
A Hard-Label Black-Box Evasion Attack against
ML-based Malicious Traffic Detection Systems

Zixuan Liu∗, Yi Zhao†B, Zhuotao Liu∗‡, Qi Li∗‡, Chuanpu Fu∗, Guangmeng Zhou∗, Ke Xu∗‡B
∗Tsinghua University, †Beijing Institute of Technology, ‡Zhongguancun Lab

conditions, such as leveraging encrypted protocols [65], [58],
[82], tunnels [65], Tor networks [50], or circumventing spe-
cialized third-party censorship systems [58]. The effectiveness
of these protocol-related and task-related approaches drops
significantly when the attack environment changes. Moreover,
some solutions rely heavily on prior knowledge about the
target or dataset, requiring full (white-box) [82], [65], [96]
or partial (gray-box) [65], [37] access, which is impractical in
a more realistic black-box setting.

To bridge these gaps, we aim to design a black-box adver-
sarial attack targeting widely used ML-based traffic detection
systems that rely on statistical patterns [28], [62], [104], [7].
In particular, the attack must be protocol-agnostic and task-
agnostic, allowing it to be seamlessly applied to any malicious
traffic, regardless of whether it is encrypted, tunneled, or
otherwise constrained. Moreover, the attacker can generate ad-
versarial malicious traffic with minimal modifications, relying
solely on whether the target system drops malicious packets
(i.e., hard-label attack [94], [88]). In contrast to feature-space
attacks [57], [3], i.e., impractical settings that require attackers
to interfere with ML execution, our traffic modifications must
preserve the effectiveness of the attacks [82], [37].

This paper presents NetMasquerade, a hard-label black-
box evasion attack, which utilizes deep reinforcement learning
(RL) to transform malicious traffic into adversarial examples
by mimicking benign traffic patterns. At its core, we propose
Traffic-BERT, a tailored pre-trained model for capturing di-
verse and complex benign traffic distributions. Subsequently,
we develop an RL framework that decides the location and
type of packet modification step-by-step, leveraging Traffic-
BERT’s embedded knowledge of benign behaviors. The only
feedback required for the RL training process is the blocked-
or-not signal from the targeted detection system. The detailed
design ensures that NetMasquerade achieves minimal, yet ef-
fective, modifications across diverse traffic types and detection
models, thereby evading detection systems under black-box
conditions. We address two main challenges in constructing
effective adversarial traffic.

First, we must capture rich benign traffic patterns in order
to mimic them convincingly. To address this, we study the
distribution of Internet packet patterns, then pad and chunk
traffic from public datasets using an optimal setup to improve
diversification. Afterwards, we pre-process the traffic with
network-specific tokenizers. Finally, we extract dependencies
among the tokens with a novel attention block in Traffic-
BERT, providing a robust representation of benign traffic
across various protocols and scenarios.

Abstract—Machine Learning (ML)-based malicious traffic de-
tection is a promising security paradigm. It outperforms rule-
based traditional detection by identifying various advanced
attacks. However, the robustness of these ML models is largely
unexplored, thereby allowing attackers to craft adversarial traffic
examples that evade detection. Existing evasion attacks typically
rely on overly restrictive conditions (e.g., encrypted protocols,
Tor, or specialized setups), or require detailed prior knowledge
of the target (e.g., training data and model parameters), which is
impractical in realistic black-box scenarios. The feasibility of a
hard-label black-box evasion attack (i.e., applicable across diverse
tasks and protocols without internal target insights) thus remains
an open challenge.

To this end, we develop NetMasquerade, which leverages
reinforcement learning (RL) to manipulate attack flows to mimic
benign traffic and evade detection. Specifically, we establish
a tailored pre-trained model called Traffic-BERT, utilizing a
network-specialized tokenizer and an attention mechanism to
extract diverse benign traffic patterns. Subsequently, we integrate
Traffic-BERT into the RL framework, allowing NetMasquerade
to effectively manipulate malicious packet sequences based on
benign traffic patterns with minimal modifications. Experimental
results demonstrate that NetMasquerade enables both brute-force
an stealthy attacks to evade 6 existing detection methods under
80 attack scenarios, achieving over 96.65% attack success rate.
Notably, it can evade the methods that are either empirically or
certifiably robust against existing evasion attacks. Finally, Net-
Masquerade achieves low-latency adversarial traffic generation,
demonstrating its practicality in real-world scenarios.

I. INTRODUCTION

Machine learning (ML)-based malicious traffic detection
systems identify attack behaviors by learning the features of
traffic [28], [62], [30]. As an emerging security paradigm, it is
promising for identifying multiple sophisticated attacks [51],
[53], [49] and thus outperforms traditional rule-based detec-
tion [98], [39], [93] in both effectiveness [20], [4] and effi-
ciency [104], [7]. Currently, ML-based systems are deployed
to complement the traditional systems due to their ability to
detect unknown [23] and encrypted [4], [89] attack traffic.

Unfortunately, as in many other ML-based domains [86],
[66], [32], robustness issues are prevalent in ML-based traffic
detection systems [84], [5], [47]. That is, attackers can craft
adversarial traffic by adding, delaying, or otherwise modifying
packets [37], [96], causing detection models to misclassify
these deceptive flows as benign. The research community has
put forward a range of advanced evasion methods (see Table I),
yet many of these methods operate under narrowly defined

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230916
www.ndss-symposium.org

TABLE I
COMPARISON OF EXISTING EVASION ATTACKS AGAINST TRAFFIC ANALYSIS SYSTEMS.

Scenarios Evasion Techniques
Attack Applicability Without Prior Knowledge Attack Performance

Protocol-agnostic Task-agnostic Datasets Features Model Low Overhead Low Latency

White-box
Gradient Analysis [82], [65] ✗ ✓ ✗ ✗ ✗ ✗ ✓

Optimization [96] ✗ ✓ ✗ ✗ ✗ ✗ ✓

Gray-box
Sample Transferability [65] ✗ ✗ ✗ ✗ ✓ ✗ ✓

Feature Manipulation [37] ✓ ✓ ✓ ✗ ✓ ✗ ✗

Black-box
Packet reassembly [58] ✗ ✗ ✓ ✓ ✓ ✗ ✗

Traffic Mimicking (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Second, the RL model for generating optimal evasion
policies must maintain both low training overhead and low
online inference latency. To this end, we formulate the traffic
modifications as a Finite Horizon Markov Decision Process,
enabling a multi-step decision strategy with explicit incentives
for minimal and targeted modifications, effectively reducing
inference costs. Meanwhile, we utilize a lightweight policy
network and ensure rapid convergence by leveraging already-
learned benign distributions in Traffic-BERT, significantly
reducing training overhead. In addition, we introduce an effec-
tiveness penalty, which safeguards the malicious functionality
of the attack.

We prototype NetMasquerade1 with Pytorch [74] and Intel
DPDK [45]. Experiments demonstrate that NetMasquerade
enables both high-rate and low-rate attacks to evade 6 top-
performing detection systems in 80 attack scenarios, achieving
over 96.65% attack success rate (ASR). Note that NetMasquer-
ade can evade the methods that are either empirically [28] or
certifiably [95] robust against existing evasion attacks. Com-
pared with other attacks [28], [37], NetMasquerade applies
minimal modifications to no more than 10 steps in all test
scenarios, thus incurring little impact, e.g., a Kullback-Leibler
(KL) divergence of 0.013 between the original and modified
bandwidth distributions. Moreover, the evasion attacks can be
constructed in time, i.e., NetMasquerade can transform 4.239K
adversarial packets per second.

In general, our studies reveal that the robustness issue of
traffic detection remains unaddressed, which emphasizes the
necessity of enhancing robustness against advanced evasion
attacks. The contributions of this paper are three-fold:

• We develop a hard-label black-box evasion attack that op-
erates across diverse traffic types and targets widely used
ML-based detection systems relying on statistical pat-
terns, leveraging deep reinforcement learning to manipu-
late attack packets for efficient benign-traffic mimicry.

• We design a tailored pre-trained model, Traffic-BERT,
to capture diverse and complex benign traffic patterns,
equipping NetMasquerade with the ability to transform
malicious flows into benign-like traffic across a wide
range of protocols and tasks.

1Source code: https://github.com/09nat/NetMasquerade

Fig. 1. Network topology.

• We establish an RL-based framework that transforms
original attack traffic into adversarial examples with
minimal modifications, and experimentally validate that
NetMasquerade can generate various attack traffic to
evade multiple state-of-the-art detection systems with
small overhead.

II. THREAT MODEL AND ASSUMPTIONS

Threat Model. We assume an external adversary who instructs
botnets to deliver malicious traffic (e.g., high-speed attack and
stealthy malware behaviors) toward victim hosts [89]. The
attack flows originate on the public Internet and must traverse
an in-line, ML-based traffic detection system deployed at the
victim’s ingress link, as shown in Figure 1. The detection
system operates on certain flow- or packet-level statistical
patterns (e.g., sizes, delays) for traffic classification and does
not inspect the payload [28], [30], [62], [7]. Such pattern-
based models are increasingly popular as they are effective
on encrypted traffic. Meanwhile, the system forwards benign
traffic and drops or rate-limits malicious traffic. This behavior
is consistent with both existing academic proposals [102] and
default configurations of open-source in-line detectors [68],
which prioritize network availability by choosing low-latency
actions like packet dropping over more aggressive responses
(e.g., blocking entire source IPs, which could be a NAT
gateway serving many legitimate users) that may cause sig-
nificant collateral damage. To evade detection, the attacker
craft each malicious flow to construct adversarial traffic that
misleads detection systems into classifying them as benign,
while retaining the flow’s original intent.
Assumptions. The attacker cannot obtain any details of the
target detection systems, such as ML models, parameters,

2

Craft
Packets

Fixed Length Flow

Chunking

Adversarial Traffic Generation

Malicious Traffic

Light-Weight
Policy Network

Target Detection
System

Adversarial Feature Sequence

Benign Traffic Pattern Mimicking

Enormous Public
Benign Traffic

Fixed Length
Features

Training

Train
Traffic-BERT

Encoder Block

Encoder Block

N ×
Self Attention

Bi-Cross Attention

Self Attention

Feed&Forward Feed&Forward

…
&Tokenizer

Discretization

Padding

Feature Extraction

Adversarial
Malicious Traffic

Encoding

1 n+1

n 2n

…n 1

……

…

𝑴
𝑴

Add Perturbations

1.1

1.2

Select & Mask

Encoder Block

𝑴𝑴 𝑴𝑴

Send
Probe Traffic

Get Feedback
(Reward 𝑟!)

𝒓 = 	𝒓𝑬 + 𝒓𝑫 + 𝒓𝑴

Update Policy

𝒕 times

2.1 RL-guided
Perturbation

2.2 Probing & Feedback

Reward

…

Fig. 2. High-Level Design of NetMasquerade.

feature extractors and training datasets. That means, the at-
tacker treats target systems as a strict (i.e., hard-label) black-
box, which differs from traditional white-box and gray-box
attacks that either need to access ML models (e.g., obtain
gradients) [96] or datasets [65] for better transferability. This
black-box setting meets the real-world scenarios, as most
traffic detection systems are closed-source software [12] or
outsourced cloud services [16], [1], effectively preventing
attackers from obtaining any information.

However, the attacker can conduct a reconnaissance phase
to gather pass/fail feedback from the target detection system.
Specifically, the attacker sends probe traffic to remote hosts
behind the target detection systems. The probe traffic should
exactly mirror the malicious traffic’s intended traffic pattern
(i.e., matching packet sizes and inter-packet delays) without
embedding the original malicious payload (i.e., the attacker
can freely embed payloads of the same size). For TCP flows,
any return packet (e.g., RST, ACK, SYN-ACK) from the
destination [97] signals that the probe has traversed the IDS,
whereas the complete absence of a reply within the retrans-
mission window indicates the blockage [24]. For UDP flows,
the attacker could employ a stateful application-layer protocol
(e.g., QUIC [46]) to induce a response. If the destination port is
closed, the attacker would typically observe ICMP Unreach-
able when the traffic successfully passes the detection [73],
[80]. However, no such message will be received if the flow
is blocked. By checking for a response within a fixed timeout,
the attacker assigns a pass/fail label to each probe. Besides,
side-channel techniques (e.g., hop-limited TTL [18], [48],
IPID [26], [75]) can further reveal whether the traffic reaches
the destination. Overall, this binary indicator (i.e., hard-label)
enables the attacker to refine subsequent adversarial traffic

generation. In addition, the attacker can access benign traffic
from public datasets [99], which differ from those used to
train the traffic detection model. We supplement additional
discussions regarding our assumptions in § VI.

III. THE OVERVIEW OF NETMASQUERADE

A. Key Observation

We begin by noting that modern traffic detection [1], [12],
[16] operates as a strict (i.e., hard-label) black-box system
from the perspective of typical malicious attackers. All model
implementations and training details are concealed, which
significantly degrades the performance of existing white-
box [65], [82] and gray-box [37], [65] methods. In contrast,
such systems often drop or throttle [102], [100], [29] malicious
traffic while allowing benign traffic to pass. This behavioral
asymmetry inherently yields a feedback signal, motivating us
to interactively probe the detector’s decision boundary and
steer malicious traffic within that boundary. We accomplish
this process with reinforcement learning.

However, Internet traffic spans a wide variety of protocols
and use cases. A naive design can degrade RL performance
(see § IX-D), while task-specific attacks fail in heterogeneous
environments [58]. Fortunately, existing studies show that be-
nign traffic distributions tend to be denser, whereas malicious
traffic is often more sparse [76]. This density gap encourages
us to morph the malicious flow so that its features migrate
toward the benign manifold while preserving attack semantics.
To achieve this, we develop an effective semantic model (i.e.,
Traffic-BERT) to capture benign traffic patterns, thereby guid-
ing RL training through its learned representations. Finally, we
introduce a two-stage divide-and-conquer training framework,
along with several additional mechanisms, to significantly

3

reduce the overhead introduced by integrating Traffic-BERT
with the RL process while preserving the effectiveness of the
generated adversarial traffic.

B. High-Level Architecture

Figure 2 shows the two stages of NetMasquerade, a black-
box evasion attack method. In the first stage, it captures
the benign traffic patterns. In the second stage, it generates
adversarial traffic based on the traffic patterns.
Benign Traffic Pattern Mimicking. In this stage, we focus
on comprehensively modeling benign traffic distributions to
provide a solid foundation for subsequent adversarial flow
generation. To this end, we propose Traffic-BERT, a variant of
BERT [19], capable of processing multiple feature sequence
inputs and outputs. Specifically, we first extract basic flow
features (i.e., packet size sequence and inter-packet delay
sequence). Next, we introduce dedicated feature extraction and
embedding schemes to reconcile the gap between continuous,
variable-length traffic data and the fixed-length, discrete input
format typically required by Traffic-BERT. Building on these
enriched representations, we propose a cross-feature bidirec-
tional attention mechanism to simultaneously capture global
dependencies within each individual feature sequence and
across heterogeneous feature modalities. By training Traffic-
BERT under a Mask-Fill task, we enable it to learn deep
bidirectional dependencies and acquire the capability to con-
textually complete fine-grained benign features. The trained
Traffic-BERT can be directly used in Adversarial Traffic
Generation to guide the RL optimization process. We will
detail the Benign Traffic Pattern Mimicking in § IV.
Adversarial Traffic Generation. In this stage, our goal is
to embed the pattern of benign traffic into malicious traffic
with minimal modifications while preserving attack semantics
and domain constraints. We model this as a standard Markov
Decision Process (MDP), and employ deep RL to address com-
plex sequential decision-making. Specifically, NetMasquerade
utilizes the Gated Recurrent Units (GRUs) [11], a lightweight
neural network, as the policy network and the state-value
networks (a.k.a. Q-Networks). This design significantly re-
duces training time and inference latency while still effectively
capturing temporal flow features. By learning an optimal
policy to select packet-level feature positions for masking,
NetMasquerade leverages Traffic-BERT to fill the masked
tokens with benign traffic patterns. The resulting adversarial
flow is used to probe the target system. The response provides
the core feedback, which we integrate with two novel penalty
terms to form a comprehensive reward signal: a dissimilarity
penalty, which ensures that the final adversarial flow remains
close to the original malicious flow while also reducing the
required inference steps, and an effectiveness penalty, which
retains the underlying attack function. This complete reward
signal then guides the optimization of the policy network using
the Soft Actor-Critic (SAC) [34] algorithm. We will detail the
Adversarial Traffic Generation in § V.
Two-Stage Framework Advantages. In many RL applica-
tions, models are initialized from expert demonstrations via be-

havior learning and then deployed as policy networks in down-
stream tasks [41], [92]. However, this Pretraining-Finetuning
framework is not suitable for the traffic domain because it in-
troduces significant overhead. By contrast, our design cleanly
decouples benign traffic modeling (Stage 1) from adversarial
RL optimization (Stage 2). Traffic-BERT learns high-fidelity
benign traffic embeddings without entangling with the RL
process, avoiding repeated large-scale retraining. Meanwhile,
the lightweight policy network incrementally references the
embeddings to weave benign patterns into malicious flows,
preserving both the efficiency and the effectiveness of the
generated adversarial traffic.

IV. BENIGN TRAFFIC PATTERN MIMICKING

A. Feature Extraction
The feature extraction module encodes network traffic into

Traffic-BERT’s token sequences. Although various traffic stud-
ies have explored related encoding strategies in other con-
texts [29], [56], [76], [103], they are not directly applicable
to Traffic-BERT for two reasons. First, as a language model,
Traffic-BERT demands fixed-length inputs, while real-world
flows vary widely in size and duration. It is essential to set
a base input length that accommodates the majority of flows
and provide a mechanism to capture extended flows without
information loss. Second, Traffic-BERT requires tokens to
reside in a uniformly discrete space, whereas raw network
features (e.g., inter-packet delays) may be highly skewed or
continuous. We overcome these issues and characterize flows
based on statistical insights, as detailed below.
Flow Classification. Traffic-BERT takes sequences of fixed
length as input. Typically, the input length is a power of 2,
and we assume it to be n, where n = 2k. Figure 3(a) shows the
probability density function (PDF) and cumulative distribution
(CDF) for flow lengths in the MAWI internet traffic dataset
(Jun. 2023) [99]. We randomly sample over 1e7 flows to plot
the figure. Clearly, the distribution of flow lengths exhibits a
long-tail pattern, with short flows dominating the majority. We
obtain the 99th percentile from the cumulative distribution and
select the closest n as our hyperparameter for fixed length.
Nonetheless, studies of flow distributions [25] indicate that
long flows hold most of the packets. Figure 3(b) shows the
bytes retained for different fixed truncations (i.e., n), which
can be approximately considered as information entropy, as a
proportion of the total bytes of the flow. We randomly sample
one week and analyze the complete flow data daily, finding
that the information entropy ratios for common values of n do
not exceed 0.27. To address this, we apply two complementary
strategies:

• Short Flow Padding. If m ≤ n, we append n−m special
padding tokens (i.e., [PAD]) to the end of its feature
sequence.

• Long Flow Chunking. If m > n, we divide its feature
sequence into m− n+ 1 segments, with each segment’s
index with a range of [i, i+ n), 0 ≤ i ≤ m− n.

Feature Representation. Having standardized flow lengths
via padding and chunking, we next convert these sequences

4

99th percentile

CDFPDF
Pr

ob
ab

ili
ty

Flow length [log 10]

(a) Flow length distribution.

Mon.

Sun.
Sat.

Fri.

Thu.

Wed.
Tues.

n = 1024
n = 256

n = 512
n = 128

(b) Flow entropy ratios.

Fig. 3. Flow length distribution and entropy ratios.

into discrete tokens that Traffic-BERT can ingest. Specifically,
we focus on two per-packet attributes: packet sizes and inter-
packet delays (IPDs). To optimize this tokenization process,
we study the distribution of packet sizes and IPDs in benign
internet traffic. For the IPD feature, we observe that after
taking the base-10 logarithm, the data exhibits a more uniform
distribution across magnitudes. We randomly sample over 80
million packets for our analysis and plot these in Figure 4(a).
The analysis shows that frequencies in the range of [−6,−2]
(corresponding to 1e−6 to 1e−2 seconds) consistently range
between 1.0e7 and 1.7e7, while the total for other magnitudes
falls below 1e7. Based on this, we set several logarithmically
equal-length intervals and hash the IPDs into the intervals,
using the interval indices as the corresponding tokens. We
adjust the interval lengths to balance the count of elements
within each. The packet sizes exhibit a bimodal distribution:
predominantly very short or very long (due to fragmentation),
with a more uniform distribution in between, as shown in
Figure 4(b). Due to its discrete nature, we directly use its value
as the token. We use a standard Maximum Transmission Unit
(MTU) length as the capacity for the packet size vocabulary.
This is because we manipulate the traffic on a per-packet basis,
making it impossible to generate a single packet that exceeds
the MTU. We categorize features significantly exceeding the
MTU under a single class and represent them with the [UNK]
token. The token vocabularies for packet sizes and IPDs are
independent. Moreover, we add special tokens [PAD] and
[MASK] to the vocabulary as placeholders and for masking
certain tokens, respectively.

We represent each token by two embeddings: token em-
bedding and position embedding. The complete embedding is
constructed by summing both of them together.

• Token Embedding. A high-dimensional vector represent-
ing the token, which is randomly initialized and trained
jointly with Traffic-BERT.

• Position Embedding. A vector annotating the token’s rel-
ative position in the sequence using sinusoidal functions,
similar to Transformer [91]. For chunked features, apart
from the first segment, the indices of other segments do
not start from 0. This helps the model learn long flow
representations more effectively.

B. Traffic-BERT

Although transformer-based architectures have been ap-
plied to network traffic modeling [56], [103], most existing

Inter-packet delays [log 10]

Fr
eq

ue
nc

y

0.5

1.0

1.5

2.0

2.5

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

×1e7 Scale

[1.0, 1.7]×1e7

(a) IPD distribution.

0
1
2
3
4
5

7
6

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 MTU+

Fr
eq

ue
nc

y

Packet Size [×1000]

log10 Scale

(b) Packet size distribution.1

1 Size exceeds MTU, due to misconfigurations/specialized protocols.

Fig. 4. Packet size and IPD distribution.

BERT-like models are constrained to handling only a single
sequence of discrete tokens [19], [59]. In contrast, benign
network flows typically involve multiple feature sequences,
whose interactions are crucial for capturing real-world traffic
patterns. Therefore, the first challenge lies in how to effectively
model these interwoven modal features without increasing
computational overhead. The second challenge is how to define
the Traffic-BERT’s training task that enables the model to
learn representations of these features directly applicable to
adversarial traffic generation, without additional training costs.
To address these challenges, we propose a novel bi-cross
attention mechanism for efficient fusion of multi-feature data
and design a Mask-Fill task to guide Traffic-BERT in acquiring
the ability to fill benign traffic packets based on flow context.
Traffic-BERT Structure. The core innovation of Traffic-
BERT is the introduction of a bi-cross attention layer within
a stack of bidirectional encoder blocks, which is shown in
Figure 5. Each block comprises three principal components:
(i) self-attention, (ii) bi-cross attention, and (iii) a feed-forward
network (FFN), with residual connections linking these layers.
Generally, the attention mechanism [91] can be represented as:

Attn.(Q,K, V) = softmax
(
QKT

√
dk

)
V, (1)

where Q, K, and V represent the Query, Key, and Value,
respectively. They are three sets of linear transformations
derived from the packet size and inter-packet delay features.
The parameter

√
dk represents the dimension of the Key.

Each encoder in Traffic-BERT takes size features P and
IPD features H as input, which are first processed by the self-
attention layer to yield respective hidden states hP and hH .
Formally:

hP = P +Attn.(QP ,KP , VP),

hH = H +Attn.(QH ,KH , VH). (2)

Self-Attention is characterized by deriving both the Query
and Key from the same sequence, thereby computing the
relative importance of each element with respect to all other
elements in that sequence. Next, hP and hH are fed into the
bi-cross attention layer to compute the interrelated attention
features, that is, using one feature sequence to query another
feature sequence, and vice versa. This can be formulated as:

h′
P = hP +Attn.(QhP

,KH , VH),

h′
H = hH +Attn.(QhH

,KP , VP). (3)

5

Encoder Block Multi-Head
Self Attention

Multi-Head
Self Attention

Packet Size Feat. 𝑃 IPD Feat. 𝐻

Multi-Head Bi-Cross Attention

Add & Norm

Add & Norm Add & Norm

Add & Norm

Feed & Forward Feed & Forward

Input

Output

Encoder Block

Encoder Block

Encoder Block

…N ×

𝑉! 𝐾! 𝑄"!𝐾# 𝑉#𝑄""

Add & Norm Add & Norm

ℎ′! ℎ′"

𝑃′ for next stage 𝐻′ for next stage

Fig. 5. Core design of Traffic-BERT.

Unlike self-attention, bi-cross attention uses the hidden
states hP and hH as the Query to compute similarity with the
other sequence’s output from the previous block, and assigns
attention weights to the other’s Value. The bi-cross attention
shares the same complexity O(n2dk) with self-attention, pro-
viding an efficient solution for multi-feature sequences from
distinct feature spaces. It enables the model to better capture
the long-term interactions and dependencies between different
feature sequences in network traffic, significantly enhancing
the semantic understanding of the benign flow.

The outputs from the bi-cross attention layer are then passed
through the feed-forward network layer, serving as the input
for the next encoder block. The output from the last encoder
block is then passed through a linear layer to obtain the
probability distribution of the output tokens.
Traffic-BERT Optimization. We train Traffic-BERT with a
Mask-Fill task that generalizes RoBERTa’s Dynamic Mask-
ing [59] to handle multiple correlated feature sequences. In
each training step, we select 15% of token positions for
masking. When a position is chosen, tokens in both sequences
are masked simultaneously: 80% are replaced with [MASK],
10% with a random token, and 10% remain unchanged. This
dual-sequence masking scheme not only compels Traffic-
BERT to master deep bidirectional semantics within individual
feature sequences, but also reinforces the cross-feature in-
teractions introduced by our bi-cross attention. The trained
Traffic-BERT can reconstruct realistic per-packet attributes
from partial observations and thus can be directly applied to
the second stage in § V.

In a few high-speed traffic generation cases, we option-
ally apply the Constrained Decoding mechanism [71]. This
mechanism restricts the model’s output to a predefined range,
ensuring that only tokens within this range are considered.
However, in most cases, such explicit constraints are unneces-
sary because the Mask-Fill task itself already biases Traffic-
BERT toward valid, realistic traffic patterns.

V. ADVERSARIAL TRAFFIC GENERATION

In this section, we present the technical details of generating
adversarial traffic based on deep RL, focusing on its formu-

lation, optimization, and runtime inference. NetMasquerade
addresses four main challenges:
1) Efficient Learning from Limited Feedback. We carefully

design the state space (§ V-A), and leverage Traffic-BERT
to guide RL (§ V-B), to achieve efficient exploration under
black-box settings.

2) Preserving Malicious Functionality. We adopt a tailored
action space and an effectiveness penalty (§ V-A) to
maintain malicious behavior within domain constraints.

3) Reducing Training & Inference Overhead. We introduce
a dissimilarity penalty (§ V-A) and employ a two-stage
decoupled training scheme (§ V-B) to minimize overhead
while ensuring stability.

4) Enabling Attacks Without Feedback. We propose an
offline reward estimation mechanism (§ V-C) that supports
real-world adversarial generation when direct feedback is
unavailable during inference.

A. MDP Formulation
NetMasquerade aims to generate effective adversarial ma-

licious traffic that evades black-box detection systems with
minimal modifications. To achieve this, we perturb only two
domain-agnostic features learned by Traffic-BERT from be-
nign traffic: packet sizes and inter-packet delays. We incorpo-
rate specific penalty terms to maintain malicious effectiveness
and adhere to domain constraints. This leads to the following
definition of our adversarial traffic generation process.
Definition 1 (Adversarial Traffic Generation). Given an ML-
based malicious traffic detection system f ∈ F and an instance
x from the malicious traffic space X , the objective of the
adversarial traffic generator G(·, ·) : F × X → X can be
defined as:

argmax
x̃

I(f(x̃) ̸= f(x))

s.t. x̃ = G(f, x),

D(x̃, x) ≤ τ,

M(x̃, x,X) = 1, (4)

where D(·, ·) : X×X → R+ is a distance metric that measures
the dissimilarity between the adversarial traffic and the original
malicious traffic, ensuring that the perturbed instance x̃ is
close to the original instance x within the threshold τ , and
M(·, ·,X) : X × X → {0, 1} is an equivalence indicator that
indicates whether the perturbed instance x̃ is equivalent in
effectiveness to the original malicious instance.

Note that this optimization problem is difficult to address
directly because the objective and the malicious equivalence
constraint M are binary and non-differentiable functions, and
the distance metric D depends on the way adversarial traffic
x̃ is generated. However, we can overcome these challenges
by leveraging RL. To do this, we model the attack procedure
as a Finite Horizon Markov Decision Process MDP =
(S,A,P,R, T). The definition of such an MDP is as follows:
State Space (S): The state st ∈ S at time t is represented
by the tuple (Pt, Ht), where Pt = [p0,t, p1,t, . . . , pn,t] rep-
resents the sequence of packet sizes at time t and Ht =

6

[h0,t, h1,t, . . . , hn,t] represents the sequence of inter-packet
delays at time t. The initial state s0 = (P0, H0) represents
the features extracted from the original malicious traffic.
Action Space (A): The attacker is allowed to modify the
features of a single packet or insert a chaff packet (i.e., an
intentionally injected, non-functional packet) into the flow per
step. Therefore, for each feature sequence within the state st
of length n, the size of the action space is 2n + 1, where
each action at ∈ A represents the index of the modification
or insertion. Specifically, when at is odd, it indicates the
attacker’s intention to modify the element at position ⌊at/2⌋
in each sequence; when at is even, it indicates the intention
to add a new element at position at/2 in each sequence.
NetMasquerade does not perturb existing payloads to maintain
traffic functionality and avoid introducing detectable artifacts.
Transition Probabilities (P): Our environment is determin-
istic. That is, for any given state st and action at, the state
transition probability P can be represented as:

P(st+1|st, at) =

{
1 if st+1 = Trans(st, at),
0 otherwise.

(5)

Reward Function (R): The reward function is a composite
of three distinct components, formalized as

r(st, at) = rE(st, at) + β · rD(st, at) + γ · rM (st, at), (6)

where β and γ are non-negative hyperparameters.
The term rE aligns with the optimization objective in (4),

which can be defined as:

rE(st, at) =
Nevade(st+1)−Nevade(st)

Ntotal
, (7)

where Nevade(·) : S → Z+
0 represents the number of non-chaff

packets that evade the target, and Ntotal = n represents the
total number of packets in the original malicious traffic.

The term rD is the dissimilarity penalty which is derived
from the distance metric D(·, ·). In our scenario, we use the
Edit Distance between the current state st and the previous
state st−1. Note that since the attacker modifies or inserts
exactly one packet at each step, we have:

rD(st, at) = −1. (8)

rD serves to minimize the distance between the adversarial
and original malicious traffic, ensuring that NetMasquerade
achieves its adversarial objectives in as few steps as possible,
as each additional step incurs a non-positive reward. In gen-
eral, this design preserves the stealthiness of adversarial traffic
and reduces the probability that the perturbations are detected.
On the other hand, NetMasquerade achieves its goals with
fewer modifications, thereby accelerating inference speed.

The term rM is the effectiveness penalty that depends on the
specific intent of the attack. For instance, for DoS traffic, rM
can be defined as the rate of the traffic flow. Conversely, for
maliciousness that stems from the payload, such as phishing
traffic, rM can be set to zero, as our adversarial traffic
generation process does not impact the payload.

Horizon (T): The process terminates in either of two situ-
ations: first, in the step t = τ , which is consistent with the
constraint D(x̃, x) ≤ τ in (1) as a measure of the maximum
permissible distance between the adversarial and original
malicious traffic; second, when the reward rE(st, at) > ξ,
indicating a successful evasion ratio greater than the threshold
ξ. This dual-condition criterion guarantees a bounded process.

B. Policy Optimization

Algorithm 1 shows the process of training NetMasquerade.
Given the MDP setup as defined in § V-A, a sampled MDP
trajectory will be (s0, a0, r0, s1, a1, r1, . . . , st̃, at̃, rt̃), where
t̃ ≤ τ . To handle the problem’s large discrete action space, we
employ the Soft Actor-Critic (SAC) algorithm for optimiza-
tion, which is well known for strong exploration capabilities.

The SAC algorithm is an off-policy maximum entropy RL
method, aiming to maximize the balance between expected
return and entropy, where the entropy signifies the randomness
of the policy. Its objective function is given by:

π∗ = argmax
π

Eπ

[∑
t

ηt (r(st, at) + αH(π(·|st)))

]
, (9)

where π is the stochastic policy to be optimized, α is the
temperature hyperparameter that controls the trade-off between
exploration and exploitation, η represents the discount factor,
and the entropy of the policy H(π(·|st)) is defined as the
expected value of the negative log-probability of the actions
taken according to the policy:

H(π(·|st)) = Eat∼π(·|st)[− log π(at|st)]. (10)

Given the optimization objective, we build a policy network
to approximate the optimal policy π∗, for which we employ
Gated Recurrent Units (GRUs) as the backbone. We choose
GRUs for two reasons: on the one hand, as a classical type of
Recurrent Neural Network (RNN), GRUs are capable of un-
derstanding the semantics within the traffic feature sequences;
on the other hand, compared to the more computationally
demanding Traffic-BERT, GRUs offer a balance between
complexity and performance, enhancing the training efficiency
of the reinforcement learning model.

In each step t, the policy network takes as input the
concatenated feature sequences of packet sizes and IPDs at
state st, and outputs a distribution over the action space A,
as detailed in § V-A. An action at is then sampled from this
distribution. Notably, when at is odd, the ⌊at/2⌋-th element
of the inter-packet delay sequence of state st is replaced with
a [MASK] token, indicating the attacker’s intent to modify
the transmission timestamp of the packet at that position.
Consequently, the state st is transformed into

s′t ≜ (P ′
t , H

′
t) = ([p0,t, p1,t, . . . , pn,t],

[h0,t, h1,t, . . . , h⌊at/2⌋−1,t, [MASK], h⌊at/2⌋+1,t, . . . , hn,t]
)
.

(11)

In this context, the packet size sequence remains unaltered
as changes to packet sizes might violate the domain constraints

7

Algorithm 1 NetMasquerade Training Process
1: Initialize policy network πϕ(a|s), Q-networks Qω1

(s, a),
Qω2

(s, a), and experience replay buffer B
2: for each iteration do
3: Sample a malicious flow and get initial state s0
4: for each environment step t do
5: Observe state st and select action at ∼ πϕ(·|st)

based on the current policy
6: Modify st by inserting [MASK] or replacing

features with [MASK] to produce s′t
7: Use Traffic-BERT for Mask-Fill task to fill

[MASK], obtaining st+1

8: Restore st+1 to adversarial malicious traffic
9: Send the adversarial malicious traffic and compute

reward rt = rE + β · rD + γ · rM
10: Store transition tuple (st, at, rt, st+1) in B
11: if |B| exceeds minimum replay buffer size then
12: Sample mini-batch {st̄, at̄, rt̄, st̄+1} from B
13: Compute target value for each Q-network:

yt̄ = rt̄+ηmini=1,2 Qω̄i
(st̄+1, π(·|st̄+1))−α log π(at̄|st̄)

14: Update Q-networks:
ωi ← ωi − λQ∇ωi

∑
(Qωi(st̄, at̄)− yt̄)

2

15: Update policy network:
ϕ← ϕ− λπ∇ϕ

∑
(α log(πϕ(at̄|st̄))−Qωi

(st̄, at̄))
16: Update target Q-networks:

Qω̄i ← λQωi + (1− λ)Qω̄i

17: Update entropy temperature α:
α← α− λα∇α

∑
(−α log(π(at̄|st̄))− αH0)

18: end if
19: end for
20: end for

of the packet. Correspondingly, when at is even, a [MASK]
token is inserted at the at/2 position of both feature sequences,
indicating the attacker’s intention to insert a chaff packet at
that position. In this case, the state st is transformed into

s′t ≜ (P ′
t , H

′
t)

=
(
[p0,t, p1,t, . . . , pat/2−1,t, [MASK], pat/2,t, . . . , pn,t],

[h0,t, h1,t, . . . , hat/2−1,t, [MASK], hat/2,t, . . . , hn,t]
)
.
(12)

Considering that the fixed length n may exceed the actual
length of a flow, not all actions are feasible. To address this
issue, we employ an Invalid Action Masking mechanism [44],
adjusting the probabilities of infeasible actions to a large nega-
tive value, and then re-normalizing the probability distribution
to ensure the effectiveness of the chosen actions.

Once s′t is obtained, the attacker leverages Traffic-BERT in
the Mask-Fill task to embed benign traffic patterns, thereby de-
riving the next state st+1. During this process, Traffic-BERT’s
parameters are fixed and considered a part of the environment.
This decoupling of training significantly improves training
efficiency.

According to § II, the attacker can conduct a reconnaissance

phase to gather pass/fail feedback, i.e., by observing whether
there is any response to the attack traffic. Based on this, the
attacker restores the adversarial flow from st+1 and sends it to
the target. The process is straightforward as NetMasquerade
only modifies timestamps or inserts new chaff packets. These
chaff packets share the same source/destination IPs and ports
as the malicious flow. Their payloads are randomly populated
to match the packet size features. Following prior work [40],
[37], for example, we use incorrect sequence numbers for TCP,
set a short TTL for UDP packets, or send orphan IP fragments
for other protocols which are discarded after a reassembly
timeout [72]. After the traffic is sent, the attacker calculates
the reward r = rE + β · rD + γ · rM . Finally, the resulting
transition (st, at, rt, st+1) is stored in the experience replay
buffer B for further policy optimization.

Given the optimization objective and the transitions, we
model two state-action value functions (a.k.a., Q-networks)
Qω1

and Qω2
. The utilization of double Q-networks helps to

mitigate the overestimation of action values. Following the
Soft Bellman Equation [33], each Q-network can be updated
by minimizing the following loss function:

LQ(ω) = E(st,at,rt,st+1)∼B

[
1

2

(
Qω(st, at)− yt

)2]
,

yt = rt + η(min
j=1,2

Qω̄j
(st+1, π(·|st+1))

− α log π(at|st)), (13)

where Qω̄ represents the target Q-network [63], which helps
to smooth the learning updates. The target Q-networks are
updated using Q-networks:

Qω̄i
← λQωi

+ (1− λ)Qω̄i
. (14)

The policy network optimization is achieved by minimizing
the Kullback-Leibler Divergence from the exponential of the
Q-network. This results in the following loss function:

Lπ(θ) = Es∼B,a∼π

[
α log(π(a|s))− min

j=1,2
Qω̄j

(s, a)

]
. (15)

Also, following [35], we employ an automated entropy
adjustment mechanism for the temperature parameter α:

L(α) = Est∼B,at∼π(·|st)[−α log π(at|st)− αH0]. (16)

C. Runtime Inference

Algorithm 2 shows the inference process of NetMasquerade.
Unlike the training phase, the attacker might not be able to
receive reward feedback rE from the target detection system
during the inference phase, which prevents direct evaluation
of the termination time for adversarial traffic generation. To
address this, we approximate the expected total reward for
each action using the maximum value from the two Q-
networks. The termination condition for the inference phase
of NetMasquerade is as follows:

(t ≥ τ) ∨
(
max
i=1,2

Qωi
(st, at) ≥ ξ − β · rD − γ · rM

)
, (17)

8

Algorithm 2 NetMasquerade Inference Process
1: Initialize policy network πϕ(a|s) with trained parameters
2: Initialize Q-networks Qω1

(s, a) and Qω2
(s, a) with

trained parameters
3: Set step t = 0
4: Transform the malicious flow into initial state s0
5: while t < τ do
6: Observe state st and select action at ∼ πϕ(·|st) based

on the policy network
7: Modify st by inserting [MASK] or replacing features

with [MASK] to produce s′t
8: Use Traffic-BERT for Mask-Fill task to fill [MASK],

obtaining st+1

9: Calculate Q-Values
q1 ← Qω1(st, at), q2 ← Qω2(st, at)

10: if maxi=1,2 qi ≥ ξ′ then
11: break ▷ Termination condition is met
12: end if
13: t← t+ 1
14: end while
15: Restore st to the final adversarial malicious traffic

where the threshold ξ is determined empirically from the
training phase. Specifically, we monitor the attack success rate
(ASR) during training. Once the ASR stabilizes at a high level,
indicating a successfully trained agent, the corresponding Q-
value is recorded to serve as the threshold. In cases where the
attacker cannot compute rM , the termination condition can be
transformed into:

(t ≥ τ) ∨
(
max
i=1,2

Qωi
(st, at) ≥ ξ′

)
. (18)

VI. EVALUATION

A. Experiment Setup

Implementation. Traffic-BERT and the RL pipeline are writ-
ten in Python v3.8.15 using PyTorch [74] v1.13.1. Each
adversarial flow produced by NetMasquerade is delivered over
a socket to an Intel DPDK [45] v24.11.1 worker that emits the
actual packets. The DPDK process, written in C (compiled
with GCC v9.4.0 -O3 via Meson v0.61.5 and Ninja v1.8.2),
pre-allocates NUMA-aware mbuf pools, configures a single
1024-descriptor TX queue, and relies on TSC-based busy-
wait pacing to preserve µs-level inter-packet spacing, thereby
avoiding the NIC’s internal burst-coalescing that would other-
wise distort the on-wire delay. NetMasquerade runs on a Dell
server equipped with two Intel Xeon Gold 6348 CPUs (2×28
cores, 112 threads) and a single NVIDIA Tesla A100 GPU
(driver v530.30.02, CUDA [67] v12.1) under Ubuntu v18.04.6
(Linux 5.4.0-150-generic). The DPDK worker interfaces with
an Intel 82599SE NIC (2 × 10 Gb/s SFP+ ports). All hyper-
parameters are listed in Table V in the Appendix.
Datasets. We use real-world backbone network traffic traces
from Samplepoint-F of the WIDE MAWI project [99], col-
lected in June and August 2023, as background traffic. Follow-

ing established practices [52], [78], we remove scanning traffic
that attempts to connect to more than 10% of IP addresses
and apply additional filtering rules [52] to eliminate flooding
traffic. We then employ the resulting background traffic in two
ways: (i) to train Traffic-BERT, using more than 1 million
flows collected in June 2023, and (ii) to supplement the target
system’s training data with flows from August 2023 when
the proportion of benign traffic in the malicious dataset is
insufficient (Botnet Attacks, see Table III). Notably, this choice
does not compromise the black-box setting, as there is no
correlation between the distributions of the datasets.

To closely mirror real-world scenarios and highlight Net-
Masquerade’s task-agnostic capabilities, we replay 4 groups of
attacks from multiple datasets, totaling 12 attacks: (i) Recon-
naissance and Scanning Attacks, including host-scanning and
fuzz-scanning traffic; (ii) Denial of Service Attacks, covering
SSDP and TCP SYN flood traffic; (iii) Botnet Malwares,
featuring 4 common botnet strains—Mirai, Zeus, Storm, and
Waledac; and (iv) Encrypted Web Attacks, encompassing
webshell, XSS, CSRF, and encrypted spam traffic. The details
of the datasets can be found in the Appendix IX-A.
Target Systems. We deliberately select as attack target 6
existing malicious traffic detection systems that reflect diverse
designs. We use 3 advanced traditional ML-based detection
systems: Whisper [28], FlowLens [7], NetBeacon [104] and
3 top-performing DL-based systems: Vanilla feature + RNNs,
CICFlowMeter [22], [54] + MLP, Kitsune [62]. They operate
using different learning approaches like supervised classifica-
tion [104] and unsupervised anomaly detection [62], [28], at
both the flow-level [7] and packet-level [62], and their imple-
mentations span both software [62], [28] and programmable
switches [104], [7]. More information about malicious detec-
tion systems can be found in Appendix IX-B.
Baselines. To validate NetMasquerade, we select 2 classic and
2 state-of-the-art attack methods as baselines:
• Random Mutation. Random Mutation refers to the technique

of obscuring traffic by randomly adjusting IPDs. This tradi-
tional method has been demonstrated to be powerful in sev-
eral works [43], [85], and existing attack tools also employ
this method [64], [8]. In our experiments, the randomization
of time intervals follows a Gaussian distribution based on the
malicious flow’s mean and variance. The number of mutated
packets matches NetMasquerade’s modification steps.

• Mutate-and-Inject. We combine Random Mutation and
Packet Injection to create a comprehensive attack strategy,
which has been used as a standard for evaluating the
robustness of advanced detection systems [28]. For Random
Mutation, we follow the same rules described above. For
Packet Injection, we either inject chaff packets with random
sizes and intervals into the malicious flow or duplicate
segments of the malicious packets. The modification steps
match those in NetMasquerade.

• Traffic Manipulator [37]. Traffic Manipulator is the SOTA
attack algorithm capable of generating practical adversarial
traffic against malicious traffic detection systems in a gray-
box scenario. Traffic Manipulator learns adversarial traffic

9

TABLE II
ATTACK SUCCESS RATE (ASR) OF NETMASQUERADE AND BASELINES ON DETECTION SYSTEMS

Target System Methods
Recon.&Scan. DoS Botnet Encrypted Web Attacks

Overall
Scan Fuzz. SSDP SYN Mirai Zeus Storm Waledac Webshell XSS CSRF Spam

Traditional
ML-based
systems

Whisper

R.M. - 1 0.0100 - 0.2552 0.2324 0.1011 0.2289 0.0585 0.0812 0.0721 0.1717 0.0927 0.1087
M.I. 0.8907 0.0756 0.1132 0.3346 0.5521 0.5719 0.4590 0.4251 0.6802 0.7010 0.7259 0.7319 0.5218
T.M. 0.9344 0.9270 0.7712 0.2790 0.6355 0.2551 0.1820 0.3664 0.5839 0.5527 0.6055 0.9072 0.5833

Amoeba 0.9999 0.9934 0.9999 0.9998 0.9167 0.9254 0.9844 0.8970 0.9999 0.9999 0.9966 0.8381 0.9626
NetM. 0.9999 0.9965 0.9999 0.9467 0.9988 0.9972 0.9999 0.9355 0.9999 0.9999 0.9999 0.9795 0.9878

FlowLens

R.M. - - 0.1782 0.7660 0.6893 0.0760 0.3846 0.0434 0.0100 - 0.0150 - 0.1802
M.I. 0.9800 0.1158 0.2375 0.5950 0.9370 0.4941 0.6510 0.3114 0.6391 0.5959 0.6633 0.1313 0.5293
T.M. 0.0222 0.1525 0.9344 0.9125 0.8591 0.2670 0.8374 0.2899 0.0760 0.0736 0.0036 0.3913 0.4016

Amoeba 0.9976 0.9442 0.9999 0.9990 0.8776 0.8665 0.9252 0.8000 0.9990 0.9999 0.9295 0.9700 0.9424
NetM. 0.9999 0.9335 0.9999 0.9995 0.9537 0.9102 0.9990 0.9955 0.9795 0.9999 0.9428 0.9475 0.9717

NetBeacon

R.M. - - 0.5291 0.1823 0.2864 0.0230 - 0.0790 0.6294 0.3916 0.1066 0.1030 0.1942
M.I. 0.6511 - 0.2285 0.2841 0.5544 0.3455 0.3032 - 0.8781 0.7010 0.6446 0.1134 0.3920
T.M. 0.6494 0.2435 0.8577 0.4393 0.3047 0.1992 0.4415 0.2180 0.4585 0.5645 0.5294 0.9091 0.4846

Amoeba 0.9900 0.9999 0.9987 0.9999 0.9999 0.5905 0.6916 0.9727 0.9550 0.9999 0.9894 N/A 2 0.8490
NetM. 0.9999 0.9999 0.9999 0.9999 0.9899 0.9449 0.9965 0.9999 0.9999 0.9955 0.9999 0.8448 0.9809

DL-based
systems

Vanilla

R.M. - 0.3660 0.0455 0.5815 0.1163 - - 0.3299 0.0118 - 0.0050 0.0515 0.1256
M.I. 0.9510 - - 0.3355 0.8769 - 0.5415 0.6711 0.6085 0.5353 0.6751 0.1958 0.4492
T.M. - 0.0375 0.8600 0.6550 0.0790 0.2232 0.2595 0.1617 0.0492 0.0278 0.0264 0.8636 0.2702

Amoeba 0.9999 0.9999 0.9999 0.9999 0.8038 0.7156 0.6540 0.2682 0.9975 0.9999 0.9455 0.2538 0.8032
NetM. 0.9999 0.9985 0.9825 0.9890 0.9817 0.9894 0.9805 0.9687 0.9999 0.9999 0.9999 0.8485 0.9782

CIC.

R.M. - 0.0422 0.1100 0.6398 0.5578 0.2467 0.2922 0.0301 0.0151 0.1855 0.4467 0.1031 0.2224
M.I. 0.2300 0.1367 0.9711 0.5735 0.7111 0.3956 0.5396 0.2122 0.7011 0.6185 0.6598 0.2886 0.5032
T.M. 0.1444 - 0.9822 0.6520 0.6656 0.1433 0.3026 0.1021 0.0311 0.0445 0.3381 0.6391 0.3371

Amoeba 0.9999 N/A 0.9999 0.9112 0.9980 0.9999 0.8704 0.8182 0.9800 0.9865 0.9999 N/A 0.7970
NetM. 0.9999 0.9744 0.9999 0.9959 0.9999 0.9867 0.8898 0.9810 0.9767 0.9999 0.9999 0.7475 0.9626

Kitsune

R.M. - - 0.2379 0.3744 0.2949 0.0360 0.0990 0.2901 - 0.0277 0.0374 - 0.1165
M.I. 0.3514 0.4484 0.0913 0.1815 0.8109 0.0801 0.4424 0.6334 0.6159 0.4498 0.3493 0.5359 0.4159
T.M. 0.9760 0.9860 0.7848 0.5590 0.9049 0.4735 0.8318 0.7878 0.8884 0.8965 0.8406 0.6949 0.8020

Amoeba 0.9339 N/A 0.8949 0.9292 0.9915 0.9449 0.7256 0.4595 0.4355 0.7814 0.7017 N/A 0.6498
NetM. 0.9049 0.9850 0.8218 0.9333 0.9968 0.9359 0.9911 0.9291 0.9219 0.9231 0.9177 0.7522 0.9177

1 These methods cannot successfully attack the target (ASR < 0.01).
2 These methods cannot generate legitimate traffic (with illegal packet sizes).

patterns with GANs and adjusts the patterns of malicious
traffic with the particle swarm optimization algorithm. We
use the open-source implementation of Traffic Manipula-
tor [38] and retrain the model. We use the Kitsune Feature
Extractor as the default for Traffic Manipulator, following
the paper. This means that for Kitsune, it is a gray-box
attack, whereas for other systems, it is a black-box attack.

• Amoeba [58]. Amoeba is designed with a per-packet ad-
justment technique to circumvent censorship in a black-box
scenario. Specifically, Amoeba leverages RL to truncate and
pad packets, which are then reassembled by the remote end
after passing through the censorship system. We disregard
the practical applicability of Amoeba’s splitting strategy
under different traffic conditions and only evaluate whether
it can bypass different types of detection systems. We adopt
its open-source implementation and retrain the model.

Metrics. We use AUC (Area Under the Curve) and F1 score
to assess the effectiveness of the malicious traffic detection

systems, and attack success rate (ASR) to measure the per-
formance of attack methods. Specifically, ASR measures the
fraction of malicious flows that are not detected when the
IDS uses the threshold rendering the highest F1 score on
the validation data. We also measure the bandwidth (megabits
per second, Mbps) of both malicious and adversarial traffic to
illustrate the impact of perturbations. Moreover, we measure
throughput (packets per second, PPS) to show the efficiency.

B. Attack Performance

Table II presents the attack success rate against advanced
detection systems. NetMasquerade achieves 0.7475 ∼ 0.999
ASR, with an average of 0.9878, 0.9717, 0.9809, 0.9782,
0.9626 and 0.991 against Whisper, FlowLens, NetBeacon,
Vanilla, CICFlowMeter and Kitsune detection systems, show-
ing an improvement of 2.61%, 3.11%, 15.53%, 21.88%,
20.78%, and 14.42% over the best performance of the base-
lines. In 56 out of the 72 evaluated scenarios, NetMasquer-

10

Episodes

M
ax

 Q
-V

al
ue

0.0

0.4
0.6
0.8
1.0

0 200 400 600 800 1000 1200

0.2

1.2

Mirai
Storm
Fuzzing
Zeus

(a) NetBeacon.
Episodes

M
ax

 Q
-V

al
ue

0.0

0.4
0.6
0.8
1.0

0 200 400 600 800 1000 1200

0.2

1.2

Mirai
Storm

(b) CICFlowMeter + MLP.

Fig. 6. Max Q-Value during the training phase. The shaded region
represents a standard deviation of the average evaluation over 5 trials. Curves
are smoothed uniformly for visual clarity.

ade achieves the highest attack success rate. By contrast,
Amoeba matches or exceeds NetMasquerade’s performance in
26 scenarios, yet in certain cases its success rate plummets
below 30% and even produces flows with illegal packet sizes.
Moreover, Amoeba relies on truncating and padding every
single packet to craft adversarial traffic, requiring cooperation
from the receiving endpoint to reassemble these packets. As a
result, this packet-level manipulation can fail in practical attack
scenarios (e.g., spam), where such coordination is typically
unavailable. Meanwhile, we observe that Traffic Manipulator’s
performance drops significantly under the black-box setting
(i.e., when the attacker cannot access the feature extractor),
while NetMasquerade maintains its capability under all scenar-
ios. Figure 6 shows the max Q-Value during the training phase.
NetMasquerade achieves 90% convergence in less than 420
episodes in 6(a) and converges within 300 episodes in 6(b),
demonstrating strong convergence ability. This ensures that
the RL stage incurs low training overhead. We can define the
Q-Value threshold ξ′ according to the training curve.

NetMasquerade is a stealthy attack capable of generating
effective adversarial traffic with minimal modifications. We set
the step threshold τ case-by-case while ensuring it is no more
than 10. Random Mutation and Mutate-and-Inject perform
poorly under the same step setting, as shown in Table II.
Amoeba, Traffic Manipulator and other traffic obfuscation
methods [61] typically modify most of the packets, making
the attack easy to detect. Figure 7 illustrates the relationship
between ASR and Q-Value threshold ξ′ under different step
thresholds τ . In Figure 7(a), we show the effect of attacking
FlowLens on the Zeus dataset, which is a complex scenario
(i.e., ASR = 0.9102). NetMasquerade achieves near-optimal
attack rates within no more than 10 steps of modifications.
According to Figure 7(b), we find that ASR is not always
positively correlated with the number of modification steps
at the same ξ, especially in the neighborhood of higher ASR
values. An excessively high τ may lead the algorithm to make
excessive modifications when the ξ cannot be satisfied.

NetMasquerade ensures the effectiveness of adversarial traf-
fic. Our focus is on two types of malicious traffic: SSDP
Flood and SYN DoS, whose effectiveness is demonstrated
by high rates. We define the effectiveness penalty rM as
the sending rate of the flow. Additionally, by post-processing
Traffic-BERT (see § IV-B for details), we can limit the range
of IPD perturbations. We measure the bandwidth distributions
of the original and adversarial traffic, as shown in Figure 8.

Q-Value threshold !′

AS
R

0.4

0.6

0.8

1.0

0.70 0.80 0.85 0.90 0.95 1.00 1.05

Ideal

!	=	10
!	=	8
!	=	5
!	=	3

(a) FlowLens / Zeus.
Q-Value threshold !′

AS
R

0.0

0.4

0.6

0.8

1.0

0.70 0.80 0.85 0.88 0.90 0.95 1.00

0.2

Ideal

1.00

0.95
0.95 1.00

Ideal

!	=	10
!	=	5
!	=	3
!	=	1

(b) Vanilla + RNN / Storm.

Fig. 7. The relationship between ASR and Q-Value threshold ξ′ under
different step thresholds τ . “Ideal” represents the maximum ASR when the
attacker can obtain feedback.

Bandwidth [Mbps]

PD
F

0.0

0.1

0.2

0 10 20 30 40 50

Original
Adversarial

(a) SSDP Flood.
Bandwidth [Mbps]

PD
F

0.0

0.1

0 10 20 30 40 50

Original
Adversarial

(b) SYN DoS.

Fig. 8. Bandwidth of DoS attack.

The KL divergence between the adversarial and original traffic
distributions for SSDP Flood and SYN DoS is 0.009 and
0.013, indicating that NetMasquerade does not significantly
change the bandwidth distribution. On the other hand, the
negligible KL divergence confirms that NetMasquerade does
not introduce any new, delay-related artifacts that can be
readily detected.

C. Overhead and Efficiency

Training Overhead. To be practical in real-world scenar-
ios, our attack must be prepared efficiently. Our framework
achieves this through the two-stage design that separates
computationally intensive training from rapid online execution.
• Stage 1 (Benign Traffic Pattern Mimicking) is pre-trained

offline on publicly available benign traces. Since this stage
can be completed well before the actual attack commences,
its end-to-end training cost (about ∼ 75 hours on our
testbed) does not affect the online generation speed.

• Stage 2 (Adversarial Traffic Generation) runs online
during the actual attack setup. We measure the time required
for the RL loop (i.e., adversarial flow generation → DPDK
emission → feedback reception → policy update) to con-
verge. On our testbed, this stage is highly efficient, with the
policy typically converging within just 1 hour.
Overall, the two-stage design shifts most of the overhead to

offline training, thereby ensuring timely attack execution.
Efficiency. High inference speed is crucial for generating
adversarial traffic, especially in high-throughput network en-
vironments. Our measurement is end-to-end, including packet
extraction and transmitting packets via our DPDK engine.
Figure 9(a) compares the throughput of NetMasquerade with
baseline methods. Both NetMasquerade and Traffic Manipu-
lator operate at the flow level, yet NetMasquerade achieves
an average efficiency improvement of ∼ 69.6× over Traf-
fic Manipulator across eight datasets. In contrast, Amoeba
performs packet-level inference, maintaining a throughput of
approximately 300 ± 10 PPS under various attack scenarios.

11

PP
S

Fu
zzi

ng

SS
DP Fl

ood

OS S
ca

n
Ze

us
Mira

i

Wale
dac

Sto
rm

Sy
n DoS

0

1

2

3

log10 Scale T.M. NetMasquerade

66
.1
×

54
.5
×

12
.7
×

12
.9
×

6.
4×

27
2.
2×

17
.2
×

11
5.
1×

Amoeba

(a) Throughput comparison.

PP
S

0

2

6

×1e2 Scale Fuzzing

8

4

1 2 3 5 8 10

SSDP Flood

T.M.

Amoeba

(b) Throughput vs. steps under attack

Fig. 9. Efficiency of NetMasquerade and baselines.

Notably, for long-flow attacks (e.g., Waledac), NetMasquerade
exhibits a clear advantage in efficiency. Figure 9(b) shows the
efficiency curve under different maximum inference steps. By
adjusting thresholds ξ′ and τ , we can make a trade-off between
attack accuracy and inference efficiency. In our experiments,
the maximum number of inference steps is generally no more
than 10.

D. Deep Dive

Effectiveness under Limited Probes. NetMasquerade as-
sumes that the attacker is able to perform a probing process
to collect feedback for model training. However, the probing
budget may be limited, as excessive probes could trigger
alarms and lead to aggressive countermeasures. To quantify
this trade-off, we evaluate the ASR of NetMasquerade given
various probing budgets against two detection systems (Net-
Beacon and Vanilla + RNN) across three distinct datasets
each. As shown in Figure 10 (the solid lines), the ASR
exhibits a steep learning curve between 200 and 1, 000 probes.
For instance, against NetBeacon, NetMasquerade achieves, on
average, 35.6%, 70.4%, and 88.9% of its final ASR with bud-
gets of 200, 500, and 1, 000 probes, respectively. The policy
typically converges between 1, 000 and 2, 000 probes, although
certain complex scenarios (e.g., Vanilla + RNN / Spam) may
require a larger budget. This probing load is several orders
of magnitude lower than the steady-state workload of a single
data-center server (∼500 flows per second) [79] or the capacity
of a commercial telemetry system [15] (over 50, 000 flows
per-second [14]). Crucially, this volume also sits below the
thresholds that mainstream IDS products use to raise scan or
anomaly alarms [13].

Furthermore, we examine how the probing budget affects
the average number of perturbation steps per flow (the dashed
lines in Figure 10). Since each step costs one probe, this
count reflects the model’s probe utilization efficiency. In
the early training phase, the agent requires more steps to
explore the action space and identify effective modifications;

100 200 500 1000 2000
Probing Budgets

0.0

0.2

0.4

0.6

0.8

1.0

AS
R

Fuzzing Zeus XSS

0
1

5

10

St
ep

s

(a) NetBeacon.

100 200 500 1000 2000
Probing Budgets

0.0

0.2

0.4

0.6

0.8

1.0

AS
R

Spam Waledac Mirai

0
1

5

10

St
ep

s

(b) Vanilla + RNN.

Fig. 10. ASR under different probing budgets. Solid lines denote ASR;
dashed lines denote steps.

(a) Vanilla + RNN. (b) Whisper.

Fig. 11. ASR under different noise levels.

as training progresses and feedback accumulates, the average
steps per flow drop sharply. This shows the policy is learning
to use the budget more efficiently, which is key to learning
optimal, minimal-modification policies and contributes to the
fast convergence of our framework.
Robustness to Noisy Feedback. The feedback that an attacker
can collect may be unreliable in real-world deployment. Such
noise may be caused by various reasons, including misclassifi-
cations, specific configurations, or even adversarial responses
from the target designed to mislead the attacker. Figure 11
shows the final ASR achieved against the Vanilla + RNN and
Whisper under noise levels of 5%, 15%, and 30%. The results
demonstrate that NetMasquerade maintains high efficacy under
moderate noise. For example, when the noise level is 5%, Net-
Masquerade exhibits an average drop in attack success rate of
only 0.063. When the reward signal becomes highly unreliable
(i.e., given a 30% noise level), the ASR degrades gracefully
rather than collapsing. Meanwhile, we observe that increased
noise primarily affects the convergence efficiency, particularly
the stability of the Q-value. With extended explorations, it is
still possible to achieve higher ASR.
Importance of NetMasquerade’s Components. NetMasquer-
ade’s success relies on its two-stage framework design. We
validate the necessity of each stage through a series of ablation
studies, which show that removing or replacing either stage
significantly reduces the attack success rate. Detailed ablation
analysis can be found in Appendix IX-D.

E. Robustness against Defenses

NetMasquerade generates adversarial traffic within the traf-
fic (physical) space, which translates into an unrestricted
adversarial attack in the feature space. Consequently, defenses
that operate in the feature space, that is, defenses designed to
make a model robust to variations within a certain numerical
norm of its input feature vectors, such as adversarial train-
ing [32], [69] or sample randomized smoothing [17], [55],
fail to counter NetMasquerade.

12

AS
R

Fu
zzi

ng

SSD
P Flo

od

OS S
can Ze

us
Mira

i

Wale
dac

Sto
rm

Syn
 DoS

0.80

0.85

0.90

0.95

Vanilla BARS
1.00 Whisper RNN

Fig. 12. ASR against BARS.

• BARS [95]. BARS employs a combined distribution trans-
former in feature space to map smoothed noise onto arbitrary
manifolds, providing certified robustness bounds for certain
perturbations in that space. We use the open-source imple-
mentation of BARS and deploy it on two detection methods:
Whisper and Vanilla + RNN, and the results are shown in
Figure 12. NetMasquerade maintains a high ASR across 8
test datasets even against BARS. The primary reason lies in
BARS’s limited certified bound in the feature space, whereas
NetMasquerade performs multi-step manipulations in the
traffic space (e.g., inserting additional packets), leading to
perturbations that exceed BARS’s bound when projected
back into the feature space. Moreover, in some datasets,
NetMasquerade even attains a higher ASR under BARS,
likely because random noise reduces the model’s accuracy,
even with training data augmentation.

Guidelines for Building More Robust Detection Systems.
Overall, it is difficult for the feature-space defenses to defend
against NetMasquerade, because even small perturbations in
traffic space can lead to large distances in feature space.
A straightforward countermeasure is traffic-space adversarial
training: augment the training set with packet-level perturba-
tions to strengthen the model’s decision boundaries. Second,
instead of certifying an Lp norm in feature space, traffic
space certification (e.g., bounding the number of inserted
packets) may be more effective against NetMasquerade. Fi-
nally, NetMasquerade’s training process implicitly assumes
a static decision boundary from the target model. Thus, the
defense models can introduce randomness at inference to
avoid static decision boundaries, such as altering the model
architecture [21] or parameters [60]. Such techniques would
force the attacker to optimize against a distribution of models
rather than a single target, expanding the exploration space.
We will explore these strategies in future work.

VII. RELATED WORK

ML-based Malicious Traffic Detection. For generic detec-
tion, various methods have been developed to learn flow-level
features, such as frequency domain features [28], distribution
features [7], statistical features [101], and graph features [30].
In particular, existing methods utilize programmable network
devices to achieve high efficiency, e.g., NetBeacon [104] in-
stalled decision trees on programmable switches, N3IC imple-
mented binary neural networks on SmartNICs [83]. In contrast
to these flow-level detections, Kitsune [62], nPrintML [42],
and CLAP [105] learned packet-level features of malicious

traffic. For task-specific detection, several studies aimed to
detect malware behaviors. For example, Tegeler et al. [89]
detected communication traffic from botnets. Similarly, Tang
et al. [87] detected malicious web traffic. Dodia et al. [20]
identified malicious Tor traffic from malware. Furthermore,
Sharma et al. [81] and Tekiner et al. [90] captured attack
traffic targeting IoT devices.
On the Robustness of Traffic Detection. Robustness is-
sues are prevalent in traffic analysis systems, i.e., attackers
can easily construct adversarial traffic examples to trick the
systems into misclassifying traffic. First, Fu et al. [27]
revealed that attackers can easily mimic benign traffic to
evade the traditional methods [62], [83] by simply injecting
random noise. Such observations necessitate robust detection
methods [30], [28], [27]. Second, advanced evasion strategies
are developed, which optimize the adversarial traffic examples
according to the outputs of white-box [96], [82], [70] and grey-
box detection models [37]. These methods are different from
our hard-label black-box evasion. Additionally, existing studies
analyzed the robustness of traffic analysis other than traffic de-
tection, e.g., improving robustness for web fingerprinting [65],
[6], which are orthogonal to our evasion attack.
Common Issues of ML-Based Security Application. Som-
mer et al. [84] analyzed why ML-based traffic detection
systems suffer from low usability, and emphasized the impor-
tance of considering evasion behaviors of real-world attackers.
Arp et al. [5] explored the practical challenges associated
with ML-based applications, highlighting issues of evasion at-
tacks [62], [23]. Moreover, Alahmadi et al. [2], Vermeer et al.
[93], and Fu et al. [31] further demonstrated that existing ML-
based traffic detections raised massive false positive alarms.
Additionally, Han et al. [36], Jacobs et al. [47], and Wei et al.
[98] addressed the explainability of traffic detection systems.

VIII. CONCLUSION

In this paper, we introduce NetMasquerade, a hard-label
black-box evasion attack method specifically devised for
malicious traffic detection systems. NetMasquerade employs
a two-stage framework. First, NetMasquerade establishes a
tailored pre-trained model called Traffic-BERT for capturing
diverse benign traffic patterns. Subsequently, NetMasquerade
integrates the Traffic-BERT into an RL framework, effectively
manipulating malicious packet sequences based on benign traf-
fic patterns with minimal modifications. Also, NetMasquerade
introduces dissimilarity and effectiveness penalties, allowing
adversarial traffic to retain attack stealth and effectiveness.
Extensive experiments show that NetMasquerade enables both
high-rate and low-rate attacks to evade 6 top-performing de-
tection systems in 80 attack scenarios, achieving over 96.65%
attack success rate on average. Moreover, NetMasquerade
applies minimal modifications to no more than 10 steps
in all scenarios. Additionally, NetMasquerade can achieves
low-latency adversarial traffic generation, demonstrating its
practicality in real-world scenarios.

13

IX. ETHICAL CONSIDERATIONS

We carefully assess several ethical aspects to ensure that
our study adheres to ethical standards. This work is aimed
solely at assessing and improving the robustness of traffic
detection models, rather than facilitating malicious or unlawful
activities. We strictly follow all terms of use, and no pri-
vate or sensitive data is accessed or disclosed. All analysis
relies exclusively on publicly available datasets—Kitsune,
PeerRush, HyperVision (malicious traffic), and MAWI (benign
traffic)—without intercepting or manipulating any real-world
network traffic. Likewise, we do not perform any active attacks
or evasions against real detection systems, ensuring no impact
on actual network traffic or stability.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their thoughtful
comments. This work was supported in part by the National
Science Foundation for Distinguished Young Scholars of
China (No. 62425201), the National Natural Science Foun-
dation of China (Grant Nos. 62472036, 62472247, 62202258,
62221003, 62132011, 61932016, and U22B2031), and Beijing
Nova Program. Yi Zhao and Ke Xu are the corresponding
authors.

REFERENCES

[1] AKamai, “Prolexic,” https://www.akamai.com/products/
prolexic-solutions, Accessed May 2024.

[2] B. A. Alahmadi et al., “99% false positives: A qualitative study of
SOC analysts’ perspectives on security alarms,” in Security. USENIX
Association, 2022, pp. 2783–2800.

[3] E. Alhajjar, P. Maxwell, and N. D. Bastian, “Adversarial machine
learning in network intrusion detection systems,” Expert Syst. Appl.,
vol. 186, p. 115782, 2021.

[4] B. Anderson and D. A. McGrew, “Identifying encrypted malware traffic
with contextual flow data,” in AISec@CCS. ACM, 2016, pp. 35–46.

[5] D. Arp et al., “Dos and don’ts of machine learning in computer
security,” in Security. USENIX Association, 2022.

[6] A. Bahramali, A. Bozorgi, and A. Houmansadr, “Realistic website
fingerprinting by augmenting network traces,” in CCS. ACM, 2023,
pp. 1035–1049.

[7] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
and A. Madeira, “FlowLens: Enabling efficient flow classification for
ml-based network security applications,” in NDSS. The Internet
Society, 2021.

[8] BeichenDream, “Godzilla,” https://github.com/BeichenDream/
Godzilla, 2021.

[9] L. Bilge et al., “Disclosure: Detecting botnet command and control
servers through large-scale netflow analysis,” in ACSAC. ACM, 2012,
pp. 129–138.

[10] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in KDD. ACM, 2016, pp. 785–794.

[11] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014.

[12] Cisco Systems, “Encrypted traffic analytics white paper,” 2021,
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/
enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.
html.

[13] Cisco Systems, Inc., Cisco Security Manager 4.19 User Guide, Cisco
Systems, Inc., 2018. [Online]. Available: https://www.cisco.com/c/
en/us/td/docs/security/security management/cisco security manager/
security manager/419/user/guide/CSMUserGuide.html

[14] ——, Send On-Premises Flows from Cisco Telemetry Broker or
Secure Network Analytics to Secure Cloud Analytics Configuration
Guide, Cisco Systems, Inc., 2023, configuration Guide v7.5.0,
Document Version 1.0. [Online]. Available: https://www.cisco.com/
c/dam/en/us/td/docs/security/stealthwatch/on-premises-flows/7 5 0
Send On Prem Flows to Secure Cloud Analytics DV 1 0.pdf

[15] ——, “Cisco Telemetry Broker Data Sheet,” https://www.cisco.com/c/
en/us/products/collateral/security/telemetry-broker/ctb-datasheet.html,
Mar. 2024.

[16] Cloudflare, “Cloudflare ddos protection products,” https://developers.
cloudflare.com/ddos-protection/managed-rulesets/adaptive-protection/,
Accessed May 2024.

[17] J. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial robust-
ness via randomized smoothing,” in ICML, ser. Proceedings of Machine
Learning Research, vol. 97. PMLR, 2019, pp. 1310–1320.

[18] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proceedings of
the 2013 Internet Measurement Conference, IMC 2013, Barcelona,
Spain, October 23-25, 2013, K. Papagiannaki, P. K. Gummadi, and
C. Partridge, Eds. ACM, 2013, pp. 1–8.

[19] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
NAACL-HLT (1). Association for Computational Linguistics, 2019,
pp. 4171–4186.

[20] P. Dodia, M. AlSabah, O. Alrawi, and T. Wang, “Exposing the
rat in the tunnel: Using traffic analysis for tor-based malware
detection,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022, H. Yin, A. Stavrou, C. Cremers,
and E. Shi, Eds. ACM, 2022, pp. 875–889. [Online]. Available:
https://doi.org/10.1145/3548606.3560604

[21] M. Dong, X. Chen, Y. Wang, and C. Xu, “Random normalization
aggregation for adversarial defense,” in NeurIPS, 2022.

[22] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and VPN traffic using time-related
features,” in ICISSP. SciTePress, 2016, pp. 407–414.

[23] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in CCS. ACM,
2017, pp. 1285–1298.

[24] W. M. Eddy, “Transmission control protocol (TCP),” RFC, vol. 9293,
pp. 1–98, 2022. [Online]. Available: https://doi.org/10.17487/RFC9293

[25] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, 2003.

[26] X. Feng, C. Fu, Q. Li, K. Sun, and K. Xu, “Off-path TCP
exploits of the mixed IPID assignment,” in CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020, J. Ligatti, X. Ou, J. Katz,
and G. Vigna, Eds. ACM, 2020, pp. 1323–1335. [Online]. Available:
https://doi.org/10.1145/3372297.3417884

[27] C. Fu et al., “Frequency domain feature based robust malicious traffic
detection,” IEEE/ACM Trans. Netw., vol. 31, no. 1, pp. 452–467, 2023.

[28] C. Fu, Q. Li, M. Shen, and K. Xu, “Realtime robust malicious traffic
detection via frequency domain analysis,” in CCS. ACM, 2021, pp.
3431–3446.

[29] ——, “Detecting tunneled flooding traffic via deep semantic analysis
of packet length patterns,” in CCS. ACM, 2024, pp. 3659–3673.

[30] C. Fu, Q. Li, and K. Xu, “Detecting unknown encrypted malicious
traffic in real time via flow interaction graph analysis,” in NDSS. The
Internet Society, 2023.

[31] C. Fu, Q. Li, K. Xu, and J. Wu, “Point cloud analysis for ml-
based malicious traffic detection: Reducing majorities of false positive
alarms,” in CCS. ACM, 2023, pp. 1005–1019.

[32] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in ICLR (Poster), 2015.

[33] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement
learning with deep energy-based policies,” in ICML, ser. Proceedings
of Machine Learning Research, vol. 70. PMLR, 2017, pp. 1352–1361.

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in ICML, ser. Proceedings of Machine Learning Research,
vol. 80. PMLR, 2018, pp. 1856–1865.

14

https://www.akamai.com/products/prolexic-solutions
https://www.akamai.com/products/prolexic-solutions
https://github.com/BeichenDream/Godzilla
https://github.com/BeichenDream/Godzilla
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.html
https://www.cisco.com/c/en/us/td/docs/security/security_management/cisco_security_manager/security_manager/419/user/guide/CSMUserGuide.html
https://www.cisco.com/c/en/us/td/docs/security/security_management/cisco_security_manager/security_manager/419/user/guide/CSMUserGuide.html
https://www.cisco.com/c/en/us/td/docs/security/security_management/cisco_security_manager/security_manager/419/user/guide/CSMUserGuide.html
https://www.cisco.com/c/dam/en/us/td/docs/security/stealthwatch/on-premises-flows/7_5_0_Send_On_Prem_Flows_to_Secure_Cloud_Analytics_DV_1_0.pdf
https://www.cisco.com/c/dam/en/us/td/docs/security/stealthwatch/on-premises-flows/7_5_0_Send_On_Prem_Flows_to_Secure_Cloud_Analytics_DV_1_0.pdf
https://www.cisco.com/c/dam/en/us/td/docs/security/stealthwatch/on-premises-flows/7_5_0_Send_On_Prem_Flows_to_Secure_Cloud_Analytics_DV_1_0.pdf
https://www.cisco.com/c/en/us/products/collateral/security/telemetry-broker/ctb-datasheet.html
https://www.cisco.com/c/en/us/products/collateral/security/telemetry-broker/ctb-datasheet.html
https://developers.cloudflare.com/ddos-protection/managed-rulesets/adaptive-protection/
https://developers.cloudflare.com/ddos-protection/managed-rulesets/adaptive-protection/
https://doi.org/10.1145/3548606.3560604
https://doi.org/10.17487/RFC9293
https://doi.org/10.1145/3372297.3417884

[35] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-
critic algorithms and applications,” CoRR, vol. abs/1812.05905, 2018.

[36] D. Han, Z. Wang, W. Chen, Y. Zhong, S. Wang, H. Zhang, J. Yang,
X. Shi, and X. Yin, “Deepaid: Interpreting and improving deep
learning-based anomaly detection in security applications,” in CCS.
ACM, 2021, pp. 3197–3217.

[37] D. Han, Z. Wang, Y. Zhong, W. Chen, J. Yang, S. Lu, X. Shi,
and X. Yin, “Evaluating and improving adversarial robustness of
machine learning-based network intrusion detectors,” IEEE J. Sel.
Areas Commun., vol. 39, no. 8, pp. 2632–2647, 2021.

[38] ——, “Trafficmanipulator,” https://github.com/dongtsi/
TrafficManipulator, 2021.

[39] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion detection:
Evasion, traffic normalization, and end-to-end protocol semantics,” in
USENIX Security Symposium. USENIX Association, 2001.

[40] M. J. Hashemi, G. Cusack, and E. Keller, “Towards evaluation of nidss
in adversarial setting,” in Big-DAMA@CoNEXT. ACM, 2019, pp. 14–
21.

[41] T. Hester, M. Vecerı́k, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband, G. Dulac-Arnold,
J. P. Agapiou, J. Z. Leibo, and A. Gruslys, “Deep q-learning from
demonstrations,” in AAAI. AAAI Press, 2018, pp. 3223–3230.

[42] J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New directions in
automated traffic analysis,” in CCS. ACM, 2021, pp. 3366–3383.

[43] I. Homoliak, M. Teknos, M. Ochoa, D. Breitenbacher, S. Hosseini,
and P. Hanácek, “Improving network intrusion detection classifiers
by non-payload-based exploit-independent obfuscations: An adversarial
approach,” EAI Endorsed Trans. Security Safety, vol. 5, no. 17, p. e4,
2019.

[44] S. Huang and S. Ontañón, “A closer look at invalid action masking in
policy gradient algorithms,” in FLAIRS, 2022.

[45] Intel, “Data Plane Development Kit,” https://www.dpdk.org/, 2025,
accessed Apr 2025.

[46] J. Iyengar and M. Thomson, “QUIC: A udp-based multiplexed
and secure transport,” RFC, vol. 9000, pp. 1–151, 2021. [Online].
Available: https://doi.org/10.17487/RFC9000

[47] A. S. Jacobs et al., “AI/ML for network security: The emperor has
no clothes,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2022, pp. 1537–1551.

[48] V. Jacobson, “traceroute,” ftp://ftp.ee.lbl.gov/traceroute.tar.gz, Dec.
1988, lawrence Berkeley National Laboratory, software distribution.

[49] M. Javed and V. Paxson, “Detecting stealthy, distributed SSH brute-
forcing,” in CCS. ACM, 2013, pp. 85–96.

[50] M. Jiang, B. Cui, J. Fu, T. Wang, L. Yao, and B. K. Bhargava,
“RUDOLF: an efficient and adaptive defense approach against website
fingerprinting attacks based on soft actor-critic algorithm,” IEEE Trans.
Inf. Forensics Secur., vol. 19, pp. 7794–7809, 2024.

[51] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
IEEE Symposium on Security and Privacy. IEEE Computer Society,
2013, pp. 127–141.

[52] D. Kopp, J. Santanna, M. Wichtlhuber, O. Hohlfeld, I. Poese, and
C. Dietzel, “Ddos hide & seek: On the effectiveness of a booter services
takedown,” in Internet Measurement Conference. ACM, 2019, pp. 65–
72.

[53] A. Kuzmanovic and E. W. Knightly, “Low-rate tcp-targeted denial of
service attacks: the shrew vs. the mice and elephants,” in SIGCOMM.
ACM, 2003, pp. 75–86.

[54] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of tor traffic using time based features,” in ICISSP.
SciTePress, 2017, pp. 253–262.

[55] M. Lécuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in IEEE
Symposium on Security and Privacy. IEEE, 2019, pp. 656–672.

[56] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, “ET-BERT: A
contextualized datagram representation with pre-training transformers
for encrypted traffic classification,” in WWW ’22: The ACM Web
Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022,
F. Laforest, R. Troncy, E. Simperl, D. Agarwal, A. Gionis, I. Herman,
and L. Médini, Eds. ACM, 2022, pp. 633–642. [Online]. Available:
https://doi.org/10.1145/3485447.3512217

[57] Z. Lin, Y. Shi, and Z. Xue, “IDSGAN: generative adversarial networks
for attack generation against intrusion detection,” in PAKDD (3), ser.
Lecture Notes in Computer Science. Springer, 2022, pp. 79–91.

[58] H. Liu, A. F. Diallo, and P. Patras, “Amoeba: Circumventing ml-
supported network censorship via adversarial reinforcement learning,”
PACMNET, vol. 1, no. CoNEXT, pp. 9:1–9:25, 2023.

[59] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” CoRR, vol. abs/1907.11692, 2019.

[60] Y. Ma, M. Dong, and C. Xu, “Adversarial robustness through random
weight sampling,” in NeurIPS, 2023.

[61] R. Meier, V. Lenders, and L. Vanbever, “ditto: WAN traffic obfuscation
at line rate,” in NDSS. The Internet Society, 2022.

[62] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
NDSS. The Internet Society, 2018.

[63] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nat., vol. 518, no. 7540, pp. 529–533, 2015.

[64] R. Mudge, “Cobalt strike - adversary simulation and red team opera-
tions,” https://www.cobaltstrike.com/, 2020.

[65] M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating dnn-based
traffic analysis systems in real-time with blind adversarial perturba-
tions,” in USENIX Security Symposium. USENIX Association, 2021,
pp. 2705–2722.

[66] A. M. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in CVPR. IEEE Computer Society, 2015, pp. 427–436.

[67] NVIDIA, “CUDA Toolkit: A Parallel Computing Platform on GPU,”
https://developer.nvidia.com/cuda-toolkit, 2025, accessed Apr 2025.

[68] Open Information Security Foundation, “Suricata – Network Intrusion
Detection/Prevention and Security Monitoring Engine,” Software,
Version 8.0.0, Jul. 2025, released 08 Jul 2025. [Online]. Available:
https://suricata.io/

[69] N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami, “Distil-
lation as a defense to adversarial perturbations against deep neural
networks,” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2016, pp. 582–597.

[70] A. Piplai, S. S. L. Chukkapalli, and A. Joshi, “Nattack! adversarial
attacks to bypass a GAN based classifier trained to detect network
intrusion,” in BigDataSecurity/HPSC/IDS. IEEE, 2020, pp. 49–54.

[71] M. Post and D. Vilar, “Fast lexically constrained decoding with
dynamic beam allocation for neural machine translation,” in NAACL-
HLT. Association for Computational Linguistics, 2018, pp. 1314–
1324.

[72] J. Postel, “Internet Protocol,” Request for Comments 791, 1981.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc791

[73] ——, “Internet control message protocol,” RFC, vol. 792, pp. 1–21,
1981. [Online]. Available: https://doi.org/10.17487/RFC0792

[74] PyTorch, “A Deep Learning Framework,” https://pytorch.org/, 2025,
accessed Apr 2025.

[75] Z. Qian and Z. M. Mao, “Off-path TCP sequence number inference
attack - how firewall middleboxes reduce security,” in IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2012, pp. 347–361.

[76] Y. Qing, Q. Yin, X. Deng, Y. Chen, Z. Liu, K. Sun, K. Xu, J. Zhang,
and Q. Li, “Low-quality training data only? A robust framework for
detecting encrypted malicious network traffic,” in NDSS. The Internet
Society, 2024.

[77] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “PeerRush: Mining
for unwanted P2P traffic,” in DIMVA, ser. Lecture Notes in Computer
Science, vol. 7967. Springer, 2013, pp. 62–82.

[78] P. Richter and A. W. Berger, “Scanning the scanners: Sensing the
internet from a massively distributed network telescope,” in Internet
Measurement Conference. ACM, 2019, pp. 144–157.

[79] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in SIGCOMM. ACM, 2015,
pp. 123–137.

[80] N. N. Scanning, “The official nmap project guide to network discovery
and security scanning,” Boston: Nmap Project, 2009.

[81] R. A. Sharma, I. Sabane, M. Apostolaki, A. Rowe, and V. Sekar,
“Lumen: A framework for developing and evaluating ml-based iot
network anomaly detection,” in CoNEXT. ACM, 2022, pp. 59–71.

[82] R. Sheatsley, B. Hoak, E. Pauley, Y. Beugin, M. J. Weisman, and P. D.
McDaniel, “On the robustness of domain constraints,” in CCS. ACM,
2021, pp. 495–515.

[83] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, G. Antichi,
P. Costa, H. Haddadi, and R. Bifulco, “Re-architecting traffic analysis

15

https://github.com/dongtsi/TrafficManipulator
https://github.com/dongtsi/TrafficManipulator
https://www.dpdk.org/
https://doi.org/10.17487/RFC9000
ftp://ftp.ee.lbl.gov/traceroute.tar.gz
https://doi.org/10.1145/3485447.3512217
https://www.cobaltstrike.com/
https://developer.nvidia.com/cuda-toolkit
https://suricata.io/
https://www.rfc-editor.org/rfc/rfc791
https://doi.org/10.17487/RFC0792
https://pytorch.org/

with neural network interface cards,” in NSDI. USENIX Association,
2022, pp. 513–533.

[84] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2010, pp. 305–316.

[85] E. Stinson and J. C. Mitchell, “Towards systematic evaluation of the
evadability of bot/botnet detection methods,” in WOOT. USENIX
Association, 2008.

[86] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in ICLR (Poster), 2014.

[87] R. Tang, Z. Yang, Z. Li, W. Meng, H. Wang, Q. Li, Y. Sun, D. Pei,
T. Wei, Y. Xu, and Y. Liu, “Zerowall: Detecting zero-day web attacks
through encoder-decoder recurrent neural networks,” in INFOCOM.
IEEE, 2020, pp. 2479–2488.

[88] G. Tao, S. An, S. Cheng, G. Shen, and X. Zhang, “Hard-label black-box
universal adversarial patch attack,” in USENIX Security Symposium.
USENIX Association, 2023, pp. 697–714.

[89] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder: Finding bots
in network traffic without deep packet inspection,” in CoNEXT. ACM,
2012, pp. 349–360.

[90] E. Tekiner, A. Acar, and A. S. Uluagac, “A lightweight iot cryptojack-
ing detection mechanism in heterogeneous smart home networks,” in
NDSS. The Internet Society, 2022.

[91] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
NIPS, 2017, pp. 5998–6008.

[92] M. Vecerı́k, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. A. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” CoRR, vol. abs/1707.08817, 2017.

[93] M. Vermeer, N. Kadenko, M. van Eeten, C. Gañán, and S. Parkin,
“Alert alchemy: SOC workflows and decisions in the management of
NIDS rules,” in CCS. ACM, 2023, pp. 2770–2784.

[94] J. Wan, J. Fu, L. Wang, and Z. Yang, “Bounceattack: A query-efficient
decision-based adversarial attack by bouncing into the wild,” in IEEE
Symposium on Security and Privacy. IEEE, 2024, pp. 1270–1286.

[95] K. Wang, Z. Wang, D. Han, W. Chen, J. Yang, X. Shi, and X. Yin,
“BARS: local robustness certification for deep learning based traffic
analysis systems,” in NDSS. The Internet Society, 2023.

[96] N. Wang, Y. Chen, Y. Xiao, Y. Hu, W. Lou, and Y. T. Hou, “MANDA:
on adversarial example detection for network intrusion detection sys-
tem,” IEEE Trans. Dependable Secur. Comput., vol. 20, no. 2, pp.
1139–1153, 2023.

[97] N. Weaver, R. Sommer, and V. Paxson, “Detecting forged TCP reset
packets,” in NDSS. The Internet Society, 2009.

[98] F. Wei et al., “Xnids: Explaining deep learning-based network intrusion
detection systems for active intrusion responses,” in Security. USENIX
Association, 2023, p. to appear.

[99] WIDE, “Mawi working group traffic archive,” http://mawi.wide.ad.jp/
mawi/, 2023, accessed: June 2023.

[100] J. Xing et al., “Ripple: A programmable, decentralized link-flooding
defense against adaptive adversaries,” in Security. USENIX, 2021,
pp. 3865–3880.

[101] Z. Xu, S. Ramanathan, A. M. Rush, J. Mirkovic, and M. Yu, “Xatu:
Boosting existing ddos detection systems using auxiliary signals,” in
CoNEXT. ACM, 2022, pp. 1–17.

[102] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks with
programmable switches,” in NDSS. The Internet Society, 2020.

[103] G. Zhou, X. Guo, Z. Liu, T. Li, Q. Li, and K. Xu, “Trafficformer: an
efficient pre-trained model for traffic data,” in SP. IEEE Computer
Society, 2024, pp. 102–102.

[104] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design
of intelligent network data plane,” in USENIX Security Symposium.
USENIX Association, 2023, pp. 6203–6220.

[105] S. Zhu, S. Li, Z. Wang, X. Chen, Z. Qian, S. V. Krishnamurthy, K. S.
Chan, and A. Swami, “You do (not) belong here: Detecting DPI evasion
attacks with context learning,” in CoNEXT. ACM, 2020, pp. 183–197.

APPENDIX

A. Details of Datasets

To closely mirror real-world scenarios, we replay 4 categories
of malicious traffic, totaling 12 attack types: Reconnaissance
& Scanning, Denial of Service (DoS), Botnet, and Encrypted
Web attacks. The details are shown in Table III.

• Reconnaissance and Scanning Attacks. These attacks iden-
tify open ports and services across a wide range of servers
by sending specific packets, e.g., by sending ICMP echo
requests to determine if a host is active. Adversarial traffic
made by NetMasquerade does not influence the effective-
ness. Moreover, since these scanning attacks typically do
not involve the transmission of payloads, they can bypass
payload-based detection methods. Employing a pattern-
based detection system is a common way of detecting
such attacks. We select two distinct scanning attacks from
Kitsune [62]: OS Scan and Fuzz Scan.

• Denial of Service Attacks. DoS attacks incapacitate targeted
services by inundating them with an overwhelming volume
of requests, depleting resources and rendering the services
unavailable. We selected SSDP DoS and SYN DoS traffic
from Kitsune. Similar to scanning attacks, payload-based
detection methods fall short against DoS attacks; however,
detecting these attacks becomes feasible when focusing on
the characteristics of their patterns.

• Botnet Attacks. Botnets, which are large networks of com-
promised machines, are controlled by attackers via com-
mand and control (C&C) channels to conduct malicious ac-
tivities [9], [89]. We employ the Mirai dataset from Kitsune,
and analyze data from three typical botnets: Zeus, Storm,
and Waledac, which were collected by PeerRush [77].

• Encrypted Web Attacks. Typically, malicious web traffic is
encrypted with HTTPS, concealing its malicious behavior
within the packet payload. This encryption prevents tra-
ditional rule-based methods unable to detect the traffic.
Meanwhile, most traditional ML-based detection systems
cannot effectively detect the traffic due to their low packet
rates [30]. We obtained four common types of Web attack
traffic from [31], including automated vulnerability discov-
ery (XSS, CSRF), Webshell, and Spam traffic.

We replay traffic from diverse sources—covering high and
low throughput flows, as well as encrypted and unencrypted
streams—to demonstrate NetMasquerade’s general applicabil-
ity across varying protocols and tasks. For the Scanning, DoS
and Encrypted Web attacks, each target detection system is
trained on the malicious and benign traces from the corre-
sponding private datasets. For the Botnet attack, the original
datasets contain virtually no benign traffic, so we supplement
benign flows with traces from the WIDE MAWI project
(August 2023). This choice does not compromise the black-
box setting, as the Traffic-BERT model is trained on data from
June 2023, ensuring that there is no correlation between the
distributions of the datasets. To achieve class balance, we train
the target models with thousands of malicious flows and an

16

http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/

TABLE III
DETAILS OF MALICIOUS TRAFFIC DATASETS

Malicious
Traffic Dataset

Description Source Bandwidth
Enc.
Ratio

Mal.
Ratio

External
Data 1

Recon.
OS Scan Scanning for active hosts and operating systems. Kitsune [62] 0.96 Mbps 0.0% 0.0045 N/A

Fuzz Scan Scanning for vulnerabilities in protocols. Kitsune 27.9 Mbps 0.0% 0.0089 N/A

DoS
SSDP DoS Amplifying SSDP traffic to flood targets. Kitsune 27.2 Mbps 0.0% 0.0321 N/A
SYN DoS Flooding servers with half-open TCP connections. Kitsune 23.5 Mbps 0.0% 0.0858 N/A

Botnet

Mirai Infects IoT devices with the Mirai malware. Kitsune 0.12 Mbps 0.0% 0.8408 MAWI 2

Zeus Botnet infected by a Zeus trojan. PeerRush [77] 0.06 Mbps 0.0% 0.9999 MAWI
Storm Peer-to-peer botnet spreading malware. PeerRush 25.3 Mbps 0.0% 0.9628 MAWI

Waledac Spam botnet harvesting user data. PeerRush 13.9 Mbps 0.0% 1.0000 MAWI

Enc.
Web

Attacks

Webshell Malicious script enabling remote server control. H.V. [30] 11.2 Mbps 100.0% 0.0234 N/A
XSS Injects malicious scripts into legitimate websites. H.V. 31.8 Mbps 100.0% 0.0259 N/A

CSRF Fools authenticated users into unintended actions. H.V. 7.73 Mbps 100.0% 0.0236 N/A
Spam Bulk messages with phishing / malware. H.V. 36.2 Mbps 100.0% 0.0238 N/A

1 We use an external benign dataset when the malicious dataset is nearly 100% malicious.
2 To ensure a strict black-box setting, we employ the real-world backbone network traces from the WIDE MAWI project’s August 2023 dataset [99] to train the additional models,

keeping them entirely separate from the June 2023 traces used to train Traffic-BERT.

equal number of benign flows. For the one-class detection
system Kitsune, we use only benign samples during training.

B. Details of Target Detection Systems

Target Systems. We use three advanced traditional ML-based
malicious traffic detection systems as target systems:
• Whisper [28]. Whisper transforms the patterns of flows

into frequency domain features, employing clustering to
unsupervisedly learn these features. Similarly, the effective-
ness of original traffic is assessed by the distance between
frequency domain features and the cluster centers. Whisper
is particularly effective at detecting DoS traffic, so we
retrain the model on the DoS dataset using its default
configuration. For botnet traffic, we replace clustering with
a linear classifier to enhance detection capabilities.

• FlowLens [7]. FlowLens samples the distribution of packet-
level features on the data plane and uses random forests to
learn these features in a supervised manner on the control
plane, introducing a new paradigm of malicious traffic
detection. We retrain the model with the default model
structure and hyperparameters described in the paper.

• NetBeacon [104]. NetBeacon introduces the concept of
Intelligent Data Plane (IDP), performing flow-level feature
extraction and feature classification with tree-based models
directly in the data plane. We reconstruct the feature extrac-
tion method described in the paper, select XGBoost [10] as
the representative tree model for traffic classification, and
adjust hyperparameters to achieve optimal accuracy.
We also implement three top-performing DL-based systems:

• CICFlowMeter [22], [54] + MLP. CICFlowMeter is a widely
used feature processor that extracts over 80 time-related
features from flow patterns. We employ a four-layer linear
neural network to learn these features, with the number of
neurons in the hidden layers set to three times that of the

input layer. By adjusting the hyperparameters, we achieve
the model’s best classification performance.

• Vanilla + RNN. The native feature extractor extracts se-
quences of sizes and IPDs from the flow, without additional
feature processing. Given the sequential nature of the fea-
tures, we use a single-layer LSTM as the model, taking the
concatenation of the two feature sequences as input.

• Kitsune [62]. Kitsune dynamically extracts and maintains
per-packet features through specially designed feature ex-
tractors and uses autoencoders and clustering to learn the
features of benign traffic unsupervisedly. The detection of
malicious traffic is based on the discrepancy between the
autoencoder’s output and the original feature input. We
retrain the model using its original feature extraction and
model structure with default hyperparameters.

Target System Detection Performance. Table IV summarizes
the detection performance of 6 target systems on 12 types of
malicious traffic. Notably, Kitsune outputs a score indicating
how malicious each sample is; we perform a grid search
to determine a threshold and compute the corresponding F1
score. We then apply this threshold in the attack experiments
to calculate the ASR. All detection systems achieve high
AUC and F1 scores, demonstrating strong performance in the
absence of evasion attacks.

C. Details of Hyperparameter Settings

The default hyperparameters of NetMasquerade are listed
in Table V.

D. Deep Dive into NetMasquerade

Importance of Two-Stage Framework. NetMasquerade con-
sists of two stages: benign traffic pattern mimicking and
adversarial traffic generation. To study the importance of each
stage, we design three ablation strategies and conduct attacks

17

TABLE IV
MALICIOUS TRAFFIC DETECTION SYSTEMS’ PERFORMANCE

Malicious
Traffic Dataset

Traditional ML-based Systems DL-based Systems
Whisper FlowLens NetBeacon Vanilla CIC. Kitsune

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Recon.
OS Scan 0.9978 0.9979 0.9946 0.9947 0.9897 0.9899 0.9720 0.9728 0.9980 0.9980 0.9211 0.9780

Fuzz Scan 0.9905 0.9899 0.9972 0.9933 0.9913 0.9910 0.9662 0.9663 0.9900 0.9901 0.9952 0.9974

DoS
SSDP DoS 0.9167 0.9231 0.9982 0.9981 0.9995 0.9994 0.9790 0.9790 0.9999 0.9999 0.9900 0.9996
SYN DoS 0.9879 0.9823 0.9815 0.9800 0.9903 0.9833 0.9616 0.9560 0.9852 0.9849 0.9801 0.9213

Botnet

Mirai 0.9449 0.9458 0.9600 0.9463 0.9444 0.9371 0.9099 0.9156 0.9574 0.9521 0.9322 0.9762
Zeus 0.9121 0.9056 0.9250 0.8837 0.9279 0.9516 0.9118 0.9041 0.9625 0.9484 0.9246 0.9017

Storm 0.9495 0.9468 0.9395 0.9415 0.9972 0.9978 0.9233 0.9271 0.9968 0.9982 0.9302 0.9822
Waledac 0.9505 0.9484 0.9660 0.9653 0.9285 0.9467 0.9299 0.9304 0.9860 0.9862 0.8964 0.8414

Enc.

Webshell 0.9980 0.9979 0.9955 0.9946 0.9943 0.9955 0.9989 0.9874 0.9965 0.9964 0.9996 0.9887
XSS 0.9975 0.9974 0.9965 0.9965 0.9967 0.9966 0.9845 0.9937 0.9937 0.9984 0.9991 0.9990

CSRF 0.9944 0.9950 0.9920 0.9920 0.9935 0.9934 0.9819 0.9822 0.9928 0.9927 0.9019 0.6625
Spam 0.9200 0.9135 0.9780 0.9756 0.9635 0.9622 0.8897 0.8847 0.9900 0.9901 0.8887 0.8690

TABLE V
DETAILS OF HYPERPARAMETERS.

Stage Hyperparameter Value Description

1: Traffic-BERT

n 512 Fixed length of sequences.
dk 128 Embedding size / total length of Q,K, V .

N LAYERS 6 Number of encoder blocks.
ATTN HEADS 8 Number of attention heads.

D FF 512 Dimension of feed-forward layer.
T SIZE 56 Size of IPD feature vocabulary.
S SIZE 1606 Size of size feature vocabulary.

2: RL process

β 0.01 ∼ 0.1 Weight of rD .
γ 0 ∼ 0.2 Weight of rM .
τ ≤ 10 Max step threshold.
ξ′ 0.8 ∼ 1.05 Stop reward threshold.
η 1 Discount factor.
λ 0.9 Soft update weight of Q-networks.
B 1e5 Size of experience replay buffer.

TARGET ENTROPY −10 Desired policy entropy (related to α)

on two detection systems, NetBeacon and CICFlowMeter +
MLP, across all eight datasets. Table VI shows the ASR.

In the first scenario, we retain stage 1 and replace stage
2 with randomly selecting positions for feature modifica-
tions(denoted as S1). Clearly, under this setting, the attacker
cannot find the optimal modification positions, resulting in
a significant drop in attack capability. On both datasets, the
attack success rate drops by an average of 56%. This result
underscores that merely integrating BERT-generated traffic
patterns is insufficient to evade detection; the RL step in Stage
2 is crucial for identifying the most strategic insertion points.

In the second scenario, we remove stage 2 and replace it
with a new Mask-Fill strategy. The first strategy is to fill in the
selected positions with stochastic values between the minimum
and maximum values of the same flow feature sequence
(denoted as S2-S). By converting the Markov decision pro-
cess from deterministic to stochastic, it becomes exceedingly
difficult for the RL algorithm to converge. Consequently, we
observe that the RL strategy predominantly adds chaff packets
because the rewards for this type of action are relatively stable.
The second strategy is filling in the selected positions with

TABLE VI
EFFECT OF TWO-STAGE FRAMEWORK. S1 , S2-S, S2-F, NETM. STAND

FOR STAGE 1 ONLY, STAGE 2 ONLY WITH STOCHASTIC VALUE, STAGE 2
ONLY WITH FIXED VALUE, AND THE OVERALL NETMASQUERADE.

Target Systems NetBeacon CICFlowMeter + MLP

Methods S1 S2-S S2-F NetM. S1 S2-S S2-F NetM.

OS Scan 0.940 0.990 0.990 0.999 0.479 0.990 0.999 0.999
Fuzzing 0.538 0.936 0.996 0.999 0.063 0.004 0.009 0.974

SSDP Flood 0.001 0.434 0.481 0.999 0.488 0.557 0.639 0.999
SYN DoS 0.058 0.325 0.545 0.999 0.508 0.011 0.754 0.996

Mirai 0.915 0.895 0.915 0.990 0.488 0.856 0.938 0.999
Zeus 0.355 0.508 0.508 0.945 0.347 0.813 0.891 0.987

Storm 0.201 0.233 0.239 0.997 0.647 0.797 0.817 0.890
Waledac 0.750 0.727 0.924 0.999 0.123 0.783 0.880 0.981

the average value of the same flow feature (denoted as S2-F).
Due to the variation in sending patterns across different flow
segments, this strategy is limited in some cases. As Table
3 illustrates, the attack success rate for these two strategies
decrease by an average of 37.4% and 26.8%, and neither
strategy is effective against high-speed traffic. This outcome
underscores how merely relying on an average-value approach
or a random approach to features cannot capture dynamic
and peak-driven traffic patterns—an issue that becomes even
more pronounced in fine-tuning scenarios such as high-speed
traffic. Traffic-BERT, on the other hand, guides the RL training
process by offering stable and effective benign-pattern per-
turbations. Although more complex candidate Mask-Fill rules
could be considered, these rules can only be applied during
stage 2, which would exponentially expand the action space
and lead to an action space explosion.

18

	Introduction
	Threat Model and Assumptions
	The Overview of NetMasquerade
	Key Observation
	High-Level Architecture

	Benign Traffic Pattern Mimicking
	Feature Extraction
	Traffic-BERT

	Adversarial Traffic Generation
	MDP Formulation
	Policy Optimization
	Runtime Inference

	Evaluation
	Experiment Setup
	Attack Performance
	Overhead and Efficiency
	Deep Dive
	Robustness against Defenses

	Related Work
	Conclusion
	Ethical Considerations
	References
	Details of Datasets
	Details of Target Detection Systems
	Details of Hyperparameter Settings
	Deep Dive into NetMasquerade

