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Abstract—Kernel fuzzing effectively uncovers vulnerabilities.
While existing kernel fuzzers primarily focus on maximizing
code coverage, coverage alone does not guarantee thorough
exploration. Moreover, existing fuzzers, aimed at maximizing
coverage, have plateaued. This pressing situation highlights the
need for a new direction: code frequency-oriented kernel fuzzing.
However, increasing the exploration of low-frequency kernel
code faces two key challenges: (1) Resource constraints make
it hard to schedule sufficient tasks for low-frequency regions
without causing task explosion. (2) Random mutations often
break context dependencies of syscalls targeting low-frequency
regions, reducing the effectiveness of fuzzing.

In our paper, we first perform a fine-grained study of im-
balanced code coverage by evaluating Syzkaller in the Linux
kernel and, as a response, propose SYSYPHUZZ, a kernel fuzzer
designed to boost exploration of under-tested code regions.
SYSYPHUZZ introduces Selective Task Scheduling to dynami-
cally prioritize and manage exploration tasks, avoiding task
explosion. It also employs Context-Preserving Mutation strategy
to reduce the risk of disrupting important execution contexts.
We evaluate SYSYPHUZZ against the state-of-the-art (SOTA)
kernel fuzzers, Syzkaller and SyzGPT. Our results show that
SYSYPHUZZ significantly reduces the number of under-explored
code regions and discovers 31 unique bugs missed by Syzkaller
and 27 bugs missed by SyzGPT. Moreover, SYSYPHUZZ finds five
bugs missed by Syzbot, which continuously runs on hundreds
of virtual machines, demonstrating SYSYPHUZZ’s effectiveness.
To evaluate SYSYPHUZZ’s enhancement to SOTA fuzzers, we
integrate it with SyzGPT, yielding SyzGPTsysy, which finds 33%
more exclusive bugs, highlighting SYSYPHUZZ’ potential. All
discovered vulnerabilities have been responsibly disclosed to the
Linux maintainers. We release the source code of SYSYPHUZZ
at https://github.com/HexHive/Sysyphuzz and are trying to
upstream it to Syzkaller.

I. INTRODUCTION

The operating system remains a foundational and highly
security-sensitive element of modern computing. Its respon-
sibilities in resource management and enforcing isolation
between applications make it an attractive target for attackers
aiming to compromise its guarantees. Given the importance of
OS security, industry [1], [2], [3] and academic researchers [4],
[5], [6], [7], [8], [9], [10], [11], [12] are actively looking for
effective testing techniques. Among these techniques, fuzzing
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is unarguably the most promising approach for discovering
kernel bugs.

Code coverage is a key success metric for kernel fuzzing and
has been subject to several academic optimization efforts [13],
[14], [10], [15]. Meanwhile, simply replaying the Syzbot
corpus [2], accumulated through years of continuous fuzzing,
enables kernel fuzzers to reach over 90% of their total cover-
age attainable during the fuzzing campaign [16], [17]. Building
on this solid foundation of mature seed corpus and continuous
optimization techniques, kernel fuzzers’ coverage plateaued
[18]. Additionally, high coverage does not directly indicate
sufficient exploration. Often, these metrics fail to represent
testing distributions throughout various kernel regions, poten-
tially overlooking vulnerabilities hidden within less-explored
regions. These two observations raise the need for additional
optimization directions that focus on low-frequency areas to
drive further bug discovery.

However, increasing exploration in the low-frequency areas
of the Linux kernel, to boost hit frequency, remains a sig-
nificant challenge. While hit frequency has been extensively
studied in user-space fuzzing [19], [20], [21], [22], these
solutions do not directly scale to kernel fuzzing. We outline
two key challenges that limit improvements in hit frequency,
with a specific focus on the Linux kernel.

Challenge 1. Targeted Exploration of Low-Frequency
Regions Under Resource Constraints. A key challenge in
kernel fuzzing is exploring low-frequency regions without
overwhelming the fuzzer’s task scheduler. While expanding
code coverage remains a primary goal, naively injecting large
numbers of exploration tasks targeting enormous-scale low-
frequency regions may lead to task explosion, where the fuzzer
is overloaded with too many pending tasks. This is particularly
problematic in kernel fuzzing, where each test case incurs
significant execution overhead. This overload of the execu-
tion queue can delay or even suppress other valuable tasks,
ultimately reducing the effectiveness of fuzzing. Additionally,
low-frequency regions are not static; the hit count of basic
blocks (BBs) evolves as fuzzing progresses. Blindly trigger-
ing new tasks for low-frequency regions without considering
the current coverage state may waste resources or duplicate
effort. Therefore, effectively exploring low-frequency regions
requires an adaptive mechanism that tracks execution fre-
quency, determines when sufficient baseline coverage has been
achieved, and selectively schedules new tasks to rebalance
attention toward low-frequency regions.

Challenge 2. Context-Aware Mutation for Dependency-
Preserving Fuzzing. Kernel fuzzers use sequences of system
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calls (syscalls) as test inputs. Unlike user-space programs,
these syscall sequences often involve complex contextual
dependencies. For example, a file descriptor returned by one
syscall (e.g., open) can be used in subsequent calls (e.g.,
read, write). Similar dependencies exist for sockets and
memory-mapping operations. When test cases are randomly
mutated, these dependencies may inadvertently be broken,
rendering the inputs semantically invalid or functionally mean-
ingless. This presents a critical challenge when guiding fuzzing
toward low-frequency regions. Due to the large and dynamic
set of target regions, the mutator must determine syscall depen-
dencies, which can vary across different target regions. Hence,
the fuzzer must go beyond traditional mutation strategies and
adopt context-aware mutation techniques that preserve the
execution semantics of syscall sequences. This ensures that
the necessary sub-sequences, serving as pre-contexts for the
test cases, are preserved, enabling more reliable exploration of
rarely executed code.

Proposed Solution. In our paper, we first study the nature
of unbalanced hit frequency by evaluating Syzkaller on the
Linux kernel and in response propose SYSYPHUZZ, a kernel
fuzzer designed to enhance the exploration of overlooked code
regions. SYSYPHUZZ builds upon Syzkaller’s task-oriented
fuzzing model, where a scheduled task sequence drives testing.
During task execution, test cases are generated through care-
fully designed generation or mutation strategies. SYSYPHUZZ
introduces a new task type, the boost task, along with a
Boost Delegator responsible for task scheduling. The Boost
Delegator schedules boost tasks based on runtime feedback.
Each boost task performs pre-mutation checking to keep the
task updated with the latest target regions and applies Context-
Preserving Mutation to maintain execution semantics during
targeted exploration.

To address the first challenge, SYSYPHUZZ adds boost tasks
only after achieving a sufficient level of baseline coverage
obtained by replaying the Syzbot corpus. Then, it introduces a
Selective Task Scheduling strategy within the Boost Delegator
to control when and how boost tasks are enqueued. To avoid
overloading the task queue, SYSYPHUZZ continuously tracks
BB hit counts, maps them to their corresponding seeds, and
dynamically enqueues a small portion of boost tasks target-
ing under-explored regions. To mitigate task explosion, the
Boost Delegator generally prioritizes executing boost tasks
and schedules the coverage-guided tasks only when new
coverage is observed. However, when a boost task is triggered,
some regions may no longer qualify as low-frequency or
may prove to be unreachable, yielding diminishing returns
and potentially wasting resources. Thus, the Boost Delegator
rechecks whether the associated task still targets a valid low-
frequency region before applying boost mutations. Addition-
ally, SYSYPHUZZ maintains a denylist of BBs that remain
consistently inaccessible despite repeated attempts, further
reducing unnecessary effort.

To address the second challenge, SYSYPHUZZ introduces
Context-Preserving Mutation in the boost tasks, which identify
syscalls associated with low-frequency regions and selectively

mutate them to reduce the risk of breaking syscall depen-
dencies. Specifically, SYSYPHUZZ introduces and maintains
a mapping between syscalls and the BBs they cover, which
enables fundamentally more fine-grained mutation strategies.
During mutation, SYSYPHUZZ only focuses on mutating
syscalls related to low-frequency regions, while preserving
those necessary for maintaining the execution context. When
targeting the mutation of the syscall sequence, SYSYPHUZZ
keeps the necessary execution context unchanged to preserve
reachability to the targeted regions. When focusing on a
specific syscall, only the identified syscall is modified, either
through argument mutation or by actively introducing runtime
faults to check the error-handling codes.

We evaluate SYSYPHUZZ against state-of-the-art kernel
fuzzers including Syzkaller [3] and SyzGPT [23]. Our results
demonstrate that SYSYPHUZZ increases coverage of low-
frequency regions by 2X, and reduces the proportion of
surviving overlooked low-frequency regions that are initially
underexplored and remain so after 72 hours of fuzzing cam-
paigns by 12.7%. Furthermore, SYSYPHUZZ discovers 31%
more unique bugs than Syzkaller (67 vs. 51), and 10% more
bugs than SyzGPT (67 vs. 61). Among these, 20 bugs are
exclusively found by SYSYPHUZZ. To understand the nature
of these exclusive bugs, we analyze their correlation with low-
frequency regions identified by SYSYPHUZZ. Almost twice as
many bugs found exclusively by SYSYPHUZZ are located in
low-frequency regions in comparison to those bugs exclusively
found by Syzkaller, which underscores our approach’s effec-
tiveness in targeting low-frequency kernel regions. Addition-
ally, SYSYPHUZZ identified five unique bugs that were missed
even by Syzbot [2], a large-scale continuous fuzzing service
operated by Google that runs hundreds of virtual machines
(VMs) [24]. To evaluate whether SYSYPHUZZ’s strategy can
enhance the effectiveness of other kernel fuzzers, we integrate
SYSYPHUZZ into SyzGPT (named SyzGPTsysy). We then
compare SyzGPTsysy against the original SyzGPT using a
saturated corpus. Overall, SyzGPTsysy discovers 16 exclusive
bugs—33% more than the 12 exclusive bugs found by SyzGPT
—demonstrating SYSYPHUZZ’s potential to augment other
fuzzers in uncovering previously overlooked vulnerabilities.
All discovered vulnerabilities have been responsibly disclosed
to the Linux kernel maintainers.

To sum up, we make the following contributions:
• We study the nature of unbalanced code coverage by eval-

uating Syzkaller targeting the Linux kernel, and identify
low-frequency regions and context-destroying mutations
as key limitations of existing kernel fuzzing campaigns.

• We develop SYSYPHUZZ, equipped with a Boost Del-
egator and Context-Preserving Mutation to address the
challenges of developing a frequency-balanced kernel
fuzzer.

• We conduct a thorough evaluation to demonstrate that
SYSYPHUZZ boosts the hit frequency of underexplored
regions and improves the kernel fuzzer’s capability to
discover overlooked bugs.

• We release SYSYPHUZZ at https://github.com/HexHive/S
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ysyphuzz to support open science and work with Google
to upstream it into Syzkaller.

II. BACKGROUND

A. Linux Kernel Fuzzing

The kernel takes a sequence of system calls (syscalls)
from user-space programs as input and returns correspond-
ing resources as output. This interface allows adversaries
to send crafted inputs aimed at compromising the kernel’s
integrity and confidentiality guarantees, potentially leading to
an escalation of privileges or information leakage [25], [26],
[27], [28]. Therefore, recent kernel fuzzers primarily target
the syscall interface by generating valid syscall sequences to
simulate the program behavior [29], [30], [31], [30], [14],
[15], [17], [15], [10], [12], [11]. For instance, the kernel
fuzzer may generate syscalls, including socket_inet_tcp,
bind_inet, and listen. This sequence simulates a net-
work communication program that starts a TCP connection.
First, the socket_inet_tcp call creates a TCP socket.
Then, bind_inet associates it with a specific address and
port. Finally, listen sets the socket to listen for incoming
connections.

B. Syzkaller and Syzbot

Syzkaller [3] has become the de facto standard for Linux
kernel fuzzing and is being deployed on hundreds of VMs [2].
In contrast to user-space fuzzers such as AFL [32], Syzkaller
adopts a task-oriented design, primarily including four types
of tasks: Generation, Mutation, Smash, and Triage. These
tasks generate test cases consisting of sequences of syscalls
along with their arguments. The Syzkaller executor then runs
these test cases by invoking the corresponding syscalls.

Generation. Syzkaller creates new test cases from scratch
using a set of manually curated templates developed by domain
experts (e.g., kernel developers). These templates encode the
argument types for each syscall and capture dependencies
between them (e.g., the return value of open being used
by read). This allows Syzkaller to generate semantically
meaningful syscall sequences and arguments, increasing the
likelihood of triggering deep kernel logic.

Mutation. Syzkaller randomly selects a seed from the cor-
pus, which consists of test cases that have previously triggered
new coverage, and performs a series of random mutations.
These mutations may involve inserting or removing syscalls,
or modifying the arguments of existing calls, guided by built-
in syscall templates.

Triage. When a generated or mutated test case triggers new
coverage, Syzkaller performs a triage step. First, it conducts
verification to ensure the coverage is reproducible and not
affected by kernel state, nondeterminism, or concurrency.
Then, it performs minimization to simplify the test case
while preserving the newly found coverage. If a minimized
variant triggers new coverage, it is marked for further triage.
Successfully triaged test cases are added to the seed corpus for
future fuzzing, and corresponding Smash tasks are generated
and enqueued in the work queue.

Smash. Smash tasks aggressively mutate new seeds that
have just been added to the corpus (after passing triage).
Each such seed is mutated repeatedly for a fixed number of
iterations (typically 100). This stage is designed to maximize
the discovery of bugs in these coverage-introducing seeds.

Task Scheduling. By default, Syzkaller selects among the
four primary fuzzing activities according to a fixed priority
order. Triage tasks are given the highest priority and are
executed first. If no triage task is available, Syzkaller invokes
the Smash tasks. Smash tasks are polled intermittently based
on a configurable skip interval. When both triage and smash
queues are exhausted, Syzkaller performs either mutation or
generation based on a probabilistic ratio (99% mutation + 1%
generation).

Syzbot [2] is a Google service that runs continuous, large-
scale kernel fuzzing across diverse configurations and archi-
tectures. It discovered and reported over 17,000 unique bugs,
more than 6,000 of which are fixed [33]. During its fuzzing
campaign, Syzbot collects a coverage-rich corpus, allowing the
kernel fuzzer to start with a reasonable initial coverage [17],
[16].

C. Imbalanced Coverage Problem

Fuzzing leverages random mutations to explore different
program paths. While this strategy has proven effective for
uncovering diverse behaviors, it often leads to coverage im-
balance—a situation where certain regions of the code are
exercised repeatedly, while others receive little execution after
being covered. This issue has been well-documented when
fuzzing user-space applications [20], yet it remains relatively
underexplored in the domain of kernel-level fuzzing. In the
case of complex targets like the Linux kernel, the problem
can be even more pronounced due to its intricate control flows
and extensive code base. As a result, some critical code paths
may remain insufficiently tested, limiting the effectiveness of
fuzzing in exposing deep or rare vulnerabilities.

Imbalanced Coverage in the Linux Kernel. The inherent
complexity of the Linux kernel poses significant challenges to
achieving balanced code coverage during fuzzing. With over
40 million lines of code [34], high cost of each execution, and
limited testing resources, exhaustively exercising all possible
execution paths becomes highly impractical, if not infeasible.

Moreover, kernel fuzzing introduces additional challenges
due to the structured nature of its input. Unlike user-space
fuzzers, which often operate on raw binary input, kernel
fuzzers interact with the system through sequences of syscalls.
These syscalls often exhibit complex dependencies—violating
any dependency during mutation may prematurely trigger
error-handling paths, hampering the exploration of functional
logic. Furthermore, even carefully crafted syscall sequences
that successfully reach deep kernel components (e.g., network-
ing protocols) can be easily disrupted by random mutations.
As a result, these valuable code paths may be executed
infrequently, further exacerbating the coverage imbalance.

Low-Frequency Region. To the best of our knowledge,
there is no standardized definition for low-frequency regions
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in the context of fuzzing. Our straightforward approach ranks
code regions based on their execution frequency and selects
a fixed proportion, typically a small percentage of the least
frequently executed code, as the threshold. This threshold is
treated as a hyperparameter, which may vary depending on the
characteristics of the target program.

In this work, we define low-frequency regions based on
the hit count of BBs. Specifically, we study Syzkaller, from
which we extract the execution frequency of kernel BBs. The
resulting distribution is shown in Figure 2. Based on our ob-
servation in Section III, a 5% threshold serves as a reasonable
approximation, and we adopt it to define the boundary of low-
frequency regions in our analysis and implement our prototype
SYSYPHUZZ.

III. COVERAGE FREQUENCY IN THE KERNEL

In this section, we explore the imbalanced coverage prob-
lem in the Linux kernel fuzzing by studying the hit count
distribution of code regions. Using a case study of Syzkaller,
we first analyze the hit count of covered basic blocks (BBs)
in Section III-A. Then, we examine the proportion of BBs that
remain low frequency throughout the whole campaign (Sec-
tion III-B). Finally, we revisit a past bug discussed in Sec-
tion III-C, which Syzkaller failed to detect for six months,
despite achieving high coverage, until it was later reported by
directed fuzzing, which restricts fuzzing to focus on the file
system. This case exemplifies how high overall coverage can
still miss bugs residing in persistent low-frequency regions.
Benchmark and Corpus. We use the Linux kernel v6.12-rc6
(released on November 04, 2024) in our study, and import
Syzbot’s [2] corpus from November 13, 2024 [35].
Experimental Setup. All experiments were conducted on
a server equipped with an Intel Xeon Gold 5218 processor
and 64 GB of RAM. Each fuzzer was executed on 8 virtual
machines (VMs), and each VM was assigned 2 CPU cores
and 4 GB of memory. Each experiment consisted of a 72-
hour fuzzing campaign, preceded by the corpus replay phase
to warm up the fuzzing process (this phase was completed
within one hour). Each experiment was repeated five times to
minimize variance. Additionally, we select Syzkaller (commit
9750182a9) [3], the most widely deployed Linux Kernel
fuzzer, for this study [1], [2].
Code Frequency Sampling. The BB ID serves as the key to
store each BB’s hit count, i.e., the number of times executed by
Syzkaller. In a single execution, the BB may be hit multiple
times. Additionally, we rank the BBs according to their hit
counts and consider the BBs whose hit counts belong to the
bottom 5% as low-frequency regions.

A. Basic Block Hit Count Analysis in Syzkaller

We aggregate the execution traces from Syzkaller into
a hit count map to analyze the hit distribution over time.
Specifically, we record the BB hit count at six time points:
immediately after corpus replay (t0), and at 6, 12, 24, 48,
and 72 hours post-t0. The resulting frequency distributions
are depicted in Figure 1. The results show that throughout the
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Fig. 1: Linux hit frequency of five trials of our 72 h-campaign.
Syzkaller takes t0 time to finish corpus replay, t0+Xh means
X hours after t0. The y-axis is the BB hit count. The box spans
the inter-quartile range (IQR), the horizontal orange line marks
the median, and whiskers extend to 1.5 × IQR

entire fuzzing campaign, the average BB hit count remains
low. In contrast, the maximum hit count exceeds 80.0K,
revealing a significant imbalance in execution frequencies
across BBs.

freq t0 t0+6h t0+12h t0+24h t0+48h t0+72h

0% 1 1 1 1 1 1
5% <10.0 <10.0 14.0 19.5 25.5 29.8

25% <0.1K <0.1K <0.1K 0.2K 0.3K 0.4K
50% <0.1K 0.3K 0.6K 1.1K 2.0K 2.8K
75% 0.6K 3.8K 7.0K 12.8K 23.7K 34.0K

100% 76.7M 0.6B 1.2B 2.5B 2.9B 3.6B

Numbb 368.9K 403.9K 421.4K 446.4K 462.5K 470.9K

TABLE I: The hit frequency distribution during the 72-hour
fuzzing campaign. The row at x% represents the frequency of
the x%-th BB when sorting BBs by hit frequency in ascending
order; K, M, and B stand for thousand, million, and billion.

Our proportion analysis in Table I further reveals that
Syzkaller exhibits a pronounced imbalance in code coverage
during the 72-hour fuzzing campaign. While the most fre-
quently executed BB increases its hit count from 76 million at
t0 to 3.6 billion at t0+72h, the least executed BBs are executed
only once throughout the entire period. Moreover, even at the
72-hour mark, the bottom 5% of BBs had hit counts below
30, which is significantly lower than the median hit count of
approximately 2,800.

To further characterize the coverage disparity, we analyze
the cumulative distribution of BB execution counts over the
course of the campaign, as illustrated in Figure 2. In the figure,
we highlight the execution counts corresponding to the top
and bottom 5% of covered code regions using dashed lines.
Even after 72 hours of fuzzing, approximately 10% of the BBs
have been executed fewer than 100 times. In contrast, the top
5% of BBs are executed more than one million times. This
stark contrast highlights a substantial imbalance in execution
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Fig. 2: Cumulative distribution function of coverage frequency
(log scale) in Syzkaller campaign.

0 10 20 30 40 50 60 70
Time (hours)

15

20

25

30

35

40

45

50

Su
rv

iv
al

 R
at

e 
(%

)

0

20

40

60

80

100

Bo
tto

m
 5

%
 H

it 
Co

un
t

Survival Rate
Maximum Hit Count

Fig. 3: Percentage and maximum hit count of low-frequency
regions that remain low-frequency in 72-hour fuzzing cam-
paign.

frequency across kernel code regions, indicating that a large
portion of the code remains underexplored despite extended
fuzzing.

Additionally, as shown in Figure 2, we observe that the 5th
percentile of BB execution frequency closely aligns with the
inflection point of the cumulative distribution function (CDF).
This observation suggests that the bottom 5% of BBs, in terms
of execution frequency, serves as a reasonable threshold for
identifying low-frequency regions in kernel fuzzing. Thus, in
subsequent analyses, we define low-frequency regions as those
comprising the least frequently executed 5% of BBs.

Observation 1: Kernel fuzzers suffer from an im-
balanced code frequency distribution. Some BBs are
executed much fewer times than others.

B. Low-Frequency Region Survival

We further examine whether initially underexplored code
regions remain insufficiently covered throughout the fuzzing
campaign. Specifically, we define the bottom 5% of BBs at t0
based on their hit count immediately after replaying the corpus
as the initial low-frequency BBs, and the percentage of these
initial low-frequency BBs that remain within the bottom 5%

at each point in time (i.e., t0, t0+6, . . . ) is called the survival
rate. Figure 3 summarizes our findings.

Within the first 6 hours, 54.8% of these low-frequency BBs
receive enough executions and no longer fall within the bottom
5%. However, the pace of improvement slows considerably:
from 6 to 12 hours, only an additional 7.8% are better
explored. In the subsequent intervals, i.e., 12 to 24h, 24 to
48h, and 48 to 72h, coverage improvements further diminish,
with only 6.4%, 6.3%, and 2.7% of BBs, respectively, exiting
the low-frequency set. Notably, even after 72 hours, 22.0% of
the initially underexplored BBs remain within the bottom 5%,
i.e., being visited less than 30 times in the whole campaign,
indicating persistent gaps in exploration. Moreover, BBs that
persist in the bottom 5% continue to receive insufficient
coverage, limiting effective bug discovery. For instance, the
maximum hit count for these surviving BBs increases from
8.0 at 6 hours to 29.6 at 72 hours, while the average rises from
4.0 to 11.4, and the median from 3.6 to 9.6, respectively.

Observation 2: Over 22% of the initially underex-
plored BBs remain insufficiently explored after 72
hours of kernel fuzzing.

C. Case Study for the Overlooked Low-Frequency Regions

To further illustrate that bugs hide in the underexplored
kernel code, we conduct a case study on a representative bug
discovered in bch2_trans_node_iter_init, located in
the Bcachefs file system, a modern copy-on-write (COW)
file system for Linux, officially merged into the kernel in
version 6.7 (released January 2024). The affected source file,
btree_iter.c, had already been covered back in May 2024
(the earliest available coverage record) and showed 62.0%
code coverage. Yet the bug was not reported until six months
later by a customized Syzkaller build focused on file system
testing.

In the Bcachefs file system, 1,340 BBs remain within the
low-frequency region even after 72 hours of fuzzing following
corpus replay. Among them, 73.7% exhibit a hit count of 11
or fewer, matching the average hit count for low-frequency
regions as identified in Section III-B. Focusing on bug-related
source files, btree_iter.c and btree_iter.h, which
handle the B-tree traversal, we observe 95 low-frequency BBs
in total, including 55 in btree_iter.h. Of these, 72.6%
also have a hit count of 11 or fewer.

These low-frequency regions remain insufficiently tested
due to stringent preconditions, particularly those asso-
ciated with complex kernel logic such as B-tree ma-
nipulation. A representative example is the function
bch2_trans_revalidate_updates_in_node, which
is responsible for maintaining transactional consistency by
validating pending updates within a B-tree node. We identify
7 BBs within this function that fall into the low-frequency
region, each with a hit count no greater than 10.

We further observed that this function requires a precon-
dition where a sufficient number of insertion and modifica-
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tion operations have already been performed. Satisfying this
condition involves issuing multiple, often repetitive, system
calls that modify files within the Bcachefs file system. Be-
cause these system call sequences tend to be highly similar,
they offer limited potential for additional coverage, causing
Syzkaller to prioritize generating new test cases in other areas.
As a result, the function remains underexplored in standard
fuzzing campaigns. It was not until the development of a
customized version of Syzkaller, specifically designed for
file systems, that targeted generation of file operation test
cases began to yield improved coverage in these regions,
and finally reported this bug. This bug is not a unique
case since we found another bug that occurred during net-
work encryption, involving a use-after-free of the sk_buff
structure within the function scatterwalk_copychunks,
invoked by bch2_encrypt in the Bcachefs file system.
This bug also goes through several low-frequency BBs and
was reported by the same customized version of Syzkaller
at the end of May 2024. These two cases suggest that low-
frequency regions may conceal overlooked bugs, and motivate
deeper investigation into the correlation between coverage
frequency and bug prevalence, which we statistically analyze
in Section Section VI-C

Observation 3: Overlooked and underexplored kernel
regions may hide bugs, and limited coverage from
random test cases is insufficient to expose them.

IV. SYSYPHUZZ DESIGN

Based on the observations in Section III, we propose the
design of SYSYPHUZZ, which explores low-frequency regions
by introducing novel boost tasks. The workflow of SYSY-
PHUZZ is illustrated in Figure 4. SYSYPHUZZ operates in two
stages: corpus replay and targeted fuzzing via Selective Task
Scheduling. In the first stage, SYSYPHUZZ replays the entire
Syzbot corpus to establish a comprehensive baseline of code
coverage. This stage ensures that the kernel fuzzer inherits
the cumulative coverage achieved over years of CPU-intensive
fuzzing campaigns. In the second stage, SYSYPHUZZ utilizes
the boost delegator to allocate fuzzing energy with a priority
on boost tasks, which are specifically designed to target low-
frequency regions. At the same time, SYSYPHUZZ incorporates
coverage tasks such as Syzkaller’s native coverage-guided
Triage and Smash tasks to assist in discovering previously
unexplored code paths.

Specifically, the workflow of stage 2 is as follows. The Boost
Delegator identifies low-frequency regions based on execution
statistics and allocates additional energy to them. For each
boost task, SYSYPHUZZ conducts pre-mutation checking, and
the result is fed back to the Boost Delegator as part of its
scheduling strategy to determine whether further mutation is
necessary. If so, SYSYPHUZZ leverages the pre-mutation in-
formation to apply Context-Preserving Mutation, maintaining
the syscalls’ context necessary to reach the targeted regions.
When a mutated test case triggers new edge coverage in boost

tasks, additional coverage tasks are scheduled to further extend
exploration. SYSYPHUZZ reuses Syzkaller’s existing coverage-
related tasks, which perform triage before passing the input to
Syzkaller’s mutator for further fuzzing.

A. Corpus Replay

SYSYPHUZZ begins with the corpus replay stage. A key
prerequisite for discovering bugs is reaching the corresponding
buggy code, which requires the kernel fuzzer to maximize
code coverage [31], [30], [29]. However, the high execution
cost of kernel fuzzing limits the total number of tasks that can
be executed during a fuzzing campaign. As a result, solely
focusing on coverage can leave a significant portion of low-
frequency regions underexplored. Fortunately, the Syzkaller
community has accumulated a rich fuzzing dataset. We lever-
age the Syzbot [2] corpus, which originates from over seven
years of continuous fuzzing efforts. This allows SYSYPHUZZ
to start with a reasonable initial coverage baseline, enabling it
to dedicate more resources to boost tasks.

Specifically, we follow Syzkaller’s approach by replaying
the generated corpus while omitting time-consuming tasks
to maintain efficiency. Our observations show that corpus
replay alone achieves over 90% of the total code coverage
observed during a full fuzzing campaign. Additionally, we
record the hit count of each basic block (BB) during the
replay process, which serves as the basis for identifying low-
frequency regions.

B. Boost Delegator

After corpus replay, SYSYPHUZZ begins executing boost
tasks, which are initiated by the Boost Delegator. The Boost
Delegator identifies low-frequency regions at the BB level in
real time, based on the hit counts of each BB. It then directs
fuzzing efforts toward these underexplored regions, which are
often overlooked by traditional coverage-guided fuzzing.

Hit Count Tracking. To track the hit count of each covered
BB and select seeds that are more likely to explore low-
frequency regions, SYSYPHUZZ maintains two maps in its
seed corpus: one that stores seeds along with their associated
BBs, and another that records the hit counts of these blocks.
Figure 5 illustrates the structure of SYSYPHUZZ’s seed corpus.
Regarding the seed map, SYSYPHUZZ maps each seed to its
covered BB IDs and updates the map when a new seed is
generated. The hit map further stores the hit count for each
covered BB and is updated in each execution.

Note that the seed corpus is initialized before the corpus
replay stage. It is continuously updated during the replay, pro-
viding a starting point for identifying low-frequency regions
and selecting seeds that cover BBs with low hit counts.

Hit Count Guided Task Enqueueing. Based on the seed
corpus, SYSYPHUZZ employs a proportion-based selection
strategy to choose seeds for further mutation. Specifically,
SYSYPHUZZ sorts all covered BBs in ascending order by hit
count and selects the bottom fraction—by default 5%—as low-
frequency targets. This relative approach avoids relying on
fixed thresholds (e.g., BBs with hit count below 100), enabling
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SYSYPHUZZ to consistently focus on the most overlooked
regions during fuzzing. For instance, even if a BB’s hit count
increases from 1 to 100, it remains a low-frequency target as
long as it stays among the least-covered BBs. This ensures
that gradually explored but still under-covered regions con-
tinue to receive attention. By controlling the proportion size,
SYSYPHUZZ limits the number of selected regions and ensures
focus remains on code unlikely to be reached by standard
fuzzing alone. If these regions are sufficiently explored by
regular coverage tasks, no additional boost tasks are launched.
Because hit counts evolve over time, the Boost Delegator
periodically updates its target list to reflect current execution
dynamics (i.e., once per minute).

Based on the selected set of BBs, SYSYPHUZZ searches
the seed map by iterating through each seed and comparing
its covered BBs with the target set. If an overlap is detected,
SYSYPHUZZ selects the corresponding seed and schedules a
boost task to prioritize its execution.

Selective Task Scheduling. The Boost Delegator man-
ages task scheduling by prioritizing boost tasks over general
coverage tasks. Selected seeds for boosting are placed in a
high-priority queue to ensure immediate task generation and
execution. If new coverage is discovered during this process,
the corresponding triage task is deferred to a secondary queue,
allowing boost tasks to proceed without interruption. A third
queue stores test cases generated by the mutator, including
those from both boost and coverage tasks. The Boost Dele-
gator monitors this queue, and once all test cases from the
current boost round have been executed, it marks the round
as complete—a cycle that includes identifying low-frequency
regions, selecting seeds, generating test cases, and executing

them. The Delegator then updates the target list and initiates
a new round of boost tasks accordingly.

However, BB hit counts and seed coverage tend to be
unstable and may vary across executions due to the non-
deterministic nature of the kernel [36]. To address this, the
Boost Delegator performs a pre-mutation validation step,
where it replays each selected seed against the latest target
list and filters out those that no longer cover any valid targets.
During this step, it also identifies key syscalls whose execution
overlaps with target BBs, enabling the fuzzer to guide mutation
more precisely and retain meaningful execution context. As
part of this validation process, SYSYPHUZZ also maintains a
deny list to handle BBs that remain persistently uncovered.
At the beginning of each boost round, the Boost Delegator
records the hit counts of all selected BBs. If a BB shows
no coverage improvement over 10 consecutive rounds, it is
added to the deny list and temporarily excluded from future
fuzzing rounds. Conversely, if its coverage improves later (e.g.,
through an alternative path), it is removed and reinstated as a
valid target.

C. Context-Preserving Mutation

The kernel fuzzer leverages mutations to vary exploration
of the system calls. However, mutating kernel inputs is a non-
trivial task. BBs in the target list are often missed during
fuzzing because they are difficult to reach. This is largely due
to execution paths that involve complex constraints, such as
checksums or deep conditional logic, which are unlikely to
be satisfied by random mutation alone. To overcome this, it
is crucial to understand and preserve the necessary execution
context and use the target BBs as entry points for further
exploration. To this end, we propose a Context-Preserving
Mutation strategy, which consists of two key steps: (1) de-
termining the execution context, and (2) designing targeted
mutation techniques.

Execution Context Determination. Since each system
call can modify kernel state, test cases—comprising syscall
sequences—must maintain the correct conditions to reach tar-
get BBs. During pre-mutation checking, the Boost Delegator
identifies the key syscalls that lead to target BBs and builds
a mapping (BB2Syscall Map) to track these dependencies.
Because reaching a target BB depends on the kernel state
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established by prior syscalls, all calls before a relevant syscall
are treated as its execution context. As shown in Figure 6,
both sequences Sys1 and Sys1, Sys2 can reach bb1, while all
syscalls before Sysm form the context for bb2. To ensure the
test case’s effectiveness, the mutator preserves this context
when generating inputs for the target list, enabling more
targeted and reliable exploration.

bb1

bb2

…

Selected 
Seed

BB2Syscall 
Map

Sys1

Sys2

Sys3

…

Sysm

Pre-context1 for bb1

Target Basic 
Block List

Pre-context2 for bb1

Pre-context1 for bb2

Fig. 6: The BB2Syscall map identifies the pre-context for each
target BBs.

Mutator Designs. SYSYPHUZZ employs two distinct mu-
tation strategies. The first strategy aims to explore code
regions adjacent to targeted BBs, with the goal of uncovering
new coverage or triggering latent bugs. This is achieved by
either modifying the sequence of syscalls or altering variables
involved in comparison instructions within key syscalls. When
mutating syscall sequences, SYSYPHUZZ performs operations
such as insertion, replacement, and deletion. To preserve
the execution context required to reach the target BBs, key
syscalls, along with their necessary pre-context, are marked as
immutable during boost mutations. This approach ensures that
the critical execution path remains intact, enabling the fuzzer
to effectively explore neighboring logic without disrupting
access to the target region.

The second strategy focuses on enhancing bug discovery by
injecting faults into the pre-context of key syscalls, which is a
default mutation strategy in Syzkaller. SYSYPHUZZ leverages
Linux’s built-in fault injection framework to simulate failures
in various kernel subsystems. By inducing runtime faults, such
as memory allocation failures, I/O errors, or abnormal control-
flow conditions, SYSYPHUZZ is able to rigorously stress-test
the kernel’s error-handling mechanisms. This increases the
likelihood of exposing bugs that are otherwise unlikely to
manifest under normal execution conditions.

V. IMPLEMENTATION

We implement SYSYPHUZZ on top of Syzkaller. Our system
includes the following components.
Hit Map. SYSYPHUZZ implements the Hit Map to support
boost tasks. Specifically, SYSYPHUZZ first disables Syzkaller’s
default deduplication logic to preserve raw execution data
across diverse task types and support accurate hit count col-
lection. Furthermore, SYSYPHUZZ aggregates BB hit counts
into a dedicated hit map, which is dynamically maintained
using a copy-on-write strategy—similar to the one employed

for the deny list—to ensure both consistency and low over-
head. SYSYPHUZZ intentionally excludes the triage tasks to
minimize the measurement noise.
Target List. SYSYPHUZZ implements a target list to record
the low-frequency regions. By reading the current hit map and
selecting BBs based on percentile thresholds, SYSYPHUZZ
adds the least visited regions into the target list, which is
further used for seed selection. For efficient seed selection,
SYSYPHUZZ extends Syzkaller’s in-memory corpus structure
to map the BBs to corresponding seeds, i.e., a BB-to-seed
map (Figure 5). Subsequently, SYSYPHUZZ validates that the
chosen seed can indeed cover the target BBs in the list.
Deny List. Not all BBs in the target list are reachable due
to the indeterminism of kernel code execution. Thus, SYSY-
PHUZZ further extends a deny list to mark the covered BBs
that remain persistently unreachable. During the boost tasks, if
the BB continuously fails to be covered for a certain amount of
time, we consider this BB related to non-deterministic kernel
behavior and add it to the deny list. The deny list ensures
that SYSYPHUZZ does not waste energy on non-reproducible
low-frequency regions.

VI. EVALUATION

In this section, we study whether SYSYPHUZZ effectively
boosts low-frequency regions and subsequently finds new
bugs. Specifically, we evaluate SYSYPHUZZ to answer the
following research questions:

1) RQ1: Can SYSYPHUZZ increase the hit counts of low-
frequency kernel code?

2) RQ2: Can SYSYPHUZZ outperform SOTA kernel
fuzzers?

3) RQ3: Is SYSYPHUZZ’s bug discovery correlated with its
focus on low-frequency regions?

4) RQ4: Can SYSYPHUZZ uncover bugs that Syzbot
misses?

5) RQ5: How do SYSYPHUZZ’s individual components
contribute to its performance?

6) RQ6: Can SYSYPHUZZ improve other kernel fuzzers?
Compared Fuzzers. We evaluate SYSYPHUZZ against
Syzkaller, the most widely used Linux kernel fuzzer [3],
and SyzGPT [23], the latest state-of-the-art fuzzer. For RQ4,
we compare the vulnerabilities discovered by SYSYPHUZZ
over a 3-day period with those reported by Syzbot [2], the
long-running Syzkaller instances deployed across hundreds of
internal Google cluster nodes comprising nine years of kernel
fuzzing [24].
Evaluation Setup. All experiments are conducted on a server
running Ubuntu 22.04 equipped with a 16-core Xeon Gold
5218 and 64GB RAM. Each fuzzer instance was assigned 8
VMs, with each VM allocated two cores and 4GB of memory.
Each evaluation trial was executed for a 3-day period after a
corpus replay phase, whose duration depends on the number
of generated inputs. This setup reflects real-world scenarios
where replay is essential for triaging and validating generated
seeds. All three fuzzers exhibit nearly identical corpus replay
durations, with an average difference of no more than four
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minutes. The experiments described in the following sections
aim to answer the research questions from above and are
independently repeated five times to reduce statistical variance.
Initial Corpus. Regarding the initial corpus, both SYSY-
PHUZZ and Syzkaller use the same seed set (tag:ci-qemu-
upstream-corpus-2024-11-13) retrieved from Syzbot [2]. As
the SOTA SyzGPT enhances this corpus via LLM-assisted
generation, we follow the guidelines and recommendations
provided in the corresponding GitHub repository [37]. Specifi-
cally, we adopt GPT-3.5 Turbo as the LLM and use the Syzbot
corpus as the base for seed generation. In line with SyzGPT,
we reuse the syscall dependency data released by the authors,
covering all system calls in the Linux kernel. After running the
LLM for over three hours, SyzGPT produces 436 test cases,
79.82% of which are valid after applying the built-in repair
mechanism. These validated seeds are merged with the base
corpus and used as the initial input for the SyzGPT fuzzing
process.
Benchmark. We chose Linux 6.12-rc6, the latest kernel ver-
sion when SYSYPHUZZ’s development started, as our bench-
mark. Following the recommendation [35], we import the
Syzbot corpus from Nov. 13, 2024, as the initial seed corpus.

A. RQ1: Can SYSYPHUZZ Increase the Hit Counts of Low-
frequency Kernel Code?

We first study whether SYSYPHUZZ boosts the low-
frequency kernel code. Specifically, we analyze the hit count
distribution of the covered basic blocks (BBs) and compare
the distribution of SYSYPHUZZ and Syzkaller.

We analyze the differences in hit counts between the BBs
explored by SYSYPHUZZ and Syzkaller. Overall, SYSYPHUZZ
slightly increases the hit counts for the 50%- and bottom 25%-
frequency BBs, with a 4.0% and 5.2% boost at the end of
the campaign, respectively. While the hit counts in frequently
executed regions remain largely unchanged, the distribution in
low-frequency regions shows a notable divergence. We further
look at the bottom 5% of BBs after corpus replay. We examine
both their hit counts and the percentage of these initial low-
frequency blocks that remain within the bottom 5% during the
72-hour fuzzing campaign (survival rate).
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Fig. 7: The survival rate and hit count of low-frequency BBs
remaining underexplored in the 72-hour campaign. The x-axis
starts from t0 (i.e., point in time after the corpus replay).

Figure 7 illustrates the proportion of initial low-frequency
regions that remain under-explored throughout the fuzzing
campaign (referred to as the survival rate). We compare
the performance of SYSYPHUZZ and Syzkaller in reducing
these under-explored regions. Overall, SYSYPHUZZ reduces
the amount of surviving low-frequency region from 22.0%
(Syzkaller) to 19.3%. The most significant reduction occurs
within the first 6 hours of fuzzing. During this period, SYSY-
PHUZZ dramatically decreases the percentage of remaining
low-frequency regions from 45.2% to 32.9%. While Syzkaller
gradually expands into low-frequency regions over time, a
substantial portion of these regions remains underexplored. In
contrast, SYSYPHUZZ demonstrates its ability to mitigate this
imbalance.

Furthermore, even within the set of BBs that remain cate-
gorized as low-frequency, SYSYPHUZZ exhibits a significantly
higher level of execution frequency compared to Syzkaller. As
illustrated by the red dashed line in Figure 7, the BBs at the 5%
threshold—i.e., those with hit counts near the bottom of the
distribution—are executed nearly 60 times by SYSYPHUZZ.
In contrast, Syzkaller executes the same subset fewer than
30 times, indicating that SYSYPHUZZ delivers approximately
twice the execution effort on the least-covered regions of the
program. This highlights SYSYPHUZZ’s capability, not only to
reduce the amount of under-explored code, but also to increase
the depth of exploration within these regions. Specifically,
even when code is infrequently executed, the level of explo-
ration can vary significantly, reinforcing the effectiveness of
SYSYPHUZZ ’s prioritization strategy. Noted, the hit-frequency
increase in SYSYPHUZZ primarily originates from the Context-
Preserving Mutation strategy, which generates thousands of
test cases to boost the target BBs for each seed. In this
stage, the Pre-mutation validation strategy may increase the hit
count accordingly; however, this validation will only execute
at the beginning of each job, and introduce only one hit
count per job, while the following testcases should include
up to thousands of hits. Thus, we consider the impact of pre-
mutation validation negligible.

To understand the effectiveness of SYSYPHUZZ in managing
low-frequency regions, we examine the number of BBs added
to the deny list in SYSYPHUZZ over the entire campaign. The
deny list is used to exclude unstable low-frequency regions
from the fuzzing targets, thereby conserving energy. At the end
of the corpus replay phase (t0), the deny list is initially empty,
and all BBs within the bottom 5% of hit counts are considered
fuzzing targets. By the end of the fuzzing campaign, however,
17.5% of these initially low-frequency BBs are added to the
deny list, as they are identified as being associated with non-
deterministic kernel behavior. As a result, among the 19.3%
of low-frequency BBs that remain at the end of the campaign
(as shown in Figure 7), only 1.8% represent regions that
SYSYPHUZZ was unable to improve. In other words, 80.7%
of the initial low-frequency regions do not survive due to
our system. The remaining majority was explicitly excluded
via the deny list. This outcome highlights the effectiveness
of SYSYPHUZZ in both identifying non-viable targets and
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focusing fuzzing efforts on promising regions. We further
analyzed the BBs consistently appearing in the deny list across
five independent fuzzing campaigns, as shown in Table IV
in Appendix A-A, to demonstrate why the effectiveness of
SYSYPHUZZ is limited. The deny list is a component of our
design that tracks BBs that remain persistently unreachable.
We found that these basic blocks are difficult to reach due
to strict preconditions, which require long and specific syscall
sequences that are challenging for mutation-based strategies
to generate. We further evaluated SYSYPHUZZ by comparing
it with Syzkaller in an extended 120-hour fuzzing campaign.
SYSYPHUZZ achieved a 15.7% survival rate for low-frequency
regions (approaching the 14.5% deny list addition rate), while
Syzkaller reached 18.7%. Notably, SYSYPHUZZ consistently
achieved approximately double the hit count within the bot-
tom 5% of BBs, demonstrating superior exploration of low-
frequency regions during extended campaigns.

RQ1: SYSYPHUZZ effectively balances the kernel
code coverage by improving hit counts by 2X and
reducing 80.7% of the initial low-frequency regions
that remain low-frequency after the fuzzing campaign.

B. RQ2: Can SYSYPHUZZ Outperform SOTA Kernel Fuzzers?
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Fig. 8: Coverage achieved by SYSYPHUZZ, Syzkaller, and
SyzGPT in 72 hours of fuzzing after corpus replay completion.

We evaluate SYSYPHUZZ against Syzkaller and SyzGPT
for 3 days to study if SYSYPHUZZ outperforms SOTA kernel
fuzzers, and calculate the p-value to test the statistical signif-
icance [38].

Figure 8 illustrates their coverage performance. Overall,
SYSYPHUZZ and Syzkaller achieve comparable coverage, with
Syzkaller exhibiting a more aggressive boost in the first
36 hours. However, SYSYPHUZZ gradually closes the gap
and ultimately achieves the highest coverage. Specifically,
SYSYPHUZZ outperforms Syzkaller by 8k (p-value = 0.07),
and SyzGPT by 20k edges (p-value = 0.0025).

Figure 9 presents the number of bugs discovered by SYSY-
PHUZZ, Syzkaller, and SyzGPT during the whole campaign.
In total, SYSYPHUZZ uncovered 67 bugs, outperforming
Syzkaller by 31% with statistical significance (p-value = 0.03).
Compared to SyzGPT, SYSYPHUZZ also achieves a marginal
improvement. SYSYPHUZZ finds 9.8% more bugs than the 61
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Fig. 9: Number of bugs discovered by three fuzzers. Sanitizer
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identified by SyzGPT (p-value = 0.08), highlighting SYSY-
PHUZZ potential. Furthermore, we categorize the discovered
bugs into three major types: Sanitizer Errors, General Protec-
tion Faults, and other Kernel Bugs. Among all of these cate-
gories, SYSYPHUZZ excels in identifying General Protection
Faults, discovering 23% more than Syzkaller and 78% more
than SyzGPT. For Sanitizer Errors, both SYSYPHUZZ and
SyzGPT outperform Syzkaller by 35% and 45%, respectively.
Regarding Kernel Bugs, SYSYPHUZZ detects 33% more bugs
than Syzkaller and 4% more than SyzGPT.

To further understand if these three fuzzers find the same
set of bugs, we analyze their bug-finding overlap. Figure 10
illustrates the corresponding Venn diagram. The results in-
dicate that the three fuzzers discover largely disjoint sets
of vulnerabilities. Among the 97 unique bugs, only 30%
are shared across all fuzzers. Notably, SYSYPHUZZ identifies
21% of the bugs exclusively, while Syzkaller and SyzGPT
only find 9% and 15% exclusive bugs. Focusing on specific
vulnerabilities, SYSYPHUZZ identifies the highest number of
unique bugs exclusively across all three categories. In at least
one category, it achieves a substantial lead over the others—for
instance, discovering 5X more General Protection Faults than
SyzGPT, and 4X more Sanitizer Errors than Syzkaller.

We also examined how consistently each fuzzer can redis-
cover the same bugs across multiple trials. For every unique
bug that was triggered at least once, we counted how many of
the five independent trials it appeared in. Then, we calculated
the average number of times each bug was rediscovered. On
average, SYSYPHUZZ discovers each bug 2.2 times out of five
trials, while Syzkaller averaged 2.3 and SyzGPT 2.0 times.
The results suggest that all three fuzzers exhibit a moderate
level of stability in bug discovery.

RQ2: SYSYPHUZZ discovers 20 unique bugs missed
by both Syzkaller and SyzGPT, outperforming them
in both coverage and vulnerability discovery.
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C. RQ3: Is SYSYPHUZZ’s Bug Discovery Correlated with its
Focus on Low-Frequency Regions?

We further investigate the unique sanitizer bugs exclusively
discovered by SYSYPHUZZ and Syzkaller to assess whether
they are associated with the low-frequency regions. Specif-
ically, we quantify the correlation by counting the number
of low-frequency basic blocks (BBs) present in the sanitizer-
reported stack trace. These include traces recorded at the bug
trigger point, at memory allocation, and at memory dealloca-
tion. Each trace represents the active call chain at a specific
moment in time that is directly related to the manifestation
of the vulnerability. In the sanitizer-reported stack trace, each
line represents a stack frame recording a function call and
its location. For each frame, we extract its source code file,
function, and line number to analyze the correlation in three
categories: (i) same line, i.e., the low-frequency BBs are
located within the same line as the call stack frame (ii)
same function but different line, and (iii) same source file but
different function. Considering these granularities allows us
to express a gradually decreasing intensity between the bug
location and the role of low-frequency regions in the bug’s
discovery. To achieve this, we take the low-frequency BBs
identified by SYSYPHUZZ in Section VI-A before the crash
trigger time, and extract their source code locations using
addr2line [40]. Finally, based on the extracted locations and
the above classification, we categorize the low-frequency BBs
into three distinct sets.
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Fig. 11: The overlap between low-frequency BBs identified
by SYSYPHUZZ and Sanitizer bugs’ callstack frames, exclu-
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The results of this analysis are presented in Figure 11. In
this figure, the overlap is categorized based on the granularity
of the source code: same line, same function, or same source
file. We label a vulnerability as low-frequency related if it
covers at least one low-frequency BB in the same line category.
Based on this criterion, SYSYPHUZZ identified 12 out of 13
such bugs, whereas Syzkaller detected 4 out of 6. Applying
Fisher’s Exact Test [41], we estimate that SYSYPHUZZ is
about six times more likely to discover low-frequency bugs,
but the difference is not statistically significant (p = 0.22).
We note that the limited number of bugs reduces the test’s
statistical power, making the results more sensitive to random
fluctuations and less effective at detecting true differences.
Additionally, the process of mapping BBs to source lines
relies on sanitizer instrumentation, which can be imprecise,
potentially affecting the labeling results.

To mitigate the above issues, we aim to understand whether
the vulnerabilities discovered by Sysyphuzz are more strongly
associated with low-frequency areas compared to the bugs
discovered by Syzkaller, rather than arbitrarily counting low-
frequency related bug numbers. To assess this, we calculate
the average number of low-frequency BBs in the stack trace of
each bug detected by the fuzzers in each round, which reflects
the association with low-frequency areas. Across five rounds
of evaluation, we construct two arrays (from Syzkaller and
SYSYPHUZZ), each containing five average values. We then
apply the Bootstrap method for p-value calculation following
the recommendation [38]. On average, each vulnerability dis-
covered by SYSYPHUZZ is associated with 1,000 times more
low-frequency BBs than those found by Syzkaller (p-value =
0.06). While this result does not meet the conventional 5%
threshold for statistical significance, it suggests a potentially
meaningful difference, deserving further investigation. More-
over, this discrepancy indicates a strong correlation between
the low-frequency BBs targeted by SYSYPHUZZ and the bug-
triggering call stack frames observed in SYSYPHUZZ. This
insight helps to explain SYSYPHUZZ’s ability to uncover
certain unique vulnerabilities that Syzkaller misses, while
also accounting for its failure to detect some bugs identified
by Syzkaller. Furthermore, mere coverage is insufficient—
execution frequency is critical for overlooked vulnerabilities.

For General Protection Faults and Other Kernel Bugs
discovered by SYSYPHUZZ, the direct overlap with low-
frequency regions is less apparent. None of the corresponding
stack traces contains BBs clearly maps to the low-frequency
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regions identified earlier. However, further investigation re-
veals that the kernel design limits our study. While sanitizer
reports provide clear execution contexts and stack traces, the
General Protection Fault and Other Kernel Bug reports are
highly abstract, and our analysis is limited by the lack of
necessary information. Thus, it’s possible that these bugs
are directly related to the low-frequency regions, but due
to the lack of detailed information, our experiments are not
conclusive.

Case Study. To further demonstrate the critical role
of low-frequency regions in vulnerability discovery, we
present a case study of a use-after-free bug that SYSY-
PHUZZ exclusively uncovered. This bug arises during
Bluetooth connection teardown, where a race condi-
tion in l2cap_sock_teardown_cb eventually reaches
__list_del_entry_valid_or_report, a routine that
verifies the integrity of a list_head before deletion. The
vulnerability occurs when the list_head pointer already
refers to freed memory, leading to a use-after-free error.
This bug is triggered when a tight loop opens an L2CAP
socket, initiates an accept operation, and repeatedly disables
and re-enables the Bluetooth device, thereby causing tear-
down and reinitialization paths to race. SYSYPHUZZ high-
lights low-frequency BBs within this execution path, in-
cluding those in l2cap_sock_teardown_cb, which in-
vokes bt_accept_unlink(sk), as well as those in the
generic list deletion routine __list_del_entry(entry).
By treating system call sequences that traverse these rarely
executed regions as valuable mutation targets, SYSYPHUZZ
applies Context-Preserving Mutation to generate more test
cases that perform Bluetooth device allocation and deletion,
ultimately creating the conditions necessary to trigger this
vulnerability.

RQ3: Focusing on low-frequency areas enables SYSY-
PHUZZ to uncover exclusive bugs missed by Syzkaller,
while potentially missing some bugs Syzkaller finds.

D. RQ4: Can SYSYPHUZZ Uncover Bugs that Syzbot Misses?

As a state-of-the-art kernel fuzzer, Syzkaller is continuously
running on hundreds of VMs [1], and their discoveries are
publicly available in Syzbot [2]. To demonstrate SYSYPHUZZ’s
capabilities in discovering overlooked bugs, we compare a
single SYSYPHUZZ’s server campaign against the continuous
campaign in hundreds of Google’s VMs. Specifically, we
deduplicate our discoveries and search our discoveries on
the Syzbot dashboard. To date, SYSYPHUZZ has successfully
identified five bugs that Syzbot failed to discover, one of
which is confirmed to have security implications by the
Linux maintainers and is currently being fixed. We responsibly
disclosed all discovered vulnerabilities to the developers, and
the full list can be found in Table V in Appendix A-B.

RQ4: SYSYPHUZZ finds 5 new bugs missed by the
extensive fuzzing campaigns of Syzbot.

E. RQ5: How do SYSYPHUZZ’s Individual Components Con-
tribute to its Performance?

In this subsection, we conduct an ablation study to study
how each SYSYPHUZZ component contributes to the final
performance. We build SYSYPHUZZ variants with individual
components removed. Specifically, we first construct SYSY-
RANDMUTATE by replacing the Context-Preserving Mutation
strategy with the random strategy. Then we build the SYSY-
NODENY to assess the impact of the deny list. We compare
these variants with SYSYPHUZZ and Syzkaller in Table II.

t0+72 Survival Rate Edge coverage Bug Count

SYSYPHUZZ 19.3% 448, 430.6 67
Syzkaller +2.7% -1,766.0 -16
SYSY-NODENY -0.4% -5,872.6 -10
SYSY-RANDMUTATE +2.4% -1,982.2 -9

TABLE II: The survival rate, edge coverage, and bug count
achieved by SYSYPHUZZ and its variants. All results are
presented as the diff compared to the SYSYPHUZZ.

Overall, SYSY-NODENY demonstrates the highest effec-
tiveness in reducing low-frequency BBs, with only 18.9%
of the initially identified low-frequency BBs that are still
infrequently executed. This outcome is attributed to SYSY-
NODENY ’s strategy of persistently exploring low-frequency
BBs that are difficult to reach reliably. However, this ag-
gressive focus comes at the expense of overall coverage
and bug discovery performance. Specifically, SYSY-NODENY
yields the lowest edge coverage and the second-lowest number
of unique bugs discovered among the evaluated approaches.
In contrast, SYSY-RANDMUTATE achieves a survival rate
of low-frequency BBs comparable to that of Syzkaller, at
21.7%. This suggests that the Context-Preserving Mutation
employed by SYSY-RANDMUTATE is effective in reducing
the persistence of low-frequency BBs. Notably, both SYSY-
RANDMUTATE and SYSY-NODENY discover more unique
bugs than Syzkaller, indicating that a targeted focus on low-
frequency BBs can enhance the effectiveness of bug discovery.

RQ5: Both Context-Preserving Mutation and the
denylist contribute to SYSYPHUZZ’s performance.

F. RQ6: Can SYSYPHUZZ Improve Other Kernel Fuzzers?

SyzGPTsysy Only SyzGPT Only SYSYPHUZZ and
Syzkaller Only

Bug Numbers 16 12 29

TABLE III: Bugs exclusively discovered by SyzGPT, SyzG-
PTsysy, and SOTA kernel fuzzers in Section VI-B.
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Fig. 12: Coverage achieved by two fuzzers in 3 days. SyzG-
PTsysy is an SYSYPHUZZ implementation over SyzGPT.

We further assess the potential of SYSYPHUZZ in enhancing
other kernel fuzzers’ performance. To this end, we combined
SyzGPT with SYSYPHUZZ and constructed SyzGPTsysy. Us-
ing the same setup as SyzGPT, we run 5 * 72-hour campaigns
with SyzGPTsysy and SyzGPT.

SYSYPHUZZ is designed to operate on a saturated corpus—a
seed corpus that has been extensively exercised by fuzzers.
However, SyzGPT leverages an LLM to generate untested
novel inputs that unlock new paths aiming at deep code
regions, thus its corpus no longer saturated. To simulate a
saturated state, we use the output of a 3-day SyzGPT fuzzing
campaign as the initial corpus. This corpus is then used as the
starting point for both fuzzers in this evaluation.

Figure 12 illustrates the coverage performance. While both
fuzzers achieve similar coverage, SyzGPTsysy performs no-
tably better (600 more edges) compared to SyzGPT in the
worst trial, demonstrating the potential of its strategy.

Regarding the bug discovery, we noted that SyzGPTsysy
discovers 62 bugs, nearly the same number of bugs as SyzGPT
(SyzGPT discovered two more bugs, with p-value=0.96). Ta-
ble III presents a more in-depth analysis of two fuzzers. Specif-
ically, we compare the bugs discovered by SyzGPT, SyzGPT-
sysy, and two fuzzers from RQ2 (Syzkaller + SYSYPHUZZ).
Overall, SyzGPTsysy discovers 16 unique bugs missed by
all SOTA fuzzers, compared to 12 by SyzGPT, which is a
33% increase (p-value = 0.11). This highlights SYSYPHUZZ’s
strength in uncovering overlooked vulnerabilities.

RQ6: SYSYPHUZZ strategy can help other kernel
fuzzers to find overlooked bugs on a saturated corpus.

VII. DISCUSSION

While SYSYPHUZZ’s approach significantly boosts kernel
fuzzing, some factors may affect the results.
Low-Frequency Region Threshold. We define low-frequency
regions as the bottom 5% of the least frequently executed
code regions. While this threshold is selected based on the
study of frequency distribution, we acknowledge that varying
this hyperparameter could influence both the size of the
identified low-frequency regions and the resulting behavior
of SYSYPHUZZ. Nonetheless, we believe this setting captures
a representative trend, and adjustments to this parameter do

not undermine our core observations or the contributions
of SYSYPHUZZ. Fine-tuning this threshold for performance
optimization is left as future work.
Initial Corpus. To ensure a realistic and fair evaluation, we
adopt the Syzbot [2] corpus—curated from a long-term, large-
scale fuzzing campaign—following best practices outlined in
prior work [42], [43]. This provides SYSYPHUZZ with a
reasonable initial coverage baseline. For fairness, we initialize
Syzkaller with the same corpus. Although beginning with an
empty corpus might affect absolute performance, we argue that
in practical, long-running fuzzing campaigns, the corpus tends
to become saturated over time. Thus, using a coverage-rich
initial corpus aligns well with real-world deployment scenarios
and does not compromise the validity of our evaluation.

VIII. RELATED WORK

A. Linux Kernel Fuzzing

Linux kernel fuzzers typically operate by taking sequences
of system calls (syscalls) as input and applying a variety
of mutation strategies, such as inserting, deleting, splicing
syscalls, or modifying their arguments, to generate new test
cases. These mutated inputs are then executed in the kernel to
explore new execution paths. Consequently, the quality of gen-
erated inputs directly influences the effectiveness of fuzzing.
Substantial research has been dedicated to improving input
quality. For instance, Difuze [13] enhances input construction
by leveraging interface descriptions, while Moonshine [29],
Healer [30], and Mock [31] focus on modeling syscall depen-
dencies to guide meaningful mutations. In addition, symbolic
execution techniques have been employed to satisfy complex
constraints and generate high-quality seeds [15], [17].

Beyond input generation, feedback mechanisms have also
been extensively explored to better guide fuzzing efforts.
Traditional fuzzers rely on code coverage as the primary
feedback signal, but alternative approaches have emerged.
StateFuzz [10], for example, introduces state-space explo-
ration to expose kernel states that coverage alone may miss.
Meanwhile, Actor [11] and CountDown [12] adopt bug-guided
fuzzing, directing the fuzzer towards specific vulnerability
patterns to maximize the likelihood of uncovering critical bugs.

In contrast to existing work, SYSYPHUZZ introduces a novel
and so far overlooked dimension in the kernel: code execution
frequency. By leveraging code frequency as a feedback signal,
SYSYPHUZZ identifies and targets rarely executed regions of
the kernel. To this end, it further refines the mutation strategy
to specifically address the imbalance in execution frequency,
thus complementing and enhancing existing coverage-guided
kernel fuzzing techniques.

B. Low-Frequency Region Fuzzing

The concept of code frequency has been explored in user-
space coverage-guided greybox fuzzing for several years with
the goal of guiding fuzzers towards uncovered areas. Begin-
ning with AFLFast [20], researchers modeled the fuzzing pro-
cess as a Markov chain to increase the probability of reaching
rarely executed code paths. Building upon this, EcoFuzz [19]
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introduced a multi-armed bandit model to dynamically adjust
energy allocation during fuzzing. Alternatively, FairFuzz [21]
proposed a mask-based mutation strategy to bias the entire
fuzzing campaign toward low-frequency regions. All these
techniques, despite directing fuzzing to low-frequency regions,
finally aim at finding new coverage.

Although these techniques have proven effective in user-
space applications, they do not scale to kernel fuzzing due
to the task explosion problem and destroyed context depen-
dencies. To overcome these challenges, we introduce SYSY-
PHUZZ, a frequency-based kernel fuzzer customized for these
challenges. By incorporating code frequency as a feedback
signal and optimizing for context preservation, SYSYPHUZZ
effectively uncovers overlooked bugs in the kernel that are
often missed by traditional coverage-guided kernel fuzzers.

IX. CONCLUSION

The kernel is one of the most security-critical components
in modern computing. However, current efforts to improve
coverage in kernel fuzzing plateaued. Even worse, the focus on
coverage fails to represent sufficient exploration, which neces-
sitates a new approach to boost kernel fuzzing effectiveness.
We propose SYSYPHUZZ, the first kernel fuzzer that targets
already covered but rarely executed code. SYSYPHUZZ first in-
troduces a Selective Task Scheduler to balance between cover-
age and code frequency. Subsequently, SYSYPHUZZ proposes
Context Preserving Mutations to protect syscall dependencies.
We evaluated SYSYPHUZZ against Syzkaller and found that
SYSYPHUZZ discovered 31 unique bugs missed by Syzkaller.
In addition, five bugs of these are not found by Syzbot.

X. ETHICS CONSIDERATIONS

We have responsibly disclosed all the discovered vulnera-
bilities to the Linux developer and worked with them to fix.
We release the SYSYPHUZZ at https://github.com/HexHive/S
ysyphuzz to support open science.
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A. Table IV: Basic Blocks in the Deny List

TABLE IV: BBs in the deny list at t0 + 72h shared by 5 rounds of SYSYPHUZZ

ID Function Name Preconditions to Reach the Function
Line Numbers and

Preconditions to Reach the Lines

1 vma merge new range
The mmap_lock is held in write mode, the range
vmg->start, vmg->end is empty, and the
surrounding VMAs are identified and provided

930 (In an if conditional statement)
981 (Need to pass an if condition)

2 queue folios hugetlb
Huge pages are mapped, memory scanning follows
the Non-Uniform Memory Access policy, and the
virtual memory region is migratable

651 (Need to pass two if conditions)

3
nested vmx check

guest state
A nested hypervisor must be emulated, causing
control to traverse deep nested virtualization logic 3120 (In an if conditional statement)

4 blkdev write iter
A block device is ready for writing and a write
system call or io_uring write, which
go through raw I/O paths is performed

715 (Need to pass two if conditions)

5 io sqe buffers register
A valid io_uring instance already exists and
io_uring_register syscall is called

1050 (Need to pass five validations,
including base pointer and
length checks)

6 usb fill int urb
A simulated USB device and driver are present,
and a corresponding URB structure is allocated 1758 (Need to pass an if condition)

7 ld usb abort transfers

Specific USB hardware and drivers are emulated,
a device disconnect or error handling path is
triggered, and the active URBs are configured with
the correct flags.

198 (Need to pass two if conditions)

8
refcount add not

zero

A shared kernel object (e.g., file or socket)
exists with a non-zero refcount, and logic to
increment the refcount is triggered

147 (Need to pass a
compare-and swap (CAS) loop)
152,155 (Need to pass a CAS loop
and 2 if conditons)

9 vivid vid cap s ctrl The vivid driver is loaded, /dev/videoX is
opened, and a V4L2 ioctl command is issued
with a valid control ID

611 (In one of the 31 switch
branches)

10 nf tables commit

The caller has sufficient privileges, changes are
submitted via the Netlink Netfilter interface, and
the commit function is invoked at the end of a
valid netfilter operation batch

10325, 10326, 10327, 10328
(In one of the three switch branches
Need to pass a strict if condition)

11 maybe get net A net struct exists, and operations are triggered
inside the namespace

269 (In an if condition)

12 xfrm flowi sport XFRM policies are active, packets match specific
IPsec rules, and flow lookups are triggered
accordingly.

924 (In one of the nine switch
branches)

13 do ipv6 setsockopt IPv6 socket is setup properly first
533 (In one of the 16 switch
branches and need to pass eight
if conditions)

B. Table V: Unique Bug Findings by SYSYPHUZZ
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TABLE V: New bugs exclusively discovered by SYSYPHUZZ compared to Syzkaller. +: found during development.

ID Crash Type Root Cause SyzGPT Syzbot

1 Slab-out-of-bounds Read crc32c_pcl_intel_update accessed buffer using oob
index

✗ ✓

2 Slab-out-of-bounds Read hex_dump_to_buffer allocate too small buffer ✗ ✓

3 Slab-out-of-bounds Read hfsplus_uni2asc accessed the buffer using oob index ✓ ✓

4 Slab-out-of-bounds Read
journal_entry_dev_usage_to_text accessed buffer
using oob index ✗ ✓

5 Slab-use-after-free Read List_del accessed freed buffer in L2CAP teardown ✓ ✓

6 Slab-use-after-free Read
l2cap_sock_ready_cb accessed a destroyed socket
in L2CAP set ✓ ✓

7 Slab-use-after-free Read
scatterwalk_copychunks accessed a freed sk buff
during network encryption ✓ ✓

8 Slab-use-after-free Read
set_powered_sync accessed a freed mgmt pending struct
during synchronous handling ✗ ✓

9 Slab-use-after-free Read
device_release accessed a freed object during a netdev
is being unregistered ✗ ✓

10 Slab-use-after-free Read
dccp_ackvec_runlen accessed a freed dccp ackvec
during the processing of DCCP packets ✗ ✓

11 Slab-use-after-free Read
cmd_complete_rsp accessed a freed mgmt pending struct
during Bluetooth device shutdown ✗ ✓

12 Null-ptr-deref Write
dst_release accessed freed struct dst during
network namespace destroy ✓ ✓

13 Stack-out-of-bounds Read iov_iter_revert access the stack array out of bound ✗ ✓

14 Kernel Bug in GFS2
The assertion failed in the gfs2_qd_dispose,
when mounting GFS2 filesystem ✓ ✓

15 Kernel Bug in JFS The assertion in txEnd, when creating a directory ✗ ✓

16 Kernel Bug in Mmap
The assertion failed in the __age_table_check_zero
when freeing USB buffer ✗ ✓

17 Kernel Bug in JFS
The assertion failed in the LogSyncRelease,
when renaming a file ✓ ✓

18 Kernel Bug in Bcachefs
The assertion failed in the bch2_trans_node_iter_init,
when recovering filesystem ✗ ✓

19 Kernel Bug in Bcachefs
The assertion failed in the bch2_btree_path_level_init,
when traversing and locking a B-tree node ✗ ✗

20 Kernel Bug in Bcachefs
The assertion failed in the bch2_btree_node_iter_init,
when processing a B-tree node write ✗ ✗

21 Kernel Bug in Bcachefs
The assertion failed in the bkey_s_c_to_backpointer
during the recovery process ✗ ✓

22 Kernel Bug in Fsnotifys
The assertion failed in the dnotify_free_mark
when fsnotify was trying to destroy a mark ✗ ✓

(continued on next page)
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(continued from previous page)
ID Crash Type Root Cause SyzGPT Syzbot

23 Bug: Soft Lockup
The kernel deadlock in the networking subsystem,
when processing socket operation. ✓ ✓

24 Bug: Null-ptr-deref
A NULL pointer dereference in OverlayFS’s __lookup_slow,
when traversing directory ✓ ✓

25 General Protection Fault
A wild memory access in the __lock_acquire
during Btrfs shutdown, in btrfs destroy workqueue ✓ ✓

26 General Protection Fault
Null pointer dereference in fuse_read_args_fill,
when EROFS mount over FUSE ✓ ✓

27 General Protection Fault
A null pointer dereference in iov_iter_revert
when processing netfs_write_collection_worker task ✗ ✗

28 General Protection Fault
percpu_counter_add_batch accessed a freed CPU counter
when cleanup the network namespace ✗ ✗

29 General Protection Fault
rhashtable_lookup_fast use uninitialized key, during
the hashtable lookup in the Identifier Locator Addressing ✗ ✓

30 General Protection Fault
A dangling pointer dereference in write_special_inodes
during JFS unmount ✗ ✓

31 General Protection Fault
__list_del_entry_valid_or_report accessed an
invalid memory ✗ ✓

32+ Slab-use-after-free Read
cgwb_release_workfn accessed a freed blkcg structure
in blkcg_unpin_online

✗ ✗
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APPENDIX B
ARTIFACT APPENDIX

In this artifact, we provide a detailed guidance to deploy
Sysyphuzz and reproduce the experiments presented in the
paper.

A. Description and Requirements

This artifact provides the necessary materials to reproduce
the results for the following research questions:

• RQ1: Can SYSYPHUZZ increase the hit counts of low-
frequency kernel code? The corresponding results are
presented in Section VI, Figure 7 of the manuscript.

• RQ2: Can SYSYPHUZZ outperform SYZKALLER in
terms of coverage and bug discovery? The results are
reported in Section VI, Figures 8–10 and Table V.

• RQ3: Is the bug discovery performance of SYSYPHUZZ
correlated with low-frequency code regions? The support-
ing evidence is presented in Section VI, Figure 11.

1) How to access: The code is available in zendo https://do
i.org/10.5281/zenodo.15961011 or in the GITHUB repository
https://github.com/HexHive/Sysyphuzz/tree/main.

2) Hardware dependencies: This artifact requires at least
16 CPU cores, 64 GB of RAM, and a 128 GB disk.

3) Software dependencies: This artifact requires a Linux
environment with all dependencies configured as required by
Syzkaller.

B. Artifact Installation & Configuration

Run the deploy.sh script with sudo privileges. This script
creates a new user fuzz and sets up the environment. You can
modify the default password in the shell file if needed. Once
executed, Sysyphuzz is ready for use.

C. Experiment Workflow

Our experimental workflow consists of two steps. First,
we run SYSYPHUZZ and SYZKALLER for over three days to
collect the necessary data. Due to hardware constraints, the
server supports running only one fuzzer at a time. As a result,
users must manually alternate between executing SYSYPHUZZ
and SYZKALLER during the experiment.

1 # Make sure you are the user "fuzz"
2 # and in the sysyphuzz directory
3 su fuzz
4 cd ˜/code/sysyphuzz/
5 # Start Sysyphuzz
6 sudo bin/syz-manager \
7 -config sysyphuzz.cfg 2>&1 \
8 | tee ./workdir_sysy/"$(date +"%Y_%m_%d").log"
9 # Useing "ctrl + c" to stop.

10 # Change to syzkaller.cfg and workdir_syzk

Listing 1: Running Bash Cmds

After the first step, two types of logs will be generated:
fuzzing logs and hit count logs. The former are stored in
the workdir_sysy or workdir_syzk directories, while
the latter are saved in the corresponding sysyphuzz_bb or
syzkaller_bb directories.

All directory paths can be customized in the respective
*.cfg configuration files. The above experiment should
be repeated to ensure that four rounds of results are col-
lected for both SYSYPHUZZ and SYZKALLER. For each
round, the same corpus should be used by renaming
ci-qemu-upstream-corpus.db to corpus.db, ensur-
ing consistency across all runs.

1 # Fuzzing logs
2 -/home/fuzz/code/sysyphuzz/workdir_sysy #_syzk
3 -YYYY-MM-DD.log
4 -crashes
5 # Hit count logs
6 -/home/fuzz/code/sysyphuzz/sysyphuzz_bb #

syzkaller_bb
7 -YYYYMMDD_hh
8 -HitBBPerc_hhmm.json
9 -UnderCoveredBBs_hhmm.json

Listing 2: Log Structure

Run the following analysis scripts to reproduce the evalua-
tion results and support the main claims of the paper.

D. Major Claims

• (C1): SYSYPHUZZ effectively balances the kernel code
coverage by improving hit counts and reducing the sur-
vival rate of initial low-frequency regions. This is proven
by the experiment (E1) whose results are illustrated in
VI-Fig7.

• (C2): SYSYPHUZZ discovers more unique bugs missed
by SYZKALLER and slightly outperforms SYZKALLER
in code coverage. This is proven by the experiment (E2)
whose results are illustrated in VI-Fig8 to Fig10.

• (C3): SYSYPHUZZ’s bugs discovered by SYSYPHUZZ
are largely related to underexplored low-frequency re-
gions. This is proven by the experiment (E2) whose
results are illustrated in VI-Fig11.

E. Evaluation

1) Experiment (E1): [Low-frequency areas analysis] [60
human-minutes + 1 compute-hour]: For the six observation
time points, we extract the hit counts of the low-frequency
regions and compute the survival rate of the initially identified
low-frequency regions across subsequent time points.

[How to] In each experimental trial, collect hit count logs at
six time points. Run two scripts: one to extract low-frequency
regions at each point, and another to compute the survival rate
of the regions identified at the first time point.

[Preparation] For each trial, collect hit count logs at six
time points: t0, t0+6h, t0+12h, t0+24h, t0+48h, and t0+72h.
The reference point t0 marks the completion of corpus replay
and the start of fuzzing, which is the creation time of the first
hit count log.

1 # Example of the Hit count log create time.
2 -/home/fuzz/code/sysyphuzz/sysyphuzz_bb
3 -YYYYMMDD_hh
4 -UnderCoveredBBs_hhmm.json

Listing 3: Get Hit Count Logs
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The timestamp in the format YYMMDD hhmm corresponds
to the creation time of each UnderCoveredBBs JSON file. We
identify the first available file as the t0 time point and manually
compute the subsequent five time points. If a required file is
missing, we substitute it with the nearest available file from
an earlier time. Each of the selected files should be copied to
a new directory and renamed as t0.json, t0+6h.json, etc. This
process is repeated for all trials in the experiment.

[Execution] For each trial of the experiments, get the
low-frequency areas in six time points by using script
get low area.py. The input files are the six JSON files
created in the preparation step. There will be six JSON
files in the OUTPUT DIR, namely filtered t0.json 1, fil-
tered t0+6h.json 2, etc.

1 # --per is 5 in our experiments.
2 python3 get_low_area.py -h
3 usage:
4 --input_files INPUT_FILES [INPUT_FILES ...] \
5 --per PER --output_dir OUTPUT_DIR

Listing 4: Get Low-Frequency Areas

Repeat the above step for the rest of the trials of
the experiments. For four trials of the experiments, there
will be four filtered JSON files for each time point, e.g.,
trial1 filtered t0.json 1, trial2 filtered t0.json 1, etc. Using
the script get average hit.py to get the average hit counts of
the low-frequency areas at t0, repeat this step for the rest of
the time points.

1 python3 get_average_hit.py -h
2 usage:
3 --input_files INPUT_FILES ... \
4 --output_file OUTPUT_FILE

Listing 5: Get Average Hit Counts

Then, using get consist.py to compute the survival
rate of the low-frequency areas identified at t0, the
script processes each trial by reading the BBs from
trial* filtered t0.json and evaluating their presence in the
subsequent time points logs, e.g., trial* filtered t0+6h.json,
trial* filtered t0+12h.json, etc.

1 python3 get_consist.py -h
2 usage:
3 --input_files INPUT_FILES ... \
4 --output_file OUTPUT_FILE

Listing 6: Get Survival Rate

Repeat the above steps for the remaining trials to generate
four survival rate JSON files in total. Then, use the script
get average survival.py to compute the average survival rate
of the initial low-frequency areas.

1 python3 get_average_survival.py -h
2 usage:
3 --input_files INPUT_FILES [INPUT_FILES ...] \
4 --output_file OUTPUT_FILE

Listing 7: Get Average Survival Rate

[Results] The average hit counts and survival rates will be
used in the VI-Fig7.

2) Experiment (E2): [Coverage and bug analysis] [hundred
human-hours + tens compute-hours]: Based on the fuzzing
logs under workdir, running the script plog coverage.py to
draw the coverage, bug performance, and bug overlap figures.

1 # MAX_HOURS is hours after corpus replay,
2 # e.g., 72 means t0+72.
3 python3 plog_coverage.py -h
4 usage:
5 # Run logs of fuzzer1; in multi-round

experiments, logs are separated by spaces.
6 --boost_logs BOOST_LOGS ... \
7 # Run logs of fuzzer2; in multi-round

experiments, logs are separated by spaces.
8 --coverage_logs COVERAGE_LOGS ... \
9 --output OUTPUT [--max_hours MAX_HOURS]

Listing 8: Coverage Bash Cmds

[Results] The output figure will be used in the VI-Fig8.
Running the script plog coverage batch totoalcrash 1.py

to get overall bug performance, and use the script classify.py
to classify the crashes based on different bug types.

1 plog_coverage_batch_totoalcrash_1.py -h
2 usage:
3 --boost_logs BOOST_LOGS \
4 --coverage_logs COVERAGE_LOGS \
5 --output OUTPUT \
6 --crash_report CRASH_REPORT \
7 [--max_hours MAX_HOURS]
8 # Classify Bugs.
9 python3 classify.py -h

10 usage:
11 --input_json INPUT_JSON \ # CRASH_REPORT
12 --output_dir OUTPUT_DIR

Listing 9: Bug Analysis Bash Cmds

[Results] The data will be used to draw the VI-Fig9,10.
For each unique bug, extract the crash stack trace from the

crash log (e.g., report0) and the first trigger time from
the fuzzing log. Identify and merge all low-frequency areas
identified by SYSYPHUZZ prior to the bug trigger time. Finally,
compute the overlap between these merged low-frequency
areas (e.g., merged_low_bb.csv) and the bug’s crash
stack trace (e.g., crash_stack.csv).

1 python3 extract_crash_trace_segment.py -h
2 usage:
3 -i INPUT [-o OUTPUT]
4 # Getting the merged low-frequency areas.
5 python3 low_bb_bef_crash_time.py -h
6 usage:
7 -syzlog SYZLOG \ # Sysyphuzz fuzzing log
8 -bblog BBLOG \ # related hit count log

directory
9 -vmlinux VMLINUX \ # vmlinux binary

10 -time_stamp TIME_STAMP \ # first trigger time
11 -o O
12 # Find the overlap.
13 python3 overlap_analysis.py -h
14 usage:
15 -crash_csv CRASH_CSV -lf_csv LF_CSV [-o O]

Listing 10: Bug Overlap Bash Cmds

[Results] The data will be used in the VI-Fig11.
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