tree model by a coin-flipping method. For each node, the
server flips a coin to randomly select either 1 or —1. If —1 is
selected, the server swaps the left and right child nodes of the
given node; otherwise, no change is made.

During model extraction, the server extracts the model
parameters of the k-th tree, where 1 < k < K. Specifically,
the server uses breadth-first to obtain the threshold y,,, feature
index my, flip condition v, model structure index 7;*75, and
status of node 1y, and uses depth-first traversal to obtain the
weight vector wy, of the leaf nodes for k-th tree. In the vector
¥k, 0 indicates a dummy node and 1 indicates a real node.
The model structure index 77:5 is obtained according to the
following rule: for a node with index ¢, its left child index
is 2¢, and its right child index is 2¢ + 1. At last, the model
structure indices {7,",}/, are published.

e Model Encoding and Packing: To amortize the
time cost of feature selection, comparison, and path eval-
uation, the server encodes the model parameters into
a polynomial ring. First, the server chooses the corre-
sponding the maximum and minimum quantization vec-
tors Xmar — {.ﬁTG’m, mgmz’ . 7xgn/fmt} and Xm,in
{25, -+, 277"} and the precision parameter ¢. Then,
each vector y, is quantized by X™% and X™" with the
precision parameter ¢ to enable secure comparison. It is worth
noting that the server needs to publish X™%* X min_ and C.
For non-sensitive features, such as human height, the valid
range (e.g., 54.6 cm to 272 cm) can be directly published with-
out privacy concerns. However, for certain sensitive features,
the actual range can be deliberately extended to obscure the
true value range and enhance privacy protection. Specifically,
¥, is quantized as

ye[l] — 2y ylm*] =2
Ve = A mar—min G e G

Tl ~ T (1) T] e

— M
m

After it, the vectors y,, vk, and 1, are encoded into
{Yg, T, Ui} for 1 < k < K, where each element of the
original vectors is placed at positions {(n — 1)M + 1}7_,.
The vector w;, is encoded into Wy for 1 < k < K, with
elements placed at positions {(n —1)M 4 1}7 . The vector
m;, is encoded into My, = {m}, m?,--- ,m} }, where m} is
a vector of M dimensions and 1 < n < 7*. The my[n]-th
value of m} is set to 1, and other values are set to 0.

To further improve the utilization of the polynomial
space, the server packs multiple tree models together
for efficient inference. Specifically, the server merges the
vectors as YZ“Ck = Z%Zl plainRot(Y(y—1)ar4m,m —
1), Weeek = SSM plainRot(Wi,—iyarpm.m — 1),
Yrack = SN plainRot(Y(y_1)arm, m—1), and PLI* =
Z%Zl plainRot(¥(,_1yar4m,m — 1). For simplicity, we
assume K = I'- M and refer to {Yf’/‘”k, W{’/‘wk, Yrack gracky
as the packed model, where 1 < v < I'. After getting the
packed model and {Mj}£ |, a same-sharing-for-same-model

strategy is employed to improve the efficiency of evaluation,
which is introduced in Section VI-A.

e Client Data Encryption: During the data encryption,
the client needs to initialize a BFV encryption system and
generates the public key to request evaluation services. Then,
the client utilizes the public range of the feature vector X"
and X™™ to quantize its feature vector X’ as

¥ T — l,Lnlnzn T — mﬁzn
- {xmam _ xmin ’ <’ T rmar _ xmin ’ C}
1 1 M M

After it, the client repeats the quantized feature vector 7* times
to an N-dimensional vector X, where X = {X,--- , X'}. We
assume (7% +1)- M <N, and N is the polynomial dimension
of BFV. At last, the client encrypts the vector and sends [X]
and the corresponding keys to the server.

e Model Inference: During the model inference, the server
and the client jointly execute feature selection, comparison,
and path evaluation, and the client obtains the inference result.
The building blocks involved in the inference contain three
steps: @ PackFeatureSel, @ PackObliviousCom, and @
PackPathEva. They serve as the core operations for perform-
ing inference on a single decision tree. PackFeatureSel is
used to select the corresponding feature over the encrypted
and packed feature vector, with the selected values placed
in fixed positions to hide the node’s feature information.
PackObliviousCom then performs packed comparisons be-
tween feature thresholds and selected features for each node
and obtains the encrypted comparison signs. In the signs, 0
indicates that the client’s feature is less than the threshold,
and 1 otherwise. Finally, PackPathEva is applied to obtain the
evaluation result based on the encrypted comparison outcomes.
The weight corresponding to the true decision path is retrieved,
while the weights at all other positions are set to 0. Based
on the building blocks, a complete scheme for large-scale
evaluation is proposed, along with several optimization tech-
niques to accelerate the process. Moreover, some additional
functionalities are presented in the appendix, and interested
readers are encouraged to refer to it for more details.

C. Models and Security

The Kangaroo mainly works in the client-server model. The
server holds K decision tree models {7;}4_,, and the client
holds a feature vector X. Our security goals are to protect the
server’s models from the semi-honest client and the client’s
data from the semi-honest server. We consider semi-honest
adversaries, which are similar to previous works [9]-[11],
[14]-[16], [18]. Specifically, the following private data should
be protected.

1) The Private Data of Server

® my, : The node feature vector is private for server as it
reflects the splitting preferences of the decision tree and might
expose important feature distributions.

@ y, : The feature threshold vector is private for server as
it determines how data points are classified, and leakage could
expose critical decision boundaries.

® wy : The weight vector is private for server as it
encapsulates critical information about the model.

@ Ti,s, Uk, ¥ : The model structure index, flip condition,
and node status are private for server as they represent the
server’s revenue model, and revealing them could leak some
sensitive information about the private dataset used to train
the tree model [72], [73], [80].

2) The Private Data of Client

® X : The feature vector is private for client as it contains
the client’s private input data used for inference.

3) The Private Data during Inference

® The evaluation result is private for client as it reveals the
models’ decision on the client’s private feature vector.

@ The decision path is sensitive for server and client as it
reveals how the client’s input traverses each decision tree and
exposes the corresponding weights to the client.

The comparison sign is sensitive for server and client as
it might reveal the decision direction.

® The difference of comparison is sensitive for server
and client as it directly involves private feature value and its
relation to the decision threshold.

Security of Kangaroo: To protect the above privacy, the
private data of client should be encrypted and the private
data of server should be blinded [14], [15], [80]. We present
the standard definition of semi-honest security and conduct a
rigorous analysis using the simulation-based real/ideal world
model [81]. In this setting, the client and server are assumed to
strictly follow the protocol but may attempt to infer sensitive
information as defined in our threat model. In real-world
scenarios, however, a curious client may craft inputs in a
malicious way to extract model parameters. To mitigate such
risks, it is essential that all intermediate outputs in our protocol
remain oblivious [53], [82]. In either of the above cases, our
scheme should be designed to robustly protect private data
® - @. Due to space limitation, the details can be found
in Section C-A and C-B.

Kangaroo also supports the outsourcing scenarios, which
operates in the single-cloud assisted model [45]. The server
outsources the model to a cloud service provider (CSP) to
offload client-side computation and reduce its own compu-
tational burden. It can also be extended to a double-cloud
model [19], [25], [26]. However, considering the cost of
leasing servers and the security issues associated with the
double-cloud model, we have chosen the single-cloud assisted
outsourcing scheme. The interested readers can refer to the
full version [83] for more details.

IV. BUILDING BLOCKS

In this section, we introduce our building blocks
for single tree inference, including packed feature
selection PackFeatureSel, packed oblivious comparison
PackObliviousCom, and packed path evaluation
PackPathEva, to achieve the amortized computation.

A. Packed Feature Selection: PackFeatureSel

The PackFeatureSel is used to select the corresponding
features from the client’s packed feature vector. The server

Algorithm 1 I-PackFeatureSel

SInput: The encrypted vector [X], feature size M, and
encoded feature index vector M.
SOutput: The selected encrypted vector [X'].
1: > The server executes: q
[X' =[X] oM.
3: bool = (M >0 & (M & (M — 1)) ==0). > Determine
whether M is a power of 2.
4: if bool == true then
for i = 0,7 <logM,i+ + do
X1 = [X] + Rot(IX'], —2).

(3]

[X"] = [X'] + Rot([X], -1).
: if M mod 2 == 0 then
10: X =1X"].
11: fori=1,i < [logM]—1,i+ + do

5
6:
7: else
8
9

12: M=M-|4]

13: if M mod 2 == 0 then

14: X)) = [X"] 4 Rot([X7], —29).
15: [X"] = [X"] + Rot([X"], —2%).

16: | [X'] = [X"] + Rot([X'], —2Mos MI=1),
17: The server gets [X'].

inputs an encrypted vector [X], a feature size M, and an
encoded feature index vector M, and then obtains a selected
encrypted vector [X']. In [X"], the selected features [, are
placed at positions {(n — 1)M + 1}7_; to hide the features
of the nodes. We give a non-interactive feature selection
algorithm I-PackFeatureSel in Algorithm 1. First, the server
computes [X'] = [X]oM to extract the corresponding feature
values from the client at each node as line 2. To accumulate
each vector of length M to its first value, the server checks
whether M is a power of 2 as line 3. If yes, the server
performs log M rotate-and-sum operations on [X'] to place
the extracted results at positions {(n — 1)M 4 1}7_, as lines
4 — 6. If no, a division-based approach is applied to compute
the selected encrypted vector as lines 7 — 16. In the process,
the server sums every two adjacent data. Therefore, it needs
to determine whether M is odd or even for the vector of
length M. If M is odd, the value at the last position will
be retained in [X']. If M is even, every two adjacent data
will be summed. Using the division approach, the server can
obtain the sums of the first % values into [X”] and stores
the remaining sums in [X’]. Finally, the server rotates [X']
and adds it to [X "], obtaining the final result. The correctness
of PackFeatureSel is proven in Theorem 1. Moreover, we
present a fully amortized feature selection as Algorithm 2.

B. Packed Oblivious Comparison: PackObliviousCom

The PackObliviousCom is used to achieve the oblivious
comparison between the node thresholds and client’s selected
features. The server inputs [X'] and an encoded vector Y,
and then obtains the encrypted comparison result vector [C],
where 0 < X'[(n — 1)M + 1] = 2, Y[(n — 1)M 4 1] =
Yo < ¢ In [C], Clin —)M + 1] = 0 if 20 — Yy < 0,

PackObliviousCom Protocol
SInput: The encrypted and encoded vectors [X'], Y.
SOutput: The encrypted comparison result vector

[c].

> The server executes:

LA {ar,*, 0 % Q1) M1 % K)
B — {blv*a RO 7b(T*—1)M+1a*a"' 7*},

where ¢ > A[(n—1)M +1] > B[(n—1)M +1] >
0and 1 <n < 7% > Random the differences results.

22 R < {r17*?'.'7*7”'7T(T*71)M+1?*).”7*}7
where R[(n—1)M +1] « {1,—1} by flipping a
coin. > Random the signs of comparison results.

3: [Vl < AoRo ([X'] = Y) + BoR = the client.
D> The client executes:

4: V < Dec([V],s), V' {v], %, ,%,-+-,

Ulre _1yarq1s %005 x), where VV[(n = 1)M + 1] = 0
if V[(n—1)M + 1] < 0, 1 otherwise.

5: [V'] < Enc(V’,pk) = the server.

D> The server executes:

6: C' <+ {ch, %, %, ,027*71)M+1,*,--- %},
where C'[(n —1)M +1] =1if R[(n—1)M +1] =
—1, 0 otherwise.

7: The server gets [C] + C' +Ro [V'].

Fig. 2: Packed oblivious comparison protocol for single tree.

1 otherwise, where 1 < n < 7*. The PackObliviousCom is
given in Fig. 2. First, the server selects two random vectors
A and B to blind the difference result of each node as line
1. Then, the server randomly selects either 1 or —1 for each
node by flipping a coin to protect the result’s sign as line 2.
Next, the server blinds the difference result [X'] —Y and gets
[V] as line 3. The [V] is sent to the client. On receiving the
[V], the client decrypts it and obtains the blinded comparison
result at each node. The client sets v/, to 0 if V[(n — 1)M +
1] < 0, 1 otherwise, to get the vector V' as line 4. Then, the
client encrypts V' and returns it to the server as line 5. After
obtaining [V'], the server generates the vector C’ as line 6.
At last, the server utilizes C’ and R to recover the comparison
result vector [C]. The correctness of PackObliviousCom is
proven in Theorem 2.

Remark 1. It is obvious that our PackObliviousCom can
also support comparison of two ciphertexts. In addition, we
can attach specific values to * for more amortization.

C. Packed Path Evaluation: PackPathEva

The PackPathEva is used to get the evaluation result. The
server inputs [C], an structure index 7., and an encoded
weight vector W, and the client inputs 7.*. After executing
it, the server obtains the encrypted evaluation result vector
[T]. In T, only one element is the actual weight value, and
the remaining elements are 0. Due to space limitation, the
PackPathEva is given in Fig. 8. First, the server selects a
random vector R’ to blind the comparison result vector [C].

TABLE II: Online operation costs for two-party inference schemes: 7 : the number of decision nodes; M : the feature dimension;
t : the bit size of feature; K : the number of trees; D : the tree depth; Mul™* : plaintext-ciphertext multiplication. SOS: Shard
Oblivious Selection Protocol [20]; DGK: Private Comparison Protocol [84].

Primitives Selection Comparison Path evaluation Round

Ma [19] (Sparse) S$S,GC,0T KD-ss, (3)-om) KD- (GC, (3)-0T) / 2D-1
Bai [20] (HE-SOS) SS,OT,AHE KD- SOS KD- (GC, SOS) / 8D
Cong [10] (Sortinghat) PHE / KT - Mul* O(K7)(Mul + Add) 1
Mahdavi [11] (Levelup) PHE / KT - Mul* O(KT)(Add + Mul™) 1
Tai [14] (HHH) AHE / K7 DGK O(K7)(Add + Mul*) 2
Kiss [15] (GGH) GC,AHE,OT KMt - (GC + (3)-0T) K7- GC O(K7)(Add + Mul*) 2
Kiss [15] (HGH) GC,SS,AHE KM - (Add + Dec) K- GC O(KT)(Add + Mul™) 3
Ours (Kangaroo) PHE,SS 2K -Mul* 4+ O(K log M)Rot [%] (2 - Mul* + Enc + Dec) 2[%] (Mul* + Enc + Dec) 4

I'In the schemes [10], [11], we only analyze the operation costs of XCMP.

Then, the server sends the blinded result [I'] to the client as
line 1. The client constructs a tree by 7.*. After receiving [I'],
the client decrypts and assigns the corresponding left cost and
right cost for the n-th decision node as line 2. The client sums
costs along each path to obtain I, encrypts and sends [I”] to
the server as lines 3 — 4. Similarly, the server also constructs
a tree by 7.* and sums the perturbation costs as lines 5 — 6.
After getting R”, the server recovers the cost accumulation
result [I] for each path as line 7. Moreover, the server takes
—[I] and 0 as the input of PackObliviousCon to transform
path cost-based evaluation into polynomial-based evaluation as
line 8. It is worth noting that the value on the correct path is
0, and the values of other paths are negative. Therefore, after
executing PackObliviousCom, the value on the correct path
is 1, and the values of other paths are 0. By multiplying the
weight vector, only the correctly indexed weight is preserved.
The correctness of PackPathEva is proven in Theorem 3.

V. KANGAROO FOR LARGE-SCALE EVALUATION

In this section, we present the inference protocol of Kan-
garoo under the client-server model for large-scale evaluation,
such as random forest. Then, we analyze its computational
complexity and compare it with the existing schemes.

A. The Inference Protocol for Random Forests

When dealing with large-scale models, such as random
forests or a deep and large decision tree, the number of
decision nodes increases significantly. Kangaroo are capable
of handling these models, and we use random forests as an
example. Due to space limitation, the inference protocol for
random forests is shown in Fig. 9. First, the server performs
FeatureSelPack to select and merge relevant features for
multiple tree models. FeatureSelPack is optimized by I-
PackFeatureSel and is mentioned in Algorithm 2. Then, the
server and the client jointly execute PackObliviousCom to
complete the comparison. To protect the model structure, the
tree model is hiding by introducing dummy nodes and ran-
domly swapping the internal nodes. Therefore, the computa-
tions need to be adjusted to eliminate the influence introduced
by these modifications, as highlighted in blue. First, compute

R, *Tgac’“ to determine whether the comparison result of each
node needs to be flipped. Second, since the true weights are on
the left child of the dummy node, the comparison result will be
0. Third, if the left and right child nodes of the dummy node
have been swapped, the comparison result will be 1. Based
on three rules, the comparison results can be recovered. Next,
PackPathEva is executed to obtain the encrypted evaluation
results {[T,]},_,. It is worth noting that each ciphertext
vector packs the results of M models. Therefore, for each
PackPathEva, the client and the server jointly build M tree
structures using the structural indices in plaintext, perform
path cost-based evaluations over plaintext, and then pack the
evaluation results into a single ciphertext vector. Subsequently,
PackObliviousCom is employed to convert all evaluation
outcomes into polynomial-based evaluations, and [7] is cal-
culated. To respond the result, the server generates a random
mask vector 7” and sends Z,l;zl [T+, S M 7] o
the client. The client decrypts and obtains the inference result

T*4+1)M . T*4+1)M .
m= I) SO,

B. Complexity Analysis

We conduct a detailed analysis and comparison of the online
operation costs for two-party inference schemes across two
categories of inference: depth-round [19], [20] and constant-
round schemes [10], [11], [14], [15]. The comparative results
are summarized in TABLE II It is evident that depth-round
schemes incur a significant increase in communication rounds
as the model depth D grows, leading to considerable com-
munication cost in real-world networks. In contrast, constant-
round protocols are unaffected by communication latency.
However, their performance is heavily influenced by the
number of tree nodes 7 and the number of trees K, making
them unsuitable for evaluating large-scale random forests.
Through careful design, our Kangaroo framework significantly
reduces the aforementioned computation cost by leveraging
efficient amortization. Moreover, Kangaroo can further achieve
full amortization through the adaptive encoding adjustment
strategy mentioned in Section VI-C.

VI. ENHANCEMENT FOR PRACTICAL APPLICATIONS

To enhance practicality, we introduce several optimization
strategies, including same-sharing-for-same-model, latency-
aware strategy, and adaptive encoding adjustment.

A. Same-Sharing-for-Same-Model

In Kangaroo, the server executes the model hid-
ing and extraction to obtain {Mj}X |, {7;:,5}1[@(:1’ and
{Y{;“Ck ,WgaCk,Tf’/“Ck,\Ilg‘mk}E:l and publishes 7,%, to the
client. We observe that, due to the obfuscated nature of our
PackPathEva, the client cannot distinguish which leaf node
is accessed from the paths. Therefore, publishing same model
structure indices {7;*9},5:1 can protect the evaluation results
while maximizing the entropy of the tree structure [85], [86],
thus preserving the privacy of the original model structures.
Additionally, we note that once the packed model is deter-
mined, the polynomial length N and plaintext modulo ¢ are
fixed, which also determines the encoder. This implies that
the server does not need to perform additional encoding on
the packed model when responding to any client request,
thereby reducing computation cost. It also ensures that the
parameter (is uniquely determined, where we set (= 2 -1
to ensure the correctness. Similarly, same-sharing-for-same-
model can be also applicable to outsourced scheme, enhancing
its practicality.

B. Latency-Aware Strategy

In client-server model, the server needs to generate certain
parameters to complete the model evaluation. To ensure the
protection of sensitive information, these parameters must be
randomly generated each time. However, we note that the
generation of these parameters, such as {E,A,B,R,R",R"},
is both independent of the model and the client’s data, and
computationally inexpensive. Therefore, these operations can
be amortized and executed during the waiting time for re-
sponses from the other party. We refer to this as a latency-
aware strategy, which is also applied in other areas. For
instance, Kangaroo utilizes encryption operations such as
[X] = [0] + X, where [0] can be precomputed during the
waiting period. During the process, we also aim to minimize
operations on the encoding and ciphertext as much as possible.
For example, the server can compute BoR — Ao RoY and
encode the result to reduce the number of encodings. When
using (—[I], 0) as the input of PackObliviousCom, the server
can compute —A o R and encode it to minimize the negation
operations on ciphertext. These optimizations further enhance
the practicality. Similarly, the latency-aware strategy can be
also applicable to outsourced scheme.

C. Adaptive Encoding Adjustment

In large-scale evaluation, each tree is often pruned to prevent
overfitting, resulting in varying structures across different
trees [33], [35]-[37]. Padding all trees with dummy nodes
to ensure that each tree contains exactly [%] nodes would
lead to inefficient ciphertext packing and significantly reduce
the actual packing utilization of Kangaroo. Fortunately, we

10

can easily adjust the packing size for each tree to solve the
problem. This aligns with our design principle of treating each
ciphertext slot as a representation of a node. For clarity, we
present in Fig. 3 a toy example without applying model hiding.
The core idea is to encode features from multiple trees into
a single polynomial. During feature selection, the algorithm
simultaneously selects node features across multiple trees. The
selected features are then further packed and compared. During
the path evaluation, it is only necessary to identify which
positions correspond to nodes in specific trees. It is evident that
the strategy further reduces the number of feature selection and
fully exploits every coefficient of the polynomial for inference.
Thus, it can achieve the full amortization. The strategy can
also be applied to single tree evaluation. It is worth noting
that this process does not leak any structural information about
the model, as the tree structures are randomly permuted before
publishing, thereby meeting our security requirements. More-
over, it is observed that during feature selection, the number
of rotations is significantly reduced when M is a power of
2. Therefore, by adjusting M to M* and padding with a few
dummy features, the inference efficiency can be improved,
where M* is usually a power of 2. This optimization is also
demonstrated in our experiments.

VII. PERFORMANCE EVALUATION

In evaluating Kangaroo within client-server model, we aim
to answer the following two main research questions (RQs).

e RQ1 : What are the characteristics and advantages of the
individual components in Kangaroo compared to recent state-
of-the-art (SOTA) methods?

e RQ2 : How efficient is Kangaroo in handling large-scale
tree models under a WAN setting compared to existing SOTA
two-party PDTE schemes?

A. Experimental Setting

e Implementation: The Kangaroo is implemented using
Microsoft SEAL version 4.1 [87], which implements the
BFV cryptosystem in polynomial and batching technique [79].
The data is encrypted with 128-bit security and the default
degree of the polynomial N is set to 8192. The plaintext
modulo ¢ is set to 50-bit. We provide a clear implementation
on GitHub to facilitate verification of the correctness and
performance of our schemes. We compare Kangaroo with the
SOTA schemes [11], [14], [15], [19], [20]. The comparison
is conducted using the following implementations [88]-[92].
To ensure the reproducibility of our experimental results, all
experiments were conducted in a controlled environment with
simulated network conditions, unless stated otherwise. We
adopt three different bandwidth (bit/second) and round-trip
time (RTT) over local-area network (LAN, 1 Gbps, RTT: 0.1
ms) metropolitan-area network (MAN, 100 Mbps, RTT: 6 ms),
and wide-area network (WAN, 40 Mbps, RTT: 80 ms) settings
to compare their performance. All experiments are conducted
on two ThinkPad-P53 machines with single thread, 23.1 GB
RAM, and an Intel Core 15-9400H 2.50GHz processor running

WuEIS SIS)
-[o] [[[© [[0 [o] [e] (o] [o] 4] [o] (1] [e] [l [a]
-[0 [0 [0 (4] [o] (2] [] [o] [] [] [o] [] [e] [o] [] [e]
:IEIIEI@@@@IIIIERF@WM(”@M)EIEI
O00nbooEdoornoon
-dO000ROOOOOOOE0O0O0
B O000000RN0O00O0BOO0

CEEEOEENOBEEDEEED
OHOOOREEONBBBEBOEREREEDO
Fig. 3: Toy example without m

Running Time
Running Time

4 8 16 32

Feature Dimension

64 128 4 8 16 32

Feature Dimension

64 128

(a) One Feature Selection (b) Fully Feature Selection

Fig. 4: The running time (ms) under different network.

on Ubuntu 18.04.6. The experiments show average results, and
each is repeated five times independently.

e Datasets and Tree Models: We utilize datasets from the
UCI Machine Learning Repository to verify the correctness
of our schemes and evaluate their performance. Due to space
limitation, details of the datasets and tree models are provided
in schemes [11], [15]. In addition, we also provide detailed
model structures and plaintext evaluation interfaces in our
GitHub. In Kangaroo, all tree models are initialized with
dummy nodes and randomized. The model is encoded and
packed as mentioned in Section III-B and VI-C.

B. Microbenchmarks

To answer RQ1, we perform a comprehensive set of mi-
crobenchmarks to test the efficiency for each of the basic
operators in Kangaroo, including secure feature selection,
oblivious comparison, and secure path evaluation.

e Secure Feature Selection: Kangaroo supports two secure
feature selection approaches, including I-PackFeatureSel
(Algorithm 1) and II-PackFeatureSel (Fig. 10). The I-
PackFeatureSel enables non-interactive feature selection
but incurs a computation cost of Mul* + O(log M)Rot. In

11

mlmmmm@@Dll@D@mmD]

PackOblivious ([[']I, PackPathEva ([[], {

”IIEDEIIDIIEDIiID

v [+ B
gl.

§
2 1 3

2 jl
IEEEE

4
4

3 -2

3 3

-7 -1

" HEEEENEAEEEEEEE

v I+

HHIEIIIIIIIIIIIIIEIIEIIIIEEI

PackOblivious (-[[1]],)

Solololoiojololofololoiclojolofa
[2] [«] [2] o] [[[«] (] [2] [+ o] 6] (o] O] [e] [

vy (LT

nnIEIIIEIIEIIEIIEIIEIIEIIEIIEIEIIIIEIIIEI,

odel hiding for adaptive encoding adjustment, where N = 16, M = 4, and K = 4.

TABLE III: The online running time and communication cost
for 1-out-of-2 feature selection.

Slient OT [71] I-PackFeatureSel

4192 Amortized 4192 Amortized
Online Time 15.00 (ms) 3.66 (us) 7.27 (ms) 1.77 (us)
Online Comm. 71.54 (KB) 17.89 (B) 0 0

contrast, II-PackFeatureSel scheme requires one interac-
tion with communication cost of 2 - % (KB), but only
involves Mul® + Dec + Enc operations. We evaluate the
performance of single and fully amortized feature selection,
as shown in Fig. 4. The fully amortized feature selection is
achieved by Algorithm 2. From the results, we observe that
adjusting M can reduce the number of rotations required.
Overall, I-PackFeatureSel is suitable for scenarios with
low feature dimensions and constrained bandwidth, whereas
II-PackFeatureSel performs better in high-bandwidth envi-
ronments with high feature dimensions. We also compare I-
PackFeatureSel with Slient OT [71] for 1-out-of-2 to finish
the feature selection. The result is shown in TABLE III. As
shown in TABLE III, I-PackFeatureSel offers two primary
advantages: it is non-interactive and particularly well-suited
for small-scale data selection. Moreover, it requires any offline
operations, making it lightweight and easy to deploy.

e Oblivious Comparison: As shown in TABLE IV, Kan-
garoo achieves the lowest amortized online time for oblivious
comparison PackObliviousCom, outperforming DGK [14],
ABY [66], and even the recent Cheetah [43]. In their scheme,
the bit size ¢ is set to 32-bit. Different from ABY and
Cheetah, which require significant offline communication or
setup phases, PackObliviousCom does not rely on offline
computation or communication. Furthermore, their communi-
cation rounds scale with O(logt), while PackObliviousCom

TABLE IV: The running time and communication (KB) for
oblivious comparison.

DGK [14] ABY [66] Cheetah [43] Ours
Offline Time 0 39.31 (ms) 1363.92 (ms) 0
gfﬂme 0 1501.48 1438.32 0
omm.
Amortized 142.98 7.66 10.37 0.88
Online Time (ms) (us) (us) (us)
Amortized
Online Comm. 8.25 1.50 0.040 0.10
Online Round 1 O(logt) O(logy t) 1

TABLE V: The amortized running time and amortized cipher-
text size (bit) for different operations.

Enc Add Plain-Mul Dec
Paillier
(4096) 5.80 (ms) 3.84 (us) 42.86 (us) 5.80 (ms)
BFV 0.51 (us) 0.08 (us) 0.31 (us) 0.18 (us)
(422.18) 11370 x 48 x 138 x 32220

requires only a single round of communication. This makes
PackObliviousCom particularly well-suited for real-world,
large-scale inference tasks.

e Secure Path Evaluation: During the path evaluation, the
path cost-based evaluation is more efficient than polynomial-
based evaluation. This is because polynomial-based evaluation
requires ciphertexts with a multiplicative depth of D, as in
the scheme [44], which significantly impacts inference effi-
ciency. In contrast, path cost-based evaluation, such as in [14],
only involves ciphertext addition and plaintext multiplication.
However, as shown in TABLE II, this approach still incurs
considerable computation cost. While Boolean comparison
results can be transformed into arithmetic values to enable path
evaluation over non-packed ciphertexts, this method incurs
substantial overhead due to the numerous encryption, decryp-
tion, addition, and multiplication operations required, all of
which grow proportionally with the number of nodes. As il-
lustrated in TABLE V, Paillier with 128-bit security level [93]
performs poorly in large-scale computations compared to BFV.
In Kangaroo, PackPathEva uses PHE to amortize the costs,
resulting in a small number of multiplications, encryptions,
and decryptions, as shown in TABLE II.

Built upon low-latency, efficient, and fully amortized com-
ponents, Kangaroo is particularly well-suited for large-scale
decision tree evaluation in WAN setting. Even when com-
pared with lower-latency schemes [11], such as one-round
communication protocols, RCC and XXCMP, Kangaroo still
outperforms them significantly for small-scale decision tree
evaluation, achieving up to 14x-59x performance improve-
ments in WAN scenarios. The results are presented in Fig. 5.
Clearly, in WAN setting with large-scale decision tree eval-
vation, Kangaroo will show more superior performance, as
its amortization capabilities are fully leveraged under such
scenarios. Additionally, we can also observe that adjusting M

12

10
- A XXCMP O Kangaroo A xxcmp O Kangaroo After Adjusting M
3 RCC {) Kangaroo with Il-PackFeatureSel RCC ¢ Kangaroo with ll-PackFeatureSel
o .| © Kangaroo
g o
£ £
= = Heart
= o010* {80
H £]
E Al E Al o
708;
£ {
S . A A 21’1 o 2
=10 ! (3
g A ! 11
& , | s60 —
8 8 8 81 vig—"] : :
Heart Breast Steel Spam Heart Breast Steel Spam
(a) Total Communication Cost (b) LAN (1Gbps/0.1ms)
10° 10°
A Xxcmp O Kangaroo After Adjusting M A xxcmp O Kangaroo After Adjusting M
RCC Kangaroo with II-PackFeatureSel RCC Kangaroo with ll-PackFeatureSel
O Kangaroo O Kangaroo
3 105 W 05
g g0
=1 s00,_1eart =1 Heart
o0 4] &0 i
S0 A x : £ | Au) o |
= ; = /
£ d{ ¢ 149 E 10* +1300 59
I W 8 8 & A100 14
10° 47 / °
o 6 o =
10* L 8
10°

Heart Breast Steel

(c) MAN (100Mbps/6ms)

Heart Breast Steel

(d) WAN (40Mbps/80ms)

Spam Spam

Fig. 5: The comparison of total communication cost (KB) and
running time (ms) with one round interactive schemes. The
(M, D,T) are as follows: Heart (13,3,5), Breast (30,7,17),
Steel (33,5,6), and Spam (57,16, 58).

— sparse
— HE-SOS
Kangaroo-629-13

~—— Kangaroo-1258-13
— Kangaroo-511-16
Kangaroo-1022-16

0

Running Time
Running Time

3,

[16
Tree Depth

(b) M =13

8 16
Tree Depth

(a) M =47

Fig. 6: The running time (ms) for large-scale single tree eval-
uation across different tree depths in WAN setting. Kangaroo-
a-b: where a denotes the maximum number of decision nodes
supported, and b represents the adjusted feature dimension M.

can improve inference efficiency, such as M from 13 to 16 on
the Heart dataset in LAN setting.

C. Large-Scale Tree Models Benchmarks

To answer the RQ2, we evaluate the end-to-end inference la-
tency under WAN setting with large-scale tree models, such as
large-scale single tree evaluation and large-scale random forest
evaluation, which measures from the time the feature vector
is sent until the inference result is received. We also compare
Kangaroo with existing two-party inference schemes [14],
[15], [19], [20] to show the efficiency of Kangaroo.

e Large-Scale Single Tree Evaluation: As shown in TA-
BLE VI, Kangaroo is highly efficient and well-suited for
WAN-based large-scale single tree evaluation. Compared to
prior SOTA schemes [14], [15], [19], [20], Kangaroo achieves

TABLE VI: Total communication cost (KB) and online runtime (ms) for large-scale single tree evaluation in WAN setting.

Datasets HHH [14] HGH [15] GGH [15] Sparse [19] HE-SOS [20] Kangaroo
(M, D,) Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time
(47D1‘§“f68) 1163 23190 1299 3578 4472 3100 131 3844 14079 7486 3379 (3X126§2X)
Diabetes 1050
(10’ 28, 393) 2227 43122 2973 8320 9868 7525 249 6614 26545 13270 3379 (6% ~ 41x)
(133‘?:%‘“;‘25) 2419 46416 3157 8997 10370 8138 264 7058 28513 14117 3379 (7X12524X)
: Total online runtime for privacy-preserving ap-
TABLE VII: Total onl t for p y-p g ap
= S =7 W i plications under real-world WAN conditions.
107 = G oy % % % | = e s % . s
Kangaroa [‘ i Thoe 10 Kangaroo s e -
i & A P P 3 ii' i JD Cloud (5 Mbps), Ali Cloud (100
Eviy e N | Sl fa M I AN Applications TP (1 Mbps), RTT Mbps), TP (1 Mbps),
= (b NN MO e |G M NI M
Fob MO MO E NN MM A (30 ms) RTT (40 ms)
S hE | Bl
I AR TR I ERR R Image 6.96 (s) 3.18 (s)
| AN g=’ ’i’ W il ,i!g ,l!! e o Recognition
NN N VR R .
48 242_1_ &34 b 727 969 48 z4zT ;184 b 727 969 Medlcal 5 92 (S) 2.52 (S)
ree Number ree Number
Diagnostics
(a) Digits (b) Boston Financial
. . . F . 5.98 (s) 3.06 (s)
Fig. 7: The running time (ms) for large-scale random forest orecasting
g g g

evaluation across different tree numbers in WAN setting.

3x-22x speedup on the Digits dataset, 6x-41x on the Di-
abetes dataset, and 7x-44x on the Boston dataset, where
M is adjusted to 50, 16, and 16. Furthermore, we construct
tree models with varying depths and control the number of
decision nodes through model pruning. As shown in Fig. 6,
compared with schemes [19], [20], Kangaroo achieves an
improvement of 8x-15x when M = 47, D = 32, and 7x-
14x when M = 13, D 32. Moreover, Kangaroo can
flexibly control the number of decision nodes by adjusting
M. Furthermore, different from prior schemes [15], [19],
[20], Kangaroo operates without any offline computation or
communication, making it particularly well-suited for handling
large-scale multiple client-side inference requests.

e Large-Scale Random Forest Evaluation: We also con-
struct large-scale random forest by Digits and Diabetes
datasets with different tree numbers and compare Kangaroo
with the schemes [14], [15]. The results are shown in Fig. 7.
When the forest consists of 969 trees, containing 162792 nodes
for the Digits dataset and 411825 nodes for the Boston dataset,
Kangaroo achieves approximately 47x-384x speedup over
existing schemes on Digits, and about 135x-794x improve-
ment on Boston. Moreover, the average inference time per tree
is about 60 ms. All these advantages stem from Kangaroo’s
full amortization capability, which enables it to consistently
achieve the best performance among constant-round schemes.

D. Further Experiments and Discussion

Kangaroo demonstrates strong performance in enabling
large-scale, privacy-preserving decision tree evaluation over
WAN environments. It can be seamlessly integrated into a
wide range of decision tree-based applications where data

13

1 We leverage the Digits (47, 15, 168), Diabetes (10, 28,393), and Boston
datasets (13,30, 425) to demonstrate Kangaroo’s applicability in image
recognition, medical diagnostics, and financial forecasting, respectively.

privacy is a critical concern. In particular, it is well-suited
for scenarios involving sensitive information, such as image
recognition, medical diagnostics, and financial forecasting.
To demonstrate Kangaroo’s capability under real-world WAN
conditions, we deploy servers across different cloud platforms.
One server is hosted on JD Cloud, equipped with single thread,
3.8 GB RAM, and an Intel(R) Xeon(R) Gold 6148 @ 2.40
GHz processor, running Ubuntu 22.04.5. The other server is
deployed on Alibaba Cloud, featuring a single CPU thread, 4
GB RAM, and an Intel(R) Xeon(R) Platinum @ 2.50 GHz
processor, also running Ubuntu 22.04.5. The client is still
deployed on the ThinkPad-P53 (TP) with single thread. As
shown in TABLE VII, Kangaroo still demonstrates strong
efficiency even under constrained bandwidth conditions. It is
worth noting, however, that Kangaroo’s performance on small-
scale models in LAN settings may be slightly lower than
that of schemes specifically optimized for such environments
(e.g., [19]). To improve performance in these scenarios, several
optimization strategies, such as reducing the ciphertext mod-
ulus and decreasing the polynomial degree, can be employed
to further accelerate computation.

VIII. CONCLUSION

In this work, we present Kangaroo, a private and amor-
tized two-party inference framework over WAN for large-
scale decision tree evaluation. By utilizing PHE to design
a set of new secure feature selection, oblivious comparison,
and secure path evaluation protocols, we fully exploit each
coefficient in the PHE ciphertexts to efficiently pack deci-

sion tree nodes, thereby amortizing both computation and
communication costs. Experimental results demonstrate that
Kangaroo’s core components deliver strong performance, and
Kangaroo achieves significant speedups over SOTA two-party
PDTE schemes in WAN setting with large-scale models.

In future work, we plan to build on the design principles of
Kangaroo to explore more secure and efficient inference mech-
anisms, such as those for deep neural networks (DNNs), and
develop corresponding optimization techniques to accelerate
their performance. We also intend to investigate stronger threat
models in outsourced settings, including malicious adversaries,
with a focus on ensuring both data privacy and the correctness
of inference results.

ACKNOWLEDGMENT

We thank all anonymous reviewers and
for their helpful feedback. This work was supported
by National Cryptologic Science Fund of China
(2025NCSF02015), National Natural Science Foundation
of China (U22B2030, 62572020), Shaanxi Provincial
Key Research and Development Program(2024SF2-
GJHX-37), Shenzhen Science and Technology Program
(JGJZD20240729142310014), Young Elite Scientists
Sponsorship Program by CAST (2023QNRCO001), and
Fundamental Research Funds for the Central Universities
(YJSJ25011). Hui Zhu is the corresponding author.

shepherds

REFERENCES
[1]

W. Gan, S. Wan, and P. S. Yu, “Model-as-a-service (maas): A survey,”
in IEEE Big Data. 1EEE, 2023, pp. 4636-4645.

J. L. C. Bércena, P. Ducange, F. Marcelloni, and A. Renda, “Increasing
trust in AI through privacy preservation and model explainability:
Federated learning of fuzzy regression trees,” Inf. Fusion, vol. 113, p.
102598, 2025.

N. Arndt, P. Molitor, and R. Usbeck, “Machine learning applications,”
it Inf. Technol., vol. 65, no. 4-5, pp. 139-141, 2023.

J. Hou, H. Liu, Y. Liu, Y. Wang, P. Wan, and X. Li, “Model protection:
Real-time privacy-preserving inference service for model privacy at the
edge,” IEEE Trans. Dependable Secur. Comput., vol. 19, no. 6, pp. 4270-
4284, 2022.

Q. Jia, L. Guo, Z. Jin, and Y. Fang, “Preserving model privacy for ma-
chine learning in distributed systems,” IEEE Trans. Parallel Distributed
Syst., vol. 29, no. 8, pp. 1808-1822, 2018.

U. Park, Y. Kang, H. Lee, and S. Yun, “A stacking heterogeneous
ensemble learning method for the prediction of building construction
project costs,” Applied sciences, vol. 12, no. 19, p. 9729, 2022.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in KDD. ACM, 2016, pp. 785-794.

V. G. Costa and C. E. Pedreira, “Recent advances in decision trees: an
updated survey,” Artif. Intell. Rev., vol. 56, no. 5, pp. 4765-4800, 2023.
W. Lu, J. Zhou, and J. Sakuma, “Non-interactive and output expressive
private comparison from homomorphic encryption,” in AsiaCCS. ACM,
2018, pp. 67-74.

K. Cong, D. Das, J. Park, and H. V. L. Pereira, “Sortinghat: Efficient
private decision tree evaluation via homomorphic encryption and tran-
sciphering,” in CCS. ACM, 2022, pp. 563-577.

R. A. Mahdavi, H. Ni, D. Linkov, and F. Kerschbaum, “Level up: Private
non-interactive decision tree evaluation using levelled homomorphic
encryption,” in CCS. ACM, 2023, pp. 2945-2958.

A. Akavia, M. Leibovich, Y. S. Resheff, R. Ron, M. Shahar, and M. Vald,
“Privacy-preserving decision trees training and prediction,” ACM Trans.
Priv. Secur., vol. 25, no. 3, pp. 24:1-24:30, 2022.

D. J. Wu, T. Feng, M. Naehrig, and K. E. Lauter, “Privately evaluating
decision trees and random forests,” Proc. Priv. Enhancing Technol., vol.
2016, no. 4, pp. 335-355, 2016.

[2]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

(12]

[13]

14

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]
[34]

[35]

[36]

(371

R. K. H. Tai, J. P. K. Ma, Y. Zhao, and S. S. M. Chow, “Privacy-
preserving decision trees evaluation via linear functions,” in ESORICS
(2), ser. Lecture Notes in Computer Science, vol. 10493. Springer,
2017, pp. 494-512.

A. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schneider, “Sok:
Modular and efficient private decision tree evaluation,” Proc. Priv.
Enhancing Technol., vol. 2019, no. 2, pp. 187-208, 2019.

R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” in NDSS. The Internet Society,
2015.

M. Joye and F. Salehi, “Private yet efficient decision tree evaluation,” in
DBSec, ser. Lecture Notes in Computer Science, vol. 10980. Springer,
2018, pp. 243-259.

A. Tueno, F. Kerschbaum, and S. Katzenbeisser, “Private evaluation of
decision trees using sublinear cost,” Proc. Priv. Enhancing Technol., vol.
2019, no. 1, pp. 266-286, 2019.

J. P. K. Ma, R. K. H. Tai, Y. Zhao, and S. S. M. Chow, “Let’s stride
blindfolded in a forest: Sublinear multi-client decision trees evaluation,”
in NDSS. The Internet Society, 2021.

J. Bai, X. Song, S. Cui, E. Chang, and G. Russello, “Scalable private
decision tree evaluation with sublinear communication,” in AsiaCCS.
ACM, 2022, pp. 843-857.

A. Tueno, Y. Boev, and F. Kerschbaum, “Non-interactive private decision
tree evaluation,” in DBSec, ser. Lecture Notes in Computer Science, vol.
12122. Springer, 2020, pp. 174-194.

J. Bai, X. Song, X. Zhang, Q. Wang, S. Cui, E. Chang, and G. Rus-
sello, “Mostree: Malicious secure private decision tree evaluation with
sublinear communication,” in ACSAC. ACM, 2023, pp. 799-813.

S. Yuan, H. Li, X. Qian, M. Hao, Y. Zhai, and G. Xu, “Efficient
and privacy-preserving outsourcing of gradient boosting decision tree
inference,” IEEE Trans. Serv. Comput., vol. 17, no. 5, pp. 2334-2348,
2024.

J. Fu, K. Cheng, Y. Xia, A. Song, Q. Li, and Y. Shen, “Private decision
tree evaluation with malicious security via function secret sharing,” in
ESORICS (2), ser. Lecture Notes in Computer Science, vol. 14983.
Springer, 2024, pp. 310-330.

Y. Zheng, H. Duan, C. Wang, R. Wang, and S. Nepal, “Securely and
efficiently outsourcing decision tree inference,” IEEE Trans. Dependable
Secur. Comput., vol. 19, no. 3, pp. 1841-1855, 2022.

Y. Zheng, C. Wang, R. Wang, H. Duan, and S. Nepal, “Optimizing
secure decision tree inference outsourcing,” IEEE Trans. Dependable
Secur. Comput., vol. 20, no. 4, pp. 3079-3092, 2023.

L. Liu, R. Chen, X. Liu, J. Su, and L. Qiao, “Towards practical privacy-
preserving decision tree training and evaluation in the cloud,” IEEE
Trans. Inf. Forensics Secur., vol. 15, pp. 2914-2929, 2020.

Z. Zhang, H. Zhang, X. Song, J. Lin, and F. Kong, “Secure outsourcing
evaluation for sparse decision trees,” IEEE Transactions on Dependable
and Secure Computing, 2024.

K. Ji, B. Zhang, T. Lu, L. Li, and K. Ren, “UC secure private branching
program and decision tree evaluation,” IEEE Trans. Dependable Secur.
Comput., vol. 20, no. 4, pp. 28362848, 2023.

L. Liu, J. Su, R. Chen, J. Chen, G. Sun, and J. Li, “Secure and fast
decision tree evaluation on outsourced cloud data,” in ML4CS, ser.
Lecture Notes in Computer Science, vol. 11806. Springer, 2019, pp.
361-377.

N. Cheng, N. Gupta, A. Mitrokotsa, H. Morita, and K. Tozawa,
“Constant-round private decision tree evaluation for secret shared data,”
Proc. Priv. Enhancing Technol., vol. 2024, no. 1, pp. 397-412, 2024.
J. M. Klusowski and P. M. Tian, “Large scale prediction with decision
trees,” Journal of the American Statistical Association, vol. 119, no. 545,
pp. 525-537, 2024.

J. Catlett, “Overprvning large decision trees.” in IJCAI, 1991, pp. 764—
769.

L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5-32,
2001.

S. Zhou and L. Mentch, “Trees, forests, chickens, and eggs: when and
why to prune trees in a random forest,” Statistical Analysis and Data
Mining: The ASA Data Science Journal, vol. 16, no. 1, pp. 45-64, 2023.
S. Ren, X. Cao, Y. Wei, and J. Sun, “Global refinement of random
forest,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 723-730.

R. Duroux and E. Scornet, “Impact of subsampling and tree depth on
random forests,” ESAIM: Probability and Statistics, vol. 22, pp. 96—128,
2018.

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

A. J. Izenman, Modern multivariate statistical techniques.
2008, vol. 1.

G. James, D. Witten, T. Hastie, R. Tibshirani et al., An introduction to
statistical learning. Springer, 2013, vol. 112, no. 1.

A. Diaa, L. Fenaux, T. Humphries, M. Dietz, F. Ebrahimianghazani,
B. Kacsmar, X. Li, N. Lukas, R. A. Mahdavi, S. Oya, E. Amjadian, and
F. Kerschbaum, “Fast and private inference of deep neural networks
by co-designing activation functions,” in USENIX Security Symposium.
USENIX Association, 2024.

Z. Zhang, R. Rathi, S. Perez, J. Bukhari, and Y. Zhong, “ZCNET:
achieving high capacity in low power wide area networks,” IEEE/ACM
Trans. Netw., vol. 30, no. 5, pp. 2032-2045, 2022.

N. S. Chilamkurthy, O. J. Pandey, A. Ghosh, L. R. Cenkeramaddi,
and H. Dai, “Low-power wide-area networks: A broad overview of its
different aspects,” IEEE Access, vol. 10, pp. 8192681959, 2022.

W. Lu, Z. Huang, Q. Zhang, Y. Wang, and C. Hong, “Squirrel: A scalable
secure two-party computation framework for training gradient boosting
decision tree,” in USENIX Security Symposium. USENIX Association,
2023, pp. 6435-6451.

J. Zhao, H. Zhu, W. Xu, F. Wang, R. Lu, and H. Li, “Sgboost:
An efficient and privacy-preserving vertical federated tree boosting
framework,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 1022-1036,
2023.

J. Zhao, H. Zhu, F. Wang, R. Lu, and H. Li, “Efficient and privacy-
preserving tree-based inference via additive homomorphic encryption,”
Inf. Sci., vol. 650, p. 119480, 2023.

H. Shin, J. Choi, D. Lee, K. Kim, and Y. Lee, “Fully homomorphic
training and inference on binary decision tree and random forest,” in
ESORICS (3), ser. Lecture Notes in Computer Science, vol. 14984.
Springer, 2024, pp. 217-237.

A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: improved
mixed-protocol secure two-party computation,” in USENIX Security
Symposium. USENIX Association, 2021, pp. 2165-2182.

Y. Zheng, H. Zhu, R. Lu, Y. Guan, S. Zhang, F. Wang, J. Shao, and
H. Li, “Pgsim: Efficient and privacy-preserving graph similarity query
over encrypted data in cloud,” IEEE Trans. Inf. Forensics Secur., vol. 18,
pp. 2030-2045, 2023.

M. C. Pike, “Remark on algorithm 235 [G6]: random permutation,”
Commun. ACM, vol. 8, no. 7, p. 445, 1965.

P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for
machine learning,” in CCS. ACM, 2018, pp. 35-52.

E. Boyle, N. Gilboa, Y. Ishai, and A. Nof, “Practical fully secure three-
party computation via sublinear distributed zero-knowledge proofs,” in
CCS. ACM, 2019, pp. 869-886.

J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein, “High-throughput
secure three-party computation for malicious adversaries and an honest
majority,” in EUROCRYPT (2), ser. Lecture Notes in Computer Science,
vol. 10211, 2017, pp. 225-255.

S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure com-
putation for neural network training,” Proc. Priv. Enhancing Technol.,
vol. 2019, no. 3, pp. 2649, 2019.

N. Gilboa and Y. Ishai, “Distributed point functions and their applica-
tions,” in EUROCRYPT, ser. Lecture Notes in Computer Science, vol.
8441. Springer, 2014, pp. 640-658.

E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in EU-
ROCRYPT (2), ser. Lecture Notes in Computer Science, vol. 9057.
Springer, 2015, pp. 337-367.

——, “Function secret sharing: Improvements and extensions,” in CCS.
ACM, 2016, pp. 1292-1303.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, ser. Proceedings of Machine Learning Research,
vol. 54. PMLR, 2017, pp. 1273-1282.

Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, pp. 12:1-12:19, 2019.

J. Konec¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” CoRR, vol. abs/1610.05492, 2016.

Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving
vertical federated learning for tree-based models,” Proceedings of the
VLDB Endowment., vol. 13, no. 11, pp. 2090-2103, 2020.

Springer,

15

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]
[76]

(771

(78]

(791

[80]

[81]

[82]

[83]

[84]

W. Fang, D. Zhao, J. Tan, C. Chen, C. Yu, L. Wang, L. Wang, J. Zhou,
and B. Zhang, “Large-scale secure XGB for vertical federated learning,”
in CIKM. ACM, 2021, pp. 443-452.

Y. Zheng, S. Xu, S. Wang, Y. Gao, and Z. Hua, “Privet: A privacy-
preserving vertical federated learning service for gradient boosted deci-
sion tables,” IEEE Trans. Serv. Comput., vol. 16, no. 5, pp. 3604-3620,
2023.

H. Mahdikhani, R. Lu, Y. Zheng, J. Shao, and A. A. Ghorbani,
“Achieving o(log®n) communication-efficient privacy-preserving range
query in fog-based iot,” IEEE Internet Things J., vol. 7, no. 6, pp. 5220—
5232, 2020.

Z. Huang, W. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure two-party deep neural network inference,” in USENIX Security
Symposium. USENIX Association, 2022, pp. 809-826.

T. Veugen, “Improving the DGK comparison protocol,” in WIFS. IEEE,
2012, pp. 49-54.

D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS, 2015.
Y. Zheng, S. Xu, S. Wang, Y. Gao, and Z. Hua, “Privet: A privacy-
preserving vertical federated learning service for gradient boosted deci-
sion tables,” IEEE Trans. Serv. Comput., vol. 16, no. 5, pp. 3604-3620,
2023.

D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “Cryptflow2: Practical 2-party secure inference,” in CCS.
ACM, 2020, pp. 325-342.

B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on OT extension,” in USENIX Security Symposium. USENIX
Association, 2014, pp. 797-812.

G. Couteau, L. Devadas, S. Devadas, A. Koch, and S. Servan-Schreiber,
“Quietot: Lightweight oblivious transfer with a public-key setup,” in
ASIACRYPT (2), ser. Lecture Notes in Computer Science, vol. 15485.
Springer, 2024, pp. 197-231.

S. Raghuraman, P. Rindal, and T. Tanguy, “Expand-convolute codes for
pseudorandom correlation generators from LPN,” in CRYPTO (4), ser.
Lecture Notes in Computer Science, vol. 14084. Springer, 2023, pp.
602-632.

C. Juvekar, V. Vaikuntanathan, and A. P. Chandrakasan, “GAZELLE: A
low latency framework for secure neural network inference,” in USENIX
Security Symposium. USENIX Association, 2018, pp. 1651-1669.

Q. Zhang, C. Xin, and H. Wu, “GALA: greedy computation for linear
algebra in privacy-preserved neural networks,” in NDSS. The Internet
Society, 2021.

W. Lu, Z. Huang, Z. Gu, J. Li, J. Liu, C. Hong, K. Ren, T. Wei, and
W. Chen, “Bumblebee: Secure two-party inference framework for large
transformers,” in NDSS. The Internet Society, 2025.

B. De Ville, “Decision trees,” Wiley Interdisciplinary Reviews: Compu-
tational Statistics, vol. 5, no. 6, pp. 448—455, 2013.

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., p. 144, 2012.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Trans. Comput.
Theory, vol. 6, no. 3, pp. 13:1-13:36, 2014.

J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in ASIACRYPT (1),
ser. Lecture Notes in Computer Science, vol. 10624. Springer, 2017,
pp. 409-437.

N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Des. Codes Cryptogr., vol. 71, no. 1, pp. 57-81, 2014.

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in CCS. ACM, 2017, pp.
619-631.

O. Goldreich, Foundations of Cryptography, Volume 2.
university press Cambridge, 2004.

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an honest
majority,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016, pp. 805-817.

W. Xu, H. Zhu, Y. Zheng, S. Bian, N. Sun, H. Yuan, D. Feng, and
H. Li, “Kangaroo: A private and amortized inference framework over
wan for large-scale decision tree evaluation,” arXiv preprint, 2025, https:
/larxiv.org/abs/2509.03123.

T. Veugen, “Improving the DGK comparison protocol,” in WIFS. IEEE,
2012, pp. 49-54.

Cambridge

https://arxiv.org/abs/2509.03123
https://arxiv.org/abs/2509.03123

[85] L. Duan, X. Chen, W. Liu, D. Liu, K. Yue, and A. Li, “Structural entropy
based graph structure learning for node classification,” in AAAI. AAAI
Press, 2024, pp. 8372-8379.

A. Farzaneh, M. Badiu, and J. P. Coon, “On random tree structures,
their entropy, and compression,” CoRR, vol. abs/2309.09779, 2023.
https://github.com/microsoft/SEAL.

https://github.com/secretflow.

https://github.com/osu-crypto/libOTe.
https://github.com/encryptogroup/ABY.
https://github.com/encryptogroup/PDTE.

https://github.com/Rasoul AM/private-decision-tree-evaluation.

H. Ma, S. Han, and H. Lei, “Optimized paillier’s cryptosystem with fast
encryption and decryption,” in ACSAC. ACM, 2021, pp. 106-118.

[86]

[87]
[88]
[89]
[90]
[91]
[92]
[93]

TABLE VIII: Notations for Kangaroo

Notations Definition

M,D,t Feature dimension, tree depth, bit size of feature
K,k Total number of tree, 1 < k < K

T, T Total decision node number before and after hiding
Tk,s» ’7—,:’ s Model structure index vector before and after

hiding for k-th tree

Feature index, threshold, weight, flip condition,
and node status vectors after hiding for k-th tree

mk7yk7wk7Ukﬂ/1k

Iy Total number after packing, 1 <~ <T

M; Encoded feature index vector for k-th tree
Yg‘wk Encoded and packed feature threshold vector
Wg‘wk Encoded and packed weight vector

T’ﬁfwk Encoded and packed flip condition vector

\Ilg‘wk Encoded and packed node status vector

my M -size one-hot vector for n-th node of k-th tree
X Client’s feature vector {z1,z2, -,z }
N,q,Q Polynomial size, plaintext and ciphertext modulo
¢ Precision parameter

APPENDIX A
KANGAROO EXTENSIONS

We propose a feature packing algorithm FeatureSelPack
in Algorithm 2 to select and merge the feature for multi-
ple trees. Moreover, we propose II-PackFeatureSel proto-
col Fig. 10 for the LAN setting to perform feature selection,
which avoids the rotation overhead introduced in Algorithm 1.
First, the server selects a random vector E and calculates
[X'] = [X] oM + E. Then, the server sends [X'] to the
client. After receiving [X'], the client decrypts and then
divides it into 7* blocks, each containing M values. Next,
the client sums the elements within each block to obtain
the vector X", encrypts it, and sends it to the server, where
each summation result is placed in the corresponding position.
Similarly, the server utilizes E to perform summation and then
negates each result to obtain the vector E’. At last, the server
calculates [X”] + E’ to get the selected encrypted vector
[X']. The protocol can also be easily extended to support
multiple trees to achieve the fully amortized feature selection.
We also provide an outsourcing scheme for Kangaroo, and
the interested readers can refer to the full version [83] and
our github repository for more details.

16

PackPathEva Protocol

SInput: The encrypted vector [C], the obfuscated
structure index 7., and the encoded weight W.
ClInput: The obfuscated structure index 7.*.
SOutput: The encrypted evaluation result vector [T7].
> The server executes:

- R « {7«’17*7... R ’TET*—l)M-&-l’*"” 7*},
[1I'] + [C] + R’ = the client.

> The client constructs a tree by T, and executes:
2: I' « Dec([I'],s), the I'[(n — 1)M + 1] + n-th
node—>left.cost and the 1 —I'[(n—1)M +1] + n-
th node—>right.cost for 1 < n < 7%,

321" < {if,0,---,0,--- i 50,0,--- 0}, where
I"[(n — 1)M + 1] is the sum of cost along the n-th
pathand 1 <n < 7"+ 1.

4: [I"] < Enc(I”,pk) = the server.

> The server constructs a tree by T and executes:
5: The —R'[(n—1)M 4 1] + n-th node—>1left.cost
and the R'[(n—1)M +1] < n-th node->right.cost
forl1 <n<rTt*

6: R < {r/,0,---,0,--- v, 1,0,---,0}, where
R"[(n — 1)M + 1] is the sum of cost along the n-th
pathand 1 <n < 7%+ 1.

7: The server gets the encrypted results of path
cost-based evaluation [I] « [I"] +R”.

> The server and client jointly execute:

8: The server gets [C'1
PackObliviousCom(—[I],0). >

Transform path cost-based into polynomial-based.
> The server executes:

9: The server gets [T < [C'] o W.

Fig. 8: Packed path evaluation protocol for single tree.

APPENDIX B
CORRECTNESS ANALYSIS

The correctness of the Kangaroo framework depends on
three core building blocks. Hence, it suffices to prove the
correctness of these components.

A. The Correctness of PackFeatureSel

Theorem 1: After executing PackFeatureSel, the se-
lected encrypted result [X'] = [[zy], [*],---, [, -,
[Tm[(r—1)m+11), [¥], - - - [#]] can be obtained.

Proof. To make it easier to understand, we focus only
on the first M values in the packed ciphertext. Since the
operation is parallel, it is correct for the other positions.
First, in PackFeatureSel, [,,[;] is selected by a one-hot
vector m,lc, and other elements are set to 0. Therefore, the
feature selection can be treated as the summation operation.
In I-PackFeatureSel, we utilize rotate-and-sum technique to
finish the summation of M values. To improve the efficiency,

https://github.com/microsoft/SEAL
https://github.com/secretflow
https://github.com/osu-crypto/libOTe
https://github.com/encryptogroup/ABY
https://github.com/encryptogroup/PDTE
https://github.com/RasoulAM/private-decision-tree-evaluation

The Inference Protocol for Random Forests
SInput: {M, Y2 F 'Wreck ypack gpacky (V3|
and {7; s}k 1
CInput: [X] and {7, }i .
COutput: The aggregated evaluation result 7.
1) Secure Feature Selection
> The server executes:
1: {[X Pack]}pack + FeatureSelPack([X], M,
{M;.} k=1).
2) Oblivious Comparison
> The server and client jointly execute:
2: [VJ]] « the steps 1 — 5 of PackObliviousCom
([X Pack], YP**) for 1 <y <T.

T/l(’ server executes:
3: R, + R, *TWC"“ R, [i] <—01f\IJP“Ck[] = 0 for
1§7<Fand1<z<7*]\f

4:In C!, CU[i] = 1if Ry[i] = —1 or (YP*F[j] = —1
and \IJP‘“"[] 0), 0 otherwise for 1 <i < 7*M.
5: The server gets [C,] < C., + R, o [V/].
3) Secure Path Evaluation
> The server and client jointly execute:
6: The server gets [7,] < PackPathEva([C,],
{Te S}k (y— 1)MJrl,Wp‘“k) for 1 <y <T.
4) Result Response
> The server (".\‘("('LII‘L’S.'*
T 2T Most] o+ T,
Zg:lﬂ)M T'[i] = the client.

> The client executes:
8 TV + Dec(zy 1[[]] +T, s).

9: The client gets 7 < S\" "M (T[] — T'[i]).

Fig. 9: The inference protocol for random forests under client-
server model.

we utilize the division-based approach to finish the summation
and the core idea is to sum two adjacent results and store the
sum in the previous result. Finally, by iterating, the sum of
M values is accumulated into the first position. If a value
does not have an adjacent result, it waits to enter the next
round. We also show a toy example for M = 8 and M = 12
in Fig. 11 to better understand our I-PackFeatureSel. In
II-PackFeatureSel, the server calculates — E%zl(E[m]),
and the client calculates -2 _ (X’[m] + E[m]). When the
server calculates [X”] + E’, the sum of the M value
[0 (X fm])] = [SA (X fm] + Efm])] ~ S0 (Efm])

is placed in the first position. Thus, Theorem 1 is correct. [

B. The Correctness of PackObliviousCom

Theorem 2: After executing PackObliviousCom, the com-
parison result [C] of [X’] and Y can be obtained, where
Cli) =0if X'[i{] = Y[i] <0, C[i] = 1 otherwise.

17

Algorithm 2 FeatureSelPack

SInput: [X], M, and {M,}X ;.
SOutput: {[XPeck}l_,.
1: > The server executes:
2: [X}] < I-PackFeatureSel([X],M,My) for 1 <k <
K.
C B {1,040, 1,0, .0},
: The server gets [[X ‘pack] Zm 1 ROt([[Xéy—n
Em—1)forl<~y<T.

N

AW

M+mﬂ 0

II-PackFeatureSel Protocol
SInput: [X], M, and M.
SOutput: The selected encrypted vector [X'].
> The server executes:
I: B Z), [X'] + [X] oM+ E = the client.
> The client executes:
2: X' Dec([X'],8), X"« {31, X'[i],0,---
Ty Zi:‘;;FM(T*fl) X/[Z.LO? 70}
3: [X"'] < Enc(X"”, pk) = the server.

T/l(’ server executes:

-2

4-E/<_{_Z¢:1 Eli], 0,
5: The server gets [X'] < [X"] +E'.

0,

MT*

SURE i=1+M(r*—1)

)

Eli, 0,--- .0}

Fig. 10: Packed feature selection protocol for single tree.

Proof. To make it easier to understand, we focus only on
the one value in the packed ciphertext. It is important to note
that both [X'] and Y in PackObliviousCom are quantized,
ensuring that X'[¢] and Y'[¢] lie within the range [0, ¢], where
¢ = 2751 It follows that X'li] = Y[i] € [=¢,(]. For A,
B, and R, we have ¢ > A[i] > B[i] > 0 and R[i] € {-1,1}.
Thus, A[i] - (X'[i] = Y[i]) + Bli] € (=¢* + ¢,0) U (0,¢* +
() = (—2'°8a=2 4 2751 0) U (0,289 + 275"
(_210gq 2 210gq 270) (07210gq—1 +210gq—1) —

<_
PRI R R
SISl

ogoodood

" Gososndodnda

DDD DDDI?DDD
I;IEIEIEIEIEIEIEII;IEIEIEI

=8

Fig. 11: A toy example of I-PackFeatureSel for M = 8
and M = 12.

TABLE IX: The Truth Table for Oblivious Comparison.

X' -Y[E RE V[E V[O] COf4
<0 -1 >0 1 1 0
<0 1 <0 0 0 0
>0 -1 <0 0 1 1
>0 1 >0 1 0 1

(0, 2). Clearly, when the sign of A[i] - (X'[i] — Y'[i]) + Bli]
changes, its value still remains within the range (—4,0) U
(0,). This ensures that the sign of A[4]- (X'[i] —Y[i]) + Bli]
mod p is only affected by X'[{] — Y[i] and R][i]. Because
X'[i] - Yi] and RJ[i] are random, we have them in four cases:
) X'li] — Y[i] < 0,2 X'[i]—Y[i] >0,3) Rli] = —1,
and 4) R[i] = 1. We show the true table in TABLE IX. It
is evident that when X'[{] — Y[i] < 0, C[i] = 0, and when
X'[i] = Y[i] > 0, C[i] = 1. By leveraging SIMD technique,
all comparison results satisfy this condition. Therefore, Theo-
rem 2 is correct.]

C. The Correctness of PackPathEva

Theorem 3: After executing PackPathEva, the encrypted
evaluation result vector [T, where one element in 7' is the
actual weight value, and the remaining elements are 0.

Proof. Similarly, we take the case of one node as an
example. In the original setup, the left cost of the ¢-th node
is set to C[i], while the right cost of i-th node is set to
1 — C[i]. Now, on the client side, the left cost of the i-th
node is set to C[i] + R'[i] and the right cost of i-th node is
set to 1 — C[i] — R'[i]. On the server side, the left cost of the
i-th node is set to —R'[] and the right cost of i-th node is
set to R’'[i]. When the costs corresponding to the client and
server are added together, the left and right costs of the i-
th node are recovered. Therefore, when summing along each
path, only one path will yield a sum of 0, while the sums
of the other paths will be greater than 0. Next, we utilize
PackObliviousCom to convert the path cost-based results into
polynomial-based results. It is obvious that taking (—[I],0)
as the input of PackObliviousCom can finish the operation.
This ensures that the result at the position of the real weight is
1, while the results at all other weight positions are 0, which
means that the encrypted evaluation result vector [1'] can be
obtained. Therefore, Theorem 3 is correct. |

APPENDIX C
SECURITY ANALYSIS

In model inference, it is generally unnecessary to assume
an adversary that actively tampers with model correctness.
If a client behaves maliciously, any resulting inaccuracies
are their own responsibility. Conversely, if a service provider
intentionally modifies inference results, it may degrade the
user experience, erode user trust, and ultimately damage the
provider’s reputation and commercial value. Therefore, adopt-
ing the semi-honest assumption is reasonable in the scenario.

18

Based on this assumption, we give the security definition and
the corresponding security analysis of Kangaroo.

A. Security Definition

We use the security definition of simulation-based real/ideal
worlds model [81] for two-party computation (2PC). In the
real/ideal worlds, there are two probabilistic polynomial time
(PPT) adversaries .A; and A5 that corrupt party A and party
B. The real world is consistent with our system model. All
messages that A; and A5 can view are the same as that
they can view in our scenario. In the ideal world, there is
a simulator S; with {£12,£1} and a simulator S with
{L1,2,L2}, where L, 5 is leakage of our scheme to party A
and party B, £; leakage of our scheme to party A, and Lo
leakage of our scheme to party B. The simulator S; (resp.
S2) will simulate the messages that A4; (resp. Asg) views in
the ideal world. If 4; and A5 can only distinguish between
the real and ideal worlds with negligible probability, then the
private data @ - @ remains protected, and our scheme is secure
under the leakages £; 2, L1, Ls.

B. The Security of Kangaroo for Client-Server Model

In client-server model, party A is the client and party B is
the server. We give the leakages to the client and server.

e Leakages to both client and server. £y includes 1) the
public parameters of cryptosystem: pp; 2) the public key:
{(b, a)}; 3) the feature dimension: M 4) the obfuscated model
structure indices: {77:,5}1@](:1; 5) the precision parameter (.

e Leakages to client only. £; includes the private key (1, s).

e Leakages to server only. Lo includes 1) the packed
model {Yf’y”’“k ,Wg“k, T?;“Ck, \IIE{“C’“}; 2) the feature indices
{M;.} kK:I'

Based on the above leakages, we construct an ideal world
model with two adversaries {41, A2}, a simulator S; with
{L12,£1} and a simulator Sy with {L;2,L2}. Then, we
formally define the security of Kangaroo.

Definition 1 (Security of Kangaroo): The Kangaroo
is selectively secure iff for any two PPT adversaries
{A1, Az}, there exist two simulators {S1,S2} with
{L1,2,L1,L2} to simulate an ideal world such that
{A1, Az} distinguish the views from the real world or
the ideal world with negligible probability.

Theorem 4: Kangaroo is selectively secure with the
{[/1’2, [,1, £2}

Proof. Due to space limitation, the detailed security analysis
can be found in the full version [83]. Our analysis shows that in
all phases of Kangaroo, both A; and 45 can only distinguish
the real and ideal world with negligible probability, and the
private data @ - @ are protected. Therefore, our Kangaroo
is selectively secure with {L12,L1,Ls} and provides the
same security as these schemes [9]-[11], [14]-[16], [18].
In addition, to mitigate risks posed by arbitrary or abusive
queries, we recommend integrating query-based payment and
rate-limiting mechanisms into Kangaroo.]

APPENDIX D
ARTIFACT APPENDIX

Kangaroo is a high-performance framework designed for se-
cure decision tree inference in two key scenarios: 1) Two-Party
Secure Inference: Enables privacy-preserving decision tree
inference between two parties; 2) Single-Cloud Outsourced
Model Inference: Supports secure and efficient decision tree
inference for outsourced models in a single-cloud environ-
ment. This artifact allows users to evaluate the availability
and runtime latency of Kangaroo.

A. Description & Requirements

1) How to access: Our implementation is available on
Zenodo with DOI: https://doi.org/10.5281/zenodo.17055770.
Alternatively, we also make the artifact available on GitHub,
as stated in the manuscript.

e Kangaroo is a high-performance framework designed for
secure decision tree inference in two scenarios:

i) Two-Party Secure Inference: Enables privacy-preserving
decision tree inference between two parties. (Key scenario,
provided for correctness and efficiency.)

ii) Single-Cloud Outsourced Model Inference: Supports
secure and efficient decision tree inference for outsourced
models in a single-cloud environment. (Not key scenario,
provided for efficiency.)

e Repository Structure

i) Kangaroo for client-server model-correct - Verify the
correctness of the scheme.

ii) Kangaroo for client-server model-time - Measure the
time overhead of a two-way security reasoning scheme.

iii) Kangaroo for client-server model-communication -
Measurement communication overhead of a two-way security
reasoning scheme.

iv) Kangaroo for outsourcing model-time - Measure
the time overhead of a Single-Cloud Outsourced security
reasoning scheme.

v) Kangaroo for outsourcing model-communication -
Measurement communication overhead of a Single-Cloud Out-
sourced.

vi) Kangaroo for WAN - Deploying Kangaroo in Real-
World Applications.

2) Hardware dependencies: None

3) Software dependencies: Microsoft SEAL, Github:
https://github.com/microsoft/SEAL

4) Benchmarks: We place our datasets under the
UCI _dectrees directory and provide a test.py script to
visualize the structure of each decision tree model. The
models include boston, breast, decision_tree, diabetes, digits,
iris, linnerud, and wine. By executing the test.py script, a
png image showing the structure of the corresponding model
will be generated. In the main paper, we focus on three
larger datasets, boston, digits, and diabetes, to align with
our system’s performance and scalability goals. However,
in this artifact, we include experiments on all datasets to
comprehensively validate the correctness and robustness of
the Kangaroo system.

19

To demonstrate Kangaroo’s capability under real-world
WAN conditions, we deploy servers across different cloud
platforms. One server is hosted on JD Cloud, equipped with
single thread, 3.8 GB RAM, and an Intel(R) Xeon(R) Gold
6148 @ 2.40 GHz processor, running Ubuntu 22.04.5. The
other server is deployed on Alibaba Cloud, featuring a single
CPU thread, 4 GB RAM, and an Intel(R) Xeon(R) Platinum @
2.50 GHz processor, also running Ubuntu 22.04.5. The client is
deployed on a ThinkPad-P53 machine with single thread, 23.1
GB RAM, and an Intel Core i5-9400H 2.50GHz processor
running on Ubuntu 18.04.6.

As mentioned above, our code is designed to run on any
Linux system. Therefore, for correctness testing, users can
follow the provided README to run the Kangaroo for client-
server model-correct configuration on a single Linux machine.

To evaluate network-level availability and functionality, the
Kangaroo for WAN configuration needs to be executed on
two separate machines, which can be any two Linux-based
systems. For this purpose, and to protect sensitive information
stored on our personal laptops, we provide access to two
cloud servers for testing under realistic network conditions.
These servers allow reviewers to reproduce our WAN-based
experiments and verify that our system is functional and
executable in real-world deployment settings.

e Alibaba Cloud, SSH + vscode, root, ip: 8.139.254.165.
Password: P@sswOrd

e JD Cloud, SSH + vscode, root, ip: 117.72.114.221.
Password: P@sswOrd

Due to space limitation, we have provided the step-by-step
instructions for local IP configuration in the readme.md on
GitHub and the archived artifact on Zenodo.

B. Artifact Installation & Configuration

e Required packages for Kangaroo

i) g++

ii) make

iii) seal (https://github.com/microsoft/SEAL)
We use g++(11.4.0), make(4.3), seal(4.1).

C. Experiment Workflow

To ensure reproducibility, we include the entire experiment
workflow directly in this Evaluation section.

D. Major Claims
We summarize our major claims as follows:

o (Completeness and Correctness): SYSTEM implements
a two-party secure inference protocol for privacy-
preserving decision tree evaluation. The protocol com-
prises three main phases: secure feature selection (includ-
ing non-interactive selection and interactive selection, as
shown in Algorithm 1 and Fig. 10), oblivious comparison
(Fig. 2), and secure path evaluation (Fig. 8). By combin-
ing these components, our ciphertext-based inference can
be correctly and securely executed.

To demonstrate the correctness of our protocol, we
provide a full implementation under the Kangaroo for

Building project...

Built target ex

1
1
1

Built target nonexamples

r of virtual nodes 1158

Fig. 12: Correctness Test.

client-server model-correct directory. The main file
contains annotated code corresponding to each protocol
step:

i) Comment 2.1 corresponds to secure feature selection
(Comment 2.1.1 — Algorithm 1, non-interactive selec-
tion; Comment 2.1.2 — Fig. 10 interactive selection)

ii) Comment 2.2 — oblivious comparison (Fig. 2)

iii) Comment 2.3 — secure path evaluation (Fig. 8)

To verify the correctness of our protocol, we compare the
plaintext and ciphertext prediction results. The plaintext
inference logic is implemented starting from line 938,
which uses the decision tree model to predict on a given
plaintext input vector x. The output of ciphertext-based
inference is decrypted at line 1062 and compared to the
plaintext result. Matching outputs confirm the functional
correctness and integrity of our secure inference protocol.
(Exercisability): SYSTEM can be executed either locally
or over a real WAN. For local testing, all programs
can be directly executed on a single Linux machine. To
further demonstrate the deployability and practicality of
our system in real network environments, we provide a
WAN-based deployment example using our core client-
server inference protocol. This setup illustrates that our
system is functional and executable across two physically
separated machines communicating over the internet.

E. Evaluation

1) Experiment for Completeness and Correctness: We pro-
vide the details for completeness and correctness.

[How to] To facilitate the evaluation process, we have
deployed our system on an Alibaba Cloud server. For each
subdirectory, we provide brief usage instructions to help
evaluators execute the corresponding code smoothly.

[Execution] As an example, for functional correctness test-
ing, evaluators can:

Log in to our cloud server via SSH.

Navigate to the directory: ed /SEAL/Kangaroo/Kangaroo
for client-server model-correct/

Execute the script: ./1.sh This will run both plaintext and
ciphertext inference on all supported models, and print the
corresponding outputs to allow direct comparison and verifi-
cation.

[Results] We show a running result as Fig. 12.

20

o0 for WAN/build#

./client

Fig. 13: Exercisability Test.

Similarly, by following the same procedure in the commu-
nication and runtime directories as described in Experiment
for Completeness and Correctness, evaluators can reproduce
the experiments for measuring the communication overhead
and runtime performance of our scheme.

2) Experiment for Exercisability: We provide the details for
exercisability.

[How to] To facilitate the evaluation process under WAN
network, we have deployed the client on an JD Cloud server
and have deployed the server on an Alibaba Cloud server. We
provide brief usage instructions to help evaluators execute the
corresponding code smoothly.

[Execution] Log in to our cloud servers via SSH.

Navigate to the directory for Alibaba Cloud: cd
/SEAL/Kangaroo/Kangaroo for WAN Execute the script:
Jserver

Navigate to the directory for JD Cloud: ecd
/xw/SEAL/Kangaroo/Kangaroo for WAN Execute the
script: ./client

The above execution runs the Kangaroo system over a
real wide-area network. Due to the use of JD Cloud and
its bandwidth constraints, the execution time may be slightly
slower than local testing.

[Results] We show a running result as Fig. 13.

Please ensure that .server is executed before running
Jclient. If you encounter any issues during the evaluation
process, feel free to contact us for assistance.

	Introduction
	Our Contributions
	Related Works

	Preliminaries
	Decision Tree Evaluation
	Packed Homomorphic Encryption
	Private Data Comparison
	Path Evaluation

	Framework Overview
	Technique Challenges and Observations
	Kangaroo Workflow
	Models and Security

	Building Blocks
	Packed Feature Selection: PackFeatureSel
	Packed Oblivious Comparison: PackObliviousCom
	Packed Path Evaluation: PackPathEva

	Kangaroo for Large-Scale Evaluation
	The Inference Protocol for Random Forests
	Complexity Analysis

	Enhancement For practical Applications
	Same-Sharing-for-Same-Model
	Latency-Aware Strategy
	Adaptive Encoding Adjustment

	Performance Evaluation
	Experimental Setting
	Microbenchmarks
	Large-Scale Tree Models Benchmarks
	Further Experiments and Discussion

	Conclusion
	References
	Appendix A: Kangaroo Extensions
	Appendix B: Correctness Analysis
	The Correctness of PackFeatureSel
	The Correctness of PackObliviousCom
	The Correctness of PackPathEva

	Appendix C: Security Analysis
	Security Definition
	The Security of Kangaroo for Client-Server Model

	Appendix D: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment for Completeness and Correctness
	Experiment for Exercisability

