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Abstract—The rapid advancement of generative models such as
GANs and diffusion-based architectures has led to the widespread
creation of hyperrealistic synthetic images. Although these tech-
nologies drive innovation in the media and data generation,
they also raise significant ethical, social, and security concerns.
In response, numerous detection methods have been developed,
including frequency domain analysis and deep learning classifiers.
However, these approaches often struggle to generalize across
unseen generative models and typically lack physical grounding,
leaving them vulnerable to adaptive attacks and limited in
interpretability.

We propose Light2Lie, a physics-augmented deepfake detec-
tion framework that leverages principles of specular reflection,
specifically the Fresnel reflectance model, to reveal inconsistencies
in light-surface interactions that generative models struggle to
reproduce effectively. Our method first employs a neural network
to estimate the surface base reflectance and then derives a
microfacet-inspired specular response map that encodes subtle
geometric and optical discrepancies between real and synthetic
images. This signal is integrated into a secondary classifier, as
feature maps, that learns to distinguish the two classes based
on reflectance-driven patterns. To further enhance robustness,
we introduce a feedback refinement mechanism that updates
the base reflectance model output using classification errors,
tightly coupling physical modeling with the learning objective.
Extensive experiments on multiple deepfake datasets demonstrate
that our approach obtains better generalization performance
to unseen generative model samples by getting up to 74%
precision on diverse deepfake domains, outperforming state-
of-the-art baselines while providing robust, physics-grounded
decisions.

I. INTRODUCTION

The past decade has witnessed a dramatic rise in the
capabilities of Al-generated content, particularly in the domain
of synthetic image generation. Techniques such as Generative
Adversarial Networks (GANSs) [12] and diffusion models [17]
have enabled the production of high-fidelity, photorealistic
images that are increasingly indistinguishable from real ones.
State-of-the-art models like StyleGAN2 [22]], DALLE-2 [34],
Imagen [45], and Stable Diffusion [41] can synthesize highly
detailed human faces, landscapes, and artistic renderings with
minimal human input. These advancements have revolution-
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ized entertainment, design, and data augmentation, and con-
tinue to push the boundaries of creative and generative Al

However, the same progress has led to a surge in deepfake

content, manipulated or fabricated images intended to mislead
viewers or falsify reality. Deepfakes have been implicated in
political misinformation campaigns, celebrity impersonations,
and fraudulent media incidents [58]], [29]. For example, a
viral deepfake of President Zelenskyy surrendering to Russian
forces [3]] sparked global concern over the role of synthetic me-
dia in wartime propaganda. Similarly, deepfake pornographic
content using non-consenting individuals has been widely
reported [S0], raising ethical and legal alarms.
Existing detection methods. In response, a wide range of
deepfake detection methods have emerged, typically falling
into three main categories: 1) Frequency-domain techniques
exploit spectral artifacts introduced by generative models,
such as analyzing discrepancies in DCT and Fourier spec-
tra respectively [6], [9]; 2) Spatial and statistical methods
target inconsistencies in texture, color, or semantics, such
as detecting eye-blinking anomalies [24] or leverage CNNs
to extract local pixel-level artifacts [10]], [62]]; 3) More re-
cent transformer-based and ensemble approaches aim to im-
prove generalization using attention mechanisms[14] or self-
supervised learning [26].

Additionally, with the rise of multimodal models, re-
searchers have explored using pretrained Vision-Language
Models (VLMs) to detect deepfakes. For example, Wang et
al. [56] use CLIP embeddings to identify semantic-textural
inconsistencies in generated images, while Dong et al. [7]]
exploit multimodal vision-language transformers for cross-
domain deepfake detection. However, these methods are highly
sensitive to prompt selection and domain shifts, and incur
significant computational overhead.

Although existing methods perform well in controlled set-
tings, they often fail to generalize to unseen generative models
or distribution shifts. Many rely on superficial statistical arti-
facts [55], [52]], leaving them vulnerable to adversarial per-
turbations and post-processing. Furthermore, most are purely
data-driven, lacking the physical constraints of real-world
image formation, which limits their robustness in open-world
scenarios.

Our goal and contributions To address the limitations of
existing Al-generated image detectors, we propose a physics-
augmented detection framework, called Light2Lie, that builds



on how light interacts with real-world surfaces. Our core idea
is that while Al-generated images can convincingly mimic
texture and structure, they often fail to replicate the subtle,
physically consistent behavior of light reflection, particularly
the way highlights appear on real materials.

In natural images, light reflections behave in complex ways,
depending on the surface’s shape, roughness, and material
properties. These reflective behaviors are governed by physical
laws and are very hard to fake/reconstruct convincingly. To
capture this and approximate this phenomenon in the image
domain, we draw inspiration from classical computer graph-
ics, particularly from the influential work of Blinn [4], who
modeled surfaces as being composed of countless tiny mirror-
like elements called microfacets (tiny planar surfaces). The
way these microfacets reflect light determines the intensity
and placement of highlights on a surface. This theory has long
been used in physically-based rendering, and we repurpose it
to analyze how plausible reflections are in digital images.

Our approach Light2Lie is inspired by how light interacts
with real-world surfaces. We treat each pixel in an image as
a tiny reflective patch and analyze how it would naturally
reflect light. Rather than relying on external lighting setups
or physical measurements, we infer these reflections directly
from the image itself, based on the way its local textures and
surface shapes would interact with light.

Real images contain small imperfections and irregular tex-
tures that scatter light in complex ways, while Al-generated
images often appear unnaturally smooth, reflecting light more
uniformly. To capture these differences, our framework op-
erates in three stages: first, we extract the surface geometry
which interprets the underlying structure of the image to
approximate how light would interact with its microfacets;
second, we estimate and learn the reflectivity of the input
image sample to predict how reflective the image surface
would appear under natural conditions by using a base neural
network; and third, we combine the visual embedding fea-
tures with these physical features to learn the subtle surface
inconsistencies between the real and the fake sample, by using
a secondary or main classifier and finally decide whether an
image is real or generated.

Together, these components form a physics-guided detection
pipeline that uncovers subtle inconsistencies in light—surface
interactions, providing improved robustness and interpretabil-
ity. Our framework, Light2Lie, focuses on reflection patterns
that Al-generated images often fail to reproduce, offering a
more reliable and generalizable solution to deepfake detection
than conventional pixel-driven approaches.

While Light2Lie leverages physically inspired artifacts
for robust detection, it inherits certain limitations from its
reflectance-based assumptions. In scenarios with extreme
lighting conditions, highly glossy or metallic materials, or
strong image compression and filtering, the surface-level
features required to estimate geometry and reflectivity can
become less reliable. Nevertheless, the integration of learned
visual features with physics-based modeling helps partially
compensate for these cases, maintaining competitive perfor-

mance even under challenging conditions.
Our work makes the following key contributions:

o« We present the design and implementation of a novel
physics-augmented framework, Light2Lie, for detecting
deepfake images by leveraging the physical behavior of
light reflection.

« We develop a base reflectance prediction network, making
it learn the distinction of the base reflectivity value of
around 0.96 for synthetic images and a value of around
0.04 for real images. This model is also trained with a
margin-based constraint that improves class separability,
as detailed in Section [V}

¢ We introduce a physically grounded reflection score
derived from microfacet-based light reflection theory.
This score quantifies the realism of light behavior in
an image and is integrated into a secondary classifier to
provide physically interpretable guidance during deepfake
detection.

« We introduce a fine-tuning loop into the training of the
secondary classifier itself that uses classification errors
to improve the base reflectivity estimation over time,
increasing model resilience to edge cases and generative
variance, as detailed in Section [V,

o Lastly, we conduct extensive evaluations across multi-
ple benchmark datasets, including both in-distribution
and out-of-distribution deepfake sources to showcase the
effectiveness of Light2Lie. Our evaluations show that
Light2Lie outperforms state-of-the-art baselines, achiev-
ing up to 74.7% accuracy even on unseen deepfake
sources, as detailed in Section [VI}

II. BACKGROUND AND PRELIMINARIES

This section introduces the physical components of this
model, provides both mathematical and intuitive interpreta-
tions, and maps each concept to its use in our deepfake images
detection pipeline.

A. Microfacet Theory and Surface Geometry

A realistic representation of materials often begins with
modeling a surface as a composition of microfacets, mi-
croscopic planar elements (tiny flat surfaces) with varying
orientations. While each microfacet behaves as an ideal mirror,
the collective distribution of these facets gives rise to the
macroscopic appearance of rough or glossy surfaces. The core
assumption of the microfacet model is that light reflects off
surfaces not as a perfect whole but from these individual
facets.

Mathematically, for an incoming light direction E and
outgoing (viewing) direction V', we define the halfway vector:

E+V

H=——
1E+ Vi

1

This halfway vector H represents the orientation of a
microfacet that would reflect E into V' under perfect mirror
reflection. Each surface point has a normal vector N, and



the relative orientation between N and H determines the
orientation of such a microfacet.

For example, consider a surface as a field of microscopic
mirrors. The more of them are oriented to reflect light directly
to the viewer, the shinier the surface looks. In deepfake
or Al-generated images, such micro-level accuracy is often
compromised, i.e., the synthetic images look much smoother
than their counterpart, human real images. Thus, it results in
distinguishable physical inconsistencies. The microfacet model
provides a grounded approach to estimate per-pixel geometry
and predict reflection behavior. We leverage this to extract the
specular reflectance patterns indicative of whether a surface is
physically plausible.

B. Specular Reflection Metric

In the context of surface reflectance modeling, the specular
reflection metric s is a crucial quantity that captures how light
interacts with a surface to produce specular highlights. This
metric originates from the microfacet-based Bidirectional Re-
flectance Distribution Function (BRDF), introduced by Blinn
[4]], and is used extensively in computer graphics to simulate
realistic lighting effects. The metric is given by the expression:
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Here, D is the microfacet distribution function representing
the orientation variance of surface microgeometry, G accounts
for the geometric attenuation due to masking and shadowing,
F is the Fresnel reflectance term describing how much light is
reflected based on the angle of incidence, and N - V' captures
the cosine of the angle between the surface normal and the
eye (or viewing) direction.

This formulation shows that a surface’s appearance de-

pends on its material properties, geometry, and the angles
of viewing and illumination. In our framework, we infer
these light—surface interactions directly from the image itself,
i.e, they are image-derived, without requiring any external
lighting or physical measurements. This makes the specular
reflection metric s a meaningful property for authenticity:
real surfaces produce physically consistent reflection patterns,
while Al-generated images often fail to replicate them. By
integrating s into our main classifier, the model learns to
detect subtle, physically grounded inconsistencies between real
and synthetic images. Next, we detail the different variables
required to determine s.
Fresnel Reflectance Term F': The Fresnel reflection law
(Fresnel term F') describes how light is partially reflected and
partially transmitted (refracted) at the boundary between two
different media (like air and glass), depending on the angle
of incidence, and it’s based on the base reflectivity Fy. Base
reflectivity is the amount of light reflected at normal incidence,
that is, when light hits a surface head-on (at a 0° angle). It’s
a material property that describes how reflective a surface is
at the micro level, without considering the viewing angle or
light angle.

To simplify computations, we use Schlick’s approximation:
F=Fy+(1-F)1l-(H-V))’ 3)

where Fj is the reflectance at normal incidence, and H -V

is the cosine of the angle between the halfway vector and the
viewing direction. In our application, we assume that synthetic
images exhibit higher apparent reflectivity than real ones, a
value of around 0.96 for synthetic images and a value of
around 0.04 for real images. Thus, our first step in Light2Lie
is to estimate and learn Fp through a base neural network
that distinguishes between realistic and unrealistic surface
behaviors.
Microfacet Distribution Function D: The distribution term
D models how microfacets are oriented relative to the surface
normal. It influences the sharpness or spread of the specular
highlight. A surface with low roughness has a peaked distri-
bution (most microfacets point in a similar direction), while
a rougher surface has a broader distribution. Specifically, this
variable tells us how many microfacets are “tilted just right”
to reflect light toward the viewer.

We compute D using the GGX distribution [4], where the

surface roughness is estimated from the covariance of local
gradients on the height map. This term helps capture the
statistical regularity of real surfaces, which is often lacking
in synthetic images.
Geometric Attenuation Term G: The geometric term G
accounts for self-shadowing and masking effects between
microfacets. Specifically, it accounts for how much of the
microfacet reflection is visible to the observer or light source.
Even if a microfacet is oriented toward the light source, it
might be occluded by neighboring facets. That is microfacets
may be obscured by others, either from the light source
(shadowing) or from the view direction (masking). We use
the Smith masking function (mentioned below) [4] to estimate
this attenuation based on the angle between the surface normal
and the viewing direction. This term reflects the complexity
of real-world surfaces, where geometric interactions limit ideal
reflectance. The geometric term G(N, E,v) accounts for this
by reducing the contribution of such facets.

One approximation is:

2(N - H)(N -V) 2(N~H)(N«E))

G(N,E,V)-min(l, VoH , VoH
“)
In our framework, we simulate surface masking and shad-
owing from the image-derived normal map to calculate
G, which contributes to estimating how much reflection is
blocked.
Normal-View Alignment N - V: This term represents the
cosine of the angle between the surface normal N and the
viewing direction V, serving as a normalization factor. It
modulates how much of the reflected light is directed toward
the observer. A perfect alignment (N -V = 1) indicates
direct reflection, while misalignment reduces the perceived
intensity. In deepfake images, where realistic geometry is often
ill-defined, this term reveals inconsistencies in surface-view
alignment.



Together, these components allow us to construct a phys-
ically interpretable score s for any given image, offering a
robust mechanism for distinguishing between authentic and
Al-generated visual content. By aligning our detection strategy
with the fundamental behaviors of light, we gain generalizabil-
ity across generation techniques.

III. CHALLENGES

This section outlines the challenges of modeling a
reflectance-based detection framework, which occur because
we map light behavior to 2D images, especially those from
generative models.

Representing Images as Microfacets: The microfacet model
assumes a 3D surface made of tiny reflectors, while we only
have 2D RGB images. We approximate this by creating a
height map using local texture entropy and gradient strength,
and then computing surface normals. However, pixels do not
perfectly correspond to physical microfacets, and generative
models may produce patterns with no real-world meaning,
which can lead to errors in computing D, G, and F'.
Estimating Surface Roughness («): The distribution term
D depends on surface roughness «, which we infer from
gradients and edge density. It is hard to separate true surface
roughness from the digital image textures, and fake images
can mimic real image rough surfaces without a physical basis.
This can reduce the reliability of D.

Fresnel Term (F\) Estimation: The Fresnel term depends
on the material’s reflectance, which is unknown in images.
We train a network to estimate base reflectance Fp, assigning
low values to real and high values to fake images. If Fj is
inaccurate, the specular metric s becomes less meaningful.
Geometric Attenuation (G): Computing G needs light, view,
and normal directions (¥, V', N, H) are hard to estimate from
a single 2D image, as we are not using any external lightning
source to estimate them. Additionally, synthetic images can
have multiple lights or soft shadows, adding uncertainty. Our
model makes reasonable approximations and extracts surface
statistics to model these light vectors, as described in Sec-
tion [V=B.

Robustness to Domain Shifts: Different generative models
may synthesize images with drastically different styles, af-
fecting color distribution, shading, and noise. The proposed
pipeline must generalize across synthetic domains without
hardcoding features of any particular generative architecture
because overfitting to certain generators may result in brittle
detection when facing novel synthesis techniques.

In summary, the use of reflectance physics for deepfake de-
tection introduces unique challenges not seen in conventional
learning systems.

IV. THREAT MODEL

We consider a powerful adversary A whose goal is to
generate or modify images to convincingly imitate realistic
images. The adversary aims to ensure that the deepfake images
are indistinguishable from real digital content, thereby evad-
ing detection mechanisms deployed by platforms or security
systems.

To obtain these deepfake images, A can leverage any state-
of-the-art image synthesis pipeline to either generate new im-
ages or enhance images with localized edits, using diffusion-
based models (e.g., Stable Diffusion, DreamStudio, DALLE-
2) or GAN-based models (e.g., StyleGAN, CIFAKE). We do
not place any restrictions on the generation technique, nor do
we assume any domain constraints on the type of content
produced, allowing A to generate human faces, objects, or
modify existing images to add new context.

The goals of A are twofold. First, the constructed images

must appear semantically and visually coherent, i.e., consistent
with human expectations and natural image statistics. Second,
they must evade detection by appearing physically plausible,
even under forensic scrutiny. This includes producing realistic
lighting, shadows, and material textures that blend seamlessly
into real-world contexts.
Attacker Knowledge and Capabilities. We adopt a black-box
threat model with partial knowledge. It is assumed that .4 has
knowledge of the overall design of our detection framework,
including its physics-augmented pipeline, the use of base
reflectance estimation, and the specular consistency metric s.
However, the adversary does not have access to the trained
model parameters or the exact training data.

Unlike a true white-box setting, the A cannot compute
exact gradients through our deployed detector because, in
real situations, the trained weights are not made accessible
to the public. At best, the A can build a shadow model with
his knowledge of the training algorithm and attempt to train
it on a surrogate dataset to craft adaptive attacks. However,
because our approach is grounded in physical light behavior,
specifically, reflectance properties not explicitly modeled by
generative methods, such adversarial images remain vulnerable
to our detection method.

V. DESIGN DETAILS

In this section, we present Light2Lie, which detects deep-
fake images by approximating the physics of light reflection.
The system has three modules: (1) learning base reflectance
Fy, (2) training the main classifier F,, which computes the
specular reflection score s and fine-tunes F(, and (3) infer-
ence. Figure |1] illustrates the overall workflow.

A. High-level Idea

Learning Base Reflectance Fj: We begin with analyzing
the base reflectivity F{ of the image, which in physical optics,
refers to the proportion of light reflected at normal incidence
on a surface. Inspired by this concept, we design a neural
network F{j trained to predict F{ based on an input image.
This predicted value is essential to calculate the Fresnel term
F', which plays a pivotal role in light reflection behavior. Since
real-world surfaces and Al-generated ones differ significantly
in their intrinsic material reflectance, we enforce a margin-
aware loss that pushes Fj values of Al-generated images
toward the high-reflectance range (near 0.96) and real images
toward the low-reflectance range (near 0.04). This helps in
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Fig. 1: Overview of Light2Lie. In step 1, we train a base reflectance model F{j, in step 2, we compute s trough Fy (2.1),
then, we use the Specular Reflection to train the main classifier F, (2.2), and fine-tune F{ for (any) misclassifications (2.3).
Lastly, in step 3, we utilize the full pipeline for inference to detect the class of any unknown input sample.

amplifying the separability between the two classes from a
physical standpoint.

Training Main Classifier F,: After obtaining Fj, we model
how light would interact with the image as if its pixels were
tiny planar microfacets. Rather than using any external lighting
setup, we derive the incident and reflected light directions
(for each pixel) directly from the image itself, based on local
surface geometry inferred from the height map and its gra-
dients (defined below). This produces per-pixel light vectors
and surface normals that capture how light would naturally
reflect, be attenuated, or be shadowed across the surface. From
these geometry-dependent interactions, we then compute the
specular reflection score s = ?V—%“ ((Section ), where
D encodes local roughness, G accounts for shadowing and
masking, F' uses the Schlick approximation from Fj, and N-V
captures the alignment between the surface and the viewing
direction.

Once we compute the s score for each image, we integrate it
into the training of a secondary or a main ML model F; as an
additional input feature. The training of this model is guided
by the s metric to facilitate the learning process in physically
grounded artifacts. This allows the model to focus on physical
reflectance discrepancies and on the visual texture features. We
also introduce a fine-tuning mechanism where, if the predicted
Fy appears inconsistent with the expected behavior (i.e., a real
image predicted with a very high Fy or vice versa), the Fj
network F is selectively retrained on those edge cases. This
joint optimization improves robustness and adaptiveness over
time.

Inference Phase: During inference, the trained base re-
flectance model computes Fy, which is then used to calculate
the specular score s. This score, together with the image
features, is fed into the trained ML model to classify the image

as real or deepfake.

B. Design Structure

This section elaborates on the internal workings of our
system by providing mathematical and algorithmic details of
each component introduced in the high-level overview.

Embedding Generation: To obtain a compact and seman-
tically rich representation of each image, we use the pre-
trained EfficientNet-B7 model [49]. EfficientNet-B7 is a CNN
that applies compound scaling to balance depth, width, and
resolution for high accuracy and efficiency. It employs inverted
residual blocks and Squeeze-and-Excitation (SE) [18]] layers
to enhance representational power by emphasizing informa-
tive features. Importantly, the final convolutional layers of
EfficientNet-B7 produce semantically rich feature maps that
capture both global and local patterns from the input image.
Learning Base Reflectance F{;: To learn Fj, we train a CNN
model F{j that estimates this base reflectivity from input image
embeddings E. The model F{ takes an input image embedding
z € ROXW and predicts a scalar value Fy = F5(2). F§ is
a CNN designed for binary classification on high-dimensional
image embeddings z. The model has three convolutional layers
with batch normalization and ReLU, two max-pooling layers,
and two fully connected layers, ending with a sigmoid for
probability output. It is trained with the Adam optimizer (Ir =
0.0001) for 20 epochs using binary cross-entropy loss.

We map the true labels y € {0,1} to target reflectance
values: 0 is mapped to 0.04 (real) and 1 to 0.96 (deepfake),
aligning with the physical intuition that deepfake images
often appear smoother and more reflective. The network is
trained with binary cross-entropy (BCE) to match predicted
Fj to these targets. Additionally, we introduce a margin-based



regularization to enhance separation between the classes by
penalizing predictions that lie near the decision boundary:

Linargin = E [y - max(0,1 — Fy) + (1 — y) - max(0, Fp)]

The final loss combines both terms: L£r, = Lpcg+ ALmargin-

This ensures F{ produces discriminative, physically plausible
outputs for specular metric computation, with A = 0.1 chosen
empirically.
Computing Specular Reflection s: After obtaining Fj, we
compute the specular reflection score s (using Equation [2)
for each image embedding z. To compute this, we first need
to simulate different light vectors, i.e., normal (N) light (E),
view (V), and halfway (H). Steps are detailed below to
compute them.

Light Vectors: First, we approximate z as a 3D surface by
converting it to a grayscale height map h(x,y) that incor-
porates three attributes: (1) local texture complexity via an
entropy map, (2) edge-derived depth information via gradient
magnitude, and (3) a geodesic-inspired local energy term that
emphasizes regions with high neighborhood variance. We first
form a base height map from normalized entropy and depth
maps using a convex combination:

hbase = v hdepth + (]- - ’Y) : hentropya

where v balances depth and entropy contributions (set to
0.5 in our experiments). Next, we modulate this base height
map with an energy term E(z,y) derived from the local patch
variance to highlight geometrically discriminative regions:

h(z,y) = hbase (2, ) - (1 + BE(I,y)),

where [ controls the influence of the energy modulation
(0.3 in our implementation). Finally, h(x,y) is normalized to
[0,1] to produce the final height map used for gradient and
normal computation.

Next, we compute horizontal and vertical gradients Oh/0x
and Oh/0y using Sobel filters[20], which are edge detection
operators used to approximate the first derivative in the image.
These filters are particularly suitable for computing gradient
maps due to their smoothing and differentiation properties.

Using these gradients, we construct surface normals as:

N(z,y) = !

\/(6h/6x)2 + (Oh/0y)? + 1
Next, we estimate the surface roughness parameter o (which

will be used to determine D and ) by computing the eccen-

tricity c3 derived from the covariance matrix of the gradients.

Thus, we assume c3 = « in our framework. Specifically,

E[07]
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Let A\; and A be the ordered eigenvalues of C such that
A1 > Aa. The eccentricity is then defined as:

[~Oh/dx, —Oh/dy, 1]

VAL
Vs + €

This formulation quantifies the directional anisotropy in
surface variation. A high cs indicates significant surface tilt
along one direction, suggesting a rougher microfacet structure.

We synthesize light (E), view (V), and halfway (H) vectors
based on c3 and the normal map. E and V are constructed
with directional tilt and vertical components adjusted using cs,
which encodes the roughness, and then, the halfway vector
is computed as the midway vector between the two using
Equation [I]

These approximated vectors simulate how a viewer would
observe reflected light under varying surface configurations.
Next, each term in the specular score is computed as follows:

c3 = where € ensures numerical stability

Microfacet Distribution D: The GGX (Trowbridge-Reitz)
distribution (as mentioned in Section [lI-B) is employed to
model the probability that a microfacet is aligned in a direction
to reflect incoming light toward the observer. It is defined as:

()(2

7 [(cos0)2(a2 — 1) + 1]

where cosf = N - H represents the alignment between
the surface normal and halfway vector, and o = c3 is the
roughness. This formulation ensures that sharper, smoother
surfaces yield peaked distributions, while rough surfaces
produce flatter ones.

Geometric Attenuation G: This term accounts for how
microfacets may block each other’s reflections due to surface
occlusion and self-shadowing. We use the Smith approxima-
tion (detailed in Section for simplicity and efficiency:

2N - V)
(N-V)+ /a2 +(1-a?)(N-V)?

This formulation penalizes light that gets blocked due to
rougher or steeper facets, reflecting the true shadowing be-
havior of natural surfaces.
Fresnel Reflectance F: The Fresnel term describes how re-
flectance changes with the viewing angle. We use Schlick’s ap-
proximation mentioned in Equation 4| This efficiently models
the increase in reflectance at grazing angles, an effect widely
observed in real-world materials. It relies on the predicted
Fy as base reflectance and provides angular sensitivity to the
model.
Angular Alignment N -V This final term accounts for how
aligned the viewer is with the surface normal: N -V =
max(N - 'V ¢). This prevents numerical instability and en-
codes viewing geometry dependence, which is essential for
computing physically accurate reflection intensity.

Finally, we compute s as the mean reflection intensity
across all pixels using all the relevant variables discussed
above.




Physics-Augmented ML Training: The computed score s is
passed into a secondary classifier F, which combines learned
visual features with s to predict the final class label. Formally,
g = fG(Z ) 5)'

Fs is a dual-branch CNN that combines visual embeddings
with physics-based features. The image branch uses five 1x1
convolutions to reduce 2560 input channels to 32, followed by
flattening and four fully connected layers to produce a 128-D
vector. The physics branch processes the specular map s with
two convolutions, batch normalization, and adaptive average
pooling to yield a 16-D vector.

The two branches are concatenated and passed through two
additional fully connected layers for final classification. The
model is trained using binary cross-entropy loss, optimized
with Adam (Ir = 1le —4), and trained over 15 epochs. Finally,
the model is trained using: £, = BCE(g, y).

This design leverages both deep features and physics-based
cues. Lastly, for any misclassified sample, i.e., if ¢ is
incorrect, we fine-tune JF{, reinforcing physical alignment
and improving generalization. Algorithm |l| summarizes the
working of Light2Lie.

Inference Phase: During inference, given an image embed-
ding z, we first compute Fy = Fg, then, derive the reflection
score s, and use F(z, s) to predict its label. Because each step
mimics light reflection in physical space, our system outputs
accurate and generalizable decisions resilient to distribution
shifts.

VI. EVALUATION

In this section, we evaluate Light2Lie across multiple
settings. We first analyze why models struggle with out-
of-distribution (OOD) data (Section [VI-D) and examine the
predictive power of Light2Lie against various generation
frameworks (Section [VI-E). We then test generalization to un-
seen models (Section@, analyze failure cases of Light2Lie
(Section [VI-G), and assess robustness to adaptive adversarial
attacks (Section [VI-H). Finally, we present an ablation study
of each component of Light2Lie (Section [VI-I).

A. Experimental Setup

All experiments were conducted using the PyTorch [19]
framework on a server equipped with 4 NVIDIA RTX 8000
GPUs (each with 48GB memory), an AMD EPYC 7742 CPU,
and 1TB of system memory.

We curated a benchmark covering a diverse collection of
Al-generated image sources to ensure a comprehensive and
realistic evaluation. Our evaluation includes images produced
by both diffusion-based models (DALL-E 2 [33]], Stable Dif-
fusion [40], DreamStudio [48]]) and GAN-based architectures
(StyleGAN [21], CIFAKE [60]), reflecting the diversity of
modern image generation pipelines. The ground truth for
real samples was extracted from the ARIA and LAION
Datasets [25], [46]. This setup allows us to test both in-
domain and out-of-distribution generalization, capturing the

Algorithm 1 Physics-Informed Deepfake Detection

1: Initialize trained reflectance predictor F{ and classifier
2: Set margin threshold 7, learning rates 7, 72, and regular-
ization weight A

3: for each epoch do
4: for each batch (z,y) do
5: /I Step 1: Predict base reflectance
6: Fy Fg(z)
7: /! Step 2: Compute specular reflection score s
8: Compute height map h(zx,y)
9: Compute image gradients d,h, 0,h using Sobel
filters
10 Estimate surface normals n and covariance matrix
C
11: Compute roughness a < c3 = /A1 /v A2 + €
12: Simulate light E, view V, and halfway vector H
13: Compute components D, G, F', and angular align-
ment N -V
14: s+ K,y [BEE]
15: /I Step 3: Physics-Augmented ML Training
16: 7« Fs(z,9)
17: Compute loss L, < BCE(g,y)
18: Update classifier: Fs < Fs —n1 - VL,
19: /I Step 4: Fine-tune 7 on difficult samples
20: Identify hard examples: M < {i | (y; = 1AFy,; <
T)\/(yi :0/\F0)i > 1—7’)}
21: if M # () then
22: [hard — Z[M], Yhard < y[M]
23: Félard — Fg(Ihard)
24: Define ground-truth Fo: Ymappea <— 0.96 if 3y =
1, else 0.04
25 Compute loss: L, < BCE(FS™, ymapped) +
A Emargin
26 Update: F§ <= F§ —n2-VLE,
27: end if
28: end for
29: end for

Model Params Size Infer. Peak
(M) (MB) (ms/img) Mem (MB)

Fo 0.35 1.34 0.54
Fs 29.75 113.49 221

718.44
722.70

TABLE I: Computational overhead metrics of Fy and Fj.

performance of Light2Lie on sources it was not explicitly
trained on.

Additionally, we also evaluate the computational overhead
of Light2Lie to demonstrate its suitability for practical de-
ployment. Table [[ reports the number of parameters, model
size, per-image inference time, and peak GPU memory usage
for both F{ and F5. Despite incorporating physics-based mod-
eling, the framework remains lightweight, with F{ requiring
less than 1 MB and F, under 120 MB, and total inference
time below 3 ms per image on a single GPU.



Next, we evaluate core detection methods, comparing accu-
racy and generalization on datasets ranging from photorealistic
to stylized images, testing our method’s ability to detect
reflectance-based inconsistencies beyond simple statistical fea-
tures.

B. Dataset Description

Table [l summarizes the dataset with samples from multiple
deepfake generators, each using a different synthesis approach.
Below, we briefly describe each system.

a) ARIA Dataset [25]: The AdversaRIal AI-Art (ARIA)
dataset is a large-scale benchmark for Al-generated media.
We use 17,040 real samples across five categories: artworks,
social media, news, disaster, and anime. Each sample includes
a caption and a textual description usable as a generation
prompt, and most evaluated deepfake datasets follow the same
five-category distribution.

b) LAION [46|]: We utilized a subset of the LAION-5B
dataset consisting solely of images depicting humans. LAION
is a large-scale, open dataset of image-text pairs collected
from the web. For our study, we filtered the dataset using
semantic similarity scores and metadata of the captions to
isolate human-centric images.

c¢) DALL-E 2 [35]]: DALL-E 2 is a diffusion-based model
that generates images from natural language prompts. It first
maps text to a latent representation using a pretrained CLIP
model [33]], and then iteratively refines a noise vector through
a diffusion process to produce a high-fidelity image.

d) Stable Diffusion [40]: Stable Diffusion relies on
a latent diffusion model. It encodes images into a lower-
dimensional latent space using a variational autoencoder
(VAE), performs the diffusion process in this compact space,
and then decodes the latent result back into the pixel space.
Prompts guide the generation via cross-attention with a text
encoder.

e) DreamStudio [48]: DreamStudio is a commercial
interface for Stable Diffusion developed by Stability AL It
allows users to generate images by customizing various pa-
rameters such as prompt strength, number of inference steps,
and image resolution. The underlying generation process is
similar to Stable Diffusion.

f) StyleGAN [21]: StyleGAN is a GAN-based architec-
ture that generates images by mapping a latent code through a
style-based synthesis network. The network introduces styles
at each convolutional layer, enabling control over visual fea-
tures at different scales.

g) CIFAKE [160]]: CIFAKE is a synthetic dataset created
using GANSs, designed specifically to evaluate fake image
detection. It employs a modified GAN pipeline to generate
images that resemble those in the CIFAR-10 dataset. The goal
is to produce realistic fakes that challenge detection models
while preserving class consistency.

C. Evaluation Metrics

Following prior work in deepfake image detection [47],
[31], we use a comprehensive set of evaluation metrics to

TABLE II: Dataset statistics for GAN-based, Diffusion-based
approaches, and Genuine images.

Generation Approach | Number of Samples
g DALLE 2 [35] 27,072
'Z Stable Diffusion [40] 50,048
E DreamStudio [48] 32,768
Z StyleGAN [21] 7,040
é CIFAKE [60] 60,096
= ARIA [25] 17,040
~ LAION [46] 6,358

assess the effectiveness of our proposed framework. These
metrics reflect both detection performance and robustness
under varying conditions:

o True Positive Rate (TPR): measures the model’s ability
to correctly identify deepfake (Al-generated) images. It is
defined as the proportion of correctly detected fake sam-
ples (True Positives, TP) among all actual fake samples:
TPR = fpiy-

« True Negative Rate (TNR), also referred to as speci-
ficity, quantifies the model’s ability to correctly recognize
authentic (human-generated) images. It is calculated as
the ratio of correctly identified real images (True Nega-
tives, TN) to all actual real images: TNR = TNLEFP.

« F1-Score is the harmonic mean of precision and recall,
offering a balanced measure of detection performance
when both false positives and false negatives are of
concern. Here, precision is defined as the proportion of
predicted fake images that are fake: Precision = 15 4.,
and recall is the same as TPR: Recall = TPE—iPFN' The
Fl-score combines both as: F1-Score = %‘m.
It ranges from O (worst) to 1 (best), with higher values
indicating better detection quality.

These metrics enable a thorough evaluation of both in-

distribution detection accuracy and generalization to out-of-
distribution deepfake sources.

D. Data Analysis

This section evaluates why models struggle to generalize
to out-of-distribution (OOD) data, especially when low-level
features of real and fake images are visually similar.

We conduct a t-SNE [51] feature projection across four
generative models: DALL-E 2 [35], StyleGAN [21]], Dream-
Studio [48], and Stable Diffusion [40]. We analyze three
scalar descriptors of each embedding: spectral entropy, which
measures frequency-domain randomness via the normalized
Fourier power spectrum (low values indicate smooth structure,
high values indicate rich or noisy content); kurtosis, which
reflects the “tailedness” of the pixel distribution, where high
values suggest sparse or peaky activations and low values
indicate flatter, Gaussian-like behavior; and sparsity, the pro-
portion of near-zero elements, capturing the efficiency of
feature activations, as generative models often produce more
uniformly filled embeddings than real images.

The three features are then concatenated into a R? vector
per image and visualized with t-SNE, which projects them
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Fig. 2: t-SNE projection of handcrafted features (spectral entropy, kurtosis, sparsity) from image embeddings. Points represent
images: red = Al-generated, blue = human. The two classes largely overlap in feature space.
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Fig. 3: Comparison of real vs. Al-generated feature distribu-
tions. (a) Histogram of mean height map values; (b) APDF
highlighting separable regions between real and synthetic
samples.

to 2D while preserving local similarity. As shown in Fig. 2]
red points (Al-generated) and blue points (human) overlap
heavily across all datasets, with no clear separation. This
illustrates why simple statistical descriptors cannot reliably
distinguish human from AI images, motivating the physics-
aware, structure-based s metric used in Light2Lie.

E. Dataset Evaluations

First, we illustrate the distribution of the observed height
maps, normal maps, s maps, and F{, values obtained by
Light2Lie after training the classifiers Fj and Fg. Since
the plots are similar for all the datasets, for this analysis,
we opted StyleGAN dataset to showcase the trend in the
aforementioned values. Then, we detail the efficacy of
Light2Lie in detecting the fake samples vs the real samples
in terms of TPR, TNR, and F1-Score metrics. Table shows
its detection accuracy and robustness across different datasets.

Illustration of Height map values: Figure |3a| shows that
real images occupy a narrow range of mean height values,
while deepfakes span a broader distribution that includes

TABLE III: Effectiveness of Light2Lie for each individual

dataset. All values are in percentages.

Dataset TPR | TNR | F1-Score
CIFAKE 96.58 | 98.57 98.78
DALLE-2 95.63 | 96.48 96.91
StyleGAN (SG) 97.68 | 97.92 97.43
Stable Diffusion (SD) 98.61 | 97.68 98.11
DreamStudio 92.49 | 91.15 92.89
Combined (SD & DALLE) 97.91 | 97.06 98.03
Combined (SD & DALLE $ SG) 97.87 | 96.61 90.37
Combined (SD & DALLE & SG & LAION) | 98.00 | 97.49 97.39

the real range. This indicates that generative models often
produce exaggerated or irregular local surfaces, yielding wider
height map variations. The APDF in Figure [3b confirms
this pattern: positive peaks mark regions dominated by real
images, negative valleys indicate fake-dominated regions, and
real samples remain concentrated within a narrow interval.
Illustration of Normal values: Figure 4a| shows that real and
fake images have largely overlapping mean normal magni-
tudes, with fakes showing a slightly broader spread from local
surface irregularities. While this captures some smoothness
differences, normal magnitude alone is less discriminative than
reflectance-based features.

Ilustration of Fj values: Figure shows clear separation
in estimated Fy values: real images (label 0) cluster at lower
reflectance, while fakes (label 1) concentrate at higher values.
This confirms that the F module in Light2Lie captures
meaningful surface reflectance differences between real and
generated samples.

Ilustration of S-map values: Figure [4c| shows the
distribution of s values from Light2Lie. Fake samples
cluster around 0.3, while real images lie mostly below 0.04,
with a few misclassified exceptions. This clear separation
demonstrates the effectiveness of the reflectance model F, in
capturing discriminative physical properties.

Next, we illustrate the performance of Light2Lie on the
datasets mentioned in Table [[I]
CIFAKE Results: The CIFAKE dataset serves as a
benchmark for foundational evaluation, comprising simple,
low-resolution Al-generated and real images. Our method
achieves a high True Positive Rate (TPR) of 96.58%, and
a True Negative Rate (TNR) of 98.57%, resulting in an
Fl-score of 0.98. These metrics affirm that even at low
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Fig. 4: Distributions of physics-based features for real and Al-generated images: a) normal map (local surface orientation), b)
base reflectance Fp, and c) mean s-map. Together, they reveal clear separable patterns between the two classes.

resolution, Light2Lie is highly effective at differentiating
between authentic and synthetic content.

DALLE-2 Results: Images generated by DALLE-2 are
semantically coherent and visually appealing, often
closely resembling human art. Despite this complexity,
Light2Lie achieves a TPR of 95.63% and a TNR of 96.48%,
demonstrating robustness to high-quality generative outputs.
The F1-score of 0.96 proves strong classification performance,
even when image content becomes semantically rich and
stylized.

Stable Diffusion Results: Stable Diffusion synthesizes
complex images with an emphasis on coherence and fidelity.
Yet, Light2Lie maintains a TPR of 98.61% and a TNR of
97.68%, yielding a strong F1-score of 0.98. This demonstrates
that Light2Lie can reliably detect diffusion-based generation
artifacts, even when image quality is visually indistinguishable
from real content.

DreamStudio Results: DreamStudio consists of a diverse
range of Al-generated images across various themes and
styles. In this evaluation, Light2Lie achieves a TPR of
92.49% and a TNR of 91.15%, resulting in an F1-Score of
0.92. These results indicate that Light2Lie performs robustly
despite the variability in DreamStudio’s content.

Combined Dataset Results: We also test Light2Lie on com-
bined datasets to evaluate its ability to discern beyond single-
source data. The Stable Diffusion and DALLE-2 combination
yields a robust TPR of 97.91% and an F1-Score of 0.98, con-
firming cross-model generalizability. As more generators are
included (e.g., SD, DALLE, SG, and Human), the performance
remains consistently high with an Fl-score of 0.99, validating
the method’s scalability and consistency across broader, more
diverse distributions.

F. Generalized Evaluation

This section compares Light2Lie with state-of-the-art deep-
fake detectors (listed below), using their open-sourced pre-
trained models. Below, we provide some brief details about
the inner workings of these methods:

TABLE IV: Comparison of Light2Lie with DE-FAKE [47]]
and Universal Fake Image Detector [31] on the OOD Dream-
Studio’s test partition [48]. Using DE-FAKE and UFID pre-

trained model checkpoints. All values in percentage.

Method | Metric | Art | Disaster | Instagram | News | Pixiv
TPR | 30.14 | 59.08 26.00 57.85 | 61.88

DE-FAKE [47] TNR | 45.40 28.27 56.73 29.14 | 37.71
F1 3291 50.31 30.30 49.56 | 54.65

TPR | 15.30 | 49.90 11.10 15.80 | 7.50

UFID [31] TNR | 96.10 | 83.50 86.20 97.60 | 87.30
F1 2570 | 59.64 17.67 26.70 | 12.43

TPR 12.21 18.73 10.97 30.39 | 11.21

AIDE [59] TNR | 99.96 | 97.87 99.66 97.79 197.84
F1 21.04 30.97 19.71 45.78 | 19.76

TPR | 24.36 | 34.86 45.30 52.21 |58.30

ObjFormer [53] | TNR | 62.81 47.33 43.07 42.25 | 38.72
F1 30.36 | 36.60 44.14 48.83 | 52.56

TPR | 27.31 36.55 0.36 23.47 |62.48

GANDCT [10] TNR | 66.37 68.0 99.93 95.86 |40.81
F1 34.14 | 43.02 0.71 36.70 |55.83

TPR | 47.39 12.04 17.46 24.66 |98.88

Qwen [54] TNR | 94.82 | 98.67 95.00 97.53 | 2.09
F1 62.18 21.23 28.46 38.74 | 65.85

TPR 1.98 3.33 4.88 1.3 | 67.65

Llama [135] TNR |100.00 | 81.25 89.61 100.00 | 67.67
F1 3.88 5.88 8.51 2.56 |58.60

TPR | 74.77 | 67.16 44.91 19.86 | 46.66

Light2Lie TNR | 49.09 | 57.78 81.40 95.28 | 65.42
F1 56.40 | 60.60 68.80 69.00 | 59.80

« DE-FAKE [47]: DE-FAKE was developed to tackle text-
to-image deepfake generation, using three key compo-
nents: a plain machine learning classifier, a fingerprint
detection approach for generative models, and an image-
text encoder (CLIP [33]]). The ensemble approach was
evaluated by its authors on the generators: Stable Diffu-
sion, Latent Diffusion, GLIDE, and DALLE-2.

o Universal Fake Image Detector (UFID) [31]: UFID
detects fake images by performing real-vs-fake classifi-
cation in the feature space of a large pretrained vision-
language model (CLIP-ViT), rather than training a dedi-
cated classifier.

o« AIDE [59]: Detects Al-generated images by selecting
extreme-frequency patches via DCT, extracting noise with
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SRM filters, and combining them with semantic features
from OpenCLIP.

Objectformer [53]: A multimodal transformer for im-
age manipulation detection that fuses RGB and high-
frequency features into patch embeddings and uses learn-
able object prototypes with cross-attention to capture
object-level inconsistencies.

GANDCT [10]: GANDCT uses the discrete cosine trans-
form (DCT) to expose up-sampling artifacts in GAN
images, which appear consistently across architectures
and datasets. Compared to pixel-domain classifiers, it
achieves higher accuracy with fewer parameters and less
training data.

Llama-3.2-11B-Vision-Instruct [15]: This vision lan-
guage model is fine-tuned for image reasoning, cap-
tioning, and visual QA. Its vision encoder uses a
two-stage design (32-layer local + 8-layer global) with
gated attention and concatenated features (7680-D), im-
proving reasoning at the cost of higher computation.
Raza et al. [37] reported 74.82% accuracy with the
base Llama-3.2-11B-Vision; here we test whether the
instruction-tuned version improves deepfake detection.
Qwen2.5-VL-72B-Instruct [54]: This model achieves
performance comparable to GPT-40 and Claude 3.5 Son-
net on multimodal benchmarks and outperforms many
general vision-language models. It uses a streamlined
Vision Transformer with window attention, SwiGLU,
and RMSNorm for efficient, high-fidelity processing.
Ren et al. [39] showed the 7B version struggles on
deepfake benchmarks; thus, we evaluate the flagship
Qwen2.5-VL-72B model.

Inference on Pre-trained Models: To evaluate existing
detectors, we conducted an inference-only assessment of
DE-FAKE [47]], UFID [31], AIDE [59], ObjectFormer [53],
GANDCT [10], and two vision-language models (VLMs):
Qwen2.5-VL [54] and Llama-3.2 [15]], using their pretrained
model checkpoints on the DreamStudio dataset. This dataset
was selected because it was not included in the training of
any of those checkpoints, providing a fair basis to assess
generalization.

As summarized in Table all prior detectors exhibit
significant performance drops in out-of-distribution (OOD)
scenarios. DE-FAKE achieves moderate TPRs but suffers
from low TNRs on Disaster and News, indicating frequent
misclassification of real images. UFID achieves high TNRs but
very low TPRs, often labeling fake images as real unless they
resemble training data. AIDE and the VLMs show extremely
unbalanced performance, with either near-zero TPRs or very
low F1 scores. ObjectFormer and GANDCT achieve only
partial improvements, with inconsistent trade-offs between
TPR and TNR across categories.

Compared to these approaches, Light2Lie achieves a more
balanced performance across all categories, achieving higher
TPRs on the Art and Disaster partitions, along with competi-
tive F1 scores across all categories. While Light2Lie ’s TNRs
are moderate, this balance results in consistently higher F1
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scores, reflecting an improved trade-off between precision and
recall compared to existing detectors.

To provide a more complete evaluation, we also fine-tuned
these detection models on a train partition of the DreamStudio
dataset. These results, reported in App. [A, show similar trends
and confirm Light2Lie ’s robustness.

G. Error Analysis

To evaluate Light2Lie’s brittleness and generalization error
on extreme OOD cases, we evaluate three DreamStudio cat-
egories: art, disaster, and news. Figure [5] shows the s-score
distributions, explaining its lower accuracy on news compared
to the other two.

For both the art (Figure[5a) and the disaster (Figure [5b) cat-
egory, real images (label 0) and fake images (label 1) occupy
either the low s region or high s region, thus, maintaining
a clear separation. However, the news (Figure category
displays the smallest separation between real and fake distri-
butions, with both concentrated at lower s-scores. This be-
havior is primarily due to strong compression, downsampling,
and professional post-processing of news imagery, which
reduces the local microfacet variations that our reflectance-
based model exploits.

Thus, these observations show that while Light2Lie gener-
alizes well, separation decreases in low-reflectance domains,
motivating adaptive thresholds or lightweight feature fusion
for more robust performance.

H. Adversarial Robustness

In addition to generalization under distribution shifts, deep-
fake detectors must remain robust to adaptive attacks, where
adversaries craft images that fool models while appearing
realistic. We evaluate Light2Lie against three adaptive attacks
employing different perturbation strategies: (1) surface-feature
attacks (FGSM [13]], PGD [27]), (2) light-consistent prompts,
and (3) localized edits. We assume an adversary with full
architectural knowledge but no access to trained weights
(Sec. [IV).

Surface Feature Adversarial Perturbation. We evaluated
FGSM and PGD attacks with ¢ = 0.01 on StyleGAN and
DALLE-2 samples using our model trained on the combined
samples from StyleGAN, DALLE-2, and Stable Diffusion. The
model showed strong robustness, maintaining 100% TPR on
both datasets. Under FGSM, F1 Scores were 0.6869 (Style-
GAN) and 0.7256 (DALLE-2), and under PGD, 0.6850 and
0.7181, respectively.

Light-Consistent Prompts. To conduct adaptive attacks with
the goal of generating fake samples using the light consistent
prompts, we generated 1,000 synthetic images from 1,000
real StyleGAN face images using Stable Diffusion v1.5 [42].
We employed light-consistent prompts, e.g., “A hyper-realistic
image with soft studio lighting, natural shadows”, to maintain
relevant illumination. Evaluation with our CIFAKE-pretrained
model, we achieved F1 = 0.9820 and TPR = 96.47%, high-
lighting strong resilience.



400 Label 200  Label 20004 Label
|5 =3 0.0 € =3 1.0 € == 0.0
82004 =3 1.0 8 2001 =3 0.0 S 10004 =3 1.0
0 IH-L T T m‘(rl‘_H_H_‘ 0 I‘L T T J—rﬂ-lrﬂ_ﬂ_‘ 0 I‘L T T T
00 01 02 0.3 00 01 02 03 00 01 02 0.3
S_mean S_mean S_mean

(a)

(b)

©)

Fig. 5: Distribution of s for DreamStudio datasets: a) Art, b) Disaster, and c) News.

Localised Edits. Localized perturbations or adversarial im-
ages were generated with FLUX.1-Redux-dev by prompting
FLUX.1-Redux-dev [23] with real images, using YOLO [38]]
detected object regions as masks, and replacing them with
objects to simulate realistic localized changes while preserving
overall scene consistency. Under this adaptive attack, our
CIFAKE-pretrained model achieved F1 = 0.8941 and TPR
= 80.84%, revealing some susceptibility to highly localized
manipulations while maintaining strong overall robustness.

In summary, embedding real-world optical constraints en-
ables our model to achieve strong generalization and robust
adversarial resistance, supporting real-world deployment of
Light2Lie.

1. Ablation Study of Light2Lie Components

To evaluate how each component contributes to Light2Lie,
we perform an ablation study isolating physics-based features
(Fp and s), semantic embeddings from EfficientNet-B7, and
their combination for the final model in Light2Lie.

First, we modify F; to include two parallel branches: (i)
a visual branch using EfficientNet-B7 embeddings and (ii)
a physics branch computing the s-score from predicted Fjp.
The model operates in three modes by selectively enabling or
zeroing branches to measure standalone performance.

In the Embedding-only mode, F; only uses the visual
embedding branch to process image embeddings, with the
physics branch fully disabled. No microfacet-based features
(height maps, normal maps, Fy, or s) are used. This setup re-
flects performance using only high-level semantic and texture
features from EfficientNet-B7, without any physical priors.

In the Physics-only mode, the embedding branch is dis-
abled, and F; uses the physics-derived reflectance features.
We consider two variants: the scalar base reflectance Fy and
the full s-score from the microfacet model using D, G, and
Fresnel terms. This mode evaluates how well physical features
alone distinguish real from fake images without semantic
context.

The Full Light2Lie mode uses both embedding and physics
branches jointly. Their feature vectors—visual embeddings
and s-score-based physics features—are concatenated and
passed to the classifier, leveraging complementary data-driven
and physics-informed cues for robust detection.
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TABLE V: Ablation study on StyleGAN dataset using pre-
trained Fy and F; models. The results report Accuracy and
Fl-score for visual-only (EfficientNet-B7 features), physics-
only (Fy and s maps), and the full combined Light2Lie model.

Model Variant Accuracy F1-score

Visual-only 0.8993 0.8961
Physics-Fp only 0.9807 0.9813
Physics-s-score only  0.9807 0.9813
Full Light2Lie 0.9727 0.9734

We use the StyleGAN dataset with pretrained Fj and Fg
models. Table [V reports Accuracy and Fl-score for each ab-
lation mode, from which we draw the following observations:

Physics-only models (¥ and s-score) achieve the strongest
standalone performance, showing that Light2Lie effectively
leverages specular reflectance and surface geometry to dis-
tinguish real from fake images. The embedding-only model
performs moderately, confirming that semantic or texture cues
alone are insufficient. The full Light2Lie model is robust but
slightly lower than physics-only, likely due to minor feature
redundancy. Overall, these results support that Light2Lie
relies on physical characteristics rather than dataset-specific
biases.

VII. SECURITY DISCUSSIONS

We evaluate the robustness of Light2Lie against a strong
white-box adversary .4 who understands the detection pipeline,
including its physics-based components Fy and s, but lacks
access to both model’s weights or training data. Given this,
A can mount adaptive attacks using modern generation tools
and simulate detection using a locally trained shadow model.

To make the system fail, A can deploy multiple evasion
strategies. First, the adversary may generate samples using
a diverse suite of generative models (e.g., Stable Diffusion,
StyleGAN, DALLE-2) and tune them to maximize semantic
realism and visual coherence. However, these generative mod-
els are not physically grounded and do not model reflectance
or light behavior. As a result, their outputs, even if perceptually
convincing, fail to conform to the optical consistency patterns
exploited by our detection framework.

Second, A may launch direct adversarial perturbations using
gradient-based methods such as FGSM and PGD. These
attacks attempt to subtly alter the pixel space to minimize



the likelihood of detection, all while staying imperceptible
to the human eye. However, because Light2Lie relies on
physically interpretable features such as Fy and s, these small
pixel-level perturbations do not fundamentally alter the global
light interaction properties. Our empirical findings confirm
that Light2Lie remains robust under such attacks, consistently
achieving high detection rates.

Finally, A may attempt to circumvent the detector through
domain transfer-training on synthetic styles or categories that
fall outside the distribution used to train Light2Lie. However,
Light2Lie generalizes well across unseen generation styles
and content types, owing to its grounding in the physical
laws rather than specific dataset artifacts. As a result, even
in open-world settings where attackers use previously unseen
styles or prompt variations, the model continues to detect
inconsistencies arising from non-physical generation.

In summary, Light2Lie remains robust against a range of
adaptive strategies an adversary may realistically deploy.

VIII. RELATED WORKS
A. Frequency-Domain Analysis

Early forensic methods and several modern detectors have
explored the frequency domain to reveal manipulation ar-
tifacts. Frank et al. [10] proposed GANDCT, a statistical
learning method which uses handcrafted DCT-based frequency
features to identify GAN-generated images. Guo et al. [16]]
presented two statistical fake colorization detectors, one of
which (FCID-FE) uses frequency-domain features encoded via
Fisher vectors. Sabitha et al. [44] proposed EMFID, a hybrid
model that integrates discrete wavelet transform (DWT) on
CNNs. Martin-Rodriguez et al. [28] fused traditional forensic
signals such as Photo Response Non-Uniformity (PRNU) and
Error Level Analysis (ELA) with deep CNNs. Ojha et al. [31]]
analyzed the frequency spectra of various fake image distribu-
tions, showing that GAN-generated images exhibit distinct pe-
riodic patterns, while diffusion models do not. Similarly, Zhao
et al. [61] introduced a deepfake detection framework with a
textural feature enhancement module focused on shallow-layer
features, which are sensitive to frequency-level discrepancies.

More recently, Yan et al. [S9] proposed AIDE, which selects
image patches with extreme frequency content using a DCT-
based scoring module, extracts noise patterns with SRM filters,
and fuses these with semantic embeddings from OpenCLIP.
This hybrid design leverages both fine-grained artifacts and
high-level contextual cues to improve detection robustness.

B. Spatial and Statistical Features

Before the deep learning era, traditional forensic meth-
ods relied on pixel-level inconsistencies, residual statistics,
and hand-crafted features. Techniques like resampling detec-
tion [32], JPEG quantization and double compression analy-
sis [2l], [11], and scene lighting inconsistency detection [30Q]
formed the backbone of early digital image forensics. More
recent approaches include JPEG dimple detection [1], co-
occurrence-based tampering localization [S], and histogram-
based color statistics [16]. With the emergence of deep
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learning, particularly Convolutional Neural Networks (CNNs),
image forensics has shifted from handcrafted feature extraction
and statistical methods to data-driven representation learning.
Rao and Ni [36] introduced one of the earliest CNN-based
models where the first layer was initialized with spatial-rich
model (SRM) high-pass filters to emphasize manipulation
traces while suppressing content. Cozzolino et al. [6] proposed
ForensicTransfer, an autoencoder that operates on high-pass
residuals and separates latent subspaces for real and fake dis-
tributions, improving generalization under weak supervision.
Rossler et al. [43] released the FaceForensics++ dataset and
baseline CNNs based on XceptionNet, which detect subtle
pixel-space manipulation patterns across multiple face-editing
techniques. Martin-Rodriguez et al. [28] also rely heavily on
spatial forensic cues.

These methods, while effective under specific settings, of-
ten show limited robustness to unseen generative models or
sophisticated forgeries due to overfitting to dataset-specific
statistics.

C. Transformer-Based and Ensemble Classifiers

To improve generalization and modeling capacity, recent
works have adopted transformer-based architectures or hybrid
ensembles. Weir et al. [S7] proposed a CNN/ViT+Attention
ensemble model, integrating local CNN features with ViT [§]]
representations and attention modules. Trained on CIFAKE,
their model achieved 99.77% accuracy on Stable Diffusion-
generated images, significantly outperforming individual CNN
or ViT variants. Sha et al. [47] proposed DE-FAKE, a hybrid
CLIP-based detector and attributor for fake images gener-
ated by text-to-image models. Their approach fuses image
and prompt embeddings, enabling both detection and source
attribution with generalization across models like Stable Dif-
fusion, DALLE-2, and GLIDE. Wang et al. [53]] introduced
ObjectFormer, a multimodal transformer that combines RGB
and high-frequency features with learnable object prototypes.
Using cross-attention, it models object-level consistency and
refines patch embeddings, enabling effective detection and
localization of manipulated regions.

IX. CONCLUSION

In this work, we presented Light2Lie, a physics-augmented
deepfake detection framework that leverages the fundamental
principles of light reflection to distinguish between real and
Al-generated images. By estimating a physically meaningful
specular reflectance score, we introduced a novel way to
incorporate real-world optical artifacts into the training and
inference of a deep learning model. Our experiments demon-
strate that Light2Lie achieves strong performance, particularly
in generalizing to unseen generative models and resisting
adversarial perturbations.
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APPENDIX
A. Generalization performance

Inference after Fine-Tuning: We considered the case where
the models were first fine-tuned on a train partition of the
DreamStudio dataset before evaluating their performance on
the same test partition used in Table

Since vision-language models (VLMs) require paired
image-text data for fine-tuning, we could not fine-tune
Qwen2.5-VL [54] and Llama-3.2 [15], as the DreamStudio
dataset only contains some caption information used to gen-
erate the fake sample; while the real data lacks accompanying
textual descriptions.

As presented in Table fine-tuning DE-FAKE [47]] re-
sulted in a shift where the model greatly increased its claim
of real, therefore greatly increasing the TNR, which produced
an imbalance that is visible on the F1 score.

UFID [31] benefited from fine-tuning, albeit to a lesser
extent. While its TNRs remained high, the TPRs saw modest
gains, with the highest being 44.60% in the Disaster category.
The limited improvement in TPRs suggests that UFID’s archi-
tecture may be less flexible in adapting to new data, potentially
due to its initial design or training constraints.

AIDE [59]] also showed improvements after fine-tuning,
achieving balanced gains across all categories with F1 scores
of 74.13% on Art and 71.54% on Disaster.

ObjectFormer [53]] exhibited smaller but consistent improve-
ments, such as 58.81% on Pixiv and 60.78% on News. But it
maintained an overall low F1 score value.

Lastly, GANDCT [10] was unable to correctly differentiate
between the overall features of real and generated images.
Resulting and high TPR but very low TNR, suggesting that
the model is classifying most of the sample as fake.

Notably, or proposed method Light2Lie, demonstrated su-
perior performance even after fine-tuning. It achieved the high-
est TPRs across all categories, with values such as 90.40% in
Art and 88.24% in Instagram. Although its TNRs were slightly
lower than DE-FAKE’s, they remained robust, contributing to
the highest F1 scores among all methods. This indicates that
Light2Lie not only effectively identifies fake images but also
maintains a commendable rate of correctly recognizing real
images, ensuring a balanced and reliable detection system.

In summary, while fine-tuning enhances the performance
of existing detectors, Light2Lie consistently outperforms both
DE-FAKE and UFID in detecting Al-generated images across
diverse categories.
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https://www.nytimes.com/2021/11/21/technology/deepfake-videos.html

TABLE VI: Comparison of Light2Lie with DE-FAKE [47]
and Universal Fake Image Detector [31]] on the OOD Dream-
Studio’s test partition [48]. All approaches fine-tuned on
DreamStudio’s training data. All values in percentage.

Method | Metric | Art | Disaster | Instagram | News | Pixiv

TPR |50.04| 57.46 40.63 56.82 | 49.25
DE-FAKE [47] TNR |96.96 | 95.87 92.97 90.24 | 82.73
Fl1 6541 | 71.02 65.76 72.06 | 52.43

TPR |27.20| 44.60 31.20 27.00 | 19.60
UFID [31] TNR |92.20 | 93.30 97.70 98.10 | 98.20
F1 |40.57| 58.81 46.70 41.85 |32.27

TPR |7521| 72.02 61.72 64.16 | 59.04

AIDE [59] TNR | 7231 | 70.67 75.93 68.21 | 65.60
Fl1 74.13 | T71.54 63.05 65.48 | 61.04
TPR |51.68 | 55.11 56.23 59.56 | 62.24

ObjFormer [53] | TNR |57.87| 50.11 60.33 61.72 | 55.69
F1 54.11| 51.82 58.42 60.78 | 58.81

TPR |94.67| 92.89 11.54 98.73 | 95.81
GANDCT [10] TNR | 13.27 | 22.90 37.25 12.56 | 17.35
Fl |65.17| 62.72 12.99 64.90 | 63.99

TPR |90.40 | 90.20 88.24 87.56 | 83.36
Light2Lie TNR |87.84| 77.68 71.40 67.00 | 64.48
F1 |89.00| 82.87 77.96 74.68 | 71.20
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