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I. INTRODUCTION

The ubiquity of smartphones has made mobile apps central
to modern digital life. These apps often handle extensive
amounts of sensitive personal information, and mediate a
significant portion of user’s online activities, WebViews are an
integral technology for embedding web content within mobile
apps, thereby enabling a rich user experience. Functioning
similarly to browsers, WebViews render HTML, CSS, and
JavaScript directly inside apps, allowing seamless integration
of web-based content, including advertisements, social media
feeds, and interactive elements. A distinctive capability of
WebViews, however, is the facilitation of interaction between
Java (the app-side context) and JavaScript (the web-side
context). Java methods can be exposed to JavaScript using
addJavaScriptInterface, allowing JavaScript to invoke
native functionality, while Java code can trigger JavaScript
execution using methods such as evaluateJavaScript. A
previous study reported that approximately 83% of apps on the
Google Play Store incorporate WebViews, including popular
apps such as Facebook, Instagram, and Twitter [1].

While Java and JavaScript execution contexts within Android
apps are technically distinct—each governed by its respective
security model—their bridging via WebViews creates potential
privacy risks. Java code can inject device-specific identifiers
into WebViews, enabling JavaScript to capture and exfiltrate
them. Traditional Android analysis tools predominantly focus
on native Java code, often neglecting WebViews, whereas
existing WebView-focused analyses typically employ static
techniques or target specific frameworks. For example, Bai
et al. examined data leakage through JavaScript interfaces
primarily in Cordova apps [2], while Lee et al. [3] and Tiwari
et al. [4] used methods insufficient to fully capture dynamic
JavaScript inclusion and execution. Thus, a comprehensive
dynamic analysis that bridges these contexts is currently
lacking.

Abstract—WebViews are a prevalent method of embedding web-
based content in Android apps. While they offer functionality 
similar to that of browsers and execute in an isolated context, apps 
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visibility of the JavaScript code being executed inside WebViews. 
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whether privacy violations occur.

To address this gap, we propose WebViewTracer, a framework 
designed to dynamically analyze the execution of JavaScript 
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To address this gap, we develop WebViewTracer, an
automated dynamic analysis system designed to analyze
cross-context interactions between Java and JavaScript within
Android WebViews. Given an Android APK file, WebView-
Tracer dynamically executes the application while simultane-
ously recording two key data sources: (1) JavaScript execution
logs captured via VisibleV8 [5] detailing Web APIs invoked by
JavaScript within WebViews, and (2) Java-WebView interaction
logs collected via Frida instrumentation, which tracks method
calls between Java and JavaScript contexts. By synthesizing
these logs, WebViewTracer provides detailed visibility into the
types and directions of information diffusion occurring between
Java and JavaScript, including device-specific information
leakage and fingerprinting behaviors.

We demonstrate the capabilities WebViewTracer through the
first large-scale, dynamic analysis of JavaScript behavior within
WebViews, on a dataset of 10K Android apps from the Google
Play Store. Our analysis uncovers novel privacy-invasive
behaviors, wherein the cross-context bridging enabled by
JavaScript injection into WebViews is leveraged for exchanging
tracking identifiers and other sensitive user data that is not
directly accessible in a given execution context due to existing
access control mechanisms. Essentially, the Java-to-JavaScript
bridge violates both isolation and policy enforcement policies.
Surprisingly, we find that such behaviors are pervasive, as
we detect injections of sensitive data in 65% of the 4,597
apps that load WebViews. Crucially, we find that 59% of
the apps with WebViews also exfiltrate injected sensitive data,
which is typically inaccessible from within WebViews, over the
network. Subsequently, we analyze the actors responsible for
injecting the private information into WebViews and receiving
it over the network. Using dynamic analysis, we map these
flows to specific SDK vendors, and find that this form of
information leakage is common among major ad libraries and
analytics SDKs. Finally, we also examine whether the same
actors engage in broader privacy-invasive activities. Specifically,
we investigate evidence of device or user fingerprinting based
on WebView content and JavaScript execution traces and find
that a subset of the actors responsible for context-restricted data
leaks, also carry out other forms of aggressive web tracking
(e.g., canvas fingerprinting).

In summary, the main contributions of our paper are:

• We introduce WebViewTracer, an open-source, scalable
system that dynamically analyzes JavaScript execution
within Android WebViews.

• We present the first comprehensive, large-scale, dynamic
investigation of cross-context Java-to-JavaScript interac-
tions in Android apps.

• We provide novel insights into the implications of bridging
the Java and JavaScript execution contexts, highlighting
pervasive privacy-invasive behaviors in the wild.

II. BACKGROUND

Stateful and Stateless Tracking. Traditionally, tracking in
Android used to depend heavily on persistent device identifiers
like the IMEI and IMSI. These identifiers allowed long-term
tracking and were immutable, i.e., a user could not alter these
identifiers if they did not wish to be tracked. Eventually, Google
recognized this as problematic and made these persistent
identifiers difficult to access, replacing them with resettable
identifiers like the Advertising ID, which can be reset or deleted
by the user at any time. However, such resettable identifiers can
be combined with other forms of user or device information
(e.g., ZIP code [6] and android.os.Build data [7]) to
create a unique user profile that overcomes the potentially
ephemeral nature of these identifiers.

On the web, tracking was traditionally done using cookies,
which were persistent pieces of information stored by the
browser and bound to a specific website. However, recent
years have seen the rise of stateless tracking techniques like
fingerprinting to counteract the prevalence of anti-tracking
countermeasures. Fingerprinting uniquely identifies users by
leveraging APIs present in modern browsers for directly or
indirectly collecting information about the user’s software and
hardware configuration [8]. In essence, no persistent identifiers
are set, but rather, the website computes a unique identifier
during each visit that will match that of previous visits if the
device’s configuration remains unchanged.

Mobile advertising. Mobile advertising has been a persistent
feature of the Android ecosystem since its inception. In its early
stages, advertiser-controlled code was often executed directly
on users’ devices, exposing them to considerable privacy and
security risks. To mitigate these concerns, ad SDKs transitioned
to using WebViews as a means of isolating third-party advertiser
content. This shift introduced a degree of sandboxing that
helped address several security and privacy issues.

Over time, the WebView sandboxing model has been
significantly strengthened, benefiting from ongoing advance-
ments in the Chromium project, particularly in regards to
origin isolation and overall security posture. However, far
less attention has been devoted to mitigating privacy threats
unique to the WebView environment, such as cross-context data
leakage and unauthorized communication via interfaces exposed
by host applications (discussed in detail in the following
subsection). These classes of attacks were first highlighted
by Son et al. [9]. Meanwhile, advertising SDKs have evolved
to deliver increasingly complex advertisements and integrate
more invasive tracking mechanisms, many of which require
access to privileged data and APIs only available through the
Android system. This evolution has gradually undermined the
original isolation guarantees of the WebView model, leading to
a growing entanglement between untrusted advertiser content
and sensitive app functionality.

Android WebViews. WebViews are embedded browsers in
Android used to display ads, load web content, and render
HTML/CSS/JS within apps. They can be instantiated in Java
using the built-in WebView class, either by the app developer
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App.java

1public class WebViewActivity extends AppActivity {
2 protected void onCreate(Bundle savedInstanceState) {
3 webview.loadUrl("https://example.com");
4 }
5 private void injectBuildId() {
6 String jsCode = "javascript:window.buildId = '" +
7 Build.ID + "';";
8 webView.loadUrl(jsCode);
9 }

10 private void fetchLocationAndInject() {
11 String jsCode = "window.locationData = '" +
12 location.getLatitude() + "';";
13 webView.evaluateJavascript(jsCode, null);
14 }
15 public class WebAppInterface {
16 @JavascriptInterface
17 public String getAdID() {
18 return adInfo.getId();
19 }
20 }
21}

example.com/index.html

1<script>
2window.addEventListener('load', () => {
3 function exfiltrateData() {
4 const data = a.getAdId() +
5 ',location=' + encodeUri(window.locationData) +
6 ',buildId=' + window.buildId;
7 navigator.sendBeacon('https://evil.com/data=' +

data);↪→
8 }
9 exfiltrateData();

10})
11</script>

1

2

3

4

Blue represents a flow of information from Java to JavaScript
Purple represents a flow of information from JavaScript into the web

Listing 1: Example of an Android app that performs privacy-
compromising actions through WebViews.

or indirectly through third-party SDKs. These SDKs often
leverage WebViews for ads, authentication, and other fea-
tures, sometimes without the developer’s explicit control [10].
Listing 1 illustrates an app constructed using techniques that
we have observed in the wild. The first code snippet shows
the Java code for embedding a WebView in an Android
app. The app developer instantiates a WebView inside the
onCreate function (lines 3-13), enables JavaScript by calling
setJavaScriptEnabled on the settings object, and loads
third-party web content using loadUrl. Direct interaction
between Java code and the WebView’s JavaScript context is
not possible without explicitly establishing a Java-to-JavaScript
bridge, via developer or third-party SDK configuration. This
separation is crucial, as it prevents the app from extracting
information from sensitive web resources such as cookies,
localStorage data, or page contents, even if the developer
controls the loaded domain.

JavaScript code. The HTML/JavaScript code in the second
snippet shows the JavaScript code of a webpage loaded
by the app. The embedded JavaScript code executes when
the page loads, and triggers other functions that handle
page interactivity. Importantly, this JavaScript code does not
inherently have access to variables from the Java execution

Fig. 1: Flow of privileged information across three stages.

context, meaning it cannot directly retrieve sensitive system
information such as build details, network status, or arbitrary
file contents. However, unlike standalone browsers, WebViews
introduce a critical security gap by enabling direct interaction
between Java and JavaScript code [11]. The app can invoke
evaluateJavascript (see Listing 1 – 2 ) to run arbitrary
JavaScript inside the WebView or abuse loadUrl (see List-
ing 1 line 8) to inject custom HTML, CSS, or JavaScript.
Additionally, WebViews allow JavaScript code to call Java func-
tions via the addJavascriptInterface method, creating a
bridge between the two execution contexts. When JavaScript
invokes a method annotated with @JavaScriptInterface

(see Listing 1 – 4 → 3 ), the Java code executes it and can
use the provided values for privileged actions within the Java
environment (Listing 1 – 3 ).

Cross-context interactions. These powerful cross-context
interactions introduce significant and atypical privacy risks to
the WebView environment. The Java code can inject sensitive
or tracking data that is only available to the JavaScript context
(e.g., identifiers or location information) into the WebView
(Listing 1 injections in [ 1 , 2 , 3 ]→ 4 ]), which can then be
exfiltrated to the ad network or other third parties through
JavaScript (see the function at 4 ). Detecting this behavior
with existing dynamic and static analysis techniques prevalent
in the Android ecosystem is challenging, since most focus on
analyzing the Java code inside the apps. As such, we propose
a dynamic analysis system that addresses this challenge by
offering deeper visibility into the execution of JavaScript code
within WebViews, enabling the characterization of the behaviors
seen inside these cross-context communications that traditional
analysis techniques often overlook. Throughout the paper, we
focus on context-restricted data, which is data that could not
be accessed without Java-to-JavaScript interactions, as seen
in Table V (e.g., Advertising ID, GPS Location, Build ID).
Furthermore, in our analysis, we label as third-party i) Java
libraries/SDKs whose package name differs from that of the
host application, and ii) any JavaScript code not served from
the WebView’s original domain.

III. THREAT MODEL

Our threat model focuses on how privileged information
flowing from an app into WebViews may be exposed to third
parties through embedded JavaScript code. We assume that
the adversary controls the JavaScript loaded into the WebView,
either by directly serving remote content or by embedding
scripts that exfiltrate injected data. The adversary can either
collude with an SDK or exploit JavaScript APIs to “coerce”
the Java SDK into revealing context-restricted data. From our
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perspective, the SDK essentially facilitates the exfiltration of
context-restricted data by performing a potentially dangerous
practice, leading to privacy loss. We do not assume that the
adversary can compromise the app’s Java code or the underlying
operating system. Figure 1 illustrates the flow of privileged
information across three stages.

1 The user launches an app that contains a WebView,
typically unaware of the internal mechanics. This WebView can
be initialized by the app developer or indirectly through a third-
party SDK, which configures the WebView and determines
the content it loads. Critically, these WebViews often enable
JavaScript and fetch remote content, providing an avenue for
untrusted code to execute within the app context.

2 Once the WebView is initialized, the app or integrated
SDK can inject privileged information into the JavaScript
context using Java APIs such as evaluateJavascript or
addJavascriptInterface. This data can include tracking
identifiers like the Advertising ID, or environment-specific
signals such as the partition space or available memory, signals
that would normally be inaccessible to JavaScript running
in a standalone browser. While such injections may serve
legitimate purposes (e.g., allowing an ad SDK to tailor content
or perform analytics), it also introduces a bridge for exchanging
information between Java and JavaScript that is not rigorously
policed by the platform.

3 JavaScript running inside the WebView can then access
the injected data and transmit it to external servers. There
are two possible cases to consider here: (i) JavaScript is
controlled by a third party (e.g., an ad network or embedded
analytics provider) that opportunistically exfiltrates the injected
data, potentially without the knowledge or consent of the app
developer or SDK that performed the injection. (ii) the SDK
and the external server may be cooperating, with the SDK
deliberately injecting tracking information into the WebView
to facilitate collection by known JavaScript endpoints. This
type of collusion resembles data-sharing patterns seen in
web advertising, such as cookie syncing [12] or redirect-
based profiling [13]. In both cases, a third-party actor that
previously lacked access to platform-specific tracking identifiers
can now obtain and exfiltrate them. This occurs due to
the tight coupling between the privileged Java context and
the WebView’s JavaScript environment, often without strong
oversight or meaningful user consent. Our work focuses on
detecting and analyzing the information flows between the
Java and WebView contexts. We do not attempt to distinguish
between intentional misuse and unintentional leakage. Instead,
we aim to provide empirical visibility into how these cross-
context interactions unfold in real-world apps, and highlight
dangerous and invasive behaviors regardless of the original
intent (i.e., we focus on the outcome not the intent).

IV. WEBVIEWTRACER DESIGN AND IMPLEMENTATION

In this section, we describe WebViewTracer’s architecture
and analysis workflow. Figure 2 provides a high-level overview
of our design, and illustrates the various components that com-
prise our system, which we designed to dynamically analyze

JavaScript code executed within WebViews. By building upon
existing technologies, we have developed a novel framework
capable of crawling and studying cross-context interactions
between Java and JavaScript within mobile apps, providing a
unique view of the JavaScript code running within WebViews.

A. Dynamic App Exercising and Analysis

The first phase of our analysis workflow focuses on auto-
matically exercising and dynamically analyzing Android apps,
which we achieve by modifying existing systems, allowing us
to dynamically bridge the semantic gap between interactions
from Java to JavaScript and vice-versa. Specifically, (i) we
modify the UIHarvester app-crawling framework to fit our
needs for recording cross-context interactions [14], (ii) create
custom Frida gadgets responsible for hooking WebView-based
Java functions inside Android apps, and (iii) modify VisibleV8
to run inside the rendering process of an app-loaded WebView
by compiling our own version of a system-wide VisibleV8
WebView provider. Furthermore, to avoid any device or Frida
disconnections, we created an execution wrapper responsible for
handling and monitoring an Android device using the Android
Debug Bridge, managing our Frida server and gadgets, and
automatically exploring and traversing Android applications.
Finally, a Python-based distributor script alongside Docker is
used as the orchestration layer to parallelize our crawls across
multiple devices. Next, we provide more details about how we
modified and integrated these components into WebViewTracer.

Dynamic app exercising. Reaper’s UIHarvester [14] module
enables the automated exploration of Android applications
using a breadth-first search of the app’s UI elements and
provides better coverage over other tools (e.g., Monkey) [14].
We modified UIHarvester to identify both native Android
and web elements by registering it as an Accessibili-
tyService [15] and monitoring Android Accessibili-
tyEvents whenever the display changes. These modifications
enhance coverage, are Android version-independent, and allow
our variation of UIHarvester to be installed like any typical
Android application. The inspected UI elements along with their
properties (e.g., isClickable), which are represented as an
AccessibilityNodeInfo, are exported using logcat
and are placed in a UIQueue along with the set of interactions
that need to be performed so as to reach that element, within
the app’s UI element hierarchy. A custom crawling Python
parser processes the elements from the queue performing a
breadth-first search of the app’s UI elements, and exploring
new application paths. While we adopted a breadth-first
traversal strategy in our experiments due to its effectiveness
in maximizing UI coverage (e.g., [14]), our framework also
supports alternative strategies, including DFS, monkey testing,
and an experimental record-and-replay feature. As several
applications require the user to login, we also automated the
login process by using Google’s SSO, when available.

Frida gadgets. We created several gadgets using Frida [17]
to trace calls to Java methods that interact with WebViews.
Our hooking gadgets include functions such as evaluate-
JavaScript and loadUrl. Frida logs are used to analyze
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Fig. 2: WebViewTracer’s architecture and analysis workflow.

Fig. 3: We monitor JS interface calls by hooking
two points: before the call exits V8 into JNI, and
after the return value flows back into Blink.

TABLE I: Injection techniques detected by WebViewTracer.

Injections API

JS code execution evaluateJavaScript, loadUrl
HTML spoofing loadDataWithURL, loadData
Java-Javascript bridges addJavaScriptInterface,

evaluateJavaScript
URL Leakage loadUrl, postUrl [16]

and correlate data gathered from VisibleV8 to understand how
Java and JavaScript interact in the WebView environment.
Additionally, we identify whether third-party libraries are
responsible for any WebView activity, by analyzing the APIs’
stack trace, allowing our system to have a holistic view of
Java-to-JavaScript interactions and vice-versa.

VisibleV8 WebView provider. VisibleV8 [5], [18] is an
instrumented version of Chromium’s V8 JavaScript engine
that enables the logging of webpages’ JavaScript execution. It
records the execution of JavaScript code and all web API calls,
including function parameters. To integrate VisibleV8 into our
system, we extended its functionality to work within Android’s
WebView environment. Specifically, we developed a system-
wide VisibleV8-enabled WebView provider by recompiling the
Android System WebView APK [19] to include a customized
version of the VisibleV8 patchset. On Android, the default
WebView implementation used by apps to render web content
via the WebView object is provided by this System WebView
APK. Changing the WebView provider applies system-wide
and affects all apps that rely on WebView. Our integration is
feasible because the default WebView provider is based on
Chromium, which uses V8 as its JavaScript engine.

Adapting VisibleV8 for Android WebViews was non-trivial
due to its original design, which heavily favored desktop com-
patibility. VisibleV8 logs extensive JavaScript execution data to
disk and relies on debugging flags like -no-sandbox, which
are incompatible with Android’s strict sandboxing policies.
Using this setup with WebView causes execution failures and
severe performance degradation. To make VisibleV8 suitable for
Android WebView, we reworked its patches (see Appendix A
for technical details). The latest upstream patchset showed
suboptimal performance in mobile environments, limiting its
utility for logging and tracing. Our modifications focused

on optimizing performance by pruning unnecessary instru-
mentation. Specifically, we restricted logging and tracing to
objects defined by the ECMAScript standard [20] and Chrome’s
implementation of the W3C Web IDL standards [21], [22].

We also introduced new instrumentation features to trace
cross-language interactions, particularly focusing on return
values of JavaScript functions that bridge into Java via
addJavaScriptInterface. Tracing this path is essential
for analyzing hybrid app behavior and understanding the
flow between Java and JavaScript. Achieving this required
understanding the path that JavaScript objects take across
several runtime boundaries, starting from the Java Native
Interface (JNI), through the Blink rendering engine, and into
the V8 JavaScript engine. Chrome’s WebView architecture
employs a custom IPC mechanism between the JNI-based Java
ABI and the rendering process, which houses Blink and uses
V8 as an embedded library to execute JavaScript code. As
shown in Figure 3 our instrumentation hooks into JavaScript
interface function calls in two places, 1 when the function is
called, to get the values being passed into Java and once at 2

where it intercepts the return value just after it emerges from
the IPC boundary into Blink, enabling us to observe and trace
the object before it is passed into V8 for execution.

One major challenge was VisibleV8’s reliance on the
-no-sandbox flag, as it writes execution logs to physical
files. This conflicts with Android WebView’s strict process
of sandboxing. We experimented with several alternatives,
including socket-based logging and IPC with a dedicated
Android service. However, these approaches introduced se-
vere performance overheads that slowed down the logging
and tracing. Ultimately, we modified the patchset to set an
undocumented incremental install flag [23] and configured
the device to use the disable-multiprocess [24] option
in Android. This relaxed WebView’s sandboxing enforcement,
enabling file read/write operations within the rendering process.
These changes allowed us to successfully trace JavaScript
interactions with addJavaScriptInterface objects injected
by Java. We are committed to open-sourcing our modifications
to the VisibleV8 patchset to support further research.
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TABLE II: API categories analyzed by WebViewTracer.

API Category Description

Java APIs Calls into Java code
Exfiltration APIs Used to transmit or store data
Sensitive APIs Used for accessing local storage/state
Fingerprinting APIs Used to uniquely identify devices or users [25]

Canvas Uses known canvas fingerprinting APIs
Navigator-based Queries navigator properties
Advanced Audio fingerprinting, font detection, etc.
Sensor data APIs accessing device sensors

Obfuscation APIs Used to disguise data being transmitted
Custom JavaScript APIs APIs not part of Web IDL standards

B. Log Analysis

The second phase of our workflow consists of the analysis
of the logs generated during the dynamic app exercise and
analysis phase. The log postprocessor consists of four individual
modules that perform parts of the analysis.

Injection Detection. The injection-detection module pro-
cesses raw Frida logs to identify Java-to-JavaScript injection
mechanisms (an example of a Frida log where an app loads
a Google Ads domain and injects an empty function into the
WebView to check if the JS has loaded can be seen in Figure 6
in Appendix E). We categorize these interactions into four
types, as detailed in Table I, which we have uncovered through
our empirical analysis of WebView use in the wild. In our
context, an injection refers to any instance where JavaScript
gains access to information originating from the Java runtime.
With this module, we cover four broad ways in which Java
was injecting code into WebViews:

JavaScript code execution. Some apps execute JavaScript
within an existing WebView using Java code, typically
through calls like evaluateJavaScript or by loading a
javascript: URI.

HTML spoofing. Android apps may use loadDataWith-
BaseURL to inject custom HTML, CSS, and JavaScript into
a WebView under a spoofed URI, effectively faking the origin
and displaying app-controlled content.

Java-JavaScript bridges. These expose Java objects to
JavaScript running inside a WebView, most commonly via
addJavaScriptInterface. The module flags such uses as
potential interface definitions. It also detects less conventional
patterns, for instance, cases where apps inject JavaScript that
interacts with custom-defined objects or APIs that fall outside
the WebIDL specification [21], [22], thereby avoiding the use
of addJavaScriptInterface entirely.

URL leakage. This occurs when Java-controlled methods
load URLs into WebViews that embed Java-only data, such
as Advertising IDs into the URL itself. Such data may then
be accessed by JavaScript through URL parsing or by being
reflected back into JavaScript by the server. These behaviors
are also flagged by the module as injection attempts.

API category analysis. This module processes VisibleV8
logs to identify API usage patterns across six broad categories,
as shown in Table II. Java APIs are detected using a custom
annotation present in the VisibleV8 logs. Custom JavaScript

APIs are identified by comparing all invoked APIs against the
ECMAScript standard [20] and Chrome’s implementation of
the W3C Web IDL standards [21], [22]; any API not included in
these specifications is classified as custom. Exfiltration APIs are
based on the list curated by Su et al. [25] in their study on fin-
gerprinting. We extended this list by manually inspecting each
API using Mozilla Developer Network (MDN) documentation.
Each API was classified into one of two categories: (i) those
that perform actual data exfiltration by transmitting information
to external servers (e.g., via network requests), and (ii) those
that only manipulate the internal WebView state (e.g., cookies
or localStorage). During our initial crawl, we also discovered
three previously undocumented exfiltration APIs, as well as
a novel exfiltration vector involving Java-side APIs. These
findings, discussed in Section VI, reveal how sensitive data is
transmitted by certain apps using unconventional Java methods,
or persisted within the WebView’s state for deferred access.
Fingerprinting APIs were initially sourced from Su et al.’s
list [25], but we further refined this set by categorizing them into
subtypes using MDN documentation and techniques recently
identified by Nguyen et al. [26]. These subcategories include
Navigator-based fingerprinting (i.e., basic device and browser
attributes), Sensor-based fingerprinting (e.g., accelerometer,
gyroscope), Canvas fingerprinting, and Advanced fingerprinting
techniques involving APIs such as AudioContext, WebGL,
and others beyond standard profiling methods. Sensitive APIs
include all APIs that change browser storage (cookies, lo-
cal/sessionStorage). Obfuscation APIs include SubtleCrypto,
TextDecoder and base64 APIs. While JavaScript code could
evade the detection of obfuscation APIs, we use it to understand
the origin of phantom exfiltrations (see Section VI), not to
measure the use of these APIs through Java-JavaScript bridges.

Exfiltration analysis. This module builds upon the API
category analysis to identify and investigate cases of data
exfiltration involving Java APIs. During our initial empirical
analysis, we observed that some apps define custom Java
interfaces that are later invoked by the WebView to initiate
network requests to remote servers, as shown in Figure 7
in Appendix E. The module parses the arguments passed to
various known exfiltration and Java APIs to determine whether
actual exfiltration occurs, meaning that the URI points to a
real web address rather than a custom URI handled within the
app. When exfiltration is detected, the module extracts both the
destination URLs and the associated payloads. To group similar
domains under common ownership, we use the DuckDuckGo
Tracker Radar dataset [27], which maps related domains to
“parties” that represent real-world entities. The mapping is done
by comparing the eTLD+1 portions of the extracted URLs to
known party domains in the Tracker Radar dataset.

Information flow analyzer. This component aggregates
inputs from all modules and employs regex-based heuristics to
identify common types of context-restricted data (see Table V).
These heuristics are evaluated on the data flagged during the
exfiltration analysis step and the injection detection step. This
includes the exfiltrated data, arguments passed to JavaScript
interface calls, return values from JavaScript interfaces, and
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TABLE III: App dataset and breakdown of detected behaviors.

Metric Apps

Initial dataset 10,000
Loaded WebViews 4,597
Performed injections 4,366
Injected context-restricted data 2,989
Exfiltrated context-restricted data 2,711

other detected injections. To attribute the origin of these
injections, the analyzer uses a combined list of third-party
library package names based on prior research [28], [29], [30]
and examines the source file and package name responsible
for the corresponding Java API method. Specifically, it takes
as input stack traces obtained from Frida and identifies the
origin (first/third-party) of the Java injections (source). Next,
the information flow analyzer traces the origin and recipients
of data within the system, identifying how information is
distributed between multiple parties. Using VisibleV8 logs, we
verify that injected scripts were executed and identify JavaScript
APIs that exfiltrate context-restricted information using our API
category analysis. Subsequently, we parse the arguments of
the exfiltrating APIs to identify where the data was sent (sink).
Researchers can query the analyzer to investigate privacy-
violating information flows through WebViews, providing
insights into potential data exfiltration risks.

V. EXPERIMENTAL SETUP AND EVALUATION

Dataset. We applied our framework to a dataset of 10K An-
droid apps randomly sampled from the AndroZoo dataset [31].
To ensure diversity, we divided the AndroZoo dataset into three
sections based on their popularity —top, middle, and bottom—
and evenly selected apps from each section. To avoid selecting
a disproportionate number of gaming apps (which dominate
the Play Store), we opted to balance the dataset by including
1K game apps and 9K non-game apps from the three sections.
To download the dataset, we used a physical Android phone
with an active Google account to obtain Google Auth tokens
and a user-agent string. These credentials were then used with
the Raccoon app downloader [32] to bulk-download the apps
listed in AndroZoo during February 18-20, 2025.

Measurement setup. We install VisibleV8 WebView on a
phone connected to a Docker container running an instance
of our modified version of UIHarvester (see Section IV-A).
UIHarvester explores the app for the predefined crawling period,
visiting different app areas so as to load WebViews. After the
crawl ends, the system dumps two sets of logs, a Frida log, and
a VisibleV8 log, both of which are subsequently processed to
extract information about the execution of Java code concerning
WebViews, and JavaScript code, respectively.

Measurement infrastructure. Measurements took place
from March 2025 to April 2025. The crawling was conducted
using four Pixel 4a (5G) phones running stock Android 13
(build number TQ3A.230901.001). Each phone was rooted
with Magisk [33] and equipped with the Frida gadget [17],
along with a custom WebView version based on VisibleV8. The

phones were connected to an Intel i7-10700 machine with 30
GB memory and 10 TB storage, running Ubuntu 24.04.1. We
used a separate IP space for measurement studies, belonging
to a US academic institution.

Evaluating regex-based heuristics and coverage. We con-
ducted two separate experiments to evaluate WebViewTracer’s
capabilities and coverage. First, we evaluated the effectiveness
of the information flow analyzer’s regex-based heuristics.
The second experiment focused on assessing UIHarvester’s
effectiveness in identifying WebViews. Further experimental
details can be found in Appendix C and Appendix D.

The first experiment quantifies the presence of false positives
and negatives of our regex-based heuristics. We randomly
selected a set of 60 apps and manually inspected the Frida
and VisibleV8 logs for privacy-invasive behavior. Our manual
evaluation conducted by five researchers (all with backgrounds
in security and experienced in JavaScript code analysis), demon-
strates that WebViewTracer effectively identifies injections,
achieving an average precision of 98.2% and recall of 96.4%,
with only a few false positives.

In the second experiment we manually exercised 50 apps
and annotated any WebView that was displayed on the screen.
We then used the same setup and exercised these apps using
UIHarvester. Overall, we found that UIHarvester achieved
49.64% WebView coverage compared to manual analysis, and
52.13% WebView coverage for non-game apps. In prior work,
DROIDAGENT [34] and Humanoid [35] achieved activity
coverage rates of 61% and 51%, respectively, when evaluated
using the manually validated THEMIS benchmark [36], which
was specifically designed to assess automated GUI testing tools
against real-world bugs. While they focus on measuring activity
coverage, whereas we focus specifically on the identification
of WebViews, the overall coverage levels they report are
comparable to those of our system. While these numbers
may appear modest, they are in line with other coverage
systems, and we believe that automated approaches are the
only viable solution for large-scale analyses. Moreover, our
findings concerning privacy-invasive activities in WebViews
should be interpreted as a conservative lower bound.

VI. MEASUREMENTS AND ANALYSIS

In this section, we characterize the outflow of context-
restricted information from apps through WebViews. Due to
the way our system is set up, we are able to observe these
types of exfiltration from two vantage points: (i) where the data
is injected into WebViews, and (ii) where the data is exfiltrated
over the network. Overall, out of the 4,597 apps that loaded
WebViews, we see 65% apps injecting context-restricted data
into WebViews and 59% apps exfiltrating information to web
servers. A summary is provided in Table III.

WebView injections. 4,597 apps loaded WebViews that
we were able to trace during the crawls. We found that
95% of these apps contained Java code that performed some
form of injection into a WebView. Table IV presents the
distribution of the APIs used for these injections. The most
frequently used methods were loadUrl (commonly used for
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TABLE IV: Unique number of apps that call each Java API.

Java function Apps Java function Apps

loadUrl 4,243 loadData 581
addJavascriptInterface 3,923 getUrl 538
evaluateJavascript 3,670 reload 35
loadDataWithBaseURL 2,710 postUrl 12
destroy 1,517

TABLE V: Context-restricted data injections and leaks across
all apps that load WebViews.

Context-restricted info Inject (%) Exfil (%) Inject&Exfil (%)

AdMob SDK version 61.64 60.93 59.57
Device model 58.79 49.50 42.21
Build ID 53.15 21.33 14.05
Internal IP-related info 33.80 33.98 31.47
Advertising ID 23.30 18.19 17.68
Partition space 22.64 22.06 10.18
Battery level 11.46 1.48 1.35
Device code name 9.72 0.71 0.29
Location 9.61 7.34 3.99
Memory space 9.01 10.76 1.65
Zip code 8.12 12.54 4.40
Kernel build version 7.32 0.00 0.00
Bootloader version 7.32 0.00 0.00
City 5.27 1.68 0.89
Play Store package version 2.78 5.05 1.98
Network provider 2.02 1.11 0.89
Google Account Name 0.11 0.20 0.04

URL leakages and injections), addJavascriptInterface,
and evaluateJavascript, appearing in 4,243, 3,923, and
3,670 apps respectively. Overall, 2,989 of apps with WebViews
in our dataset included at least one injection of context-
restricted data into a WebView.

Souce of injections. A key characteristic of the injections
we detect is their origin, identified via stack trace analysis (see
Section IV). We find that the vast majority of injections do not
originate from app developers’ own code. In fact, 96% stem
from third-party libraries included in the app’s Java code. Only
3.6% of observed injections are attributable to first-party app
logic. This suggests the flow of context-restricted data into
WebViews is not necessarily under the direct control of app
publishers and may be introduced indirectly through SDKs for
analytics, advertising, or game development.

Crucially, we observed that certain third-party libraries are
disproportionately involved in injection activity. The Google
Ads SDK was the most frequently encountered, detected
in 3,018 apps, which reflects its dominant role in mobile
advertising. The Unity3D SDK, a widely used platform
for game development, was found in 484 apps, while the
IronSource SDK, commonly employed for monetization and
user acquisition, appeared in 235 apps. Notably, 470 apps
exhibited injection events that appeared to involve multiple
SDKs simultaneously. For example, we observed modules from
the Adobe SDK invoking APIs from the Google Ads SDK
to execute JavaScript within an advertising WebView. These
interactions indicate that SDKs can exhibit complex internal
behaviors and engage in cooperative operations with other
libraries, often in ways that remain opaque to both developers

window.nativebridge.handleCallback([
....
// Unity's asynchronous injection after a
// JS call to com.unity3d.services.core.api.DeviceInfo
["42", "OK", ["d3032f3db0173854806bd652576cf56cb7d08eff"

]],↪→
// Unity's device hash
["48", "OK", ["abfarm-release-rbe-64-2004-0093"]],
// Kernel build version
["50", "OK", [

"google\\/bramble\\/bramble:13\\/TQ3A.230901.001\\/"↪→
+ "10750268:user\\/release-keys"]],

// Build fingerprint
["52", "OK", [{

"firstInstallTime": 1741452683184,
"lastUpdateTime": 1741452683184,}]]

// Install/update times, useful for fingerprinting
]);

Listing 2: A typical injection from the com.unity3d library.

and end users, highlighting both the complexity of invasive
behaviors and the need for additional safeguards.

Moreover, we find that 29 unique SDKs are responsible
for all of the third-party library injections that leak context-
restricted data inside WebViews during our experiments.
We find that com.applovin, com.google.android.gms,
com.unity3d and com.ironsource inject the most types
of data into WebViews, with 19 third-party libraries injecting
more than one type of context-restricted data. The AdMob
SDK version is by far the most injected piece of information,
followed by the device model and the Advertising ID. This
suggests a small group of popular SDKs are responsible for
the leakage of context-sensitive data and, as a result, have an
outsized impact on user’s privacy.

Context-restricted injections. Among all observed in-
jections, 54.76% involved context-restricted data and were
classified as sensitive by our system. Listing 2 illustrates
one such case, where the Unity3D SDK injects (among other
things) the kernel build version, bootloader version, a device
hash, the device fingerprint, and the size of partition space
into the WebView. This is done by invoking a custom API,
nativeBridge.handleInvocation, which is defined by
JavaScript inside the WebView. The remaining injections that
do not explicitly involve the exfiltration of sensitive or context-
restricted data are excluded from our analysis. These typically
serve benign purposes such as verifying JavaScript load status,
triggering events, or signaling lifecycle changes like the app
entering the background. While such behavior may expose
contextual signals to JavaScript, it does not constitute a direct
leak of sensitive or context-restricted data.

Table V summarizes the types of context-restricted data
being injected into and exfiltrated by WebViews. The "Context-
restricted info" column indicates the category of leaked infor-
mation, while the "Inject (%)", "Exfil (%)", and "Inject&Exfil
(%)" columns show the percentage of apps exhibiting injections,
exfiltration, or both, respectively. In the discussion that follows,
we focus primarily on the data categories and injection
behaviors, with a detailed analysis of exfiltration presented
later in this section. We divide the types of context-restricted
data into 15 information types, as described below, grouping
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related types of information together.
Build ID. The Build ID is an identifier that specifies the exact

Android OS release installed on a device. Since manufacturers
frequently customize builds for specific models, the Build ID
can often be used to infer the maker and model of the phone.
53% of apps that loaded WebViews injected Build IDs into
the JavaScript context. Among these, the vast majority (91%)
came from the com.google.android.gms library, followed
by com.unity3d at 15% and com.ironsource at 6.4%.

Advertising ID. The Advertising ID is a resettable UUID
used by advertisers to track users across different apps.
Although JavaScript typically cannot access this identifier,
we found that 23.30% of WebViews injected it into the
web context. Of those injections, 66% were performed by
com.google.android.gms, with significant contributions
from com.unity3d and com.ironsource.

Partition space, battery level, and memory information.
Partition space, battery level [37], and memory usage can serve
as high-entropy fingerprinting signals. 53% of apps showed
this behavior, most often in apps using the com.unity3d SDK
(68.53%), with com.ironsource also contributing (44.21%).
Memory usage information was injected by 9.01% of apps,
nearly all of which used com.unity3d (86.59%).

Kernel and bootloader version. These are high-entropy
system-level identifiers that reflect the exact Linux kernel and
bootloader version on a device. 7.32% of WebViews injected
this data into the JavaScript context, with com.unity3d

overwhelmingly responsible for these leaks (99.72%). In many
cases, these values were accessed and passed to JavaScript at
the request of ad-related scripts loaded within the WebView.

Network information. Internal IP addresses were in-
jected into JavaScript by 34% of apps, mostly due to
com.google.android.gms. These can reveal local network
setups, such as whether a device is on a campus or corporate
network. Network provider names (e.g., ISP) were exposed
by 2.0% of apps, led by com.ironsource, com.applovin,
and com.google.android.gms. In some cases, these leaked
names pointed to specific universities or carrier types, revealing
information about socio-economic status and other user context.

Device code name and model. Low-entropy identifiers
such as the device code name, and model were injected
by 59% of apps. For device code names, com.unity3d

accounted for 84% of injections. Device model values were
injected by 92% of apps using com.google.android.gms,
followed by com.unity3d (14%) and com.inmobi (2.9%).
Interestingly education apps were more likely to use device
model information over other forms of context-restricted data,
possibly as a way to comply with privacy legislation.

Location and Zipcode. Precise geographic information,
such as location and zip codes, was injected into the
WebView context by 9.59% of apps. Among these,
com.google.android.gms was responsible for 54.48% of
location injections and 87.71% of zip code disclosures.
com.unity3d appeared in 6.98% of zip code injections, while
com.ironsource contributed 37.06% of location disclosures.
This type of data enables location-based tracking and, when

combined with other identifiers, poses a heightened privacy risk
since it can be considered personally identifiable information.

Google Ads SDK version and Play-store package information.
The version of the Google Ads SDK is typically hardcoded.
When combined with other identifiers, such as the app name,
it can act as a high-entropy identifier. This version string was
injected by 62% of apps with WebViews. All these injections
originated from com.google.android.gms. Given Google
Ads’ dominance, as a standalone ad library and as a dependency
bundled by many third-party ad SDKs, this identifier was among
the most frequently injected into the JavaScript context, likely
enabling in-context scripts to correlate user sessions across
different apps. 2.8% of apps inject the Play Store package
version, an identifier only accessible to Google-owned SDKs.

While many categories of sensitive data discussed above
are not accessible to JavaScript code, JavaScript can still
directly access some of this data via dedicated browser
APIs. For instance, the BatteryManager interface allows
querying the device’s battery status, Performance.memory
exposes memory usage details of the rendering process,
and navigator.geolocation provides access to a user’s
physical location. However, these interfaces are subject to
increasing restrictions due to their potential for fingerprinting
and privacy abuse [37]. Modern browsers like Chrome restrict
access to these APIs in insecure contexts, or within iframes,
which are governed by restrictive permission policies. In several
of the injection cases we observed, JavaScript code received
access to these types of high-granularity system-level details,
regardless of what context they were loaded in, sometimes
exceeding what the standard APIs would normally expose.
This strongly suggests a bypass of context-specific restrictions
put forth by the browser and a break in the expectation of what
kinds of JavaScript code would have access to this information.
Nonetheless, we use the term “context-restricted data” for all
these pieces of data, for conciseness.

App popularity. We see a correlation between the apps
that inject context-restricted data into WebViews and their
popularity. In more detail, apps with higher install counts have
a higher chance of injecting such information. For instance,
only 0.1% of apps in the 1–1K install range inject the play
store package version, compared to 7.5% of apps with 10M+
installs. Similarly, injection of the Advertising ID rises from
13.7% in the lowest install range to 30.3% in the highest.
Injection of the device model increases from 46.7% to 61.8%,
and memory space from 23.0% to 31.8%. The injection of the
AdMob SDK version climbs from 40.2% in the least popular
apps to 70.9% among the most popular. This trend suggests
that popular apps are more likely to inject a broader set of
identifying or environment-specific information into WebViews.

App categories. Apps across categories inject different
types of identifiable or sensitive data into WebViews, revealing
patterns that reflect the priorities and SDK integrations typical
to each domain. Games apps stand out as the most aggressive
in terms of injections, with 73% injecting the AdMob SDK
version and 73% injecting the device model and build ID
suggesting a strong reliance on tracking and device profiling.
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TABLE VI: Number of apps using each exfiltration API.

Exfiltration API Apps Exfiltration API Apps

XMLHttpRequest.open 3,992 Navigator.sendBeacon 2,443
XMLHttpRequest.send 3,887 HTMLIFrameElement.src 1,709
HTMLScriptElement.src 3,463 HTMLVideoElement.src 686
Window.fetch 3,004 HTMLLinkElement.href 510
Window.postMessage 2,952 Location.href 196
HTMLImageElement.src 2,935 HTMLSourceElement.src 177
Image.src 2,653 WebSocket.send 73

Other categories show similarly troubling patterns. Photography
apps sometimes inject the amount of memory space available on
the phone (11%), kernel build versions (7.9%), and bootloader
versions (7.9%). Entertainment apps follow closely, with 8.5%
injecting memory data and 6.7% including kernel and boot-
loader versions. Games, Entertainment and Photography apps
frequently request broader device permissions, allowing them
to inject memory state, kernel versions, and other low-level
identifiers into WebViews. This reinforces our finding: injection
behavior is not uniform but highly category-specific, shaped by
the SDKs apps rely on and the permissions users commonly
grant. For example, Maps and Navigation apps frequently
inject network-level and location data, with 9.1% injecting
location information, 22% including the Advertising ID, and
25% exposing internal IP addresses. Maps and Navigation
apps are often explicitly given access to location, which makes
location-related injection more feasible.

API usage. From the WebViews that were loaded, 92%
used at least one exfiltration API call. Table VI shows
the breakdown of the different APIs used for exfiltration.
Alongside the traditional exfiltration APIs on the web, we
see the emergence of three other APIs, HTMLScriptEle-
ment.src (used across 75% of apps that loaded WebViews),
HTMLVideoElement.src (used across 16% apps) and
HTMLSourceElement.src (used across 3.8%). The preva-
lence of HTMLScriptElement.src suggests that many apps
are dynamically loading scripts into WebViews, a common
obfuscation technique that makes the newly added scripts
undetectable to static analysis methods employed in prior work,
such as HybridDroid [3] and LuDroid. [16]. The use of video-
related APIs for exfiltration may be linked to mobile advertising
practices, where videos are often dynamically fetched and
rendered. This behavior exceeds the level of dynamic media
loading typically observed on the web. These APIs have not
been identified in previous work related to web fingerprinting
and it’s subsequent exfiltration, including the study by Su et
al. [25] and Boussaha et al. [38].

We also observed that 65% of apps that load WebViews use
Java APIs to exfiltrate context-restricted information out of the
app bypassing typical exfiltration detection techniques on the
web. We observed JavaScript code invoking Java methods that,
in turn, triggered network requests through internal classes,
either from the app itself or bundled third-party SDKs. On
manual inspection we found that these behaviors resulted in
the app making direct requests to specified URLs outside the
context of the WebView.

Each green node represents a company to which data was exfiltrated.
Each blue node represents a third-party library which injected data.

Fig. 4: Network graph of relationships between SDKs/parties.

Exfiltrated data. We observe notable trends in the types
of context-restricted data exfiltrated via JavaScript, as shown
in Table V. While some categories such as the AdMob SDK
version exhibit consistently high exfiltration rates (61%), others
like the Build ID (21%) and Battery level (1.5%) are far
less frequently exfiltrated. Information such as internal IP-
related data (34%), partition space (22%), and coarse location
(7.3%) are also exfiltrated with non-trivial frequency, indicating
attempts to harvest environmental and network-level context
from devices. Interestingly, the percentage of apps where we
observe both a JavaScript injection and an associated exfil-
tration (Inj+Exfil%) is consistently lower than the standalone
exfiltration rates for several data types, a phenomenon we refer
to as phantom exfiltrations. For example, while 33.98% of apps
exfiltrate internal IP-related information, only 31.47% exhibit
both injection and exfiltration. This discrepancy suggests that
some exfiltrations occur without a directly detected JavaScript
injection, potentially due to obfuscation, dynamic code loading,
or alternative communication paths. One plausible mechanism
is that sensitive data is first collected natively (e.g., via Java),
and then sent to a remote third-party server, which subsequently
reflects the data into the web context using identifiers like
device IDs or session tokens. It is important to note that
our current approach of parsing the content of JavaScript
injections offers a conservative low-bound estimate. More
advanced techniques, such as taint tracking, would uncover a
wider range and greater volume of such leakages.

Exfiltrating parties. Figure 4 illustrates the connec-
tions between parties involved in the flow of context-
restricted data within WebViews. The most connected node,
com.google.android.gms, has 147 connections to various
domains, most of which lie outside of Google’s ecosystem.
Overall, a small number of libraries are responsible for enabling
large-scale data dissemination. We observe 25 third-party
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SDKs injecting context-restricted data into WebViews, which
is subsequently exfiltrated by scripts on the loaded pages to
152 distinct external parties. For example, the Amazon Ads
SDK leads to injected data being exfiltrated to over 52 different
domains, demonstrating the widespread diffusion of context-
restricted information. In contrast, some libraries such as
com.indeed, com.nvidia, and in.juspay load WebViews
and inject data, but the exfiltration is limited to their own
servers, suggesting a more contained data usage model.

To the left, we observe a cluster of well-connected
third-party SDKs commonly used for advertising. These
include com.ironsource, com.unity3d, com.inmobi, and
com.fyber, all of which inject data into WebViews that are
subsequently exfiltrated to a significant number of the same
external parties. The overlap between com.ironsource and
com.unity3d is expected, as both are owned by the same
parent company. However, similar exfiltration patterns from
WebViews loaded by unrelated SDKs such as com.inmobi

and com.fyber suggest systemic data-sharing or common
script inclusion within the advertising ecosystem.

We find that information exfiltration is often not limited to
a single external party for a given app. Over 22% of apps that
engage in exfiltration send data to two or more external domains.
Moreover, many of these recipient domains are shared across
apps, implying the existence of persistent tracking infrastructure.
We find that 63 distinct recipient parties appear in more than
five apps each, and 43 parties show up in more than 10 apps,
indicating that a large number of companies have a significant
breadth of visibility into many apps simultaneously. Among
the top companies, besides Google and Unity, we found that
Integral Ad Science and DoubleVerify had a presence across
303 and 251 apps, respectively, and were exfiltrating context-
restricted data despite not having any associated SDK.

We also find that 25 parties (companies) involved in
exfiltrating information from WebViews are assigned a tracker-
radar score of 0 by DuckDuckGo (in their DuckDuckGo
tracker-radar [27]), indicating that they are not recognized
as tracking domains on the web. Notably, this includes Aarki,
a mobile marketing platform observed in 109 apps, which
exfiltrated 15 types of context-restricted data during our crawl.
Similarly, RevX, an ad tech company present in 67 apps, also
exfiltrated 15 types of context-restricted data yet is absent
from DuckDuckGo’s tracker-radar dataset. These cases point
to a set of lesser-known or overlooked companies operating in
the mobile tracking ecosystem that collect sensitive data from
WebViews but are not flagged by mainstream web-focused
tracking detection tools, like DuckDuckGo’s tracker radar.

Fingerprinting. We find that JavaScript code inside apps
that participate in information leakage tends to use more
fingerprinting APIs compared to apps that do not. This is
illustrated in Figure 5 which depicts two survival functions,
one for the number of fingerprinting APIs per app, for apps
with injections and exfiltration, and another for the number of
fingerprinting APIs per app but calculated for apps where no
injection or exfiltration occurred. We find that over 30% of
apps that exfiltrate context-restricted data load scripts that,

Orange is for apps that had injections and exfiltrations
Blue is for apps that had no injections or exfiltrations

Fig. 5: Fingerprinting API usage across apps that had injections
and exfiltration of context-restricted data compared to apps that
had no injections and exfiltration of context-restricted data.

on average, invoke more than 50 fingerprinting APIs. In
contrast, among apps where no injection or exfiltration occurs,
only 10% execute more than 50 APIs on average. The most
widely used fingerprinting APIs are Navigator.userAgent

and Navigator.userAgentData, which appear in 3,079
and 2,984 apps, respectively. These APIs are well-known
fingerprinting vectors in the web fingerprinting landscape.
Additionally, previous work by Tiwari et al. [16] has shown
that these APIs can also contain context-restricted data since
they can be modified by the Java code by [39].

Other commonly used fingerprinting techniques include
accessing Screen.width and Screen.height to infer device
screen size and leveraging the navigator.connection

interface to determine the quality of the device’s network
connection. Among other techniques, we find evidence of
canvas being used inside WebViews. Over 742 apps use
WebGLRenderingContext.getExtension, an API that
provides access to the optional WEBGL_debug_renderer_-
info property that provides the script with a description
of the graphics capabilities of the device through the
WebGLDebugRendererInfo.UNMASKED_VENDOR_WEBGL

and WebGLDebugRendererInfo.UNMASKED_RENDERER_-

WEBGL property. Similarly, 284 apps follow the typical process
of converting canvas elements into data URLs using the
HTMLCanvasElement.toDataURL function [40].

Surprisingly, we find that sensor APIs, like those described
by Nguyen et al. [26], are not being used in the wild
to actually collect sensor data. While that study provides
a valuable analysis and highlights a potential threat, our
investigation reveals a different story. We observed 128 apps
invoking Window.Sensor; however, we manually analyzed a
random subset of 10 apps and found that they check for the
existence of the API (possibly to date the browser version for
the fingerprint), but do not actually access sensor data.
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Summary. Overall, our results show that third-party SDKs
leverage dynamic behavior to inject context-restricted data
into WebViews, highlighting the significant privacy invasion
currently affecting users. Strikingly, over half of these injections
involve sensitive, context-restricted data, and over 90% of
those apps exfiltrated this data to third-party servers. Just 25
SDKs are responsible for this privacy diffusion, collectively
transmitting data to 152 external parties, including several
previously undetected trackers. Furthermore, the apps that
perform this information leakage exhibit significantly higher
usage of web fingerprinting APIs.

VII. RELATED WORK

Android privacy. Several papers have attempted to analyze
Android apps, trying to quantify the security and privacy
ramifications of apps collecting user’s personally identifiable
information. One of the first frameworks to do this was the
TaintDroid dynamic analysis framework proposed by Enck et
al. [41]. Other tools that have been used to perform similar anal-
yses include FlowDroid [42], AmanDroid [43], DroidSafe [44],
ReCon [45], AGRIGENTO [46] and antiTrackDroid [47] to
name a few. However, these analyses have largely concentrated
on examining the Java code within apps or the associated
network leaks, overlooking the behavior and interactions of
JavaScript code executed within embedded WebViews.

Dynamic JavaScript analysis. In contrast to Android,
JavaScript analysis for standard web browsers is supported
by a comprehensive collection of tooling. One of the earliest
dynamic analysis tools, Fourth-Party, was developed by Mayer
et al. [48], using browser instrumentation to detect privacy-
violating behaviors. Acar et al. [49] followed with FPDetective,
focusing on JavaScript fingerprinting. Another widely adopted
approach is exemplified by OpenWPM, which injects JavaScript
via browser extensions to study specific behaviors at scale [50].
However, OpenWPM is built on Firefox, making it incompatible
with the Chromium-based WebViews commonly used on
Android. To address this gap, Jueckstock et al. [5] introduced
VisibleV8, a set of Chromium patches capable of recording
all web API calls. Given its comprehensive coverage and
ongoing maintenance aligned with the latest Chromium releases,
we modified and integrated VisibleV8 into our toolchain for
analyzing JavaScript behavior within WebViews.

WebView privacy. Researchers have long recognized that
third-party advertising libraries often leak personally identifi-
able information (PII). These libraries were typically bundled
into apps as opaque binary SDKs, which then loaded third-
party content remotely. Early research in this area focused on
mitigating these risks by sandboxing the libraries and limiting
the permissions they could access within the host app [51],
[52], [53], [54], [55], [56].

Since 2014, however, third-party advertising libraries have
increasingly been moving towards using WebViews to display
rich ads. This model, while more secure than previous iterations,
has led to privacy and security issues of its own. In 2014, Son
et al. [9] was one of the first to propose an attack through
which a malicious ad could exfiltrate the location of its users.

Since then, WebViews have become more popular, and have
been used to create entire apps, called hybrid apps. This has led
to a proliferation of research on the security and privacy issues
associated with WebViews, including attacks that read and write
files, leak sensitive data [57], [11], [58], [59], perform click-
fraud [60] and in some cases, confuse users by masquerading as
different apps and websites [61], [62]. However, little research
has explored the use of these techniques in the wild.

Studies have also shown that third-party ad libraries collect
extensive user data by leveraging the requested permissions
to mine non-resettable identifiers such as the IMEI and
IMSI, along with sensitive information like contact details.
Historically, tracking was often achieved by over-requesting
permissions [52], [54]. Recently, however, Google has imposed
stricter controls, making access to unique identifiers more
difficult. Despite these efforts, third-party libraries continue to
circumvent these restrictions by exploiting side channels [63],
leveraging persistent storage [64], and misreporting data
practices in the mandated Data Safety section [65].

Cross-boundary analysis. The research community has
made notable strides in analyzing JavaScript behavior within
WebViews, though key limitations remain. In 2016, Lee et
al. [3] introduced HybridDroid, a static analysis tool targeting
JavaScript in WebViews. However, it lacked support for
dynamic JavaScript behaviors, such as runtime script injection,
and did not consider server-side dynamics highlighted by
Lekies et al. [66]. In 2019, Bai et al. [2] proposed Bridge-
Taint to dynamically analyze Java-JavaScript interactions, but
their work was limited to Cordova apps and a narrow set
of JavaScript APIs. Tiwari et al. [67] later used Frida to
instrument Java APIs and study WebView fingerprintability, but
they did not analyze JavaScript code directly. In 2023, Pradeep
et al. [68] performed an analysis of Android browsers, including
WebView-based browsers, and found privacy issues surrounding
how Java code communicates with JavaScript. However, their
dynamic analysis pipeline relied on pre-caching dynamically
generated content, which allowed them to observe dynamic
Java-level behavior, but significantly limited their ability to
capture dynamic behavior at the web layer. Krause [69] showed
the potential to inject JavaScript in Android and iOS WebViews
by using an instrumented website, but had limited JavaScript
detection capabilities. Zhang et. al [70] conducted a large-
scale empirical study on cross-principal manipulation of Web
resources in Android using XPMChecker, and found cases of
apps stealing/abusing cookies and collecting user credentials.
Most recently, Kuchhal et al. [71] conducted a large-scale static
analysis of JavaScript injections in WebViews, yet their method
could not determine which injections were actually executed
or what data flowed into the WebView from Java.

Comparison to prior work. To the best of our knowledge,
the works by Kuchhal et al. [71], Tiwari et al. [67], [16],
Bai et al. [2], Rizzo et al. [11], Son et al. [9], and Lee et
al. [3] represent the most closely related efforts to ours. We
consider these works to be the current state of the art, and
provide a qualitative comparison in Table VIII in Appendix B.
Furthermore, while different from our methodology, Kuchhal
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et al. [71] performed a semi-manual dynamic analysis on a
subset of 10 apps. We present a quantitative and qualitative
comparison for the same set of apps in Appendix B. Due to
the differences in the proposed methodologies, their study is
complimentary to ours, and together they serve as a useful
resource for the research community.

Prior work on analyzing hybrid mobile applications has
primarily focused on studying the interaction between Java and
JavaScript through either static or dynamic techniques. Tools
such as LuDroid [16], BabelView [11], and Hybridroid [3]
rely predominantly on static analysis to reason about possible
communication pathways between Java and JavaScript. While
these methods model interface exposure and simulate attacker
behavior, they often lack visibility into actual JavaScript
execution or runtime behavior, limiting their ability to detect
dynamic data flows or confirm whether the modeled paths are
ever realized during execution.

Other works, such as Son et al. [9], Tiwari et al. [67],
Pradeep et al. [68], and Kuchhal et al. [71], incorporate
dynamic analysis to varying extents. However, these often rely
on replacing the loaded webpages with researcher-controlled
dummy pages which limits full coverage of Java-to-JavaScript
and JavaScript-to-exfiltration flows. Notably, BridgeTaint by
Bai et al. [2] achieves tracking of cross-context information
flows. However, their approach traces only a limited set of
whitelisted JavaScript APIs and is tightly coupled with Apache
Cordova-based applications, making it less suitable for broader
WebView use cases like mobile advertising. Additionally, while
Pradeep et al. [68] conducted a detailed analysis of WebView-
based browsers and identified key privacy concerns, their
dynamic analysis used a curated set of webpages, which
aligns with their focus on Java-level behaviors. In contrast, our
approach emphasizes dynamic web-level activity, requiring full
interaction with live, often unpredictable web content.

Our work differs in that it leverages an instrumented version
of the V8 JavaScript engine (VisibleV8), enabling complete
visibility into JavaScript execution at runtime. This allows
us to precisely capture Java-to-JavaScript interactions, detect
exfiltration behaviors, and trace how SDK-provided data
propagates across contexts. Unlike prior approaches, we are not
constrained by static assumptions, limitations on the variety
of web content or platform-specific instrumentation, as our
system dynamically observes cross-context flows in real-world
applications across a wide range of frameworks, including non-
Cordova apps. This comprehensive dynamic coverage allows
for more accurate identification of privacy-relevant behaviors
in WebView-based applications. Indicatively, we find that 59%
of apps that loaded WebViews in our dataset, injected and
exfiltrated context-restricted data, substantially more than prior
studies. For instance, LuDroid [16] reported such flows in
26.2% of apps (1,330 out of 5,083), and BridgeTaint [2]
reported only 4.5%. This sharp contrast highlights the broader
visibility and effectiveness of our novel dynamic analysis
approach in uncovering privacy risks at scale.

VIII. DISCUSSION, LIMITATIONS, AND MITIGATIONS

Impact. Our research uncovers sensitive information diffu-
sion across multiple actors, and exposes previously-unknown
tracking endpoints. Google’s ongoing initiative to enhance
transparency regarding the collection of users’ personal infor-
mation establishes rigorous and elevated standards (e.g., the
Data Safety section), and highlights the importance of privacy-
preserving technologies. Additionally, the significance of the
privacy-invasive data collection we observe (e.g., of the
Advertising ID) is reflected in cases such as [72], where privacy
advocacy groups have filed official complaints to European Data
Protection agencies over the collection of the Advertising ID.
Therefore, it is evident that our framework exposes important
privacy-invasive behaviors that violate existing consumer-
protection legislation, and can help identify and stop privacy
violations in the mobile-tracking ecosystem by shedding light
on previously unexplored techniques.

Anti-tracking tools. Our study uncovered a number of
previously unknown domains involved in cross-context tracking
and data exfiltration. We responsibly disclosed them to the
Disconnect.me, DuckDuckGo, and EasyList maintainers to aid
in the broader ecosystem protection.

App Store vetting safeguards. Looking forward, we believe
there is an opportunity for platform-level mitigations. One
avenue is for Google, as stewards of the Android platform, to
leverage their existing infrastructure, such as the Play Protect
network [73], WebView-based Chrome Finch instrumenta-
tion [74], or academic tools like our framework, to dynamically
analyze apps for new exfiltration behaviors, as part of their app
vetting process. While dynamic analysis does not offer complete
coverage, especially given its input-dependent nature, it can
still act as an early-warning system for emerging information
leakage techniques like those identified by our paper.

Privacy-preserving advertising. Google’s ongoing Privacy
Sandbox initiative aims to provide privacy-preserving alter-
natives to existing ad-related mechanisms, through a series
of new APIs. While this is an ongoing effort, it would be
interesting to see how it is adopted over time, and whether it
provides the requisite functionality that trackers seek, such that
it would involve ad targeting, without necessitating access to
sensitive user data. Moreover, there have been announcements
for Android implementations, such as the Topics API for
Android [75]; nonetheless, an interesting endeavor would be
to retrofit it so as to make it callable from the context of a
WebView, thus eliminating the incentive to extract sensitive
app-side data through covert channels.

Limitations and future work. To facilitate reproducibility,
we will open-source our analysis framework, instrumentation
patches, and dataset of Frida execution traces and VisibleV8
logs. As of the v139 release [76], we have upstreamed our
changes to VisibleV8 with the aim of lowering the barrier
for other researchers interested in studying cross-context
data flows and exfiltration techniques in mobile ecosystems.
While our findings shed light on a range of covert tracking
behaviors, they also surface several open questions that merit
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further exploration. For instance, additional work is needed to
understand the full extent of obfuscated identifiers exfiltrated
from WebViews, as well as their flow inside JavaScript contexts.
Techniques like taint tracking could help map these flows
more precisely. Moreover, regex-based heuristics including
transformations (e.g., Base64, SHA-256) are commonly used
for detecting network leaks [77], [78], [79], but can miss
instances of data exfiltration. Differential analysis [46] provides
an alternative approach, but is unreliable due to the dynamic
nature of web content, making regex-based heuristics the best
way of identifying context-restricted information. Similarly,
obfuscated or unknown third-party library package names will
be missed when attributing the origin of injections. These
limitations can result in false negatives, therefore our results
present a lower bound of the abuse occurring in the WebView
ecosystem. Furthermore, even though we use a sophisticated
framework to dynamically traverse Android apps and modify it
according to our needs, Android UI element coverage remains
challenging. We see our work as a stepping stone, and believe
that enabling the community with tools will help identify and
stop privacy violations in the mobile-tracking ecosystem.

IX. CONCLUSION

Smartphones have become an integral and inseparable
component of most facets of modern, everyday life, and are
almost always within arm’s reach. Consequently, these devices
not only mediate many of our most sensitive online activities
and communications, but also contain massive amounts of
personal data. As privacy remains both a need and a necessity,
it is crucial that we continue to investigate new avenues
through which privacy invasion can manifest. In this paper, we
conducted a novel investigation of how tracking and PII leakage
are made possible by code injection techniques that enable
Java-to-JavaScript bridging, thereby connecting two separate
execution contexts. By developing WebViewTracer, we are
able to find that such techniques essentially enable complex
invasive behaviors that bypass existing isolation and access
control mechanisms. In fact, our large-scale study demonstrated
not only that such behaviors are prevalent among the major
players in the online advertising ecosystem, but also uncovered
colluding behaviors across different third-party libraries that
may not be readily apparent to app developers. As a first
remediation step, we have reported the previously-unknown
domains uncovered by our study to popular privacy and anti-
tracking tools. We will open source our tool in an effort to
incentivize additional scrutiny from researchers and enable the
development of additional safeguards by platform stakeholders.

ETHICAL CONSIDERATION

All crawling activities were conducted at a US academic
institution. To isolate experimental traffic, we routed all data
through a Tailscale-managed [80] tunnel using a dedicated IP
space reserved for measurement studies. At no point was any
personally identifiable information (PII) collected or processed.
The devices used in the experiment were physically wiped
before use, and configured with fresh, anonymized dummy

accounts. These phones contained no user data, were not
linked to real individuals, and lacked SIM cards or any
telephony capability, ensuring no accidental exposure to private
or personal information.
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APPENDIX A
ADDITIONAL TECHNICAL DETAILS.

Here we present additional technical details concerning
the adaptation of VisibleV8 for Android WebViews. The

VisibleV8 WebView provider used in our experiments is based
on VisibleV8 v131.0.6778.81, which was the latest version
at the time of implementation. We have since verified that
our modifications remain compatible with VisibleV8’s current
release v138.

The modified WebView VisibleV8 patchset contains three
major changes on top of the existing VisibleV8 patches. In the
first change we modify the Blink-Java layer to log calls from
JavaScript code, this is done by capturing a JavaScript interface
call once when it leaves the V8-Blink layer and once when it
enters the V8-Blink boundary from the IPC layer separating
the Java code from the C++ implementation. We modify the
V8 interface to expose VisibleV8 logging functions to the
Blink codebase which is used to log the return value and the
arguments sent to the call into the Java code.

In the original VisibleV8 patchset calls to the visv8_-

should_log_object() function that checked if a script used
a web API that was either a builtin API or a property of that
global object occurred after the VisibleV8 context had been
initialized. This means that every function call or assignment
to a global object triggered initialization of the VisibleV8
context. This process involves expensive operations, such as
retrieving the currently executing script and its script ID,
followed by lookups in VisibleV8’s global table. This additional
computation overhead, while trivial in the context of desktop
browsers caused the WebViews which were loaded on devices
with much more restricted resources to freeze and crash. As
a result, in our modified patchsets, we changed the order of
operations for VisibleV8 to first check if a log statement was
to be emitted before initializing the VisibleV8 context.

In addition to the above, the following flags are enabled to
allow the WebViews to log data directly to the sdcard. The
disable-multiprocess flag [24] locks the renderer process
to a single renderer. It doesn’t remove core functionality or alter
the behavior of Java-JavaScript communication/network APIs.
The incremental_install flag [23] is a feature designed
to speed up the Chromium build/installation. The relaxed
sandboxing mechanism disables isolated processes for faster
dex loading, and allows us to extract VisibleV8’s logs to the
sdcard.

APPENDIX B
QUANTITATIVE & QUALITATIVE COMPARISON WITH PRIOR

WORK.

Table VIII provides a comparison to prior studies with
WebView analysis. More directly related to our work is the
work by Kuchhal et al. [71], who conducted a large-scale
static analysis of JavaScript injections in WebViews and
followed it with a semi-manual dynamic analysis on a subset
of 10 apps. While a direct comparison isn’t possible due
to differences in methodology, app versions, and timing of
experiments, as well as the dynamic, ever-changing nature of
the web, a quantitative and qualitative comparison still offers
a valuable, complementary perspective on the mobile web
ecosystem. We use WebViewTracer to identify cross-context
Java-to-JavaScript interactions and manually exercise these
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TABLE VII: Manual evaluation of regex-based heuristics for
privacy-invasive injections on a set of 60 apps.

Reviewer TP FP FN TN Precision (%) Recall (%)

A 1037 10 118 4193 99.04 89.78
B 909 4 1 3771 99.56 99.89
C 879 57 28 3638 93.91 96.91
D 1079 1 34 4839 99.90 96.94
E 872 11 13 3392 98.75 98.53

apps for 10 minutes. Subsequently, we manually analyzed
the injected scripts and the Java-to-JavaScript bridges. We
were not able to analyze Kik since it is temporarily removed
from the Google Play Store [81], [82]. After installing the
latest version of Kik from AndroZoo, the application indicates
that it is outdated and requests an update that cannot be
completed. Table IX shows the intent of the injected scripts
and Java-to-JavaScript bridges for the remaining apps. In the
majority of analyzed applications, we confirmed the presence
of injections reported by [71], in addition to discovering several
new ones. Specifically we found seven new types of injections
for Facebook, Instagram, Snapchat, Twitter, LinkedIn and Moj
and in total we have identified nine new Java-to-JavaScript
bridges. Noteworthy examples are Facebook, Instagram and
Moj. We observed that Facebook and Instagram extract all
image URLs from WebViews and also log the number of
clicks and the scroll depth. Furthermore, we identified that
Unity is injecting and exfiltrating context-restricted information
(e.g., Advertising ID) from the Moj application to domain
https://impression.link. According to the DuckDuckGo
Tracker Radar dataset this domain is assigned a fingerprinting
score of zero. Finally, we were unable to identify three injec-
tions and four Java-JavaScript bridges reported in prior work,
which we attribute either to the removal of this functionality
or to the possibility that our manual analysis did not reach the
relevant parts of the application.

APPENDIX C
REGEX-BASED HEURISTICS EVALUATION.

We assess the prevalence of false positives and false
negatives in our regex-based heuristics by randomly selecting
60 applications and manually analyzing the Frida and VisibleV8
logs for privacy-invasive behavior. This process was performed
by five security researchers, each assigned to review the logs
of 12 applications produced by WebViewTracer. Table VII
presents false positives and negatives produced by our system.
We observed that, in most cases, WebViewTracer accurately
identified injections involving context-restricted data, with only
a small number of false positives. Furthermore, through manual
inspection of the logs, we identified instances where context-
restricted data were injected using gzip compression and Base64
encoding, or subjected to multiple transformations (e.g., URL
encoding followed by Base64), which resulted in false negatives
by our system.

APPENDIX D
WEBVIEW COVERAGE EVALUATION.

To evaluate the number of WebViews identified by our
framework through automated interaction, we conducted an
experiment on 50 applications and compared the results
with those obtained via manual interaction. In both cases
we interacted with each application for five minutes and
set the highlight-all-webviews flag from the WebView
DevTools in order to highlight and annotate all WebViews
displayed on the screen. Because the content of the WebViews
varied between sessions (manual and automated), we counted
WebViews for each app based on their on-screen position and
the associated application activity. Among the apps executed the
most common use of WebViews was for interstitials and banner
ads many of which showed up randomly or when a specific UI
element or action was triggered. We observed instances where
WebViews were absent in a specific activity during the manual
session but appeared during the automated session, and vice
versa. During the manual analysis of the apps we identified 141
WebViews, while UIHarvester identified 70 WebViews (49.64%
WebView coverage). Furthermore, UIHarvester is unable to
navigate games correctly which applied to 11 apps in our
dataset. Upon filtering out game apps, UIHarvester achieved a
coverage of 52.13%. We note that due to the non-deterministic
behavior of applications, comparing the number of WebViews
identified in one app session with those from another, regardless
of whether the analysis is manual or automated, is not directly
applicable. The results of this manual comparison indicate that,
when analyzing a large set of applications, as in our study,
automated interaction is sufficient to uncover privacy-invasive
activities in WebViews. Consequently, the findings of our study
should be interpreted as a conservative lower bound.

APPENDIX E
EXAMPLES OF FRIDA AND VV8 LOGS.

Figure 6 and Figure 7 present examples of Frida and VV8
logs respectively. Figure 6 shows an example of a Frida log in
which an application loads a Google Ads domain and injects
an empty function into the WebView to verify whether the
JavaScript has successfully loaded. Figure 7 shows a JavaScript
snippet (top) and the associated VisibleV8 log for the network
request (bottom) of an exfiltration call through Unity’s Java
code.

APPENDIX F
ARTIFACT APPENDIX

In our NDSS submission, we proposed WebViewTracer, a
framework designed to dynamically analyze the execution of
JavaScript code within WebViews at runtime. The following
section was our submission to NDSS 2026 Artifact Evaluation
Committee.

Our artifact consists of three parts, the first is the modified
VisibleV8 patchsets that were used to create the VisibleV8
WebView. We provide detailed instructions to build and install
it on an Android phone alongside prebuilt versions of the apk
for x86_64 and ARM64. The second is the crawler that was
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TABLE VIII: Qualitative comparison to prior studies with WebView analysis.

Papers Analysis Information flows identified
Type Analyzed JavaScript Analyzed Java Java to Java Java to JS JS to Java JS to exfil

WebViewTracer Dynamic
Kuchhal et al. [71] Static, Dynamic
Tiwari et al. [67] Static, Dynamic
Tiwari et al. (LuDroid) [16] Static
Bai et al. [2] Dynamic * * *
Rizzo et al. [11] Static
Son et al. [9] Dynamic
Lee et al. [3] Static

full coverage, no coverage, partial coverage, * full coverage, but only in Apache Cordova

TABLE IX: Quantitative and qualitative comparison of our system WebViewTracer (4) with Kuchhal et al. [71].

App Name Injection Intent 4 [71] Java-JavaScript Bridge Intent (bridge name) 4 [71]

Facebook
Instagram

WebView/Webpage language preference ✓ ✖ Scroll logging (enableVerticalScrollDepthLogging) ✓ ✖
Extract images and metadata ✓ ✖ Meta Checkout ✖ ✓

Logging numbers of clicks and scroll depth ✓ ✖ Facebook Pay ✖ ✓
Returns DOM Tag Counts ✖ ✓ Performance metrics (navigationPerformanceLoggerJavascriptInterface) ✓ ✓
Logs performance metrics ✓ ✓ AutoFillExtensions ✓ ✓

Returns simHash for page to detect cloaking [83] ✓ ✓
Insert FB Autofill SDK JS script ✓ ✓

Snapchat Logs performance metrics ✓ ✖ Google Ads (googleAdsJsInterface) ✓ ✖

Twitter Set Grok model id/name ✓ ✖ Google Ads (googleAdsJsInterface) ✓ ✖

LinkedIn DoubleVerify measurements & analytics ✓ ✖ Event signaling (androidLIWebsiteSignalMessageHandle, Android.sendWebMesage, challengeCompleted) ✓ ✖
Calls to Cedexis traffic management API ✖ ✓

Pinterest No injection - - (Obfuscated) ✖ ✓

Moj Context-restricted information injections by Unity ✓ ✖ Unity (window.nativeBridge.handleInvocation, window.Android.messageHandler) ✓ ✖
Insert and manage a video Ad via Google Ads SDK ✓ ✓ Google Ads (googleAdsJsInterface) ✓ ✓

Chingari Insert and manage a video Ad via Google Ads SDK ✖ ✓
Chingari events (trackAnalyticsEvent) ✓ ✖

Google Ads ✖ ✓

Reddit No injection - - recaptcha.net obfuscated data (RN.zzlce) ✓ ✖

"data": {
"action": "INJECT-LOAD",
"hashcode": 74450829,
"func": "loadUrl",
"params": ["\"https://googleads.g.doubleclick.net...\""]

},
"stacktrace":

"dalvik.system.VMStack.getThreadStackTrace..."↪→

"data": {
"action": "INJECT-JS",
"hashcode": 74450829,
"func": "evaluateJavascript",
"params": ["\"(function(){})()\""]

},
"stacktrace":

"dalvik.system.VMStack.getThreadStackTrace...."↪→

Fig. 6: Frida log showing a Google Ads controlled WebView,
loading a doubleclick.net page and injecting an empty self-
invoking function to verify page load.

used to run our experiments. This uses docker to start a prebuilt
emulator that already has a version of the VisibleV8Webview
installed. This component allows us to exercise the apps and
helps obtain the Frida logs used to perform our experiment.
The third component of the artifact is our dataset. We provide a
apk_artifact.json file that contains the hashes, version
and app names of all the apps used in our experiment as well
as a small zipped subset of 195 apps that can be used to run a
small scale experiment.

Due to the highly dynamic nature of the data being observed
and the scale (over a month of crawling), the experiment

window.nativeBridge.handleInvocation(
"com.unity3d.services.core.api.Request",
"post",
[..., "https://auction-load.unityads.unity3d.com?...."]

)

c370:%<anonymous>:{409,Object}:
"[["com.unity3d.services.core.api.Request","post",
["3","https://auction-load.unityads.unity3d.com?"....]...]]"

Fig. 7: JavaScript snippet (top) and the associated VisibleV8
log for the network request (bottom) of an exfiltration call
through Unity’s Java code.

conducted in the paper is hard to reproduce. We are providing
a set of 195 apps, from our dataset, for which we downloaded
the x86_64 version (to work in an emulated environment) that
we believe will provide a good-enough approximation of the
high-level results we obtained from the crawl. To build this
dataset of 195 apps, we took the list of apps that had webviews
from our original dataset, picked 500 apps at random, and then
re-downloaded the apps from the Google Play App Store using
the credentials of the emulated phone. Out of these 500, 198
apps were successfully downloaded for the specific architecture
and credential combination on July 14th 2025.

Overall, we provide the system with which we crawled
over 10K apps, the modified VisibleV8 patches, and a JSON
dump of all apks downloaded as part of our experiment in our
Github repository [84]. We also provide the original dataset of

18



JavaScript execution traces and logs dumped by Frida’s tracing
of Java SDKs that we used to obtain the results in the paper.1

A. Description & Requirements
1) How to access: The artifact files can be downloaded from

[85]. The WebViewTracer-main.zip archive in Zenodo
represents a Git repo that we will open-source with the paper.
The SystemWebView.apk file is the prebuilt x86_64 version
of the VisibleV8 WebView provider. The trace-apis.patch
and chrome-sandbox.patch are the patches that can be used
to build a version of VisibleV8 Chromium for v138. The APK
dataset is at x86_64_apps.zip. The avd.zip is the archive
containing a x86_64 emulator that can be used to run the
small scale experiment.

2) Hardware dependencies: The scaled down version of
our system requires a x86_64 system with CPU virtualization
support. In addition, the system running the experiment must
have CPU and memory requirements to run Android Stu-
dio. [86] To replicate the larger version of the full experiment
run will require at least one Android Pixel phone based on the
ARM64 architecture. To run the results scripts to reproduce
the experiment on the original data, a significant amount of
SSD space is required.

3) Software dependencies: Docker, docker compose (higher
than v2), Python ≥ 3.10 and venv need to be installed
on the system and are necessary to run these experiments.
Note that rootless docker alternatives like podman are not
supported since they interfere with experiment setup. Python
is required to run the orchestration scripts and docker is used
to create databases, and setup a reproducible emulator (we
tested emulator version 36.1.9.0, build_id 13823996). The
emulator-based mode requires a Linux system with kernel-
based KVM support as a precondition to the Android emulator
working. For the larger experiment, an Android Pixel phone (our
experimental system used a Pixel 4a) is required that would
need to be rooted with some kind of rooting software like
Magisk or KernelSU and a version of “systemizer” a method
of manually replacing system apps with different variants
should be installed. We’ve tested our scaled-down experimental
system on Ubuntu 24.04.01, with a docker version of 28.3.3
(build 980b856) and a docker compose version of v2.39.1. Our
original large-scale experiment was also run Ubuntu 24.04.1,
with a docker version of 28.2.2 (build e6534b4) and docker
compose version of v2.36.2. We have even tested our system
on Arch Linux (running a kernel version of 6.15.9) with a
docker version of 28.3.3, build 980b856 and docker compose
version of 2.39.2 (note that any kind of aliasing of docker to
alternatives are not supported).

4) Benchmarks: While there are no explicit benchmarks
being performed, we do provide two datasets as part of our
artifact, the first one is the dataset of apps, this is a list of all
apps that were downloaded and used to perform our analysis.
These can be used to perform our experiment. Another dataset
contains a set of files containing the browser execution traces
and Frida logs that were subsequently used to obtain our results.

1https://doi.org/10.5061/dryad.05qfttffz

We provide two scripts, android-check.sh and
python ./scripts/wvt-cli.py (see Section B) to
check if your system is capable of running the artifact. If the
android-check.sh is capable of running and displaying
an emulator window and the python3 ./scripts/wvt-
cli.py script exits without a 255 exit code, you should be
able to run the small-scale experiment.

B. Artifact Installation & Configuration

To run the scaled down experiment the following steps must
be followed,

• Git clone [84]
• Change directory to the webviewtracer-crawler directory
• Setup a python virtual environment by running python3
-m venv env && source env/bin/activate

• Install the dependencies using pip install -r
scripts/requirements.txt

• Run python3 ./scripts/wvt-cli.py and make
sure it does not exit with a 255 exit code and does not
output any error messages.

• Run the android-check.sh to check if you are able
to correctly run a small scale emulator on your system.

• Download the AVD emulator image avd.zip in [85] and
unzip it into the celery_workers/avd/ directory

• Run python3 ./scripts/wvt-cli.py setup,
the CLI will ask you a few questions, you can choose the
default option by pressing enter once the questions are
asked.

• Navigate to the “apps/split_1” directory and unpack
x86_64_apps.zip in [85] into the directory

• Run python3 ./scripts/wvt-cli.py crawl.
If this command does not work, please use docker
compose -env-file .env up -build -d -V
-force-recreate -remove-orphans, the python
script is a transparent wrapper to this command and it
should start running the experiment.

• Navigate to http://0.0.0.0:6901 and observe the
apps being crawled

• Once all the apps are done crawling, run ls raw_logs/
> tmp in the webviewtracer-crawler directory.

• Run python3 ./scripts/wvt-cli.py
postprocess -f tmp -pp ’Mfea-
tures+androidflow+exfil+frida’, open
0.0.0.0:5559 and wait for all the tasks to succeed
or fail. The jobs will fail if no webviews are loaded at
all while crawling the app and it is normal for a lot of
them to fail.

• Run python3 ./scripts/wvt-cli.py
results to view the results

• You can use python3 ./scripts/wvt-cli.py
shutdown to shutdown the crawler

Region specificity. Many of the apps that we provide have
differing behavior based on the region in which they are run,
(for example, when the apps are run in the Europe, Google
Ads will display a consent banner to align with GDPR laws),
to reproduce our experiments, we do recommend using a VPN
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to connect to a server in the US to more closely replicate
the results we got in our paper. We include openvpn as part
of our Docker container, you can drop a valid .ovpn file in
the vpn/ directory and then load the VPN by using sudo
openvpn /app/vpn/<config.ovpn> inside the docker
container.

Debugging steps. Depending on hardware configurations and
regional differences, there might be issues with emulators crash-
ing when opening and running specific apps, we recommend
analyzing the logs in the “webviewtracer-crawler/raw_logs”
directory (of the unzipped WebViewTracer-main.zip file) to
understand the errors that being hit during crawling an app.
Each app will have its own subdirectory which will contain
the a directory called “logcat/” which contain a logfile (called
“full_logcat”) which contains the logcat output during the run
of the app. Similarly, often the issue can be incompatibilities
with Frida hooking, our “raw_logs” dumps also contain the
logs of all frida calls in “frida/logfile”. Finally, every logfile
contains a set of images taken during the traversal of the
app itself, which can verify how the crawling setup navigated
the app and a set of raw VisibleV8 logs in the “Documents”
directory for each app which can be inspected to understand
issues with JS execution inside the WebViews. These logs later
get postprocessed and are used during the analysis.

Running the full-scale experiment. If you would like to run
the full scale experiment on newer browser versions, you can
find newer version of our VisibleV8 WebView patches in the
upstream VisibleV8 repo [18] starting with Chrome 139. The
patch files provided in the “patches” directory can also be built
from scratch by following patches/webview_build_in-
structions.md of the unzipped WebViewTracer-main.zip
file).

We would recommend starting with downloading a
set of apps using the methodology we outline in
dataset/Downloading_apps.md (of the unzipped
WebViewTracer-main.zip file) and then setting up a ARM64
phone with VisibleV8 WebViews, before running the same
commands that were run for the small-scale experiment, except
that during the setup command (step 5) the ‘physical’ prompt
must be chosen when the script asks the question “What type
of devices are you using?”. Note that the devices must be
plugged in and connected and authorized to connect be remotely
debugged through adb by the computer running the experiment.

C. Experiment Workflow

The experiment starts by setting up a set of dockerfiles
and then subsequently starting an already prepared Pixel 6a
emulator with WebView version 138 installed, installing apps
one by one on the emulator and using UIHarvester to perform
a depth-first-search of the UI of the apps. It does this for
5 minutes per app and retries them two times if there is
unforeseen failure of the Frida-based instrumentation at any
moment.

In the experiment conducted in our paper, we used 4
real Google Pixel 4a devices that had a the VisibleV8
Webview provider for version 131. We also used a

timeout of 20 minutes and retried every single app 5
times across 1K apps. The amount of time the system
spends crawling an app can be tweaked by editing
webviewtracer-crawler/celery_work ers/vv8_-
worker/uiharvester/execution_wrapper/
application_runner/mode.py line 180, the number
of times an app can be retried can be changed by changing
the last number at webviewtracer-crawler/celery_-
workers/vv8_wo rker/entrypoint.sh.

To use physical phones, the phones need to be connect to
the computer using USB ports and the computer should have
ADB installed. The python orchestration module should figure
out the number of phones and assign each to it’s own crawling
module.

The webviewtracer-crawler/raw_logs contains
all the logs for each app and webviewtracer-
crawler/crawl-data/ and the command docker
compose logs -f can be used to obtain the logs for the
traversals of each instance of emulator used.

D. Major Claims

The following are the claims being reproduced by the artifact,
note that the claims are quantitative rather than numerical.

• (C1): SYSTEM discovers the leakage of context-restricted
data from the app through injections in WebViews and is
exfiltrated to the outside world.

• (C2): SYSTEM shows the presence of phantom exfiltra-
tions, i.e. exfiltrations of data without associated injections.

E. Evaluation

The following experiments are being reproduced
1) Experiment (E1): Crawl [30 human-minutes + 16.5

compute-hours]: This experiment will run a small-scale crawl
and provide numbers to prove C1 and C2.

Preparation and Execution Follow the steps at Section B
Results To fully reproduce our experiment, the user should

see some apps loading WebViews and subsequently using
WebViews to exfiltrate context restricted information. The
results command (python3 ./scripts/wvt-cli.py
results) should provide a table of the kinds of context
restricted information being exfiltrated out. Some apps might
load test ads due to non-standard nature of the emulator in
which case there might be lesser injections and exfiltrations
of context-restricted information. There should at least a few
categories where the exfiltrations is very low compared to
those reported by our paper. This is expected since data
like “City” and IP information will vary from area to area.
We provide an existing list of regexes at webviewtracer-
crawler/scripts/results.py lines 8-26 which can be
modified and swapped out entirely based on the environment
the reviewer is using. We encourage the users to try and
swap out the regex and try their own ones to test the system!
The regexes we used are documented in webviewtracer-
crawler/scripts /experiment_pii_regexes.py
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