
OCCUPY+PROBE: Cross-Privilege Branch Target
Buffer Side-Channel Attacks at Instruction

Granularity
Kaiyuan Rong∗‡, Junqi Fang∗‡, Haixia Wang††, Dapeng Ju∗‡, and Dongsheng Wang∗‡

∗Department of Computer Science and Technology, Tsinghua University
†Beijing National Research Center for Information Science and Technology, Tsinghua University

‡Zhongguancun Laboratory
{rky22, fangjq24}@mails.tsinghua.edu.cn, {hx-wang, judapeng, wds}@tsinghua.edu.cn

Abstract—In recent years, the Branch Target Buffer (BTB)
has raised significant concerns in system security research. As
this component is logically or physically shared in certain attack
scenarios, it is abused by adversaries to construct side-channels
that leak sensitive branch information of victim processes.
However, existing BTB side-channel attacks either fail to leak
kernel control-flow information from user mode due to the cross-
privilege isolation mechanism, or suffer from limited spatial
resolution in branch monitoring.

In this paper, we propose OCCUPY+PROBE, a novel eviction-
based BTB side-channel attack that bridges these gaps by
successfully exposing kernel control-flow behaviors directly from
user mode. Our approach begins with an in-depth reverse
engineering of the offset-related BTB update mechanism on Intel
processors, and reveals that BTB entries created in user mode
can be directly replaced by kernel-mode entries, irrespective of the
underlying replacement policy and the hardware isolation, which
forms the foundation of OCCUPY+PROBE. In contrast to existing
BTB side-channel attacks, OCCUPY+PROBE eliminates the need
for entry sharing between the attacker and the victim. Moreover,
it achieves instruction-level granularity in branch monitoring,
surpassing the spatial resolution of existing eviction-based BTB
side-channels.

We experimentally demonstrate that OCCUPY+PROBE can
leak control-flow information across privilege boundaries with
high spatial resolution on various Intel processors. Further-
more, we validate the practical effectiveness of OCCUPY+PROBE
through a detailed case study targeting the Linux Kernel Crypto
API, showcasing its potential to compromise critical kernel oper-
ations. Additionally, compared to prior eviction-based BTB side-
channels, OCCUPY+PROBE demonstrates a unique capability to
extract tag values of kernel branches, which can be exploited to
break KASLR.

†Corresponding author.

I. INTRODUCTION

In the past decade, microarchitectural attacks [7], [11], [15],
[16], [21], [24], [26]–[28], [39], [47], [48], [50], [52], [54]
targeting the Branch Prediction Unit (BPU) have emerged in
rapid succession. These works either analyze publicly known
microarchitectural components to identify security vulnerabil-
ities and construct attacks, or perform reverse engineering on
undocumented components to uncover their internal mech-
anisms and microarchitectural behaviors, thereby exposing
potential security risks. Microarchitectural threats stemming
from branch prediction logic can be broadly classified into
side-channel attacks [1]–[3], [15], [16], [21], [27], [50], [52],
[54] and transient execution attacks [7], [11], [24], [26], [47],
[48], [53], both of which present serious risks to processor
security.

The Branch Target Buffer (BTB) is one of the most exten-
sively studied components within the BPU, and its observable
behavior caused by branch mispredictions can be exploited to
construct side-channel attacks [1]–[3], [15], [27], [52], [54].
These attacks demonstrate the capability to leak control-flow
information across processes [1]–[3], [15], [52], [54], across
privilege boundaries [15], [54], and even across Intel SGX
enclaves [27], [52], [54]. Furthermore, several studies [27],
[41], [53], [54] conduct in-depth reverse-engineering of BTB
structures, revealing detailed design information of BTBs in
modern processors. These findings both support and enhance
the effectiveness of BTB-based side-channel attacks.

However, existing BTB side-channel attacks face limitations
when applied to cross-privilege scenarios on Intel proces-
sors. Due to the hardware isolation mechanism introduced
starting with the 11th-generation Intel Core processors (cf.
Section III-A), attacks that rely on accessing victim BTB
entries [15], [27], [52], [54] can no longer leak the execution
of kernel branches from user mode. Others exploiting BTB
evictions to leak the control-flow [1]–[3], [54] suffer from
limited spatial resolution, as they only allow observation at the
granularity of BTB sets. That is, they can infer the presence
of branch execution within a set, but are unable to attribute

Network and Distributed System Security (NDSS) Symposium 2026 
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.230925
www.ndss-symposium.org



it to a specific branch instruction. This lack of instruction-
level granularity introduces ambiguity when multiple branch
instructions map to the same BTB set, making it infeasible to
accurately determine which specific branch has been executed.
Consequently, such attacks cannot reliably infer fine-grained
control-flow information, which may be critical for recovering
sensitive data or understanding victim behavior. These limita-
tions pose significant challenges to constructing an effective
cross-privilege BTB side-channel attack.

In this paper, we propose OCCUPY+PROBE, a novel cross-
privilege and eviction-based BTB side-channel attack that
successfully overcomes the challenges mentioned earlier. Our
experiments demonstrate that OCCUPY+PROBE can leak ker-
nel branch execution outcomes from user mode, even on
processors equipped with hardware isolation that prevents
user programs from accessing kernel BTB entries. Further-
more, OCCUPY+PROBE achieves instruction-level granularity,
matching the theoretical maximum spatial resolution of BTB
side-channel attacks. In addition, unlike existing eviction-
based attacks, OCCUPY+PROBE can extract the tag values of
BTB entries, enabling a reliable KASLR break on Intel Core
i7-11700K processors.

To construct OCCUPY+PROBE, we conduct an in-depth
reverse engineering of the offset-related BTB update mech-
anism, focusing on how the BTB is updated based on the
offset values of its entries, a previously unexplored behavior
in the literature. Before conducting our experiments, we first
replicate the prior work [54] to obtain fundamental details
of the BTB structures on our target processors. Table I
summarizes key characteristics of the BTB across several
Intel Core generations, from the 9th to the 14th, which serve
as the foundation for our reverse engineering analysis. We
then delve into the offset-related BTB update mechanism and
find that the BTB uses the address of the last byte within
branch instructions for indexing, and employs four distinct
update mechanisms, each dependent on the offset values of
BTB entries. Furthermore, we analyze the update behavior
across different execution domains and uncover that entries
created in user mode can be directly replaced by those from
kernel mode, regardless of the underlying replacement policy
or hardware isolation. This property is the core insight that
enables OCCUPY+PROBE.

To demonstrate the practical impact of OCCUPY+PROBE,
we launch an end-to-end attack in a real-world scenario, tar-
geting the leakage of a private RSA key used during decryption
within the Linux Kernel Crypto API [31]. To achieve this, we
design an attack model that repeatedly interrupts the decryp-
tion process, allowing us to observe the execution outcomes of
secret-dependent branches across iterations and thereby enable
key recovery. Our experimental results show that the recovered
secret bits achieve an accuracy of 98%. Finally, we discuss
potential defenses against OCCUPY+PROBE.
Contributions. In summary, this work makes the following
contributions:

• We conduct an in-depth reverse engineering of the offset-
related BTB update mechanism on Intel processors,

Instruction Address

tag index offset

tag offset target

tag? offset?

Mux

...

Predicted Target
Address

...

...

...
...

...

tag? offset? tag? offset?

Branch Target Buffer

Fig. 1. The BTB structure and branch prediction logic.

uncovering four distinct update mechanisms and their
behaviors across different execution domains.

• We propose OCCUPY+PROBE, a novel cross-privilege,
eviction-based BTB side-channel attack that succeeds on
BTB-hardened processors and achieves instruction-level
spatial resolution.

• We demonstrate the practicality of OCCUPY+PROBE
through an end-to-end attack on the RSA algorithm im-
plemented in the Linux Kernel Crypto API, successfully
recovering the private key with 98% accuracy.

Responsible Disclosure. We reported our findings to Intel
on April 18, 2025. Intel confirmed our findings, and stated
that the underlying attack scenario can be addressed by their
existing side-channel guidance1 and no additional mitigations
are necessary.
Availability. The experiments and proof-of-concept imple-
mentations of this paper are available at https://github.com/
CPU-Security/Occupy Probe.

II. BACKGROUND

A. Branch Target Buffer

BTB Structure. In modern processors, the Branch Target
Buffer (BTB) [20], [41], [54] is a key component of the Branch
Prediction Unit (BPU), recording executed branch instructions
to assist in predicting future control flow. Figure 1 illustrates
the basic structure of a typical set-associative BTB. The virtual
address of a branch instruction is used to generate the BTB
index, tag, and offset. The index determines the BTB set,
while the tag, offset, lower bits of the target address, and other
branch-related information are stored in the BTB entry. During
the prediction phase, the tag and offset of the instruction
address are compared with those of all entries in the BTB
set identified by the index, to determine whether any entry
matches the instruction. The matching entry is used to predict
the target address by concatenating the target recorded in the
entry with the higher bits of the branch address. Additionally,
NIGHTVISION [52] reveals that the BTB selects the entry
with the smallest offset among those whose index and tag
match and whose offset is no less than the PC offset.

1https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/secure-coding/
security-best-practices-side-channel-resistance.html

2

https://github.com/CPU-Security/Occupy_Probe
https://github.com/CPU-Security/Occupy_Probe
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/security-best-practices-side-channel-resistance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/security-best-practices-side-channel-resistance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/security-best-practices-side-channel-resistance.html


TABLE I
BTB DETAILS OF VARIOUS INTEL CORE CPUS.

Model i7-9700 i9-10850K i7-11700K
i7-12700K (P-core)
i9-13900K (P-core)
i9-14900K (P-core)

i7-12700K (E-core)
i9-13900K (E-core)
i9-14900K (E-core)

µarch Coffee Lake Comet Lake Rocket Lake Raptor (Golden) Cove Gracemont
Index [13:5] [13:5] [13:5] [14:5] [14:5]
Tag [29:22] ⊕ [21:14] [29:22] ⊕ [21:14] [33:24] ⊕ [23:14] [23:15] [24:15]
Offset [4:0] [4:0] [4:0] [4:0] [4:0]
Associativity 4+4 (Short+Long)1 4+4 6+4 12 5
Target 10 / 32 LSB2 10 / 32 LSB 12 / 32 LSB 32 LSB 32 LSB
1 Short+Long means the number of short ways and long ways.
2 LSB means the Least Significant Bits.

Explored BTB Mechanisms. Prior research [15], [27], [39],
[48], [52]–[54] has revealed various characteristics of the BTB,
which we classify into two categories: prediction and update.
Regarding prediction behaviors, branches colliding in the BTB
can share the same branch prediction. Specifically, the BTB
uses a subset of instruction address bits for indexing. There-
fore, branch instructions with the same lower address bits can
use each other’s BTB entries for branch prediction. Moreover,
there are observable effects for mispredictions, for example,
through timing measurements [15], covert channels [39], [48],
instruction prefetching [54] (or speculative fetch [48]), and
some hardware features [27].

For update behaviors, when inserting a new entry, if no
entry in the corresponding BTB set has the same tag as
the new entry, a candidate entry is evicted based on the
replacement policy to insert the new one [54]. However, in
cases where an entry with a matching tag already exists, the
BTB’s update strategy remains unexplored in the academic
literature. Our findings reveal that the BTB employs different
update mechanisms based on the offsets between existing
and new branches, with these mechanisms varying across
execution domains, as discussed in Section IV. We refer to
this mechanism as the offset-related BTB update mechanism.

B. BTB Side-Channel Attacks

Many studies [1]–[3], [15], [27], [52], [54] on the BTB
have leveraged their findings to construct BTB-based side-
channel attacks. One purpose of these attacks is to check
whether a specific victim branch is executed or taken. Prior
works motivated by this reason can be categorized into access-
based and eviction-based attacks, analogous in principle to the
FLUSH+RELOAD [49] and PRIME+PROBE [32], [38] cache
side-channel attacks, respectively.
Access-based. In access-based attacks [15], [27], [52], [54],
the attacker executes their own branch instruction colliding
with the victim branch in the BTB, and observes the prediction
result to determine whether a victim entry was created after the
victim execution. For instance, Branch Shadowing [27] uses
a shadow branch, whose least significant bits match those of
the enclave branch to probe the BTB state after the enclave
executes, thereby inferring the control flow of the enclave.
BunnyHop-Reload [54] employs a similar strategy but replaces

timing measurements with instruction prefetch to obtain the
BTB state. JumpOverASLR [15] leverages BTB collisions to
infer whether the guessed address matches the address of a
specific victim branch, enabling breaking (K)ASLR. 2

Eviction-based. Another type of attack [1]–[3], [54] is
eviction-based, which abuses BTB eviction to infer victim
branch execution. In particular, the attacker first primes an
entire BTB set, and then the executed victim branch can evict
a primed entry of the attacker, which can be observed by the
attacker if those branches are mapped to the same BTB set.
Onur Acıiççmez et al. [1]–[3] proposed a technique that primes
an entire BTB set and measures execution time to determine
whether a victim branch mapped to the same set has evicted
a primed branch. BunnyHop-Probe [54] improves upon this
approach by narrowing the probing scope to a single candidate
branch within the prime set, which is strategically chosen
for eviction based on the replacement policy, allowing the
attacker to detect victim branch execution more efficiently. We
generally refer to this type of attack as BTB PRIME+PROBE
attack.

C. Instruction Prefetch

Prior research has demonstrated that the memory line of
a BTB-predicted target is loaded into the instruction cache
(I-Cache), either via instruction prefetch [54] or speculative
fetch [48]. Based on this insight, the BTB state can be
transferred into the I-Cache state, allowing it to be probed
using the FLUSH+RELOAD technique [49]. As illustrated
in Figure 2, Train and Probe collide in the BTB (e.g.
sharing lower address bits). After invoking Train, which
inserts a corresponding entry in the BTB, the execution of
Probe will trigger the prefetch of Predict into I-Cache,
as Predict is the predicted target address generated by
the BTB. In this paper, we utilize this mechanism to extract
the BTB prediction result. Unlike traditional approaches that
rely on timing measurements or other hardware features to
observe branch mispredictions, this method provides a direct
and efficient way to retrieve predicted targets and verify pre-
trained BTB entries.

2Some studies [18], [54], [55] classify JumpOverASLR as an eviction-based
attack. In this work, we conduct a thorough analysis based on our findings and
ultimately conclude that it is an access-based attack, as discussed in Section
IV-E.

3



Train: jmp Target
...
Target(Train+0x678): ret

Probe: ret
...
Predict(Probe+0x678): nop

aliased

Fig. 2. Code that contains two branches colliding in the BTB. The Probe
branch can use the prediction of Train, causing Predict being prefetched
into I-Cache.

9 10 11 12(P) 12(E) 13(P) 13(E) 14(P) 14(E)
Intel Core Generation

0
2
4
6
8

10

Cy
cle

s 6.9 6.4

0.4 -0.1 -0.1 -0.2 -0.2 -0.2 0.1 0.0

0.5

1.0

Pr
ef

et
ch

in
g 

ra
tePrefetching rate

Absolute time difference

Fig. 3. Cross-privilege BTB sharing across Intel Core generations. Bars show
user branch timing differences with and without kernel branch pre-training;
values above indicate exact differences.

III. OVERVIEW OF OCCUPY+PROBE

A. Motivation

As described in Section II-B, existing BTB side-channel
attacks can be divided into access-based and eviction-based
attacks. However, the two types of attacks have obvious
drawbacks under the cross-privilege scenario. Access-based
attacks heavily rely on the property that the BTB is logically
shared between the attacker and the victim, meaning that the
attacker is capable to use BTB entries created by the victim
for branch prediction. Unfortunately, our experimental results
indicate that starting from the 11th generation of Intel Core
processors, user programs are prevented from utilizing kernel
BTB entries for branch prediction.

We confirm this finding with an experiment performed
on the processors listed in Table I. In this experiment, we
construct a user branch and a kernel branch that collide in
the BTB, and examine the branch prediction behavior using
timing measurements [15] and instruction prefetching [54],
respectively. For the timing test, the jump lengths of the two
branches are identical. The experiment measures the execution
time of the user branch after executing the kernel branch and
without executing the kernel branch, respectively, and the time
difference is presented in the bar chart in Figure 3. For the
prefetching test, we measure, after executing the kernel branch,
whether the execution of the user branch would trigger the
prefetching of the predicted address. The prefetching rate is
shown as a line chart in Figure 3.

According to the results, on 9th and 10th generation proces-
sors, the execution time of the user branch is approximately 7
cycles faster after executing the kernel branch, and prefetch-
ing is observed. However, this behavior is not observed on
processors from the 11th generation onward. This proves that
access-based attacks can no longer leak the execution of kernel
branches from user mode.

For eviction-based attacks, the spatial resolution is relatively
low, as it can only determine whether a victim branch has
been executed within a BTB set. It cannot reveal finer details,

① Occupy phase (user mode)

BTB

② Victim execution (kernel mode)

je is taken je is not taken

③ Probe phase (user mode)

BTB miss BTB hit

<Occupy branch>
0x12345678: jmp Target
0x1234567d: …

<Target>
0x12345e00: ret

0xffffffff12345678: cmpb $0, secret
0xffffffff1234567b: je Do_something
0xffffffff1234567d: …

<Probe branch>
0x101234567c: ret
0x101234567d: …

<Predicted Target>
0x1012345e00: nop

Fig. 4. The workflow of OCCUPY+PROBE.

such as which specific branch instruction within a 32-byte-
aligned code block was executed. Moreover, these attacks are
unable to infer the tag value of the victim branch since eviction
is triggered solely based on index matches. Eviction-based
attacks are also relatively inefficient, as they require executing
a number of branches equal to the BTB’s associativity to
induce eviction.

To address the above limitations of existing BTB side-
channel attacks, we propose a novel BTB side-channel that
successfully leaks kernel branch information from user mode
at instruction granularity. The workflow of this attack is
introduced in Section III-C.

B. Threat Model

We consider an attack scenario in which the attacker op-
erates in user mode while the victim runs in kernel mode.
Both attacker and victim threads execute on the same logical
core. On 12th–14th generation Intel Core processors, the two
threads specifically run on a performance core, a prerequisite
for our proposed attack. The attacker can execute arbitrary
unprivileged code on the system, with all hardware mitigations
against Spectre-v2 [7], [24] (e.g., Indirect Branch Restricted
Speculation (IBRS) [14] and Single Thread Indirect Branch
Predictors (STIBP) [14]) enabled on the processor. In addition,
the attacker can execute the victim code multiple times, for
example, via system calls. Similar to previous BTB side-
channel attacks, we assume the victim program contains a
branch dependent on a secret, with the virtual address of this
branch known to the attacker. The objective of the attacker is
to determine whether the branch is taken, thereby inferring the
secret value.

C. Workflow

In this paper, we propose OCCUPY+PROBE, a cross-
privilege and eviction-based BTB side-channel attack based
on our findings, which are detailed in Section IV. Figure 4
shows the workflow of OCCUPY+PROBE, containing three
main steps:

1) Occupy Phase: The attacker constructs an occupy branch
whose address is carefully chosen based on the target
victim branch’s address. By executing this single branch,
the attacker inserts a corresponding entry into the BTB.

2) Victim Execution: The victim process runs, executing
the target branch, which may alter the state of the BTB
entry established during the occupy phase.

3) Probe Phase: The attacker then probes the previously
inserted BTB entry using an aliased branch to infer the

4



execution of the victim branch: (a) If the victim branch
is taken, it directly replaces the occupy branch, bypassing
the usual replacement policy and hardware isolation. This
replacement behavior is explained in detail in Section IV.
(b) If the victim branch is not taken, no replacement
occurs, and the occupy branch remains, allowing the
attacker to hit it.

In summary, if the victim branch is secret-dependent, its
execution outcome is leaked via OCCUPY+PROBE, allowing
the secret to be recovered by the attacker. In Section IV, we
investigate the offset-related BTB update mechanism to sup-
port OCCUPY+PROBE, and then evaluate OCCUPY+PROBE in
the subsequent sections.

IV. OFFSET-RELATED BTB UPDATE MECHANISM

In this section, we present our investigation into the offset-
related BTB update mechanism. More specifically, we aim to
address the following question:

When the BTB already contains an entry with the
same index and tag as a newly executed branch, how
does the BTB update its contents based on the offsets
of the two entries?

To answer this question, we first determine the address
of which byte in the branch instruction the BTB uses for
indexing (Section IV-A). We then evaluate the validity of the
two branches (i.e., the existing branch and the newly executed
branch) in the BTB after the offset-related update mechanism
by testing different offset pairs (Section IV-B). Next, in Section
IV-C, we measure the number of entries affected by the offset-
related update mechanism in the same BTB set to infer its
underlying update behavior. We also investigate the offset-
related update mechanism across different execution domains
(Section IV-D). Finally, in Section IV-E, we revisit and analyze
the root cause of JumpOverASLR [15] based on our findings,
as this sheds light on the fundamental differences between
their approach and our proposed attack.
HW/SW configurations. All experiments described in Sec-
tion (IV-A)–(IV-D) are conducted on Intel processors listed
in Table I, running Ubuntu 20.04 or 22.04. All hardware
mitigations against Spectre-v2 [7], [24] are enabled on these
processors.

A. BTB Indexing Address

The initial question we aim to address is the specific byte
within a branch instruction from which the offset field is
sourced. Previous studies [15], [27], [28], [41], [53], [54] have
established that the BTB indexing function uses the instruction
address of a branch as input, and the offset field of a BTB entry
records the least significant 5 bits of the address (see Table I).
However, most branch instructions comprise multiple bytes,
each of which has its own memory address. Therefore, we
need to investigate which specific address is used for indexing
and being recorded in the offset field.
Experiment setup. To this end, we conduct an experiment,
as illustrated in Figure 5. We create a Train branch of a

Train: # index=tag=0
  .align 32
  nop ... nop; # X nops
  jmp T1;
T1:
  ret

Probe: # index=tag=0
  .align 32
  nop ... nop; # X nops
  ret;
T2: # prediction
  nop

Evict_n: .align 32  # n=0..15, index=0, tag=n+1
         nop ... nop; # Y nops
         ret;

for (i = 0; i < 100; ++i) {
// 1. insert a BTB entry
  Train();
// 2. attempt eviction of Train
  for (j = 0; j < 50; ++j) {
    k = rand() % 16; Evict_k(); 
  }
// 3. probe the entry of Train
  clflush(T2); Probe();
  if (cache_miss(T2)) {
    evict_num += 1;
  }
}

(last byte)

Fig. 5. The experimental design and result for exploring the BTB indexing
address.

direct jump instruction (5-byte length), and position it across
a 32-byte memory boundary by inserting x nops before the
jmp instruction (i.e. 28 ≤ x ≤ 31), in which case addresses
of different bytes can be mapped to two different BTB sets.

Next, we create 16 Evict branches that collide with a
specific byte of the Train branch in one BTB set, based on
the value y (x ≤ y ≤ x+ 4). All Evict branches are return
instructions, as a return instruction is only 1 byte in length,
allowing us to determine which BTB set they are mapped to.
The key point of this experiment is that when these Evict
branches and the Train branch are mapped to the same set,
these branches can successfully evict the Train branch after
their executions, helping us determine whether the specific
byte in the Train branch is a possible indexing byte.

In each run, we insert the Train entry, execute all Evict
branches multiple times, and finally probe with an aliasing
branch to check if Train was evicted. This process is
repeated 100 times to compute the eviction rate.
Result. The result shows that for Train branches crossing a
32-byte boundary, only the eviction set corresponding to the
last byte of the Train branch always evicts it. This result
indicates that the BTB uses the last byte of each branch
instruction for indexing, which is consistent with the Intel
patent [20], and the offset field records the least significant
5 bits of the address of this byte.

Observation 1. The BTB is indexed with the address
of the last byte of each branch instruction.

B. Observing Valid State of Entries after BTB Update

As mentioned earlier, when the index and tag of a newly
executed branch match those of an existing entry in the BTB,
the BTB is updated based on their offsets. We refer to the

5



1 void *Texist; // Addr: (0x1 << 36) + 0xc - 4
2 // jump to ((0x1 << 36) + 0x600)
3 void *Tnew; // Addr: (0x2 << 36) + 0xf - 4
4 // jump to ((0x2 << 36) + 0xc00)
5 void *Pexist; // Addr: (0x3 << 36) + 0xc
6 void *Pnew; // Addr: (0x3 << 36) + 0xf
7 void *pred_exist; // Addr: (0x3 << 36) + 0x600
8 void *pred_new; // Addr: (0x3 << 36) + 0xc00
9 inline void mfence_delay(int loop_num) {

10 asm volatile("mfence");
11 for (int z = 0; z < loop_num; ++z) {
12 asm volatile("nop");
13 }
14 }
15 double get_hit_rate(void *probe, void *probe_addr) {
16 int count = 0;
17 for (int i = 0; i < TOTAL; ++i) {
18 flush_BTB();
19 clflush(probe_addr);
20 mfence_delay(1000);
21 // execute Texist and Tnew
22 ((void (*)())Texist)(); mfence_delay(1000);
23 ((void (*)())Tnew)(); mfence_delay(1000);
24 // probe the valid state
25 ((void (*)())probe)(); mfence_delay(1000);
26 if (cache_hit(probe_addr)) { count += 1; }
27 }
28 return 1.0f * count / TOTAL;
29 }
30 Texist_state = get_hit_rate(Pexist, pred_exist);
31 Tnew_state = get_hit_rate(Pnew, pred_new);

Listing 1. Code that observes the valid states of the existing entry (Texist )
and the new entry (Tnew ). The offsets of the two branches are 0xc and 0xf.

existing branch as Texist and the newly executed branch as
Tnew in the following sections. In this section, we test whether
the two branches remain valid after the BTB updates, using
the C code in Listing 1.

In Listing 1, Line 1 and 3 generate two direct jump in-
structions, Texist and Tnew, at aligned base addresses with
different offsets (0xc and 0xf) and jump lengths (0x600
and 0xc00). They represent Texist and Tnew , respectively.
The BTB uses the address of the last byte within branch
instructions for indexing (see Section IV-A). Therefore, the
addresses of Texist and Tnew should be reduced by four
relative to their offsets, as the direct jump instruction is 5
bytes in length. Moreover, we create two return instructions
(Pexist and Pnew) in Line 5-6, aligned with Texist
and Tnew, to probe the validity of their BTB entries via
get_hit_rate (Line 30-31). Their predicted targets are
pred_exist and pred_new.

For each test in get_hit_rate (Line 18-26), the BTB
is flushed using an eviction set (Line 18). Then, in Line 22,
Texist is executed first to establish the initial BTB state,
ensuring an entry already exists in the BTB set. In Line 23, we
invoke Tnew to introduce a new entry into the BTB, triggering
an update mechanism between the two entries. Finally, we call
probe in Line 25, and observe whether the predicted target
(probe_addr) is fetched into I-Cache to check the valid
state of the tested BTB entry.

We insert mfence_delay() to delay subsequent oper-
ations between these code segments, ensuring that the exe-
cuted branch is added to the BTB. Additionally, this ensures
a consistent branch history for each indirect call, avoiding

0 4 8 16 24

0

8

16

24

(a)

9th-11th, 12th-14th(E)

0 8 16 24
(b)

12th-14th(P)

0.0
0.2
0.4
0.6
0.8
1.0

Th
e 

hi
t r

at
e 

of
 Te

xi
st

The offset of Tnew

Th
e 

of
fs

et
 o

f T
ex

ist

Fig. 6. The hit rate of Texist after sequentially executing Texist and Tnew

with varying offset pairs. In (b), cells with red borders indicate offset pairs
with the pseudo-overlapping collision.

mispredictions during each loop execution and thus preventing
interference with the experimental results [39].

We enumerate the offsets of Texist and Tnew within the
range of 0 to 31 and measure the hit rates of the corresponding
two entries, demonstrating their validity in the BTB. Figure 6
and 7 illustrate the results.
Validity of Texist . On all processors, the execution of Tnew

can cause Texist to become invalid in the BTB when placed
at certain positions (refer to Figure 6). For each offset value
of Texist , there are always five consecutive offset values of
Tnew that can invalidate Texist (i.e. Figure 6(a)). In particular,
if an address of any byte within Tnew instruction collides with
the existing entry (i.e., have the same index, tag, and offset),
the existing entry is invalidated. Therefore, we infer that the
existing entry will be invalidated if the newly executed branch
instruction overlaps it in the BTB. To further validate this, we
repeat the experiment using 2-byte jmp instructions for Tnew

and obtain consistent results. We define this as overlapping
collision.

Additionally, on the performance cores of Intel 12th–14th
generation Core processors, we observe an additional behavior
(refer to Figure 6(b)): when the offset of Texist , denoted as k,
is odd, it can be invalidated by Tnew with an offset of k − 1,
even though this offset pair does not indicate the overlapping
collision. We refer to this as pseudo-overlapping collision.
Validity of Tnew . For Tnew (refer to Figure 7), almost all
offset pairs indicate that Tnew is valid after its execution. On
performance cores, however, Tnew will not be valid when
meeting the pseudo-overlapping collision (i.e. Figure 7(b)).
And on efficient cores, Tnew is invalid when it has the same
offset value with Texist (i.e. Figure 7(c)).

Through our results, we conclude that not only can non-
branch instructions deallocate branches in the BTB [52],
branches may also deallocate a BTB entry when their offsets
have the (pseudo) overlapping collision. Meanwhile, newly
executed branches may not be inserted in the BTB, which
relies on the BTB state.

Observation 2. Newly executed branch instructions
can deallocate existing entries at certain offsets and
may not be valid in the BTB.

6



0 8 16 24

0

8

16

24

(a)

9th-11th

0 8 16 24
(b)

12th-14th(P)

0 8 16 24
(c)

12th-14th(E)

0.0

0.2

0.4

0.6

0.8

1.0

Th
e 

hi
t r

at
e 

of
 T

ne
w

The offset of Tnew

Th
e 

of
fs

et
 o

f T
ex

ist

Fig. 7. The hit rate of Tnew after sequentially executing Texist and Tnew

with varying offset pairs.

 Prime one BTB set

P0 P1 ... P11
T0 (offset=x)

T1 (offset=y)

P0 P1 ... P11 ? ? ... P11

 Insert two branches  Count the number of
residual Px entries

evicted entries

Fig. 8. The experimental design for determining the number of entries evicted
by Texist and Tnew . P0-P11 represent entries created by prime branches.
T0 and T1 represent two entries created by Texist and Tnew .

C. Affected Entries during BTB Update

After observing the validity of Texist and Tnew following
BTB updates, we are interested in understanding what actually
happens within a BTB set during the update process. For
example, when the Texist entry is deallocated, is it directly
replaced by the new entry, or is it simply invalidated, after
which the new entry is inserted into the BTB by evicting
another existing entry?

The key distinction between these two mechanisms is that
the latter will affect another existing BTB entry, aside from
the deallocated entry. Building on this, we aim to determine
how many entries are affected when Texist and Tnew are
sequentially executed, in order to discriminate different types
of update logic. We design an experiment, illustrated in
Figure 8, that leverages BTB PRIME+PROBE to measure how
many entries are evicted by the two branches.

We first fill a BTB set with multiple prime branches, each
mapped to the same set with a different tag, and equal in
number to the BTB’s associativity. Subsequently, we invoke
Texist and Tnew with matching indexes and tags to evict a
specific number of prime branches. Afterward, we probe the
BTB set to determine the number of residual prime branches
still present in the BTB. This count reveals how many entries
were evicted by Texist and Tnew .

The key insight of this experiment is that if Tnew directly
replaces Texist , it will result in the eviction of only one
prime branch (i.e., Texist evicts one prime branch, and Tnew

replaces Texist ). Conversely, if Texist is only invalidated but
not evicted from the BTB, Tnew will occupy another entry slot
of an existing entry.

The experimental results are summarized in Figure 9, which
outlines three cases based on the tested processors:

• On Core 9th-11th processors: When Texist and Tnew

share the same offset, only one prime branch is evicted

0 8 16 24

0

8

16

24

(a)

9th-11th

0 8 16 24
(b)

12th-14th(P)

0 8 16 24
(c)

12th-14th(E)

0.0

0.5

1.0

1.5

2.0

2.5

#E
vi

ct
ed

 e
nt

rie
s

The offset of Tnew

Th
e 

of
fs

et
 o

f T
ex

ist

Fig. 9. The average number of evicted prime branches under all offset pairs
of Texist and Tnew . Cells marked with red crosses indicate noise points where
the value exceeds 2.5.

TABLE II
ALL OFFSET-RELATED BTB UPDATE MECHANISMS. COLUMN Texist AND
Tnew SHOW THE VALID STATES IN EACH MECHANISM. #AFFECTED MEANS
THAT THE NUMBER OF AFFECTED ENTRIES AFTER EXECUTING Texist AND

Tnew .

Update Mechanism Texist Tnew #Affected

Direct Replacement (DR) ✗ ✓ 1
Invalidation + Allocation (IA) ✗ ✓ 2
Invalidation (I) ✗ ✗ 1
Allocation (A) ✓ ✓ 2

from the BTB. Conversely, if their offsets differ, two entry
slots are occupied, resulting in the eviction of two prime
branches.

• On Core 12th-14th processors, Raptor (Golden) Cove:
The result on Raptor Cove differs slightly from that
observed on Core 9th–11th generation processors. Apart
from the offsets being equal, if they have the pseudo-
overlapping collision, only one prime branch gets
evicted.

• On Core 12th-14th processors, Gracemont: On Grace-
mont, when the offsets of Texist and Tnew have the
overlapping collision, only one prime branch is evicted;
otherwise, two are evicted.

After obtaining the number of evicted entries for all offset
pairs of Texist and Tnew , combining with their respective valid
states (Figure 6 and 7), we summarize that there are four cases
in the BTB update mechanism (see Table II):

1) Direct Replacement (DR): the existing entry is directly
replaced with the newly executed branch.

2) Invalidation + Allocation (IA): the existing entry is
invalidated, and another BTB entry is allocated for the
newly executed branch.

3) Invalidation (I): the existing entry is invalidated.
4) Allocation (A): the existing entry is unaffected, with the

allocation of a BTB entry for the new branch.

Table III shows the underlying BTB update mechanisms for
different offset patterns.

Observation 3. There are 4 different update mecha-
nisms, depending on the offsets of the two branches.

7



TABLE III
OFFSET-RELATED BTB UPDATE MECHANISMS FOR ALL OFFSET

COLLISIONS ACROSS INTEL CORE GENERATIONS, SHOWING CASES
WHERE Texist AND Tnew ARE FROM THE SAME OR DIFFERENT USER

PROCESSES ON THE SAME LOGICAL CORE.

Offset collision 9-11 12-14(P) 12-14(E)

overlapping (same offset) DR DR I
overlapping (different offset) IA IA DR
pseudo-overlapping A I A
none A A A

D. Cross Different Domains

Through experiments introduced in Section IV-B and IV-C,
we obtain offset-related BTB update mechanisms in a single
user process. In this section, we investigate the update mech-
anism of branches belonging to different execution domains.
Specifically, we create Texist and Tnew in different execution
entities and repeat the two experiments in Section IV-B
and IV-C to observe the underlying BTB update logic. In addi-
tion, we enable all hardware mitigations against the Spectre-v2
attack deployed on all tested processors via Linux default boot
parameters. The following sections introduce five different
scenarios and their experiment results.

1) Same Logical Core (SLC): In this scenario, Texist and
Tnew belong to two user processes running on the same
logical core. The results indicate that the BTB update behav-
ior remains consistent with the findings in Table III, which
presents results from experiments conducted within a single
user process. This result can be strong evidence that the BTB
does not contain the Process Identifier (PID) in entries since
no special update logic exclusively serves for entries belonging
to different processes [28].

2) Simultaneous Multithreading (SMT): When Texist and
Tnew are executed by two sibling threads on the same phys-
ical core, all offset pairs consistently exhibit the Allocation
update mechanism, with exactly two entries being evicted.
This behavior suggests that the BTB is logically isolated but
physically shared between SMT threads, as mutual evictions
can still occur.

3) Cross Physical Core (CPC): When Texist and Tnew are
executed by threads on different physical cores, the Allocation
mechanism still applies, but only a single entry is evicted. This
behavior supports the conclusion that the BTB is physically
isolated across physical cores, with each core maintaining its
own private BTB.

4) Kernel v.s. User (K-U & U-K): These scenarios examine
branch interactions across user and kernel modes. In the K-U
scenario, Texist is a kernel-space branch and Tnew is a user-
space branch, whereas in the U-K scenario, Texist is in user
space and Tnew is from kernel space. All prime branches
are user-space branches in both scenarios. The corresponding
results are presented in Table IV and Table V.

Across all evaluated microarchitectures except Gracemont,
Direct Replacement mechanism is applied when Texist and
Tnew have the same offset, although user branches cannot

TABLE IV
THE OFFSET-RELATED BTB UPDATE MECHANISMS IN THE K-U AND U-K

SCENARIO, EXCEPT ON PERFORMANCE CORES.

Offset collision 9-10
K-U

9-10
U-K 11 12-14(E)

overlapping (same offset) DR DR DR
Aoverlapping (different offset) IA A A

others A A A

TABLE V
THE OFFSET-RELATED BTB UPDATE MECHANISMS IN THE K-U AND U-K

SCENARIO ON PERFORMANCE CORES.

Offset relationship 12-14(P)

same offset DR
same offset[4:1], different offset[0] I
other A

use entries created by kernel branches on some architectures,
according to our experiments in Section III-A. In addition, on
9th-10th Intel Core processors, when offsets have the overlap-
ping conflict, user branches can deallocate kernel branches,
applying Invalidation + Allocation mechanism, but not vice
versa. And on 11th-generation processors, different offsets
point to the Allocation mechanism. On Gracemont, all offset
pairs point to the Allocation mechanism.

On performance cores (as shown in Table V), when Texist

and Tnew share the same offset[4:1] but differ in
offset[0], the BTB applies the Invalidation update mech-
anism. In all other cases, the Allocation mechanism is used.

E. Root Cause of JumpOverASLR

Building on our findings, we analyze the root cause of
JumpOverASLR [15]. JumpOverASLR exploits branch colli-
sions to infer victim branch addresses and successfully breaks
(K)ASLR on Intel Haswell processors. However, this work
did not uncover that the BTB uses the address of the last byte
within the instruction for indexing, and instead aligned branch
instruction addresses to induce collisions. This means that the
underlying BTB update mechanism in this attack implicitly
depends on the instruction length, which determines the last
byte address.

We replicate the experiments described in Section IV-B on
an Intel Core i7-4790 processor (Haswell microarchitecture).
The result shows that when two user branches (or one user
branch and another kernel branch), belonging to the same
logical core, meet the overlapping collision, they can deal-
locate each other, and the user branch can use BTB entries of
another user or kernel branch for prediction. Therefore, in the
attack procedure of JumpOverASLR, if the instruction length
of the attacker’s branch exceeds that of the victim’s branch,
the BTB applies the Allocation mechanism after the execution
of the victim’s branch, and the attacker will use the entry of
the victim’s branch to generate the predicted target due to
the lower offset of the victim’s entry [52]. In this case, the
attacker’s entry remains valid but is not hit by the attacker.

8



Conversely, if the victim’s branch is longer or has the same
length as the attacker’s branch, it can deallocate the entry of
the attacker’s branch, and only the victim’s entry can be used
for prediction. In both cases, the attacker hits the victim’s entry
for branch prediction, which causes the timing slowdown.
Based on these findings, we categorize JumpOverASLR as
an access-based attack.

Furthermore, JumpOverASLR may not succeed in the cross-
privilege scenario on Intel Core processors starting from the
11th generation, where user and kernel branches of different
lengths result in mismatched offsets, thereby preventing BTB
collisions. In contrast, our work thoroughly investigates the
offset-related BTB update mechanism and introduces a deter-
ministic BTB side-channel, as detailed in Section V.

V. EVALUATION OF OCCUPY+PROBE

Based on previous reverse-engineering results, in this sec-
tion, we detail OCCUPY+PROBE, a cross-privilege BTB side-
channel attack that leaks kernel branch information from user
mode, and evaluate it experimentally in the following sections.

A. Experiment Setup

We perform our experiments on processors running the
Ubuntu 20.04 or 22.04 operating system and enable hardware
mitigations against the Spectre-v2 attack. We simulate the
kernel context via a Linux kernel module for each experiment.
We set a conditional branch in the kernel module, and its
condition relies on a secret value. For experiments described
in Section V-B and V-C, the objectives are to leak the con-
dition through OCCUPY+PROBE. In Section V-D, we utilize
OCCUPY+PROBE to leak the address information of kernel
branches to break KASLR.

B. Breaking Hardware Isolation

As described in Section III-C, our approach requires crafting
an occupy branch whose corresponding BTB entry will be
directly replaced if the target kernel branch is executed. Based
on our findings in Section IV-D, BTB entries with identical
index, tag, and offset can replace one another, even when
belonging from different privilege levels. To target a specific
kernel branch, we construct a user-space occupy branch whose
last byte address shares the lowest 36 bits with that of the
kernel branch, as the BTB uses this byte for indexing, thereby
enabling the Direct Replacement update mechanism to be
triggered. By following the workflow illustrated in Figure 4,
we can determine whether the monitored kernel branch has
been executed or taken.

To evaluate the attack performance of OCCUPY+PROBE, we
implement the workflow shown in Figure 4, with the victim
code residing in a Linux kernel module. We randomly generate
1,000 secret bits, each of which is used as the condition
for a conditional jump in the kernel. The kernel branch is
triggered via an ioctl syscall, after which we probe the
validity of the occupy branch to infer the corresponding secret
bit. Figure 10 presents a portion of the results on Intel Core i9-
14900K, showing the access times to the predicted target (i.e.,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Index

0

100

200

300

Cy
cle

s

64

296 296 295 292 283

62

297

61 60 61

298 296 291

61 61

292 292

60 61

cache hit threshold

Access Time of the Predicted Target

Fig. 10. The OCCUPY+PROBE result, showing the access time of
Predicted Target after executing Probe. The secret bits are
10000010111000110011.

if (secret) { // secret-dependent branch
  do_things(..);
  ...
}
Next:

  cmp secret, 0
  jeq Next
/* set parameters */
  call do_things
  ...
Next:

(a) Source Code (b) Assembly

mapped to the same BTB set

Fig. 11. The example code that prevents BTB PRIME+PROBE attacks.

Predicted Target in the probe phase) across iterations.
Low access times indicate that the occupy branch remains
in the BTB due to the prefetching of the predicted target,
implying the kernel branch was not taken (i.e., the secret bit
is one). Conversely, high access times suggest that the kernel
branch was taken, evicting the occupy entry (i.e., the secret
bit is zero). As demonstrated, OCCUPY+PROBE successfully
reveals the execution outcome of the kernel branch, even on
processors equipped with cross-privilege hardware isolation.
The overall attack accuracy on various processors is reported
in the “OCCUPY+PROBE, w/o CDB” column of Table VI,
as the experiment described in this section is part of the
evaluation in Section V-C.

C. High Spatial Resolution

Now we evaluate the spatial resolution of OCCUPY+PROBE.
As described in Section III-A, existing eviction-based BTB
attacks (i.e., BTB PRIME+PROBE attack) [1]–[3], [54] cannot
leak finer execution results in a 32-byte-aligned code block, for
example, which branch instruction is executed. This shortcom-
ing may cause the BTB PRIME+PROBE attack to fail to leak
the secret value. Take the code in Figure 11 as an example. If
the secret value is not zero, the function do_things will be
invoked. From the compiled assembly code, we can discover
that, if the condition jump instruction and call instruction map
to the same BTB set, there will be always one branch inserted
in the BTB set, regardless of the secret value. Therefore,
BTB PRIME+PROBE attack can only observe that one prime
branch is evicted, but cannot obtain which victim branch is
executed, thereby preventing inference of the secret value (see
Figure 12). Additionally, inserting a confusing dummy branch
after the conditional branch, similar to the code in Figure 11,
can be a proper mitigation intentionally deployed in security-
sensitive code to defend against BTB PRIME+PROBE attacks.
If so, the BTB PRIME+PROBE attack would no longer be
effective.

9



Victim Executes Conditional BranchPreparation Observation

BTB Prime+Probe
P0 P1 ... P7 Jcc P1 ... P7 Call P1 ... P7 Taken: P0

Not
Taken:

is evicted

jeq taken jeq not taken

P0 is evicted

Occupy+Probe
P0 P1 Jcc P1 P0 Call Taken: P0

Not
Taken:

is evicted

jeq taken jeq not taken

P1 is evicted

Fig. 12. Comparison between the BTB PRIME+PROBE and OCCUPY+PROBE
attack.

TABLE VI
SUCCESS RATE WITH/WITHOUT THE CONFUSING DUMMY BRANCH (CDB).

Processor BTB PRIME+PROBE OCCUPY+PROBE
w/o CDB w/ CDB w/o CDB w/ CDB

i7-9700 100% 48.9% 100% 100%
i9-10850K 100% 48.9% 100% 100%
i7-11700K 85.5% 49.1% 96.4% 91.9%
i7-12700K 100% 48.9% 99.4% 100%
i9-13900K 99.8% 48.9% 99.1% 98.6%
i9-14900K 100% 48.9% 100% 100%

In contrast, our OCCUPY+PROBE attack effectively ad-
dresses this problem. Due to the special Direct Replacement
BTB update mechanism, each branch can directly evict the
BTB entry with identical index, tag, and offset, regardless of
the replacement policy. Therefore, for the code in Figure 11,
OCCUPY+PROBE attack can generate an occupy branch for
each victim branch mapped in one BTB set, and trace their
execution results individually, as shown in Figure 12. After
the victim execution, the attacker probes each occupy branch
to obtain its validity, thus inferring the execution result of the
corresponding victim branch. Therefore, through leaking finer
execution results within one BTB set, the attacker successfully
reveals secret values in Figure 11.
Evaluation. We evaluate the attack performance between the
BTB PRIME+PROBE attack and OCCUPY+PROBE attack, with
the victim code containing a secret-dependent conditional
branch and a confusing dummy branch mapped to the same
BTB set (similar to Figure 11). We randomly generate 1,000
secret bits and then count the number of bits each attack
successfully leaks. Table VI shows the success rate of the two
attacks with/without the confusing dummy branch on various
processors. Without the confusing dummy branch, the BTB
PRIME+PROBE attack can successfully leak secret values, as
demonstrated in previous works. However, when inserting the
confusing dummy branch, the BTB PRIME+PROBE attack
does not work, while OCCUPY+PROBE can still leak secret
values.

D. Leaking the Tag

In this section, we demonstrate the capability of OC-
CUPY+PROBE to leak tag values of victim branches, relying on
the condition that replacement occurs only when both the tag
and offset match between the attacker and victim branches. To

illustrate this capability, we exploit OCCUPY+PROBE to break
KASLR on the i7-11700K processor.
KASLR. Kernel Address Space Layout Randomization, i.e.,
KASLR, was introduced in Linux version 3.14 to randomize
kernel addresses. KASLR aims to mitigate code-reuse attacks
and other similar threats, which rely on specific kernel runtime
addresses, by randomly generating kernel addresses at boot
time. In the Linux kernel implementation, address bits [29:21]
are randomized, with all kernel addresses maintaining the same
offset from the base. As a result, leaking a single kernel
address is sufficient to break KASLR. Our attack aims to leak
the virtual address of a specific kernel branch.
Attack Description. Our experiment runs on Ubuntu 22.04.5
LTS with the kernel version 6.8.0-60-generic. We choose a
call branch in the kernel image of the getpid syscall as the
monitored branch. We guess the tag of this branch and create
an aliased branch in user mode, and use OCCUPY+PROBE
to verify the guess. If the guess is correct, the allocated
kernel entry will directly replace the user branch. Note that
on i7-11700K, the tag field records address bits [33:14] with
folded xor operation, and KASLR only randomizes address
bits [29:21]. It can be deduced that the correct guess of address
bits [29:21] equals the match of the tag field between the
guessed branch and the kernel branch, as the tag field contains
enough entropy of random bits.
Evaluation. We reboot the system 10 times, each time gen-
erating a different random address for the kernel image. For
each reboot, we execute our attack 100 times to attempt to
leak the kernel address, resulting in a total of 1,000 trials. Our
attack achieves a success rate of 97.5%. We further evaluate
our approach on other processors listed in Table I, where
we successfully leak the tag value associated with a kernel
branch. While the leaked tag does not directly reveal the full
kernel address, it narrows down the set of possible addresses.
Specifically, the leaked tag narrows the kernel address space
from 29 to 26 candidates on Core i9-14900K, reducing the
search space by a factor of 8.

VI. ATTACKING LINUX KERNEL CRYPTO API

To showcase the practical applicability of OCCUPY+PROBE,
we present a case study in which the attack is deployed
in a real-world scenario. Specifically, we target the Linux
Kernel Crypto API [31], a widely used library that provides a
comprehensive set of cryptographic ciphers within the kernel.
This attack aims to leak the private key used in the RSA
algorithm.

A. RSA

RSA [46] is a typical asymmetric cryptosystem, which ex-
ploits the public key for encryption and signature verification,
and the private key for decryption and signing. The public
key consists of e and n, where e is the exponent and n
is the multiplication of two big primes p and q, and the
private key is a mathematically derived number d satisfying
e × d ≡ 1(mod ϕ(n)). In the procedure of encryption, the
ciphertext c is calculated through c = me mod n, where

10



m is the message to be encrypted. In the decryption, the
message can be resolved through m = cd mod n. In imple-
mentations of the RSA algorithm, most cryptographic libraries
apply an optimization to the decryption procedure, with pre-
calculating dp, dq , and qinv , where dp = d mod (p − 1),
dq = d mod (q − 1), and qinv = q−1 mod p. The algorithm
first calculates mp = cdp mod p and mq = cdq mod q, and
then uses the Chinese Remainder Theorem (CRT) [43] to get
the final result m.

In addition, the square-and-multiply algorithm [44] is of-
ten exploited to speed up the modular exponentiation like
ab mod n. The core idea is converting the exponent to
its binary representation and processing it bitwise. For each
bit, the current result is squared, and if the bit is 1, the
result is also multiplied by the base. Since this approach
significantly reduces the computational complexity from linear
to logarithmic with respect to the exponent value, it exposes
an attack surface to control-flow side-channels [1]–[3], [12],
[16], [27], [29], [33], [50], [52], [54], as the exponentiation
introduces a secret-dependent branch, whose execution results
can be leaked to recover the secret key.

B. Linux Kernel Crypto API

The Linux Kernel Crypto API [31] was introduced in
kernel version 2.5.45, offering a range of cryptographic al-
gorithms within the kernel. Its primary goal is to provide fast,
general-purpose cryptographic operations for the kernel and
its components. This API is utilized by various applications,
including cryptographic filesystems and IPSec. It supports a
wide array of cryptographic algorithms, such as block ciphers,
hash functions, and asymmetric ciphers, including RSA. The
implementation of the RSA algorithm in the Linux kernel
applies the optimization of both the CRT and the square-and-
multiply algorithm.

The mpi_powm function implements the square-and-
multiply algorithm, as illustrated in Listing 2. These two
loops traverse all bits in exp, and apply multiplications upon
meeting one (Line 5). As describe in Section VI-A, the
parameter exp is passed with dp and dq respectively, which is
contained in the private key. Therefore, the branch instruction
corresponding to the if statement is secret-dependent, and we
seek to leak the execution result of this branch in each loop,
hence recovering dp and dq .

C. Attack Procedure and Challenges

Attack Scenario. We instantiate a Linux kernel module as
the victim, embedding an asymmetric key pair internally
and exposing an interface for signing messages from user-
space applications using the private key through the Linux
Kernel Crypto API. The private key is inaccessible to user
space, ensuring that cryptographic operations can only be
performed within the restricted kernel context, and user-space
threads issue a signing request through an ioctl system
call. This model reflects specific security-sensitive systems,
which support secure mechanisms for device authentication,
capability licensing, and data integrity assurance by confining

1 // RES = BASE ˆ EXP mod MOD
2 int mpi_powm(MPI res, MPI base, MPI exp, MPI mod) {
3 for (;;) {
4 while (c) {
5 if ((mpi_limb_signed_t) e < 0) {
6 /* mpihelp_mul( xp, rp, rsize, bp, bsize ); */
7 ...
8 }
9 e <<= 1; c--;

10 cond_resched();
11 }
12 i--;
13 if (i < 0) break;
14 e = ep[i]; c = BITS_PER_MPI_LIMB;
15 }}

Listing 2. A simplified square-and-multiply implementation in mpi_powm
(lib/crypto/mpi/mpi-pow.c in Linux v6.8 kernel source code). MPI is an
internal data type of big integers.

sensitive cryptographic operations to the kernel space [22],
[25], [30].

As the attacker thread runs on the same logical core as the
decryption thread, to leak the secret bits across all iterations of
the mpi_powm function (Lines 4–11 in Listing 2), the attacker
operates in an interleaved mode with the victim. This requires
frequently preempting the decryption process to monitor the
execution of the secret-dependent branch in each iteration.
Attack Procedure. We design the attack procedure illustrated
in Figure 13. It involves two user-space threads: the attacker,
which performs OCCUPY+PROBE attack, and the requester,
which issues signing requests to the victim kernel module.
The kernel context includes both the implementation of the
Linux Kernel Crypto API and the instantiated victim kernel
module.

First, the attacker generates an occupy branch monitoring
the target kernel branch, executes it to insert a BTB entry
(❶), and subsequently yields the CPU, allowing the requester
thread to proceed. The requester issues an ioctl syscall,
which triggers the invocation of the RSA decryption function
(❷). This function internally calls mpi_powm twice, using
the secret exponents exp = dp and exp = dq respectively.
Once this function completes one iteration (❸), the attacker
interrupts the execution of mpi_powm (❹) and probes the
occupy branch to determine whether the secret-dependent
branch was taken (❺), thus inferring the secret bit processed in
the current iteration. After probing, the attacker re-executes the
occupy branch to restore the BTB entry, yields the CPU (❻)
to let mpi_powm proceed to the next iteration, transitioning
to Step ❸. We regard the completion of steps ❸ - ❻ as
a single pass. After all iterations are complete, the attacker
reconstructs the private key components dp and dq through
leaked execution traces of all passes.
Challenges. There are two challenges in the attack procedure:

1) How can the attacker periodically interrupt the RSA
decryption operation in user mode (i.e., without kernel
privilege)?

2) How can it be determined whether an iteration in
mpi_powm has been completed in a single pass, thereby
avoiding spurious results potentially caused by overly

11



Attacker Requester

Crypto API Kernel Module0xffffffff8185788c: test %r14, %r14
0xffffffff8185788f: js 0xffffffff818577db
0xffffffff81857895: ...

<Occupy Branch>:
0x1f81857890: jmp Target       
0x1f81857895: ...
<Probe Branch>:
0x2f81857894: ret              
0x2f81857895: ...

User mode

Kernel mode

❶

❷ ioctl

❷ crypto_akcipher_decrypt

❸

❹ interrupt

❺

❻ resume

Fig. 13. The attack procedure.

frequent interrupts or other reasons?
Section VI-D and VI-E describe our proposed methods to

overcome these two challenges.

D. Periodic Interrupts

In this section, we introduce our method that achieves
periodic interrupts to the loop execution in Listing 2 in user
mode. Prior works [6], [19], [35], [40], [56] successfully
interrupt the victim execution of user programs with a high
resolution. However, these methods are not suitable in our
scenario since the victim is in kernel mode. Most main-
stream Linux distributions configure the kernel with setting
CONFIG_PREEMPT_VOLUNTARY by default [8], [17], [37].
Under this configuration, the kernel only yields the CPU
at explicitly defined preemption points, making it infeasible
to forcefully interrupt the kernel execution from user space
in a fine-grained and timely manner as required by prior
preemption-based methods.
cond_resched. The loop within mpi_powm invokes the
function cond_resched at the end of each iteration
(Line 10). This function checks whether the current task
should be rescheduled by examining the per-CPU variable
preempt_count. If this value is zero, the function triggers a
context switch, allowing the CPU to schedule another runnable
task. This mechanism ensures that, on non-preemptible ker-
nels, long-running computations in mpi_powm do not block
task scheduling and degrade system responsiveness [10].

This function provides an opportunity for the attacker to
interrupt kernel execution at controlled points. By ensuring
that preempt_count remains zero during each loop iter-
ation, the attacker can periodically preempt the decryption
routine without requiring kernel privileges. However, without
deliberate intervention by the attacker, the decryption routine
is rarely interrupted, except occasionally by timer interrupts,
as shown in our experiments. Therefore, the attacker must ac-
tively induce context switches to achieve frequent preemption.
Interrupting via eventfd. To orchestrate the interrupt mech-
anism, we create two attack threads, referred to as sender and
receiver. The receiver thread is bound to the same logical
core as the requester thread, while the sender thread runs
on a separate physical core. Both threads share an event file
descriptor (eventfd) [23], which serves as a primitive for
event-based wait and notification.

Initially, the sender does not write to the eventfd. When the
receiver attempts to read from it, the read operation blocks,
putting the receiver thread to sleep and causing the operating

Occupy write

delay

read

read wake

write

wake

Probe

IPI reschedule

read

Requester

Receiver

Sender

C
or

e 
0

C
or

e 
2

Occupy write

delay

read

wake

write

wake

Probe

IPI reschedule

read

Fig. 14. The timeline of the attack. The read and write with blue color
indicate operations to synefd, and those with orange color indicate intefd.

system to schedule the requester thread to run on the shared
core.

At a designated time, the sender writes to the eventfd,
which wakes up the receiver, and the sender core will send a
reschedule inter-processor interrupt (IPI) to the receiver core.
This interrupt temporarily halts the execution of the requester
and resets its preempt_count to zero in the interrupt han-
dler, and then resumes the requester execution. Subsequently,
when the requester reaches the cond_resched call, the
rescheduling mechanism is triggered, and the receiver thread
is scheduled. Through this coordination, the execution of
mpi_powm can be interrupted once per iteration.

We deploy OCCUPY+PROBE within the receiver thread.
Before reading from the eventfd, the receiver executes the
occupy branch to insert a BTB entry. Once it is scheduled
and regains control, the receiver probes the occupy branch to
infer the victim branch execution result.

Synchronization. One key point of the above process is to
precisely write to the eventfd in the sender thread. It must be
written exactly between the receiver’s read operation and the
requester’s completion of the current iteration. Therefore, it
is necessary to synchronize the sender and receiver threads.
We introduce another eventfd, referred to as synefd, while the
aforementioned one for interrupting the requester is referred to
as intefd. Initially, the sender blocks by reading from synefd,
waiting for the receiver to complete the occupy phase. Once
completed, the receiver writes to synefd to wake up the sender,
and then reads from intefd, causing it to sleep and allowing
the requester to begin execution. After the sender wakes up,
it writes to intefd to wake up the receiver, interrupting the
execution of the requester and setting the preempt_count
to zero. The entire timeline of the three threads is shown in
Figure 14.

Additionally, we observe that if the receiver reads from
intefd immediately after writing to synefd, the requester may
execute for an excessively long duration, resulting in multiple
iterations of mpi_powm being executed within a single pass.
To prevent this, the receiver introduces a short delay between
writing to synefd and reading from intefd in the receiver
thread. We also utilize the nice command in Linux, which is
available in user mode, to lower the priority of the requester
process. This adjustment alleviates the starvation issue by
making the requester more likely to be preempted when the
attacker triggers an interrupt.

12



E. Discarding Redundant Bits

Experimental results reveal that, in some cases, the receiver
reads from intefd after the sender has already written to it.
This timing mismatch causes the eventfd read operation to
return immediately without blocking, preventing the requester
from being scheduled during that pass. As a result, redundant
bits may be included in the results. To address this issue, we
monitor another branch within the mpi_powm loop guaran-
teed to execute in every iteration. Specifically, we leverage
the cond_resched function call, which corresponds to a
call instruction and is executed unconditionally, regardless
of the secret bit. The attacker introduces an additional occupy
branch to track this call instruction, enabling the detection
of whether an iteration has actually been executed. This allows
the attacker to discard bits leaked during passes in which
no iteration occurs, thereby improving the accuracy of the
extracted data.

F. Results

We conduct our attack on the Intel i9-14900K processor
running Ubuntu 22.04.5 LTS with the Linux 6.8.0-51-generic
kernel, configured with default settings. All hardware-based
defenses against Spectre-v2 are enabled. In the kernel image,
the secret-dependent branch within the mpi_powm is com-
piled into two distinct conditional branches, corresponding to
two separate execution paths. Therefore, both branches must
be tracked to infer the secret bits based on their respective
execution results. Prior to the experiment, we obtain the
addresses of the two secret-dependent conditional branches
and the call instruction mentioned in Section VI-E.3

In our experiment, we first launch the attack process, namely
the sender and receiver threads. These two threads initiate the
interrupt mechanism via eventfd. Subsequently, we start the
requester thread, which triggers the RSA decryption. During
execution, the decryption routine is frequently interleaved by
the receiver thread. The sender and receiver threads totally
perform 2× 106 passes, during which the requester thread is
executed 10 times. After the attacker processes are complete,
we collect all leaked information, including the execution
outcomes of the secret-dependent branches and the call
instruction.

We count the number of iterations detected within the first
5,000 passes for each pass, and the result is illustrated in
Figure 15. There are 9 spikes in the figure, each corresponding
to one execution of the requester thread. This suggests that
one execution may not have been successfully interrupted.
Among these spikes, the highest few values slightly exceed
2,000, which is close to the total number of executed iterations,
indicating that nearly all iterations are successfully interrupted.

For each spike, we extract the leaked secret bits and obtain
9 sequences of bits. We employ the Levenshtein distance [45]
to compare the leaked bit sequence against the ground-truth

3In our threat model, we assume the attacker has knowledge of the target
branch address. Even if this assumption does not hold, the attacker can still
infer the tag of the target branches using the method described in Section V-D,
which is sufficient for the attack to succeed.

0.0 0.10

500

1000

1500

2000

2500

#I
te

ra
tio

ns

0.2 0.4 0.6 0.8 1.0 1.2

98.83%98.87% 98.29%99.02% 94.52%90.11%84.43% 77.78%

27.26%

1.9 2.0
Pass (×10 )

Fig. 15. Number of detected iterations within the first 5000 passes. The per-
centage value above each spike represents the accuracy of the corresponding
sequence.

secret bit sequence obtained from actual branch execution
(i.e., dp and dq). The accuracy of the leaked sequence is
quantified using Formula (1) based on this distance metric.
Figure 15 demonstrates that all 9 sequences are capable of
leaking partial secret bits, with the highest few achieving an
accuracy exceeding 98%. We further execute the requester
thread 150 times to measure the mean and standard error of the
attack accuracy. The results show a mean accuracy of 98.6%
with a standard error of 4.7%, demonstrating the effectiveness
of this attack.

Accuracy =

(
1− Levenshtein(Sleak, Strue)

max(|Sleak|, |Strue|)

)
× 100% (1)

VII. DISCUSSION

A. Mitigations

Hardware defenses. A key insight of the OCCUPY+PROBE
attack is that the Direct Replacement BTB update mechanism
remains across different privilege domains. In particular, any
mechanism through which kernel branches can affect user-
space BTB entries in an observable way (i.e., by invalidating
or directly replacing them such that their effects can later be
detected from user space) can serve as the attack primitive
of OCCUPY+PROBE. Therefore, to mitigate OCCUPY+PROBE,
one potential defense is to disable these mechanisms entirely,
thereby strengthening cross-privilege isolation. Both prior
work [7], [28], [54] and our experimental findings indicate
that BTB entries record the privilege level at which branch
instructions are executed, which suggests a viable solution
against OCCUPY+PROBE.

Additionally, flushing the BTB on context switches offers an
alternative defense against OCCUPY+PROBE and other BTB-
based cross-privilege attacks. However, this approach incurs
substantial performance overhead, as it eliminates executed
branch information, disabling branch prediction for both user
and kernel code [27].
Software defenses. Data-oblivious programming [9], [27],
[34], [51] can be an effective approach to eliminate secret-
dependent control-flow information in secret-sensitive codes.
If so, all control-flow leakage attacks exploiting branches
cannot successfully leak the secret in the victim program.
However, achieving data-oblivious programming requires so-
phisticated efforts to modify the application code, and for

13



complicated applications, eliminating branches may incur sig-
nificant overhead.

On processors with hybrid architectures, such as the 12th
to 14th generation Intel Core processors, it is advisable to
execute sensitive operations on efficient cores, where the Di-
rect Replacement mechanism is absent and OCCUPY+PROBE
is therefore ineffective. However, this defense may result in
lower performance than running on performance cores [13].

For Linux Kernel Crypto API, the cond_resched can
be removed to prevent frequent interrupts to the decryption
operation but may cause starving issues, violating the original
purpose of adding this function [10].

B. Limitations and Future Work
One limitation of OCCUPY+PROBE is that the attack is con-

strained to the same logical core and cannot be extended across
SMT threads or physical cores, as the Direct Replacement
mechanism is not present in those scenarios. Furthermore,
unlike access-based attacks, OCCUPY+PROBE cannot reveal
the target address stored in a BTB entry. In addition, our
experiments are conducted exclusively on Intel processors.
Processors from other vendors, such as AMD [4], [42], [48],
ARM [5], and Apple [36], also implement BTBs, which
may exhibit similar behaviors to what we have observed on
Intel processors. We plan to extend our investigation to these
platforms in future work.

VIII. CONCLUSION

In this paper, we present OCCUPY+PROBE, a novel
cross-privilege, eviction-based BTB side-channel attack. OC-
CUPY+PROBE overcomes two key limitations of prior work:
access-based BTB attacks are constrained by the privilege
boundary due to hardware isolation, while existing eviction-
based approaches suffer from limited spatial resolution. To
support OCCUPY+PROBE, we reverse-engineer the offset-
related BTB update behavior across multiple Intel Core pro-
cessor generations and uncover the Direct Replacement mech-
anism, which holds even in cross-privilege scenarios. Lever-
aging this mechanism, OCCUPY+PROBE can infer whether
a secret-dependent kernel branch is executed or taken, and
can reveal the tag of kernel branches in the BTB, thereby
breaking KASLR on Intel Core i7-11700K processors. We
further demonstrate an end-to-end attack against the Linux
Kernel Crypto API, successfully leaking a private key with
over 98% accuracy, according to our experimental evaluation.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable comments and suggestions. This work is partially
supported by the National Natural Science Foundation of
China (Grant No. 62372258).

REFERENCES

[1] O. Aciiçmez, c. K. Koç, and J.-P. Seifert, “On the power of
simple branch prediction analysis,” in Proceedings of the 2nd
ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 312–320. [Online]. Available:
https://doi.org/10.1145/1229285.1266999

[2] O. Acıiçmez, S. Gueron, and J.-P. Seifert, “New branch prediction
vulnerabilities in openssl and necessary software countermeasures,” in
Cryptography and Coding, S. D. Galbraith, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 185–203.

[3] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Topics in Cryptology – CT-RSA 2007, M. Abe,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 225–242.

[4] Advanced Micro Devices, Inc., Software Optimization Guide for
AMD Family 15h Processors, 3rd ed., Santa Clara, CA, USA,
Jan. 2014, publication No. 47414. [Online]. Available: https:
//www.amd.com/content/dam/amd/en/documents/archived-tech-docs/
software-optimization-guides/47414 15h sw opt guide.pdf

[5] Arm Limited, Arm® Cortex®-X4 Core Technical Reference Manual,
Cambridge, UK, Aug. 2024, document Number: 102484, Version: r0p0.
[Online]. Available: https://developer.arm.com/documentation/102484/
latest/

[6] C. Ashokkumar, R. P. Giri, and B. Menezes, “Highly efficient algorithms
for aes key retrieval in cache access attacks,” in 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), 2016, pp. 261–275.

[7] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida,
“Branch history injection: On the effectiveness of hardware mitigations
against Cross-Privilege spectre-v2 attacks,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX Association,
Aug. 2022, pp. 971–988. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/barberis

[8] E. Barbieri. (2022) Low latency linux for industrial embedded
systems – part ii. [Online]. Available: https://ubuntu.com/blog/
industrial-embedded-systems-ii

[9] D. J. Bernstein and B.-Y. Yang, “Fast constant-time gcd computation
and modular inversion,” IACR transactions on cryptographic hardware
and embedded systems, pp. 340–398, 2019.

[10] E. Biggers and G. Kroah-Hartman. (2017) lib/mpi: call cond resched()
from mpi powm() loop. [Online]. Available: https://git.toradex.com/
cgit/linux-toradex.git/commit/lib?h=toradex imx 4.9.123 imx8mm
ga-bring up&id=443d26a6f791506ca6fdab58b355ba7e170f741e

[11] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T.-H. Lai, “
SgxPectre: Stealing Intel Secrets From SGX Enclaves via Speculative
Execution ,” IEEE Security & Privacy, vol. 18, no. 03, pp. 28–37, May
2020. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
MSEC.2019.2963021

[12] Y. Chen, L. Pei, and T. E. Carlson, “Afterimage: Leaking control
flow data and tracking load operations via the hardware prefetcher,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 16–32. [Online].
Available: https://doi.org/10.1145/3575693.3575719

[13] I. Corporation. How intel® core™ processors work. [Online].
Available: https://www.intel.com/content/www/us/en/gaming/resources/
how-hybrid-design-works.html

[14] ——. (2021) Speculative execution side channel mitigations. [Online].
Available: https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/technical-documentation/
speculative-execution-side-channel-mitigations.html

[15] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
aslr: Attacking branch predictors to bypass aslr,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016, pp. 1–13.

[16] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
“Branchscope: A new side-channel attack on directional branch
predictor,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 693–707. [Online]. Available:
https://doi.org/10.1145/3173162.3173204

[17] M. Fleming. (2019) Linux kernel preemption and the latency-throughput
tradeoff. [Online]. Available: https://www.codeblueprint.co.uk/2019/12/
23/linux-preemption-latency-throughput.html

[18] D. Gens, O. Arias, D. Sullivan, C. Liebchen, Y. Jin, and A.-R. Sadeghi,
“Lazarus: Practical side-channel resilient kernel-space randomization,”
in Research in Attacks, Intrusions, and Defenses, M. Dacier, M. Bailey,
M. Polychronakis, and M. Antonakakis, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 238–258.

14

https://doi.org/10.1145/1229285.1266999
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/software-optimization-guides/47414_15h_sw_opt_guide.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/software-optimization-guides/47414_15h_sw_opt_guide.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/software-optimization-guides/47414_15h_sw_opt_guide.pdf
https://developer.arm.com/documentation/102484/latest/
https://developer.arm.com/documentation/102484/latest/
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://ubuntu.com/blog/industrial-embedded-systems-ii
https://ubuntu.com/blog/industrial-embedded-systems-ii
https://git.toradex.com/cgit/linux-toradex.git/commit/lib?h=toradex_imx_4.9.123_imx8mm_ga-bring_up&id=443d26a6f791506ca6fdab58b355ba7e170f741e
https://git.toradex.com/cgit/linux-toradex.git/commit/lib?h=toradex_imx_4.9.123_imx8mm_ga-bring_up&id=443d26a6f791506ca6fdab58b355ba7e170f741e
https://git.toradex.com/cgit/linux-toradex.git/commit/lib?h=toradex_imx_4.9.123_imx8mm_ga-bring_up&id=443d26a6f791506ca6fdab58b355ba7e170f741e
https://doi.ieeecomputersociety.org/10.1109/MSEC.2019.2963021
https://doi.ieeecomputersociety.org/10.1109/MSEC.2019.2963021
https://doi.org/10.1145/3575693.3575719
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://doi.org/10.1145/3173162.3173204
https://www.codeblueprint.co.uk/2019/12/23/linux-preemption-latency-throughput.html
https://www.codeblueprint.co.uk/2019/12/23/linux-preemption-latency-throughput.html


[19] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games – bringing
access-based cache attacks on aes to practice,” in 2011 IEEE Symposium
on Security and Privacy, 2011, pp. 490–505.

[20] B. D. Hoyt, G. J. Hinton, D. B. Papworth, A. K. Gupta, M. A. Fetterman,
S. Natarajan, S. Shenoy, and R. V. D’sa, “Method and apparatus for
implementing a set-associative branch target buffer,” Nov. 12 1996, uS
Patent 5,574,871.

[21] T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao, J. Zhai, and M. Li,
“Bluethunder: A 2-level directional predictor based side-channel attack
against sgx,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2020, no. 1, p. 321–347, Nov. 2019. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/8401

[22] M. Kerrisk. (2011) ip-xfrm(8) — linux manual page. [Online].
Available: https://man7.org/linux/man-pages/man8/ip-xfrm.8.html

[23] ——. (2024) eventfd(2) — linux manual page. [Online]. Available:
https://man7.org/linux/man-pages/man2/eventfd.2.html

[24] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 2019 IEEE Sym-
posium on Security and Privacy (SP), 2019, pp. 1–19.

[25] I. Korchagin, “What is linux kernel keystore and why you should use it in
your next application,” in SREcon23 Asia/Pacific. Singapore: USENIX
Association, Jun. 2023.

[26] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18).
Baltimore, MD: USENIX Association, Aug. 2018. [Online]. Available:
https://www.usenix.org/conference/woot18/presentation/koruyeh

[27] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside SGX enclaves with
branch shadowing,” in 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Association, Aug. 2017,
pp. 557–574. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/lee-sangho

[28] L. Li, H. Yavarzadeh, and D. Tullsen, “Indirector: High-Precision branch
target injection attacks exploiting the indirect branch predictor,” in 33rd
USENIX Security Symposium (USENIX Security 24). Philadelphia, PA:
USENIX Association, Aug. 2024, pp. 2137–2154. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/li-luyi

[29] C. Liu, S. Feng, Y. Li, D. Wang, W. He, Y. Lyu, and T. E.
Carlson, “Mdpeek: Breaking balanced branches in sgx with memory
disambiguation unit side channels,” in Proceedings of the 30th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ser. ASPLOS ’25. New
York, NY, USA: Association for Computing Machinery, 2025, p.
622–638. [Online]. Available: https://doi.org/10.1145/3676641.3716004

[30] MIT Kerberos Team, “Mit kerberos documentation: Credential cache,”
https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache def.html,
2013, accessed: 2025-04-14.

[31] S. Mueller and M. Vasut. Linux kernel crypto api. [Online]. Available:
https://www.kernel.org/doc/html/v4.17/crypto/index.html

[32] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of aes,” in Topics in Cryptology – CT-RSA 2006,
D. Pointcheval, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 1–20.

[33] I. Puddu, M. Schneider, M. Haller, and S. Capkun, “Frontal
attack: Leaking Control-Flow in SGX via the CPU frontend,” in
30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 663–680. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/puddu

[34] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital Side-
Channels through obfuscated execution,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 431–446.

[35] B. Roy, R. P. Giri, A. C., and B. Menezes, “Design and implementation
of an espionage network for cache-based side channel attacks on
aes,” in 2015 12th International Joint Conference on e-Business and
Telecommunications (ICETE), vol. 04, 2015, pp. 441–447.

[36] H. Suzuki, “Brief notes on apple m1 firestorm microarchitecture,”
https://github.com/ocxtal/insn bench aarch64/blob/master/
optimization notes apple m1.md, 2022, accessed: 2025-04-13.

[37] L. Torvalds. (2024) Linux kernel x86 64 defconfig. [Online].
Available: https://github.com/torvalds/linux/blob/v6.8/arch/x86/configs/
x86 64 defconfig#L7

[38] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes,
and countermeasures,” Journal of Cryptology, vol. 23, pp. 37–71, 2010.

[39] D. Trujillo, J. Wikner, and K. Razavi, “Inception: Exposing new
attack surfaces with training in transient execution,” in 32nd
USENIX Security Symposium (USENIX Security 23). Anaheim, CA:
USENIX Association, Aug. 2023, pp. 7303–7320. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/trujillo

[40] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Secretly monopolizing
the cpu without superuser privileges.” in USENIX Security Symposium,
2007, pp. 239–256.

[41] V. Uzelac and A. Milenkovic, “Experiment flows and microbenchmarks
for reverse engineering of branch predictor structures,” in 2009 IEEE
International Symposium on Performance Analysis of Systems and
Software, 2009, pp. 207–217.

[42] P. Wieczorkiewicz. (2022) The amd branch (mis)predictor: Just set
it and forget it! [Online]. Available: https://grsecurity.net/amd branch
mispredictor just set it and forget it

[43] Wikipedia contributors, “Chinese remainder theorem — Wikipedia, the
free encyclopedia,” https://en.wikipedia.org/w/index.php?title=Chinese
remainder theorem&oldid=1283536923, 2025, [Online; accessed 12-
April-2025].

[44] ——, “Exponentiation by squaring — Wikipedia, the free en-
cyclopedia,” https://en.wikipedia.org/w/index.php?title=Exponentiation
by squaring&oldid=1277105037, 2025, [Online; accessed 12-April-
2025].

[45] ——, “Levenshtein distance — Wikipedia, the free encyclope-
dia,” https://en.wikipedia.org/w/index.php?title=Levenshtein distance&
oldid=1279737312, 2025, [Online; accessed 12-April-2025].

[46] ——, “Rsa cryptosystem — Wikipedia, the free encyclopedia,”
https://en.wikipedia.org/w/index.php?title=RSA cryptosystem&oldid=
1284724493, 2025, [Online; accessed 12-April-2025].

[47] J. Wikner and K. Razavi, “RETBLEED: Arbitrary speculative code
execution with return instructions,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug. 2022,
pp. 3825–3842. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/wikner

[48] J. Wikner, D. Trujillo, and K. Razavi, “Phantom: Exploiting
decoder-detectable mispredictions,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’23. New York, NY, USA: Association for Computing Machinery, 2023,
p. 49–61. [Online]. Available: https://doi.org/10.1145/3613424.3614275

[49] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution,
low noise, l3 cache Side-Channel attack,” in 23rd USENIX security
symposium (USENIX security 14), 2014, pp. 719–732.

[50] H. Yavarzadeh, A. Agarwal, M. Christman, C. Garman, D. Genkin,
A. Kwong, D. Moghimi, D. Stefan, K. Taram, and D. Tullsen,
“Pathfinder: High-resolution control-flow attacks exploiting the
conditional branch predictor,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ser. ASPLOS ’24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
770–784. [Online]. Available: https://doi.org/10.1145/3620666.3651382

[51] J. Yu, L. Hsiung, M. El’Hajj, and C. W. Fletcher, “Data oblivious isa
extensions for side channel-resistant and high performance computing,”
in The Network and Distributed System Security Symposium (NDSS),
2019.

[52] J. Yu, T. Jaeger, and C. W. Fletcher, “All your pc are belong to us:
Exploiting non-control-transfer instruction btb updates for dynamic pc
extraction,” in Proceedings of the 50th Annual International Symposium
on Computer Architecture, ser. ISCA ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589100

[53] T. Zhang, K. Koltermann, and D. Evtyushkin, “Exploring branch
predictors for constructing transient execution trojans,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
667–682. [Online]. Available: https://doi.org/10.1145/3373376.3378526

[54] Z. Zhang, M. Tao, S. O’Connell, C. Chuengsatiansup, D. Genkin,
and Y. Yarom, “BunnyHop: Exploiting the instruction prefetcher,”
in 32nd USENIX Security Symposium (USENIX Security
23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
7321–7337. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/zhang-zhiyuan-bunnyhop

15

https://tches.iacr.org/index.php/TCHES/article/view/8401
https://man7.org/linux/man-pages/man8/ip-xfrm.8.html
https://man7.org/linux/man-pages/man2/eventfd.2.html
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity24/presentation/li-luyi
https://doi.org/10.1145/3676641.3716004
https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache_def.html
https://www.kernel.org/doc/html/v4.17/crypto/index.html
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://github.com/ocxtal/insn_bench_aarch64/blob/master/optimization_notes_apple_m1.md
https://github.com/ocxtal/insn_bench_aarch64/blob/master/optimization_notes_apple_m1.md
https://github.com/torvalds/linux/blob/v6.8/arch/x86/configs/x86_64_defconfig#L7
https://github.com/torvalds/linux/blob/v6.8/arch/x86/configs/x86_64_defconfig#L7
https://www.usenix.org/conference/usenixsecurity23/presentation/trujillo
https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://en.wikipedia.org/w/index.php?title=Chinese_remainder_theorem&oldid=1283536923
https://en.wikipedia.org/w/index.php?title=Chinese_remainder_theorem&oldid=1283536923
https://en.wikipedia.org/w/index.php?title=Exponentiation_by_squaring&oldid=1277105037
https://en.wikipedia.org/w/index.php?title=Exponentiation_by_squaring&oldid=1277105037
https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=1279737312
https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=1279737312
https://en.wikipedia.org/w/index.php?title=RSA_cryptosystem&oldid=1284724493
https://en.wikipedia.org/w/index.php?title=RSA_cryptosystem&oldid=1284724493
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner
https://doi.org/10.1145/3613424.3614275
https://doi.org/10.1145/3620666.3651382
https://doi.org/10.1145/3579371.3589100
https://doi.org/10.1145/3373376.3378526
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-bunnyhop
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-bunnyhop


[55] L. Zhao, P. Li, R. Hou, M. C. Huang, X. Qian, L. Zhang, and D. Meng,
“Hybp: Hybrid isolation-randomization secure branch predictor,” in
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2022, pp. 346–359.

[56] Y. Zhu, B. Chen, Z. N. Zhao, and C. W. Fletcher, “Controlled
preemption: Amplifying side-channel attacks from userspace,” in
Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2, ser. ASPLOS ’25. New York, NY, USA: Association for
Computing Machinery, 2025, p. 162–177. [Online]. Available: https:
//doi.org/10.1145/3676641.3715985

16

https://doi.org/10.1145/3676641.3715985
https://doi.org/10.1145/3676641.3715985

	Introduction
	Background
	Branch Target Buffer
	BTB Side-Channel Attacks
	Instruction Prefetch

	Overview of Occupy+Probe
	Motivation
	Threat Model
	Workflow

	Offset-Related BTB Update Mechanism
	BTB Indexing Address
	Observing Valid State of Entries after BTB Update
	Affected Entries during BTB Update
	Cross Different Domains
	Same Logical Core (SLC)
	Simultaneous Multithreading (SMT)
	Cross Physical Core (CPC)
	Kernel v.s. User (K-U & U-K)

	Root Cause of JumpOverASLR

	Evaluation of Occupy+Probe
	Experiment Setup
	Breaking Hardware Isolation
	High Spatial Resolution
	Leaking the Tag

	Attacking Linux Kernel Crypto API
	RSA
	Linux Kernel Crypto API
	Attack Procedure and Challenges
	Periodic Interrupts
	Discarding Redundant Bits
	Results

	Discussion
	Mitigations
	Limitations and Future Work

	Conclusion
	References

