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Abstract—The partial deployment of Route Origin Validation
(ROV) poses an unexpected security threat known as stealthy
BGP hijacking, i.e., a particularly elusive form of BGP hijacking
where malicious routes divert traffic without reaching (and thus
alerting) the victims. This risk remains largely unexplored, with
neither documented real-world incidents nor systematic charac-
terization available. To bridge this gap, we formalize stealthy
BGP hijacking and propose heuristics to discover potential
instances through routing table discrepancies. We conduct the
first empirical study to track and profile stealthy BGP hijacking in
the wild, contributing a curated real-world incident dataset and a
long-term monitoring service. Inspired by the empirical insights,
we further conduct an analytical study to exhaustively assess
the risk. This requires accurate ROV deployment data, complete
Internet-wide routes, and tailored analytical models. To address
these challenges, we develop SHAMAN, a BGP route inference
framework dedicated to assessing stealthy BGP hijacking risk.
SHAMAN consolidates multiple sources to construct an accurate
view of ROV deployment, infers complete Internet-wide routes
through a highly efficient matrix-based a pproach, and facilitates
statistical risk analysis via a ‘“victim-target-hijacker” 3-tuple
model. By reducing the time for generating Internet-scale routes
from over three months to just 5.22 hours, SHAMAN enables
systematic risk assessment across 8.3 billion generated routes
under real-world ROV deployment. Our findings reveal a 14.1%
overall success probability for stealthy BGP hijacking, with tar-
geted attacks reaching 99.5% success in specific cases. Validation
against our real-world dataset shows up to 95.9% incident-level
accuracy, demonstrating the fidelity of o ur a nalytical results.

I. INTRODUCTION

The Border Gateway Protocol (BGP) has been known for
its security vulnerabilities, with the infamous BGP hijacking
being a major threat. To counter this threat, the community
has proposed various security enhancements [1]-[7], among
which the Resource Public Key Infrastructure (RPKI) and
Route Origin Validation (ROV) show the promise in real-
world deployment. ROV-enabled Autonomous Systems (ASes)
can retrieve authorized registries managed by RPKI, known as
Route Origin Authorizations (ROAs), based on which they can
verify the correctness of prefix-origin associations contained in
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received BGP announcements. As of March 2025, ROAs have
covered 57.1% of globally routable IPv4 prefixes [8], yet the
deployment of ROV is relatively limited, with only hundreds
to thousands of ASes identified as ROV-enabled [9]-[11].

Presumably, ROV will remain in partial deployment for a
relatively long time, which, in addition to offering incomplete
protection as a consequence, results in an unexpected security
threat, ie., highly stealthy BGP hijacking that is effectively
invisible from the victim on the control plane. This new threat,
which we refer to as ROV-related stealthy BGP hijacking, or
for short, stealthy hijacking, occurs when an AS, despite being
nominally protected by ROV-enabled ASes from receiving
malicious routes, has its traffic silently diverted to a hijacker
through legacy ASes along the data plane path. It is partic-
ularly insidious because the affected AS remains unaware of
malicious routes throughout the hijacking, rendering common
control-plane based protections ineffective in practice.

This highlights the unexpected downside of partial ROV
deployment, yet the issue remains largely unexplored. No real-
world stealthy hijacking incidents have been documented, and
a systematic investigation into its prevalence and impacts is
still missing. A recent study [12] takes a pioneering step
towards mitigating stealthy hijacking via proactive rerouting
and blackholing. Yet, its mitigation-oriented focus provides
limited real-world evidence or heuristics for tracking and
profiling the threat (see further discussions in §1X).

To bridge this gap, we seek insights from real-world ob-
servations. However, the lack of an established definition of
stealthy hijacking makes it difficult to identify the threat. To
this end, we formalize stealthy BGP hijacking and derive
heuristics to discover hijacking instances based on routing ta-
ble discrepancies observed across vantage points. Our rationale
behind is to determine if any AS along legitimate routes can
forward traffic to potential hijackers. Using routing tables from
RouteViews vantage points, we conduct the first empirical
study to track and profile stealthy hijacking in the wild
(§IV). We capture 1,393 potential incidents over a two-month
window in 2025, and analyze their impacts and causes exten-
sively. We further validate these observations against a broad
knowledge base including RPKI, IRR and WHOIS, which
results in a curated dataset of 318 high-confidence incidents
covering 2,178 routes. This dataset, along with our long-term
monitoring service continuing to report real-world incidents, is



publicly available at https://yhchen.cn/stealthy-bgp-hijacking.

A key observation from our empirical study is that the
visibility of stealthy hijacking is sensitive to vantage point se-
lection and subject to continual change. This inspires us to fur-
ther propose comprehensive and deterministic risk assessment
through an analytical approach, which, however, faces three
key challenges. First, determining the current state of ROV de-
ployment is nontrivial. Unlike ROAs, ROV deployment is not
publicly disclosed by default, and existing ROV measurements
remain limited in coverage. Second, given the complexity of
Internet topology, acquiring complete knowledge of Internet-
wide routes to fully assess the risk is challenging. Third,
no dedicated analytical model currently exists to characterize
stealthy hijacking risk at a fine-grained level, yet such a model
is essential for systematic risk assessment.

To address these challenges, we develop SHAMAN, a BGP
route inference framework dedicated to assessing stealthy hi-
jacking risk (§V). SHAMAN consolidates ROV measurements
from multiple sources to ensure an accurate view of current
ROV deployment. It utilizes a matrix-based approach to infer
complete knowledge of legitimate AS-level routes and poten-
tial AS-to-hijacker routes under partial ROV deployment. This
approach encodes essential routing information in compact
matrices through a unique one-byte encoding scheme, and
leverages highly optimized matrix operations for efficient route
inference. Combined with a topology compression method,
SHAMAN generates routes across all ASes within hours, reduc-
ing the otherwise months-long runtime of prior art [13]-[15].
It further applies a “victim-target-hijacker” three-tuple model
to statistically characterize fine-grained hijacking instances,
thereby supporting systematic role-based risk analysis.

Through SHAMAN, we conduct comprehensive analytical
risk assessment with the current Internet topology, examining
8.3 billion Internet-wide routes across 77,600 ASes (§VI). Our
analysis exhausts “victim-target-hijacker” instances that are
vulnerable to stealthy hijacking, and characterizes their preva-
lence, distribution, and topological features, yielding seven key
insights. We reveal that the current partial ROV deployment
introduces a 14.1% overall success probability for stealthy
hijacking, with targeted attacks reaching 99.5% success in
specific cases. We also evaluate SHAMAN extensively (§VII).
We show that it reduces the time for Internet-scale route gen-
eration from over three months to just 5.22 hours, achieving
a 500-fold speedup over existing methods. Validation against
our curated dataset demonstrates up to 95.9% incident-level
accuracy, confirming the fidelity of our analytical results.
Lastly, we conduct ablation experiments to justify SHAMAN’S
design choice of consolidating multiple ROV measurement
sources, and validate its robustness against input noise.

To summarize, our contributions are four-fold:

o We develop effective heuristics to discover stealthy BGP

hijacking instances based on routing table discrepancies.

o We conduct the first empirical study to track stealthy BGP

hijacking in the wild, establishing a curated real-world
incident dataset and a long-term monitoring service.

o Motivated by empirical insights, we design SHAMAN, a

framework dedicated to systematic assessment of stealthy
BGP hijacking risk, and evaluate it extensively.

o Through SHAMAN, we assess stealthy BGP hijacking risk
in the current Internet thoroughly, deriving seven key
insights while achieving 95.9% incident-level accuracy.

II. BACKGROUND

Interdomain Routing and BGP Hijacking. As of March
2025, the Internet comprises over 77,600 Autonomous Sys-
tems (ASes) in interdomain routing [16], each identified by a
unique AS Number (ASN). These ASes interconnect via the
Border Gateway Protocol (BGP), where each AS announces its
IP prefixes to neighbors through route announcements. Upon
receiving an announcement, an AS extracts the AS-level path
destined for a specified prefix, updates its Routing Information
Base (RIB), and performs best-route selection. The chosen
route is then appended with the AS’s own ASN and further
propagated to selected neighbors. Both best-route selection and
propagation are influenced by the AS’s routing policies, e.g.,
predefined route preferences based on business relationships.
BGP lacks native security mechanisms and is vulnerable
to misinformation injected by malicious actors. A consequent
threat is BGP hijacking, where a malicious AS falsely claims
to originate a prefix it does not own. If other ASes accept
the forged announcement, they reroute traffic accordingly and
divert it to the hijacker. BGP hijacking takes two forms: exact-
prefix hijacking, where the hijacker announces the exact prefix
owned by the legitimate origin, and sub-prefix hijacking, where
a more specific sub-prefix is announced. The latter is typically
more damaging, since BGP routers prioritize the longest-prefix
match when forwarding traffic. Real-world BGP hijacking
incidents have reported serious consequences, e.g., redirecting
cryptocurrency funds to attacker-controlled accounts [17].
RPKI and ROV for BGP Security. To counter BGP hijack-
ing, the community proposed various security extensions [1],
[2], [4]. Among them, Resource Public Key Infrastructure
(RPKI) [6] and Route Origin Validation (ROV) [7] have gained
significant real-world adoption. RPKI provides a cryptographic
framework for prefix holders to publish Route Origin Au-
thorizations (ROAs), which specify valid origin ASes and
maximum allowable prefix lengths. Meanwhile, ROV refers
to the operational practice by which ASes retrieve and verify
these ROAs to validate BGP announcements, thereby ensuring
that the announcing AS is authorized to advertise a specific
prefix. Invalid BGP announcements are typically discarded.
RPKI has gained great traction in recent years, but the actual
state of ROV deployment remains nontrivial to know. Existing
measurements of ROV deployment are mostly best-effort
and limited in coverage, estimating anywhere from several
hundred to over three thousand ROV-enabled ASes across
the Internet [9]-[11], [18], [19]. This incomplete deployment
greatly throttles ROV’s effectiveness, e.g., even with 60%
global ROV adoption, sub-prefix hijacking still succeeds 40%
of the time [12]. More critically, partial ROV deployment
introduces an unintended security risk, as we highlight next.
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Fig. 1: Stealthy hijacking under partial ROV deployment.

III. PROBLEM STATEMENT

In this section, we articulate the unintended security risk of
partial ROV deployment and define the relevant concepts.

A. The Unexpected Downside of ROV

ROV is proposed to prevent BGP hijacking. However, in
case of partial deployment, its effectiveness can be under-
mined. Figure 1 illustrates a scenario where BGP hijacking
succeeds despite ROV deployment. We abstract the Internet
topology as a graph, where vertices represent ASes and edges
represent interdomain links. In this scenario, the hijacker (AS
G) launches an attack by announcing (sub-)prefixes owned by
the target (AS E). The ROV-enabled ASes block propagation
of malicious announcements, so only AS C and F may accept
the bogus route to the hijacker' depending on routing policies.

We take AS A as an example to explain BGP hijacking
in this scenario. As shown in Figure la, AS A only receives
routes to the target since ROV-enabled AS B correctly drops
the hijacker’s malicious announcement. Consequently, AS A
lacks a route to the hijacker in its routing table, limiting its
control-plane visibility (see Figure 1b). AS A, unaware of
the hijacker’s presence, expects its traffic to reach the target
correctly (green arrow). However, from a global perspective
(see Figure 1c and 1d), AS A’s traffic traverses legacy AS C
en route to the target. If AS C accepts the hijacker’s route
(e.g., when the bogus route is preferred over the legitimate
one or targets a sub-prefix), the traffic from AS A is actually
forwarded to the hijacker. Note that AS A cannot observe the
actual traffic forwarding unless it performs active data-plane
probing or gains a broader view from external vantage points.

The above example showcases the unexpected downside
of partial ROV deployment: it prevents certain ASes from

!For brevity, we refer to the interdomain route (accepted by X) for a specific
prefix announced by Y as “the route (from X) to Y”.

observing bogus routes, contributing to the stealthiness of BGP
hijacking attacks. We refer to such BGP hijacking, which is
invisible to certain victims on the control plane, as stealthy
hijacking. In general, an AS is at risk of stealthy hijacking
when it has no route to the hijacker, but at least one legacy AS
along the legitimate path accepts the bogus route; this applies
to both exact-prefix and sub-prefix hijacking. Based on this
principle, we formally define the risk in the next section.

B. Problem Formulation

Now, we formalize stealthy hijacking risk introduced by
partial ROV deployment, starting from the Internet topology:

Definition 1 (Internet Topology). An Internet topology is a
tuple G = (V,E,V,,,) where V is the set of all ASes in the
Internet, E is the set of links between ASes in V, and V,,, CV
is the set of ASes that adopt ROV.

The Internet topology exhibits partial ROV deployment if and
only if Vi, ¢ {V,0}. We then define the AS-level route:

Definition 2 (AS-Level Route). Given G = (V,E,V,,,), let
u,v €V and let p be a prefix announced by v. Rg(u,v;p)
denotes the AS-level route starting from u to reach the prefix
p announced by v after Internet routing converges on G
under existing routes, ROAs, and BGP policies. If it exists,
Rc(u,v;p) = (ao,...,q;), where ag = u,a; = v,ap,...,a; €
V,(ai,ai41) € E for 0 <i<1[—1; otherwise, Rg(u,v;p) = ().

Based on them, we can define the stealthy hijacking risk:

Definition 3 (Stealthy Hijacking Risk). Given G = (V,E,V,,,),
let u,v,w € V and let p be a prefix announced by v. The route
R (u,v; p) is at risk of stealthy hijacking by w if there exists
a prefix p/, such that (i) p’ = p or p’ is a sub-prefix of p, (ii)
Rg(u,w;p') = (), (iii) Rg(u,v;p) # (), and (iv) there exists
a; € Rg(u,v; p), such that a; # u,a; # v, and Rg(a;,w;p’) # ().



TABLE I: Tags for predefined incident behaviors.

TABLE II: Overall impact of the incidents.

Tag! Definition? Data Source Type #Countries  #Prefixes  #Origins  #Routes  #VPs
Origin Relay There exists M, such that M, = O;. Self-contained Risky incidents 16 60 36 773 48
Origin AS-Set O, is in the form of AS-set. Self-contained Bad practices 24 103 43 3,611 50
Origin Related 0, and O, have a business relationship. CAIDA [24] Total 31 156 73 4,278 50
Private ASN The ASN of O, is reserved for private use. TANA [25]

Similar Name 0, and O, have similar’® organization names. CAIDA [26]
Direct View There exists M, such that M; =V;. Self-contained . 304 304
Country Diff 0, and O, are located in different countries. CAIDA [26] § gg’ Zg’

! Tags in indicate route engineering practices, while tags in are informational. 2 159 rrr ?rsi 2b5ewed 159 glsﬁmmgems

2 The notations are the same as in §IV-A. E 104 or Lok 104 ad Practices

3 Two strings are deemed similar if their fuzz partial ratio score is greater than 90. & 59 I 57

= o4l .|||.|||... PO T | RPN Y T TOTI 1 04
i n-th day of the studied window 5'9 i Days observing the incident 5'9

43 incidents . 67 incidents
Any sign of route engineering?
No (risky incidents) Yes (bad practices)
Subprefix redirected?
Yes (more impactful) No

Directly observed from VPs?
Yes No-(less confident)

Fig. 2: Breakdown of the unique incident set.

Intuitively, given victim u, target v, and hijacker w, stealthy
hijacking occurs when u cannot reach w, yet on u’s route to
v, an AS a; has a route to w. Thus, traffic originated from u
follows the route towards v until it reaches a;, who instead
forwards the traffic to w. We call the “victim-target-hijacker”
3-tuple (u,v,w) a stealthy hijacking instance, and a; the risk-
critical AS. Each instance corresponds to a risk-critical AS;
for example, in Figure 1, AS C is the risk-critical AS of the
instance (A, E, G). Note that each instance only reflects the
risk, meaning that a potential stealthy hijacking attack could
occur, but does not necessarily imply an actual occurrence. We
base our risk analysis on the 3-tuple model, and refer to BGP
hijacking that is not stealthy hijacking as direct hijacking.
Notably, stealthy hijacking follows the established BGP
hijacking attack model but manifests in a more subtle form
under partial ROV deployment. Any stealthy hijacking due
to partial ROV deployment would also be possible (though
not necessarily stealthy) without ROV, because removing ROV
only improves attacker reachability without making any benign
route more preferred. Thus, regardless of ROV deployment,
victims that are subject to hijacking would continue to prefer
routes with risk-critical ASes. We emphasize that the shift
from direct to stealthy hijacking is a byproduct of partial ROV
deployment in the current Internet ecosystem, rather than a
flaw in ROV itself. However, stealthy hijacking enables attacks
that can evade existing control-plane defenses [20]-[22] and
hinder post-attack forensics [23]. Understanding its real-world
prevalence and associated risk is thus critical to BGP security.

IV. UNCOVERING STEALTHY HIJACKING IN THE WILD

In this section, we develop heuristics for stealthy hijacking
discovery, and empirically investigate the threat in the wild.

Fig. 3: Daily incident count (left) and incident duration (right).

A. Heuristics for Stealthy Hijacking Discovery

From Definition 3, we derive practical heuristics to discover
stealthy hijacking instances based on routing table discrepan-
cies. For clarity, we denote p:V---(M)---O a route to prefix
p, where V is the vantage point, O is the origin AS, and
M (if present) represents an intermediate AS along the path.
Given two routes p;:Vi---(M;)---Oy and pp: V- (M) -+ Oy,
we examine the following conditions:

1) Conflict: p, equals or is a sub-prefix of p;, and O # O;.
2) Unauthorized: p,/0; is RPKI-invalid while p; /O is valid.
3) Stealthiness: V| has no route to p, originated by O;.

4) Risk-critical AS: There exist M| and M,, with M|, = M,.
5) Risk-critical VP: There exists M; such that M| = V,.

We first define the loose heuristics, which require conditions
1-4 to hold simultaneously to yield a “victim-target-hijacker”
instance (V,01,0,), where My (M) is the risk-critical AS.
Since condition 4 infers the risk-critical AS from all intermedi-
ate ASes, the loose heuristics maximally utilize available route
observations. However, the results may not be strictly reliable,
as the risk-critical AS’s route to the hijacker is inferred from
a route segment rather than directly observed. To improve
reliability, we further propose the strict heuristics, replacing
condition 4 with condition 5 to restrict risk-critical ASes to
those that are also vantage points. This ensures strict adherence
to Definition 3 and produces more reliable results.

The two heuristics offer a trade-off between breadth and
confidence. In practice, we apply both in our empirical study to
maximize discovery while accounting for different confidence
levels. For analytical risk assessment, we rely solely on the
strict heuristics, as our framework infers complete Internet-
wide routes (elaborated later).

B. Real-World Observations and Insights

We now present our empirical study to track stealthy hijack-
ing in the wild. Specifically, we analyze daily RIB snapshots
taken at 12:00 UTC by the RouteViews [27] collectors route-
views2, amsix, and wide, starting from January 1, 2025. These
collectors are based in North America, Europe, and Asia,
respectively. Each daily archive contains about 50 million
BGP routes from over 370 vantage points. For each day’s
snapshot, we apply the loose heuristics to discover potential
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Fig. 5: A real-world stealthy hijacking incident.

stealthy hijacking instances. To ensure prefix-origin legitimacy,
we cross-check RIPE NCC’s RPKI database [28], the RADb
IRR database [29], and the five RIRs’ WHOIS databases [30],
retaining only instances where the misbehaving origin is
simultaneously RPKI-invalid, IRR-conflicting, and WHOIS-
mismatching. To group related instances, we aggregate those
affecting the same prefix into a single alarm, then merge
alarms with the same misbehaving origin into a single incident.
To profile discovered incidents, we assign each incident with
tags corresponding to predefined behaviors that either indicate
route engineering or provide additional context. Table I details
the tag definitions and data sources used. Incidents without any
tags indicative of route engineering are considered particularly
risky, while those linked to route engineering still exhibit
stealthy hijacking but are more likely due to misconfigurations,
such as improper route aggregation or private IP leasing
without updating registries. Notably, incidents tagged Direct
View follow the strict heuristics and are more reliable.
Findings. Over a two-month window starting January 1, 2025,
we capture 1,394 potential stealthy hijacking incidents in the
wild. Deduplicating them over the timeline yields 110 unique
incidents. Figure 2 provides a detailed breakdown of them:
43 cases, with no signs of route engineering, are particularly
risky, while the rest are attributed to bad operational practices.
Among them, 91 involve sub-prefix hijacking, which tends to
have more serious impacts, and 22 are directly observed from
vantage points, thus of the highest confidence. In total, these
incidents involve 4,278 routes observed by 50 vantage points,
affecting 156 prefixes and 73 origins across 31 countries, as
summarized in Table II. Over time, we observe 18-29 incidents
per day, with 0-5 newly discovered daily (except on Day 1),
as shown in Figure 3 (left). In terms of duration, 76 incidents
(69.1%) persist for 7 days or fewer, while 17 (12.7%) last
over 30 days, including 14 deemed bad operational practices,
as shown in Figure 3 (right). Moreover, Figure 4 (left) shows
that most incidents are seen by three or fewer vantage points,
with over 40% visible to only one. This indicates a strong
dependence of stealthy hijacking visibility on vantage point
selection. Figure 4 (right) further confirms this: randomly
removing just 20 vantage points leads to a 22% average drop

in observable incidents, and up to 55% in the worst case.

Takeaway: Stealthy hijacking in the wild is mostly short-lived
and targets sub-prefixes, with new cases emerging almost
daily and some persisting long-term, likely due to overlooked
misconfigurations. Its exposure is sensitive to vantage points.

Case Study. We present an example incident in Figure 5. This
incident persists throughout our study and shows no signs of
route engineering. Both vantage points, AS37100 (SEACOM)
and AS6762 (TISparkle), observe the prefix 203.127.0.0/16
announced by its legitimate origin, AS3758 (SingNet). Mean-
while, the sub-prefix 203.127.225.0/24 is announced by an
unauthorized origin, AS17894 (Innove Comm.). The two
origins are in different countries and have no established
relationship. Since AS37100 has deployed ROV with a 100%
filtering rate [11], it discards the bogus /24 route. Yet, traffic
from AS37100 or its customers to the /24 prefix still ex-
periences hijacking when transited through legacy AS6762,
which accepts the bogus route (the red path). Examination
of AS37100’s looking glass further confirms the incident (de-
tailed in Appendix A). We reported it to AS4775 (Globe Tel.)
on February 10, 2025, and received promise to investigate.
Resources. We curate a high-confidence dataset of 318 real-
world stealthy hijacking incidents, covering 2,178 unique
routes, by selecting incidents tagged Direct View while ex-
cluding those with Similar Name?. This dataset serves as
ground truth for broader research and is specifically used
to validate our framework in §VII. Beyond this study, we
continue to run stealthy hijacking discovery as a service,
implement on-demand data-plane validation based on RIPE
Atlas [32], and provide a feature-rich frontend to publish
daily incident reports. Readers are encouraged to explore these
resources at https://yhchen.cn/stealthy-bgp-hijacking.

We conclude this section by reiterating a key observation,
i.e., stealthy hijacking exposure is sensitive to vantage point
selection. This highlights the need for a comprehensive view of
global routing to enable deterministic and exhaustive risk as-
sessment, motivating our analytical approach presented next.

V. THE SHAMAN FRAMEWORK

“In ancient times, a shaman guided through unseen perils.”

A. Overview

We present SHAMAN, a BGP route inference framework
dedicated to analytical assessment of stealthy hijacking risk.
As shown in Figure 6, SHAMAN takes AS relationships and
ROV measurements from multiple sources as input. It then (i)
reconstructs the Internet topology, (ii) performs matrix-based
BGP route inference, and (iii) applies the strict heuristics to
assess stealthy hijacking risk across the inferred routes.

The core rationale is to determine whether any AS along
legitimate routes can forward traffic to potential hijackers.
Achieving comprehensive risk assessment thus requires knowl-
edge of both all routes to benign ASes and all routes to

2Incidents tagged Similar Name are excluded to remove cases that are likely
caused by private interconnection between affiliated ASes [31].
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Fig. 6: Workflow of the SHAMAN framework.

potential hijackers, posing a primary challenge given the
Internet scale. To address this, SHAMAN compresses the
Internet topology during reconstruction and extracts the benign
reach and malicious reach, i.e., the respective sub-topologies
traversable by benign and malicious announcements (see @).
By converting them into matrices, where each cell encodes
compact routing information, SHAMAN iteratively updates
these matrices through highly optimized matrix operations to
infer Internet-wide routes (see @). It then identifies risk-critical
ASes by checking each benign route with the malicious route
set (see @). We elaborate on each step below.

B. Internet Topology Reconstruction

To reconstruct the Internet topology G = (V,E,V,,,), we
use the CAIDA AS relationship dataset [24] to obtain the set
of ASes (V) and AS-to-AS links (E). Each link (a,-,aj,r) S
E, where a;,a; €V, is associated with a relationship type
r € {C2P,P2P,P2C}. To determine the set of ROV-enabled
ASes (V,,,), we consolidate measurements from three sources:
APNIC [11], RoVista [9], and Cloudflare [10]. APNIC and
RoVista report ROV-filtering rates per covered AS, and we
consider an AS to be ROV-enabled if its filtering rate is at
least 80%, a confidence threshold adopted in prior work [18]
and also proved practical in our own experiments. Cloudflare,
meanwhile, directly provides a list of ROV-enabled ASes. To
maximize coverage, we include in V,,, any AS identified as
ROV-enabled by at least one of these sources.

We next compress the resulting topology. We notice that,
under certain conditions, the routing table of a single-homed
AS can be directly derived from its upstream transit AS,
which exchanges all routes with it. As such, there is no need
to include these single-homed ASes in the computationally
intensive route inference process; instead, we remove them to
form a core topology for route inference, and later recover their
routing tables from their respective upstreams. This preserves
the integrity of inferred routes while reducing the number of
vertices by 36.3%, greatly improving inference efficiency. We
defer details of the compression method in Appendix B.

From the core topology, we further derive the benign reach
and the malicious reach. The benign reach, where benign
announcements can propagate freely, is identical to the core
topology, while the malicious reach, denoting the restricted
area where malicious announcements can propagate as ROV-
enabled ASes block them, is obtained by removing all ROV-
enabled ASes from the core topology. Route inference is
later performed on these reaches to obtain legitimate AS-level
routes and potential AS-to-hijacker routes, respectively.

C. Matrix-Based BGP Route Inference

We leverage highly optimized matrix operations for efficient
BGP route inference, addressing the limitations of existing
methods [13]-[15], which incur prohibitive overhead in gen-
erating complete BGP routes at the Internet scale.

Inference Criteria. We follow the same criteria commonly
used in prior works [12], [33], [34], which are derived from
the Gao-Rexford model [35] and capture typical BGP control-
plane behaviors. Specifically, the best-route selection follows
a three-step process: (i) prefer routes with the highest local
preference, (ii) select routes with the shortest AS_path, and
(iii) break ties randomly. By default, local preference is set
to reflect business incentives, i.e., a route received from a
customer is preferred over one from a peer, which is preferred
over one from a provider. Additionally, the valley-free con-
straint [35] is enforced in route propagation, i.e., routes learned
from a peer or provider are only forwarded to customers.

One-Byte Route Priority Encoding. Best-route selection is
computationally intensive. To boost the process, we propose a
one-byte route priority encoding that enables fast comparison
and efficient update. Specifically, the priority of a route during
selection is determined by two key properties, ie., local
preference and path length. We use one byte to represent both:

8 bits in a byte

[b7]b6]

——
LpP ~PL

[b5]ba]bs b2 [ ]bo]




where the LP field (the two most significant bits) encodes the
exact value of local preference, and the ~PL field (the six least
significant bits) encodes the bitwise complement value of path
length. The bit values of LP and PL are defined as follows:

(11),, for routes received from customers
10),, for routes received from peers
LP—= p )
~ ) (01)a, for routes received from providers
(00)2, for unreachable origins
PL — ! in 6-bit form, for path length of / @)
~ 1 (000000),, for unreachable origins

For example, a route received from a customer with a path
length of 5 has LP = (11), and PL = (000101),, resulting in
a priority byte of (11 111010),. If the origin is unreachable or
the route is yet to know, we use (00 111111); as a placeholder
for future update. Note that the 6-bit ~PL field can represent
a path length up to 63, so any longer route will be dropped.
In our practice, no route exceeds this limit.

Compared with traditional data structures, our one-byte
encoding maximizes memory utilization and enables fast pri-
ority comparison, i.e., a greater byte value indicates a more
preferable route. As a result, best-route selection becomes a
simple task of finding the maximum value in a byte array.
Moreover, its update during route propagation involves only
basic arithmetic, e.g., by subtracting one per hop to update the
path length field (~PL). Such properties, as detailed later, help
break down the complex iterations of BGP route inference into
a series of highly optimized matrix operations.

Route Priority Update. We follow an iterative paradigm for
BGP route inference. It starts with an initial state where no
AS knows a route to any other. As each AS announces its
presence, route announcements propagate hop by hop across
the Internet topology. Each round of one-hop propagation,
along with corresponding routing table updates, is an iteration.

We now describe how to update the one-byte encoding
during an iteration. Consider a route to origin AS a; in AS
ai’s routing table: after T iterations, we denote its priority byte
by p,?. In the next iteration, this route is forwarded one hop
further. Suppose AS g; is to receive this route, then the priority
byte of the received route, denoted by pj+', is determined by
the a;-to-ay; relationship type and the value of p,{j. If the a;-to-
ay relationship exists and the propagation satisfies the valley-
free constraint, ﬁ?,;” is set accordingly: its LP field inherits the
local preference Value for the a;-to-ay relationship type (i.e.,
the LP value of pj), and its ~PL field equals py;’s ~PL value
minus one due to the increased path length. However, if the
a;-to-ay relationship does not exist or the propagation violates
the valley-free constraint, a; is then not eligible to receive the

route. In this case, we assign the placeholder value to pT+1.

Intuitively, this process involves two steps: (i) compute the
LP field of p AT” , and (ii) assign the ~PL field accordingly. For
the first step, we introduce a custom operator ©:

LP[pj '] = LP[p;] © LP[pg], )

where LP[*] denotes the LP field of the corresponding priority

byte. The © operator maps all scenarios described above to
corresponding outcomes; its truth table is shown in Table III.

TABLE III: Truth table of LP[p}] © LP[p! ;|- The 00 outputs
in indicate that the input route does not exist or is not yet
known, while those in result from valley-free violations.

LP[p{ ]| 11 10 0l 00
LP[p.] (P2C) (P2P) (C2P) (None)
11 (P2C) 11~ 00 00 00
10 (P2P) 10 00 00 00
01 (C2P) 01 01 01 00
00 (None) 00 00 00 00

The ® operator can be decomposed into basic arithmetic
operations. Let (ab),, (cd),, and (ef), denote the two bits
in LP[p}], LP[p,{j], and LP[p}] @LP[p,{j], respectively. Then,
Table III can be expressed by minimal boolean expressions:

e=acd=a-cd+0-0, 4
f=abd+abe+bed =b-cd+ab-(c+d). )

We can thus implement ® efficiently using shift and bitwise
logic operations, which are vectorizable over matrices.
With p AT” ’s LP field computed, its ~PL field is determined:

~PL[pl]—1
~PL[pT+] — S
PL[P,]{/} {(111111)25

where LP[«] and ~PL[*] denote the respective fields. Note that
this two-branch computation can be further reformulated as a
branchless expression without affecting correctness:

—PL[pj], 7

where PL[x] denotes the exact value of path length. We provide
the proof of equivalence between Equations (6) and (7) in
Appendix C. Since Equation (7) is independent of the LP
field computation and is more amenable to vectorization, we
implement Equation (7) in practice.

As ﬁﬁjl indicates an updated route that a; receives from ay,
the best-route selection at a; involves comparing pﬁ}“’ with P,'Tj
and prefers the one with the higher value. The priority byte
of the final selected route at the end of iteration 7+1 is thus

determined by considering all pj*' values across k:
ST+
l(I-; Dj (8)

where p]; is known from iteration 7" and pﬁ’ k=0,...,n—1
are computed via Equations (3)-(7). We further prove that there
always exists some k such that ﬁi;l > 17; ; (see Appendix D).

Thus, the best-route selection process can be simplified as:

if LP[72'] # (00):
otherwise

(6)

~PL[pi}'] = ~PL[py;]

T+1 AT +1
pl] —max{P,]»on/ 9.

Pyt = max{pi Yy, ©)
Based on Equation (9), we can update p’; ;10 pjj T+l for each
pair of i and j. To accomplish this efficiently, we design a
matrix representation scheme to organize all route priority
bytes, and extend byte-wise operations to equivalent matrix-
wise ones that are highly optimized for batch processing.
Matrix Representation. Extending the variable piTj across all
(i,j) pairs naturally forms an n X n matrix, where the cell at



i-th row and j-th column contains the corresponding byte pg
We thus define a state matrix PT to collectively maintain all
route priority bytes and update it recursively in place:

P+ — UppaTE(P!, PT), (10)

where T starts at 0, and the generating function UPDATE
performs the per-iteration computation on all route priority
bytes as defined by Equations (3) to (9). The initial state P’ is
constructed by setting all diagonal cells to (11 111111), and
all off-diagonal cells to (00 111111),, since each AS has no
external reachability knowledge other than their own existence
at the start of route inference. Note that the diagonal cells
indicate conceptually self-pointing routes, by which an AS can
reach itself without traversing any other ASes. As such, these
routes have the highest local preference and a path length of
zero, and are always preferred over looped routes.

Besides self-pointing routes, one-hop routes from each AS
to its neighbors form another prior knowledge. P! captures
these routes and is referenced during each iteration. Therefore,
we treat P! as a constant and pre-compute it using a separate
matrix L (short for “Link”). Equation (10) is then altered:

(11)
where L is initialized based on the given G = (V,E,V,y,):

(11 111111),,
(11 111110),,
(10 111110),,
(01 111110),,
(00 111111),,

PT*! = UppATE(L, PT),

fori=j

for (a;,a;,P2C) € E
for (a,-,aj,PZP) ek
for (aj,a;,C2P) € E
otherwise

Lil,'j: (12)

The initialization of P and L follows the one-byte encoding.
It can also be verified that L = P! = UPDATE(L, P’) by evaluat-
ing the first iteration. In this matrix form, the update of priority
bytes can be naturally extended to matrix-wise operations.
Additional technical details are provided in Appendix G.
Route Set Generation. Through matrix operations, we itera-
tively update PT until no changes occur. During this process,
we also record the next-hop AS for each selected route.
Specifically, we maintain an n X n matrix N T where the cell at
the i-th row and the j-th column stores the index of the next-
hop AS for a; to reach a; after T iterations. NT is updated
alongside PT. As iteration T yields the maximum priority
byte for piTj” according to Equation (9), we simultaneously
record the index k of the selected byte in the corresponding
cell of NT*!. Once inference completes, the full AS paths
can be restored by recursively tracing the next-hop AS using
NT (detailed in Appendix E). In this way, we generate the
complete set of AS-level routes across the Internet topology:
On the benign reach, we obtain the benign route set, and on
the malicious reach, we obtain the malicious route set.

D. Analytical Risk Assessment

Given the benign and malicious route sets, we system-
atically discover all potential stealthy hijacking instances.
According to our strict heuristics, stealthy hijacking becomes
possible only if the victim does not receive any malicious

route to the hijacker (otherwise it is direct hijacking), while at
least one intermediate AS on the benign victim-to-target route
accepts a malicious route to the hijacker. Therefore, we iterate
through all benign routes, treating the vantage point AS as the
victim and the origin AS as the target. We then check all ASes
to identify potential hijackers that satisfy these conditions:

o The hijacker is neither the victim nor the target.
« No victim-to-hijacker route exists in the malicious set.

o There is an AS on the victim-to-target route for which the
route to the hijacker exists in the malicious route set.

By exhaustively examining all benign routes, we obtain a
complete set of stealthy hijacking instances that could occur in
the current Internet. Based on these instances, we can assess
the risk in a statistical manner, which is presented next.

VI. ASSESSING THE STEALTHY HIJACKING RISK

In this section, we assess the stealthy hijacking risk posed
by the current ROV deployment through SHAMAN.

A. Framework Setup

We implement SHAMAN in Python 3.10 and use Numba
to compile matrix operations to low-level C code with GPU
acceleration. It performs on a Linux platform with an Intel
Xeon E5-2650 CPU and an NVIDIA GeForce RTX 2080Ti
GPU. For Internet topology reconstruction, we use the CAIDA
AS relationship dataset [24] released on March 1, 2025, which
contains 77,600 ASes and 709,737 AS relationships. The
three ROV measurements are collected on the same date.
APNIC [11] reports 43,042 ASes, of which 2,575 exhibit an
ROV filtering ratio of at least 80%. RoVista [9] covers 32,486
ASes, with 6,655 meeting the same threshold. In addition,
Cloudlare lists 165 ASes with full ROV filtering. Figure 7
summarizes their statistics. Collectively, we identify 7,275
ASes recognized as ROV-enabled by at least one source. This
set forms our final input of ROV-enabled ASes to SHAMAN.

Using the AS relationship data and ROV measurements,
we reconstruct the Internet topology. After compression, the
resulting core topology contains 49,403 ASes (a 36.3% re-
duction) and 681,540 AS relationships (a 3.97% reduction).
From this core topology, we derive both the benign reach
and the malicious reach, and perform matrix-based BGP
route inference on each. We run the inference for up to 20
iterations to ensure convergence. This generates the benign
route set with 5,963,253,322 routes and the malicious route
set with 2,399,622,350 routes. Based on these inferred routes,
we discover the complete set of potential stealthy hijacking
instances and conduct further assessment.

B. Risk Assessment Results

We now examine the stealthy hijacking risk in the current
Internet based on SHAMAN’s results, gaining insights into its
prevalence, distribution, and underlying topological features.
Overall Risk Level. We first assess the overall stealthy hi-
jacking risk posed by the current partial ROV deployment. For
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Fig. 8: CDF of aggregated risk levels.

any type of BGP hijacking (stealthy or direct, exact- or sub-
prefix), we define its overall risk level as the statistical success
probability across random ““victim-target-hijacker” instances.
Our assessment with the 7,275 ROV-enabled ASes reveals
an overall risk level of 0.141 for sub-prefix and 0.002 for
exact-prefix stealthy hijacking. This suggests that a random
stealthy hijacking attempt has over 14% probability of success.
In comparison, with no ROV, both risks are 0. This stark
contrast (0.141 versus 0) highlights the substantial increase
in stealthy hijacking risk exclusively introduced by the current
partial ROV deployment. Meanwhile, we observe the positive
effect of ROV in reducing direct hijacking risk. With the same
deployment, sub-prefix and exact-prefix direct hijacking risks
drop to 0.419 and 0.106, with reductions of 57.5% and 70.1%,
respectively, compared to a no-ROV scenario. These opposing
trends, i.e., rising stealthy risk and declining direct risk, reflect
the double-edged effect of ROV in partial deployment.
Takeaway 1: While effectively mitigating direct hijacking risk,
the current partial ROV deployment significantly amplifies
stealthy hijacking risk from 0 to a 14.1% overall success
probability. This risk arises solely due to ROV deployment.

Aggregated Risk Level. Since each hijacking instance in-
volves three distinct entities, i.e., the victim, the target, and the
hijacker, we aggregate instances by specific entity combina-
tions to assess the risk under certain conditions. For example,
aggregating by the “target-hijacker” pair creates a set of groups
where each comprises all instances with the same target and
hijacker but varying victims. Assessing the risk level within
each group gives the probability that a specific hijacker can
successfully hijack a specific target on any random victim.
We refer to this probability as the aggregated risk level of the

TABLE IV: Key statistics of aggregated risk levels.

Hijacking Type’

Statistics' St/Sub.  Di/Sub.  SL/Ex. Di/Ex.
min | 0.000yg000 0.000yg.000 0.000y9.000 0.000y¢.000
25th | 0.00040.000 0.001ygg92 0.000yg000 0.000y0.183

P*TH)  50th | 0.033,0.033 0.582y9.412 0.00040.000 0.069v¢ 246
75th | 0.296,0296 0.668y0.326 0.000,40.000 0.170y0.329
max | 0.995,0.995 0.737yg.259  0.99340.993  0.737yg.259
min | 0.000yg000 0.000yg.000 0-000yg.000 0.000yg.000
25th | 0.000y9.000 0.000y1000 0.000y9000 0.000y¢.125

PV5H)  50th | 0.000y9.000 0.000y1000 0.000yg000 0.000yp 296
75th 0.218,0218 1.000y9.000 0.000yg000 0.091y0 464
max | 0.994,0994 1.000yg.000 0.994,0.994 1.000y¢.000
min | 0.000yg000 0.000vyg.000 0.000y9.000 0.000vy0.000
25th | 0.000,40.000 0.001yg992 0.000yg.000 0.000y¢.068

P2VLF)  50th | 0.00250002 0.582y0412  0.000yg.000 0.020v0.253
75th | 0.141,0141 0.668y0326 0.000y9.000 0.139y0.471
max | 0.740,0740 0.737yg259  0.51140511  0.737yg.259
min 0.000yg.000 0.000yp.000 0.000yg.000 0.000y0 000
25th | 0.000,40.000 0.001ygg92 0.000yg.000 0.000y¢.260

PEFH)  50th | 0.18840188 0.582y0.412  0.00240.002 0.102y9.245
75th | 021240212 0.668y0.326 0.004,0.004 0.173y0.266
max_ | 0.236,0236  0.737y.259 0.030,0.030 0.602y¢.270
min | 0.000y0000 0.419vyos67 0.000y9.000 0.006y0.014
25th | 0.039,0.039 0.419yg567 0.00040.000 0.066y0.175

P*T*) 50th | 015550155 0.419y0567  0.00040.000 0.097y0.228
75th | 0.228,0228 0.419y9567 0.00040.000 0.137y0312
max | 0.309,0309 0.419y0.567  0.15440.154  0.419y0.567
min | 0.000yp.000 0.000yg.000 0.000yg.000 0.000y0.000
25th | 0.007,0.007 0.001ygg92 0.00040.000 0.001yg 302

PNV#¥)  50th | 0.03550035 0.582y0.412 0.00040000 0.087v0.268
75th | 032140321 0.668y0326 0.005,0.005 0.179v0.234
max | 0.720,0.720 0.737yg.259  0.40040.400 0.49340.030

P*F* — 0.14140.141 0.419y0567 0.00250.002 0.106y0.248

! 25th, 50th, and 75th represent the respective percentiles.

2 St., Di., Sub., and Ex. stand for “stealthy”, “direct”, “sub-prefix”, and “exact-prefix”.
The difference (v/a) is based on the comparison with a no-ROV scenario.

corresponding group. Aggregated risk levels across all such
groups, e.g., all unique “target-hijacker” pairs in this example,
collectively form a probability distribution.

We represent an entity combination as a 3-tuple, where
absent entities are denoted by * and present entities by their
initials; for example, (*,T,H) represents aggregation by the
“target-hijacker” pair. For each type of BGP hijacking, we
assess its aggregated risk level by all entity combinations
except (V,T,H), since aggregating by individual instances pro-
vides little statistical insight. We use Z(-) to denote the cor-
responding probability distribution. Notably, (*,*,*) represents
no aggregation, so Z2(*,*,*) reduces to a single value, i.e., the
overall risk level presented in previous analysis.
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Fig. 9: Hijacking success probabilities of ASes in different roles.

Figure 8 shows the cumulative density function (CDF) of the
aggregated risk levels, while Table IV presents key statistics
and highlights differences compared to the no-ROV baseline.
In general, the stealthy hijacking risk tends to concentrate
on a few specific pairs when aggregated by two entities (see
Z(* T,H), Z(V,*H), and Z(V,T,*)), but spread more evenly
across ASes when aggregated by a single entity (see Z2(*,* H),
P T,%), and L(V,**)). For example, & (*T,H), the success
probability distribution of a specific hijacker hijacking a spe-
cific target, has a median of 0.033 and a maximum of 0.995
under sub-prefix stealthy hijacking. In contrast, &2(*,* H), the
success probability distribution of a specific hijacker hijacking
any random route, has a higher median of 0.188 but a much
lower maximum of 0.236. This disparity reflects the difference
in hijacking capacity between ftargeted and non-targeted sub-
prefix stealthy hijacking: the targeted type enables a few hi-
jackers to achieve near-certain success, while the non-targeted
yields only moderate success probability across all hijackers. A
similar pattern is observed in exact-prefix stealthy hijacking,
but not in direct hijacking, either exact-prefix or sub-prefix.
Again, the double-edged effect of partial ROV deployment
is evident, as most statistics of stealthy hijacking risk show
an increase (highlighted in red in Table IV), while those of
direct hijacking risk show a decrease (highlighted in blue).
The only exception is the slight increase in the maximum
value for exact-prefix direct hijacking, due to the increase
of variance in probability distributions caused by random tie-
breaking between competing routes for the exact prefixes.

Takeaway 2: Targeted stealthy hijacking achieves near-certain
success on specific AS pairs (up to 99.5%), while non-targeted
stealthy hijacking distributes risk more evenly across ASes
(with a maximum of 23.6%). In contrast, direct hijacking does
not exhibit these patterns.

Distribution across ASes. We further examine how hijacking
risk distributes across ASes in different roles by assessing
role-specific hijacking success probabilities, i.e., P(V,**),
P(*T,%), and Z(**H). Interpretation of hijacking success
probability differs by role: for a hijacker, it reflects its capa-
bility to hijack routes globally, while for a victim or target, it
reflects its exposure to hijacking threats from any hijacker.
We now focus exclusively on sub-prefix hijacking, as it is
generally more impactful. Figure 9(a)-(c) present the hijacking
success probabilities for ASes acting as hijackers, victims,
and targets, respectively, under both stealthy (red curve) and
direct (orange curve) hijacking. In each figure, ASes are sorted
along the X-axis in descending order of their overall hijacking
success probability, i.e., the sum of both stealthy and direct
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hijacking success probabilities. To improve readability, the
curves in Figure 9(b) are smoothed using a convolution kernel
of size 32. We observe that over 50% of ASes, as attackers,
can hijack over 80% of global routes despite ROV deployment;
even the most protected 1% of ASes face considerable risk,
with about 30% of their routes vulnerable as victims and 43%
as targets. This highlights the limited protection ROV provides
against BGP hijacking under its current deployment.

In Figure 9(a), as the overall success probability decreases
along the X-axis, stealthy hijacking shows an upward trend, in
contrast to the steady decline of direct hijacking. However, for
a few ASes (as hijackers) where ROV filtering is highly effec-
tive, both direct and stealthy hijacking’s success probabilities
align and drop towards zero. The opposing trend reveals a key
tradeoff introduced by partial ROV deployment: while ROV
blocks malicious routes, it also limits the route visibility of be-
nign ASes, inadvertently exacerbating stealthy hijacking risk.
Yet, the convergence of stealthy and direct hijacking’s success
probabilities at the tail end suggests diminishing returns, i.e.,
once ROV restrictions on attackers become sufficiently strong,
stealthy hijacking also loses its advantage.

We observe a similar opposing trend in Figure 9(b), where
32% of ASes, as victims, face even higher stealthy hijacking
risk than direct hijacking, with success probability reaching
up to 72% in extreme cases. Moreover, stealthy hijacking’s
success probabilities exhibit considerable variability, as in-
dicated by noticeable spikes in the curves, suggesting that
the stealthy hijacking risk faced by a victim is more case-
specific and less predictable. In contrast, Figure 9(c) shows
that stealthy hijacking risk distributes more evenly across ASes
as targets, affecting over 99% of them with a maximum suc-
cess probability of 30.9%. Notably, direct hijacking’s success
probabilities remain constant at 41.9%, as sub-prefix direct
hijacking depends solely on whether victims accept malicious
routes from hijackers, irrespective of the targets.

Takeaway 3: While stealthy hijacking risk mostly opposes the
overall risk trend across ASes, its diminishing gain is even-
tually suppressed as ROV’s restrictions on attackers prevail.
Besides, the risk is more case-specific across victims but more
evenly distributed across targets.

Distribution across Geolocations. We now look into the
geographic distribution of stealthy hijacking risk, using the
MaxMind GeoLite2 dataset [36] for AS geolocation. Fig-
ure 10(a)-(c) map all ASes globally, shaded by the ratio of
hijacking instances involving them as hijackers, victims, and
targets, respectively. We observe that the most capable po-
tential hijackers cluster in Europe, South America (especially
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Fig. 10: Geographic distribution of stealthy hijacking risk.

Brazil), and North America (notably Mexico), while victims
are mainly located in North America, with the US being the
most affected. Meanwhile, the most targeted ASes concentrate
in South America (particularly Brazil) and South Asia (notably
India). These observations likely stem from differences in
regional Internet connectivity. Figure 9(d)-(f) further show
these role-specific ratios averaged over each country’s total
hijacking instances, capturing ASes’ relative role tendency per
country. We emphasize that this metric reflects statistical role-
country correlation, rather than actual or intentional behavior
of any country. Besides earlier observations, we find that ASes
in the US and Russia are more likely (and capable) to act as
hijackers if involved in stealthy hijacking, while both countries
also exhibit a considerable fraction of ASes at risk as targets.

Takeaway 4: ASes most effective in launching stealthy hijack-
ing are mainly in Europe, South America, and North America;
victim-prone ASes are mainly in North America; and target-
prone ASes are mainly in South America and South Asia.

Influencing Factors. To understand how Internet topology
affects stealthy hijacking risk, we examine a broad range of
topological features and evaluate their statistical correlation
with the risk. As shown in Table V, we consider 24 features,
including both basic metrics and composite statistics, grouped
into seven categories: degree related (De0-De4), cone related
(Co0/Col), funnel related (FuO/Ful), hegemony related (HeO-
He3), distance related (Di0-Di2), cumulative statistics (CmO-
Cm3), and average statistics (Av0-Av3). Degree and distance
related features reflect AS connectivity and centrality in the
Internet topology [37]. Cone and funnel related features indi-
cate the capability of ASes to provide and access transit ser-
vices, respectively [31], [38], [39]. Hegemony related features
measure AS interdependencies in forming routing paths [40].
Cumulative and average statistics, derived by aggregating these
features over AS neighborhoods, capture broader topological
characteristics at various scales.
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Fig. 11: Feature correlation with stealthy hijacking risk.

We use the Pearson Correlation Coefficient (PCC) [41]
to quantify the linear correlation between each feature and
stealthy hijacking risk (measured by hijacking success prob-
ability). This coefficient, denoted ri, ranges from -1 to I,
with values closer to 1 (or -1) indicating stronger posi-
tive (or negative) correlation. To capture potential non-linear
correlation, given Internet topology’s scale-free nature [37],
we further apply quadratic regression and compute the PCC
between the fitted and observed risk levels. The resulting
coefficient, denoted r2, reflects the strength of a quadratic
fit. For each feature, we report the higher absolute value of
r1 and r2 in Figure 11. Notably, cumulative statistics exhibit
the strongest correlation overall, with 72 of Cm1 (Cumulative
ROV Hegemony) reaching up to 0.997, 0.948, and 0.782
for hijackers, victims and targets, respectively. Certain funnel
related features, e.g., Ful (ROV Funnel Size), distance related
features, e.g., Di0 (Minimum ROV Distance), and average
statistics, e.g., Avl (Average ROV Hegemony), also exhibit
relatively strong correlation with stealthy hijacking risk.

To further examine the most correlated features, we plot
ASes on a plane, where the X-axis represents the feature value
and the Y-axis represents the stealthy hijacking risk level, as
shown in Figure 12. Fitted values from linear and quadratic
regressions are presented with blue lines and orange curves, re-
spectively, with shaded areas indicating estimation errors. The
risk levels show a clear quadratic correlation with cumulative
statistics (see Figure 12(al), (bl), and (cl)), but less so with
other features. Particularly, Cm1 in (al) measures the fraction
of routes traversing any ROV-enabled AS before reaching
the given AS’s reachable ASes within malicious reach. This
statistic reflects the range of potential risk-critical ASes that
the given AS as a hijacker can compromise. As this range
expands, more ASes become potential targets, yet potential
victims become fewer, resulting in the observed parabolic
curve. The near-perfect quadratic fit (with r2 approaching 1.00)



TABLE V: Topological features used to analyze factors influencing stealthy hijacking risk.

Feature Group

Feature Name

Description

Degree Related

De0 (Node Degree)
Del (Out Degree)

De2 (In Degree)

De3 (Provider Degree)
De4 (Customer Degree)

Number of edges (AS relationships) connected to the node (AS).
Number of outbound edges (P2C/P2P relationships) from the node (AS).
Number of inbound edges (C2P/P2P relationships) to the node (AS).
Number of direct providers of the AS.

Number of direct customers of the AS.

Cone Related

Co0 (Customer Cone Size)
Col (ROV Cone Size)

Number of direct or indirect customers of the AS.
Number of direct or indirect ROV-enabled customers of the AS.

Funnel Related

Fu0 (Provider Funnel Size)
Ful (ROV Funnel Size)

Number of direct or indirect providers of the AS.
Number of direct or indirect ROV-enabled providers of the AS.

Hegemony Related

HeO (AS Hegemony)

Hel (ROV Hegemony)
He2 (Pre-ROV Hegemony)
He3 (Post-ROV Hegemony)

Ratio of routes that traverse the AS.

Ratio of routes traversing both ROV-enabled ASes and the given AS.
Ratio of routes traversing ROV-enabled ASes before the given AS.
Ratio of routes traversing ROV-enabled ASes after the given AS.

Distance Related

Di0 (Minimum ROV Distance)
Di2 (Maximum ROV Distance)
Di3 (Average ROV Distance)

Minimum path length from the AS to any reachable ROV-enabled AS.
Maximum path length from the AS to any reachable ROV-enabled AS.
Average path length from the AS to all its reachable ROV-enabled ASes

CmO0 (Cumulative AS Hegemony)

Cml! (Cumulative ROV Hegemony)
Cm?2 (Cumulative Pre-ROV Hegemony)
Cm3 (Cumulative Post-ROV Hegemony)

Cumulative Statistics

Sum of He0O (AS Hegemony) over ASes reachable by the given AS within malicious reach.

Sum of Hel (ROV Hegemony) over ASes reachable by the given AS within malicious reach.
Sum of He2 (Pre-ROV Hegemony) over ASes reachable by the given AS within malicious reach.
Sum of He3 (Post-ROV Hegemony) over ASes reachable by the given AS within malicious reach.

AvO (Average AS Hegemony)

Av1 (Average ROV Hegemony)

Av2 (Average Pre-ROV Hegemony)
Av3 (Average Post-ROV Hegemony)

Average Statistics

Average of HeO (AS Hegemony) over ASes reachable by the given AS within malicious reach.
Average of Hel (ROV Hegemony) over ASes reachable by the given AS within malicious reach.
Average of He2 (Pre-ROV Hegemony) over ASes reachable by the given AS within malicious reach.
Average of He3 (Post-ROV Hegemony) over ASes reachable by the given AS within malicious reach.
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Fig. 12: Illustration of statistical correlation between selected features and stealthy hijacking risk.

suggests that cumulative statistics are reliable indicators of
stealthy hijacking risk. Notably, the opposite concavity of the
parabola in (al) compared to (bl) and (c1) reflects the opposite
interpretation of risk levels in terms of different roles, i.e.,
hijacking capability for ASes acting as hijackers, and hijacking
susceptibility for those as victims or targets.

Takeaway 5: Cumulative statistics of AS hegemony show the
strongest quadratic correlation with stealthy hijacking risk,
making them powerful indicators for predicting risk levels.

Risk Attribution. To better understand how risk-critical ASes
and ROV-enabled ASes contribute to the risk, we examine
the frequency of stealthy hijacking instances associated with
them. We define the risk-critical AS as the first AS along
the victim-to-target route that has a route to the hijacker, and
the responsible ROV-enabled AS as the first ROV-enabled AS
along that path. We attribute all stealthy hijacking instances
to 8,323 unique risk-critical ASes and 1,608 unique ROV-
enabled ASes. Figure 13 shows the contribution of these ASes
to stealthy hijacking risk. The blue curves represent the count
of instances associated with each AS, and the orange curves
show the cumulative percentage. Dashed lines mark the 80%
cut-off, revealing a pronounced long-tail effect, i.e., a vital few
account for the majority of the risk. That is, 2.94% of risk-
critical ASes (245 out of 8,323) or 2.24% of ROV-enabled
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Fig. 13: Attribution of stealthy hijacking risk to risk-critical
ASes (left) and ROV-enabled ASes (right).

ASes (36 out of 1,608) are responsible for 80% of all stealthy
hijacking instances. This observation highlights the importance
of focusing mitigation efforts on a small set of ASes to
effectively reduce the overall risk of stealthy hijacking.

Takeaway 6: A small fraction of risk-critical and ROV-enabled
ASes account for the majority of stealthy hijacking risk, calling
for focused risk mitigation efforts on these key ASes.

Evolution Pattern. Finally, we analyze how stealthy hijacking
risk evolves with increasing ROV deployment, as shown in
Figure 14. Our preliminary assessment based on data from
October 1, 2023 identifies 778 ROV-enabled ASes, which
accounts for approximately 1% of the 75k ASes active at the
time. It reports an overall stealthy hijacking success probability
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Fig. 15: True positive rate of our framework.

(including both sub-prefix and exact-prefix ones) of 0.105. In
comparison, data from March 1, 2025 identify 7,275 ROV-
enabled ASes (roughly 10% of all ASes), with the risk rising
to 0.145, as reported earlier. This reflects an increase in overall
risk alongside real-world ROV deployment. Moreover, we
simulate future ROV deployment by progressively relaxing
the threshold for identifying ASes as ROV-enabled, and the
results suggest that the risk begins to decline as deployment
increases. Specifically, a 10% additional increase in the ROV
deployment rate reduces the hijacking success probability to
0.101, and a rate exceeding 40% reduces the risk to near zero.

Takeaway 7: The stealthy BGP hijacking risk shows an overall
“rise-then-decline” evolution pattern along ROV deployment,
and we may now be entering the declining phase.

VII. FRAMEWORK PERFORMANCE EVALUATION
A. Risk Discovery Effectiveness

When evaluating the effectiveness of SHAMAN in risk
discovery, we use the curated real-world incident dataset
described in §IV as the ground truth. The dataset contains
318 high-confidence stealthy hijacking incidents captured in
the wild. Each incident consists of one or more related
alarms triggered by the same misbehaving origin, and each
alarm includes one or more pairs of routes indicating stealthy
hijacking to the same prefix. In total, the dataset contains
347 alarms and 2,178 routes. As the best-effort ground truth
contains only positive instances®, we report the True Positive
Rate (TPR) as the main metric, reflecting how effectively
SHAMAN infers real-world instances.

We begin by measuring SHAMAN’s TPR at the route level.
As per the strict heuristics in §IV, each ground truth route pair
includes one RPKI-valid and one RPKI-invalid route. For both
routes, we extract the vantage point and origin AS to look up
the corresponding route inferred by SHAMAN. If the inferred
route pair also satisfies the strict heuristics, meaning that
SHAMAN'’s inference matches the ground truth, we consider

31t is infeasible to establish negative ground, because it is inherently difficult
to find a case and tell whether it has not occurred or cannot occur.
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TABLE VI: True positive rate under ablation of ROV sources.

Sources! True Positive Rate’

#ASes
A R C Incident  Alarm Route Rt.V. Rt.Iv.
° ° ° 0.9591 0.9597 0.7521 0.6782 0.8400 7,275
e} . ° 0.7862 0.8012 0.6290 0.4519 0.8400 6,725
° o ° 0.2767 0.2882 0.4201 0.0971 0.8048 2,668
° ° o 0.8019 0.8184 0.5969 0.3902 0.8431 7,209
° o o 0.2767 0.2882 0.4201 0.0971 0.8048 2,575
o . o 0.6164 0.6484 0.5202 0.2492 0.8431 6,655
e} e} . 0.0629 0.0576 0.4656 0.0169 1.0000 165
o o o 0.0618 0.0720  0.4449 0.0166 0.9551 1,000

A, R, and C denote APNIC, RoVista, and Cloudflare, resp. The row in
The row without any source randomly selects 1,000 ASes as ROV-enabled.
Rt.V. and Rt.Iv. indicate valid and invalid routes, resp. Highest values are in bold.
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Fig. 16: Noise resistance of multi-source ROV input.

both routes are effectively inferred. Route-level TPR is defined
as the fraction of such effectively inferred routes. We further
measure alarm-level TPR as the fraction of alarms with at least
one route pair effectively inferred, and incident-level TPR as
the fraction of incidents containing at least one such alarm.
We present SHAMAN’s TPR across varying ROV filtering
thresholds in Figure 15 (left). As the threshold increases, fewer
but more confident ROV-enabled ASes are selected, and the
TPR increases steadily. Beyond the 0.6 threshold, inference
remains consistently strong, reaching 0.959, 0.960, and 0.752
at the incident, alarm, and route levels, respectively. This
means that over 95% of these real-world incidents are suc-
cessfully flagged risky by SHAMAN. Figure 15 (right) further
breaks down route-level TPR by RPKI validity. As expected,
SHAMAN is slightly less effective on RPKI-valid routes due to
the stealthiness requirement (condition 3 in §IV-A) that applies
exclusively to them. Still, SHAMAN achieves up to 0.678 TPR
on these routes. Overall, these results demonstrate the fidelity
of SHAMAN'’s analytical output and inform a recommended
threshold range, which justifies our default choice of 0.8.

B. Input Ablation and Robustness

We examine how incorporating multiple ROV measurement
sources improves SHAMAN’s effectiveness and robustness.
Table VI reports SHAMAN’s TPR under ablation of the three
sources, with the ROV filtering threshold fixed at 0.8. In
general, excluding any source leads to a noticeable drop in the
coverage of ROV-enabled ASes and a corresponding decline in
SHAMAN’s effectiveness, except that using only the Cloudflare
source yields the highest TPR on RPKI-invalid routes. This is
because Cloudflare contributes only 165 ROV-enabled ASes,
which, according to SHAMAN’s assessment, have limited
effect in blocking propagation of RPKI-invalid routes. As
a result, SHAMAN’s inference overestimates observation of
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RPKI-invalid routes and thus aligns well with the ground truth.
However, this setting is impractical and results in just 0.0169
TPR on RPKI-valid routes and 0.0629 at the incident level.
After all, we conclude that integrating multiple reliable sources
to obtain a more complete view of ROV deployment is crucial
to achieve effective stealthy hijacking risk assessment.

We further look into SHAMAN’s robustness to noise in
the three ROV measurements. We simulate scenarios where
one or two sources randomly mislabel an ROV-enabled AS
as non-ROV-enabled, and measure the probability that such
ASes remain included in the final ROV set. The results are
shown in Figure 16. When all three sources are used, SHAMAN
retains a 20%-50% probability of preserving an AS despite a
mislabel from a single source (see the top panel), and about a
1.0% probability when two sources mislabel the same AS. By
comparison, using only one source result in zero probability
of noise resistance, as any mislabel is directly accepted to the
final ROV set. These results emphasize the robustness benefit
of SHAMAN'’s design using multiple ROV sources as input.

C. Runtime Overhead

For comparison, we select BGPsim [13], a highly optimized
BGP simulator widely used in prior studies [42]-[44]. We
test SHAMAN and BGPsim on the same Internet topology
derived from CAIDA AS relationship data. Figure 17 reports
their runtime overhead in generating routes within random AS
subsets ranging from 10 to 100 ASes. Each run is repeated 10
times, with error bars indicating the 95% confidence interval.
The top panel compares the runtime of SHAMAN (in a single-
thread CPU setting) with BGPsim’s, with SHAMAN over 40
times faster in the worst case. The bottom panel evaluates
SHAMAN'’s runtime under different settings (1, 20, and 40 CPU
threads, or a single GPU). The settings with 40 CPU threads
or a single GPU show the best performance, completing
route generation across 75,846 ASes in 5.22 hours with peak
memory usage under 20 GiB. In contrast, an exponential
fit of BGPsim’s overhead estimates 110 days for full route
generation. As such, SHAMAN achieves a 500-fold speedup,
providing the efficiency necessary for comprehensive Internet-
scale stealthy hijacking risk assessment.

VIII. DISCUSSION

Complex Routing Policy. Our framework infers BGP routes
based on the established Gao-Rexford model [13], [35], [42],
[43]. While it cannot capture all real-world nuances, e.g.,
hybrid or partial-transit relationships [31] and selective ROV
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filtering [10], such cases are rare, e.g., only seven ASes exhibit
selective filtering [10]. Our evaluation on real incidents con-
firms the framework’s reliability despite these complexities.
The design is also extensible: additional bytes can encode
nuanced relationships, and selective filtering can be modeled
by pruning certain links. We leave these to future work.
Mitigation Strategies. Increasing ROV deployment remains
central to mitigating stealthy hijacking, as a sufficiently high
adoption rate can suppress the risk (see Takeaway 3). ROV++
[12], which extends ROV with proactive rerouting and black-
holing upon detecting invalid routes, can also mitigate the
threat. Besides, detecting routing table discrepancies across
vantage points, as demonstrated in §IV, enables timely alert
of ongoing incidents. Operational practices such as announcing
/24 TPv4 or /48 TPv6 prefixes also significantly limits the sub-
prefix risk. Furthermore, information-sharing platforms, e.g.,
mailing-lists where ROV-adopters publish digests of dropped
routes, help potential victims identify risk-critical ASes. A
similar routing policy was described in Cisco’s patent [45].
Incident Intent. Identifying intent behind BGP incidents,
i.e., whether malicious or not, is inherently challenging. We
attempt systematic attribution methods (see Table I) and man-
ual investigation (see Appendix A). While these help narrow
down likely causes, definitive confirmation requires engage-
ment with network operators, which we attempted in selected
cases. Cross-layer analysis with external intelligence may offer
further insights, which we leave as future work. However, re-
gardless of intent, the operational impact of stealthy hijacking
remains significant. Unintentional misconfigurations can lead
to the same consequences as deliberate attacks.

IX. RELATED WORK

Stealthy Hijacking Analysis. Prior work mainly focuses
on non-ROV-related stealthy hijacking based on short-lived
routes [46], AS-path poisoning [47], or BGP communi-
ties [48]. To our knowledge, ROV++ [12] is the only recent
work addressing ROV-related stealthy hijacking. It extends
ROV with proactive rerouting and blackholing to mitigate
the threat, showing promising benefits at early adoption.
Particularly, ROV++ adopters can effectively secure all routes
traversing them. If AS B in Figure 1 deploys ROV++, it
drops the invalid route and seeks an alternative route in its
RIB that avoids ASes in the invalid route (i.e., AS C, F, and
G), thus avoiding the risk-critical ASes. If such route is not
available, it blocks traffic to the prefix to prevent hijacking.
However, in certain mixed-deployment scenarios, e.g., when
AS B deploys ROV and AS A deploys ROV++, stealthy
hijacking is still possible because the malicious route never
reaches AS A, thus failing to trigger the countermeasures in
ROV++. ROV++ focuses on mitigation strategies and does
not provide real-world evidence or systematic assessment of
the threat’s prevalence and impact. In contrast, our work aims
at real-world stealthy hijacking discovery and systematic risk
assessment, addressing this critical gap. Moreover, our risk
attribution analysis complements ROV++ by identifying where
its deployment would be most effective. For example, the 36



ROV-enabled ASes in Figure 13, which are mostly Tier-1 ASes
and account for 80% of risk instances, are prime candidates
for deploying ROV++.

ROV Deployment Measurement. ROV deployment is typ-
ically measured by analyzing ASes’ data-plane reachability
to RPKI-valid and invalid prefixes [9]-[11], [18], [19], [33],
[49]-[51]. These studies vary in probing sources and prefix
selection. For example, RoVista [9] uses IPID side channels;
APNIC [11] conducts large-scale probing via its infrastruc-
ture; and Cloudflare [10] hosts test sites and crowdsources
measurements. Despite diverse techniques, each offers only
partial coverage due to scalability limits. To improve visibility,
we consolidate these three representative sources [9]-[11] for
a more comprehensive view of ROV deployment.

BGP Route Inference. Existing BGP route inference methods
are either simulation-driven [13], [14], [52]-[54] or data-
driven [15], [55]-[58]. Simulation-driven methods simulate
the route exchange using heuristics such as the Gao-Rexford
model [59]. For example, Brandt et al. [13] implement BGP-
sim with bi-directional search to improve performance. Data-
driven methods infer AS-level paths from measurements. For
example, Cunha et al. [57] design a traceroute-based prediction
system. While effective at certain scales, these methods cannot
generate complete Internet-scale routes efficiently. Our work,
by contrast, computes all AS-level routes within a few hours.

X. CONCLUSION

In this paper, we develop effective heuristics to discover
stealthy BGP hijacking and conduct the first empirical study
to track it in the wild, contributing a curated dataset and a mon-
itoring service. To assess the risk comprehensively, we further
design SHAMAN, a framework that integrates multiple sources
for accurate ROV deployment, leverages matrix operations to
infer Internet-wide routes, and enables systematic risk analysis
via a 3-tuple model. It generates Internet-scale routes within
hours and achieves 95.9% incident-level accuracy. Assessing
over 8.3 billion routes reveals a 14.1% success probability for
stealthy hijacking, with targeted attacks reaching up to 99.5%.

ETHICS CONSIDERATIONS

We carefully consider several ethical aspects to ensure that
our study adheres to established ethical standards. Our study
only uses publicly available data, and we strictly comply
with all terms of use. Our study does not disclose any
personally identifiable information or private routing policies
beyond what is already publicly available. We do not perform
any large-scale active probing or interfere with live routing
systems, thereby ensuring no impact on real-world traffic or
network stability. The real-world incidents captured during our
study are responsibly disclosed to relevant network operators.
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APPENDIX A
CASE STUDY: STEALTHY HIJACKING ON 203.127.225.0/24

To verify the discovered stealthy hijacking incident target-
ing 203.127.225.0/24 (depicted in Figure 5), we manually
investigate AS37100’s control-plane visibility and data-plane
reachability based on first-hand observations from its looking
glass* “Ig-01-ams.nl”. All observations presented below were
captured on February 10, 2025.

We begin by examining AS37100’s route to the prefix
203.127.0.0/16. As shown in Figure 18, running the command
“show ip bgp 203.127.0.0/16” on the looking glass reveals that
AS37100 has a route to the prefix announced by the legitimate
origin AS3758, via the AS path 37100 6762 6461 7473 3758.
This confirms that the legitimate route is visible to AS37100
on the control plane, aligning with our expectations.

Next, we investigate AS37100’s control-plane visibility of
the sub-prefix 203.127.225.0/24. As shown in Figure 19, ex-
ecuting “show ip bgp 203.127.225.0/24” on the looking glass
returns no matching routes, indicating that AS37100 does not
accept the bogus route announcement from the unauthorized
origin AS17894. This corroborates our analysis that the bogus
route is not visible to the victim on the control plane.

To obtain the actual data-plane forwarding path, we perform
traceroute probing from AS37100 to 203.127.225.0/24. As
shown in Figure 20, the resulting per-hop data-plane path
reveals that the last two hops (line 13 and 14) belong to
AS17894. This confirms that traffic from AS37100 to the sub-
prefix is indeed diverted to the illegitimate origin, demonstrat-
ing actual hijacking at the data-plane level.

Taken together, these observations provide strong evidence
of a stealthy BGP hijacking incident, where AS37100’s traf-
fic is misrouted despite its control-plane filtering. However,
we emphasize that the intent behind this incident remains
uncertain. Given our broader investigation showing that (i)
AS17894°s parent organization, Innove Communications, is
a subsidiary of Globe Telecom [60], (i) AS3758’s parent
organization, SingNet, is operated by SingTel [61], and (iii)
SingTel is the principal shareholder of Globe Telecom [62],
we suspect that this incident, despite manifesting as stealthy
hijacking, is likely the result of overlooked misconfigurations
rather than a deliberate attack. As of this writing, we are
awaiting confirmation from Globe Telecom. Note that this does
not diminish the value of the case study, as misconfigurations
can cause stealthy hijacking just like intentional attacks.

APPENDIX B
TorPoLOGY COMPRESSION METHOD

Given that the route inference complexity grows quadrati-
cally with topology size, SHAMAN applies a topology com-
pression method to reduce the topology size after obtaining the
Internet topology. The compression is based on the concept

“https://lg.seacomnet.com/
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Fig. 19: AS37100’s routes to 203.127.225.0/24.

of branch. Specifically, a branch is defined as a sequence of
ASes starting from a stub AS (i.e., an AS with no neighbor
other than a single provider) and recursively tracing the subject
AS’s single provider until encountering an AS with more than
one provider, more than one customer, or any peers. This
AS, leading to the end of the recursion, is denoted as the
access AS of the branch. The key intuition behind SHAMAN’s
topology compression strategy is that all routes from branch
ASes to non-branch ASes must traverse consecutive C2P links
and pass through the corresponding access AS before entering
the broader Internet, and vice versa. As a result, the routing
tables of branch ASes can be fast computed based on the
access AS’s routing table, e.g., by concatenating a certain slice
of the branch. Similarly, the routes towards branch ASes can
also be fast computed based on the routes towards the access
AS. Besides, routes between ASes within the same branch are
trivial. Thus, the routes regarding branch ASes can all be fast
computed without involving the branch ASes in the BGP route
inference process. Therefore, SHAMAN identifies all branches
in the Internet topology, establishes their correspondence with
access ASes, and prunes the branches to capture the remaining
topology, referred to as the core topology. BGP route inference
is performed only on the core topology or its sub-topologies,
and routes regarding branch ASes are efficiently computed
afterwards based on the inference results. In practice, this
compression method reduces the topology size by 36.3% in
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Fig. 20: Traceroute from AS37100 to 203.127.225.1.

terms of vertices and 3.97% in terms of edges, with a total of
27,775 branches left out.

APPENDIX C
NON-BRANCH ~PL COMPUTATION VALIDITY

The two-branch ~PL field computation described by Equa-
tion (6) can be effectively replaced by the branchless compu-
tation described by Equation (7) without affecting the integrity
of the results. Here, we prove the validity of this replacement.

Theorem 1. Equations (6) and (7) produce identical inference
results after each iteration.

Proof. The first branch of Equation (6), where LP[plfJI ] #
(00)3, results in ~PL[pAlTk‘;’} = ~PL[p{;] = 1. In comparison,
Equation (7) only differs in the term subtracted, i.e., PL[p}]
in Equation (7) versus 1 in Equation (6). Thus, we aim to
prove PL[p}] =1 under the condition LP[ﬁ?,;”] # (00)2. This
is evident, as according to Equation (3) and Table III, when
LP[p} ] # (00)s, it follows that LP[pj] # (00),, indicating
an q;-to-a; relationship exists. In this case, the a;-to-a; route
would be a one-hop, ensuring PL[p}] = 1.

The second branch of Equation (6), where LP[},+'] = (00),
results in pkjl having an overall value of (00 111111)
Since the best route selection subsequently compares pl j Wlth
plk” to choose the higher value, and given that the p
by definition at least (00 111111)y, it
not affect the result of pT]” at the end of this iteration.
Similarly, since the output ~PL[p!*!] from Equation (7) will
be either ~PL[p{;] —1 or ~PL[p{;], py;' < (00 111111),
will hold and will not affect the result of p/;*! either. Thus,
Equations (6) and (7) produce the same result under the

condition LP[p}#'] = (00), as well. O

in this case does



APPENDIX D
SIMPLIFYING PRIORITY BYTE SELECTION

We can effectively eliminate pl-Tj from the comparison among
route priority bytes in each iteration, thereby simplifying
Equation (8) to (9). The rationale behind this simplification
is that there is always some k such that plk” > pg Here, we
provide the proof.

Lemma 1. There exist a certain 7/ (0 < T’ < T) and a certain

k (k€ {0,...,n—1}) such that pl; = pl.

Proof. According to Equation (8), plT] either equals

AT \n-1 T AT '\n-1
max{py ;}i=y or pl] - f pj; = max{p;;}i=,, apparently
there exists a certain k when T’ = T such that
T AT’ AT \n-1 T T-1

pij = Pij = max{pikj i—o- If p;j; = pij’, the problem

reduces to finding a certain 77 (0 < T’ < T —1) and a certain
k (k €{0,...,n—1}) such that p[;! = p¥’.. We repeat this
reduction recursively until the problem reduces to finding a
certain 7/ (0 < T/ <1) and a certain k (k € {0,...,n—1})
such that pilj Aﬁj Let 7/ =1 and k = j, and then we need
prove pilj = ﬁij/ = max{pikj}kzo. Note that ﬁfkj is computed
based on p} and pk] By definition, p,(z = (11 111111),
when k = j, otherwise pk (00 111111)2 Then, according
to the definition of p i (see Equation (12)) and the
computation of ﬁ}k (see Equations (3) to (7)), it follows
that Pz, pw (00 111111), while all ﬁl.’kj: (00 111111)
when k # j. Thus, we have proved the reduced problem, and
consequently, the original problem is also proved. O

Lemma 2. ﬁ,];, < pAiTkj when T' < T.

Proof. ﬁiTk ; is computed based on P,-Ik and p,{j. According to
Table III, when pilk is fixed, the LP field of ﬁ[Tk y either increases
or remains unchanged as pk increases. Since, according to
Equation (8), pk] > pk] when T > T', it follows that LP[p lk]]

LP[plk]] when 7> T'. If LP[p lkj] > LP[szj] it is apparent that
sz ;< sz > as the LP field represents the two most significant
bits of the priority byte. If LP[ Pix j} LP[Ag< il
cases to consider: First, if ij pkj, then plkj
if pl; > pl; but both LP[p}] ©LP[p];] and LP[p}] ® LP[p] ]
result in (00),, then according to Equation (6), both pl];{; and

], there are two

!
piTk it Second,

piTkj equal (00 111111);. Therefore, piTkj = plTk// is ensured

when LP[ﬁ?,;j]

/ = LP[ﬁiTkj]. In all cases, ﬁl.Tkj <
T'<T.

ﬁiTk y when

AT+1

Theorem 2. There exists a certain k such that p;* ¥ > plTJ

Proof. According to Lemma 1, there exist a certain T’ (0 <

T' <T)and a certain k (k € {0,...,n—1}) such that pl] plk/
Then, accordmg to Lemma 2, plk ;< plTk;rl since T' < T +1.
So pgcjl > p}; with this k. O

APPENDIX E
RESTORING ROUTES FROM NEXT-HOP MATRIX

Here, we describe the process of restoring the complete path
of a route between two ASes using the state matrix P7 and the
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next-hop matrix N7. Algorithm 1 outlines the steps to achieve
this. The function RESTOREPATH takes as inputs the vantage
point AS g;, the origin AS aj, the state matrix PT and the
next-hop matrix N7. It initializes the next-hop index with i
(see Line 2) and an empty list to store the path (see Line
3). The algorithm proceeds in a loop, continuously updating
the next-hop AS until it reaches the origin AS a;. If at any
point the state matrix indicates that the origin is unreachable
(see Line 5), the function returns None. Otherwise, it updates
the next-hop using the next-hop matrix N7 (see Line 7) and
appends the corresponding AS number to the path (see Line
8). The process repeats until the origin AS is reached, at which
point the complete path is returned.

Algorithm 1 ensures that we can restore the AS path for any
given (i, j) pair based on the information stored in the state and
next-hop matrices, providing a systematic approach to generate
the complete route set from the matrix-based results.

Algorithm 1 Restoring Path from Next-Hop Matrix

1: function RESTOREPATH(a;, aj, PT, NT)

2 next_hop =i

3 path =]

4 while next_hop # j do

5: if PT[next_hop, j]l <0b00111111 then
6 return None

7 next_hop = N [next_hop, ]

8 APPEND(path, anexi_pop)

9: return path

APPENDIX F
COMMUNITY ENGAGEMENT

We preliminarily shared our work with APNIC experts,
who raised concerns about the pratical significance of real-
world incidents. In response to this feedback, we carried
out the empirical study presented in Section IV, providing
quantitative evidence of the prevalence and impact of stealthy
hijacking in today’s Internet. Additionally, we are actively
promoting an informational Internet Draft’ that formalizes the
mechanism and properties of stealthy hijacking and aims to
raise community awareness of this threat.

APPENDIX G
ADDITIONAL TECHNICAL REPORTS

We provide extended technical details covering algorithms,
implementation notes, and in-depth analyses in standalone
technical reports available via external links. Readers inter-
ested in these topics may refer to:

o Report on Stealthy Hijacking Discovery as a Service

« Report on Matrix-Based Route Priority Update

o Report on Time-Space Tradeoff in Matrix Update

Shttps://datatracker.ietf.org/doc/draft-li-sidrops-stealthy-hijacking/


https://github.com/yhchen-tsinghua/stealthy-bgp-hijacking/blob/main/docs/stealthy-hijacking-discovery-as-a-service.pdf
https://github.com/yhchen-tsinghua/stealthy-bgp-hijacking/blob/main/docs/matrix-based-route-priority-update.pdf
https://github.com/yhchen-tsinghua/stealthy-bgp-hijacking/blob/main/docs/time-space-tradeoff-in-matrix-update.pdf

APPENDIX H
ARTIFACT APPENDIX

A. Description & Requirements

This artifact supports the paper Understanding the Stealthy
BGP Hijacking Risk in the ROV Era, and enables full repro-
duction of all experiments and results presented therein. The
artifact includes three parts: (i) an empirical study based on
real-world BGP data (presented in §IV of the paper), (ii) an
analytical study through matrix-based BGP route inference
(presented in §VI of the paper), and (iii) a performance
evaluation of the proposed analytical framework (presented
in §VII of the paper). Additionally, the implementation of
our matrix-based BGP route inference algorithm is encapsu-
lated in a Python package named matrix-bgpsim®, and
our service in production is available at https://yhchen.cn/
stealthy-bgp-hijacking.

Overall, the artifact contains following components:

« Source code and scripts for each part of the experiment.

o Pre-processed datasets (e.g., inferred matrices).

o Pre-computed results and cache files for boosting long-

running steps.

o Docker and Conda configurations for environment setup.

o Documentation and README for usage instructions.

To facilitate reproduction and reduce platform dependency,
we provide a fully-configured cloud-based evaluation platform
(access credentials available via HotCRP). Alternatively, users
can run the artifact locally via Docker or by manually setting
up the environment with the README instructions.

How to access. DOI 10.5281/zenodo.16565359 or GitHub.
Hardware dependencies. The artifact requires the following
resources to complete all experiments:

o At least 120 GB of system free memory,

o At least 60 GB of available disk space,

o Internet access for data downloads, and

o Nvidia GPU and CUDA support for full benchmarking.

Software dependencies. The artifact provides two setups:

o Docker-based: A pre-built Docker image is provided. The
user only needs the Docker tool suite installed.

e Manual setup: Detailed scripts are included to set up
required packages and tools. These include:

— Conda environment with Python 3.10 and dependencies
listed in “environment.yml”,
— Node.js for the frontend display, and
— C/C++ toolchains for building third-party tools, includ-
ing bgpdump and bgpsim.
Benchmarks. The artifact relies on several data sources and
benchmark components:

o BGP routing data: RIB snapshots from RouteViews col-
lectors wide, amsix, and route-views2 since January 1,
2025, and discovered incidents from a two-month period
(January to February 2025) of our deployed service.

6Stable versions of the package are officially released on https://pypi.org/
project/matrix-bgpsim/ and can be installed via pip.
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« Intermediate matrices: Pre-computed Internet-scale BGP
route matrices, derived from CAIDA AS relationship
datasets as of 2025/01/01. These are required for the
analytical and performance studies.

« Synthetic topologies: Generated using a sampled Internet
AS graph (10,000 ASes) for benchmarking BGP route
inference performance.

B. Artifact Installation & Configuration

The artifact supports three installation modes:

Cloud Platform. A fully pre-configured cloud environment is
provided for evaluation purposes. Users can simply SSH into
the platform (credentials provided via HotCRP) and launch
the evaluation environment using a one-line startup script. No
additional setup is required.

Docker-based. The artifact includes Docker Compose config-
urations. Users only need to install the Docker tool suite and
download the provided container image and dataset archive.
BASH scripts are provided to launch the evaluation environ-
ment with all components properly mounted and configured.
Manual Setup. This involves installing required system pack-
ages, Python dependencies (via Conda), and third-party tools
such as bgpdump and bgpsim. Detailed instructions and
setup scripts are included in the repository.

C. Experiment Workflow

The experiment has three main parts that correspond to the

core sections of the paper: an empirical study (§1V), an ana-
Iytical study (§VI), and performance evaluation (§VII). Each
part is self-contained and run via a corresponding “run.sh”
Empirical Study. This part runs a backend routine to analyze
real-world BGP routing data and discover stealthy hijacking
incidents. Then, it characterizes the discovered incidents and
reproduces all relevant figures and tables in §IV. Finally, it
sets up a frontend service locally for interactive display of the
discovered incidents. A production version of this service is
also available at https://yhchen.cn/stealthy-bgp-hijacking.
Analytical Study. This part first uses a matrix-based approach
to infer BGP routes and quantify the stealthy hijacking risk
under partial ROV deployment. It stores the analysis results
in intermediate matrices on the disk, and then reproduces all
figures and tables in §VI.
Performance Evaluation. This part benchmarks the runtime
of our approach against existing tools on synthetic Internet
topologies. It then validates the analytical results against the
empirical results to evaluate the accuracy of our analytical
framework. It further evaluates the accuracy of our analytical
framework under ablation of input data sources and statisti-
cally analyzes how robust our analytical framework is against
mislabels in input data sources. It finally reproduces all figures
and tables in §VII.

D. Major Claims

The major claims supported by our artifact are as follows:

e (C1) Stealthy hijacking in the wild is mostly short-
lived and targets sub-prefixes, with new cases emerging


https://yhchen.cn/stealthy-bgp-hijacking
https://yhchen.cn/stealthy-bgp-hijacking
https://doi.org/10.5281/zenodo.16565359
https://github.com/yhchen-tsinghua/stealthy-bgp-hijacking
https://pypi.org/project/matrix-bgpsim/
https://pypi.org/project/matrix-bgpsim/
https://yhchen.cn/stealthy-bgp-hijacking

almost daily and some persisting long-term. Its exposure
is sensitive to vantage point selection.

(C2) The current partial ROV deployment significantly
amplifies stealthy hijacking risk from 0 to a 14.1% overall
success probability.

(C3) Targeted stealthy hijacking achieves near-certain
success on specific AS pairs (up to 99.5%).

(C4) Stealthy hijacking risk mostly opposes the overall
risk trend across ASes but is eventually suppressed as
ROV’s restrictions on attackers prevail.

(C5) ASes most effective in launching stealthy hijacking
are in Europe, South America, and North America.

(C6) Cumulative AS hegemony shows the strongest
quadratic correlation with stealthy hijacking risk.

(C7) A small fraction of risk-critical and ROV-enabled
ASes account for the majority of stealthy hijacking risk.
(C8) Validation on real-world datasets shows up to 95.9%
incident-level accuracy of our analytical framework.
(C9) Integrating multiple reliable sources to obtain a more
complete view of ROV deployment is crucial to achieve
accurate stealthy hijacking risk assessment.

(C10) Our matrix-based route inference achieves a 500-
fold speedup against existing baseline methods.

E. Evaluation

Experiment (E1) [Empirical Study]: discover stealthy hijack-
ing incidents with real-world routing data, reproduce all figures
and tables in §IV to support Cl1, and additionally set up a
frontend service to display discovered incidents interactively.
[Preparation] No extra preparation is needed.

[Execution] Running “empirical-study/run.sh” is all you need.
This script will execute the following steps:

1) Run the backend routine that discovers stealthy BGP hi-
jacking incidents using RouteViews RIBs from collectors
wide, amsix, and route-views2, each captured at 12:00
January 1, 2025. This is a scaled-down demo for one-day
discovery. In actual deployment, we register a cron-job to
call this backend routine daily.

Reproduce all figures and tables in §IV to support Cl1.
It uses all incidents and alarms captured in the first
two months of year 2025, which are preserved in the
artifact beforehand and are exactly a snapshot of the
results by 2025/07/11 from our service in production at
https://yhchen.cn/stealthy-bgp-hijacking.

3) Set up a frontend service to display discovered incidents.

2)

[Results] The discovered incidents will be saved to “empirical-
study/results”, including one JSON file for alarms and one
JSON file for incidents. Figure 2-4 in PDF format and Table II
in JSON format are reproduced under the same result directory,
which support C1. Once the frontend service is up, it can be
accessed at http://localhost:3000/ using a browser.

Experiment (E2) [Analytical Study]: perform matrix-based
BGP route inference using CAIDA AS relationship data,
analyze the stealthy BGP hijacking risk, and reproduce all
figures and tables in §VI to support C2-C7.

20

[Preparation] No extra preparation is needed.
[Execution] Running “analytical-study/run.sh” is all you need.
This script will execute the following steps:

1) Run a risk analysis process that infers complete BGP
routes on the benign reach and the malicious reach. It
then characterizes stealthy hijacking risk based on these
inferred routes and stores the results in intermediate ma-
trices on the disk. It further computes various topological
features on each AS and cache the results on the disk.
Reproduce all figures and tables in § VI using the interme-
diate matrices and AS features generated in the previous
step.

2)

[Results] The intermediate results including matrices and AS
features will be saved under “analytical-study/data/matrices/”
in the format of compressed pickle objects and CSV files. A
JSON file including statistics of routes, Figure 7-13 in PDF
format, and Table IV in Tex format are reproduced under
“analytical-study/results”, which support C2-C7.

Experiment (E3) [Performance Evaluation]: benchmark the
runtime of matrix-bgpsim and the baseline bgpsim,
evaluate accuracy and robustness of our analytical framework,
and reproduce all figures and tables in § VII to support C8-C10.
[Preparation] No extra preparation is needed.

[Execution] Running “performance-evaluation/run.sh” is all
you need. This script will execute the following steps:

1) Benchmark the runtime of our mat rix—-bgpsim and the
baseline bgpsim. This first generates a sampled Internet
topology that contains 10,000 ASes, based on CAIDA
serial-2 AS relationship dataset on 2025/01/01. This
process starts with Tier-1 mesh and progressively adds
new ASes that connects to the existing topology, until the
number of ASes reaches 10,000. Then, it tests how long
matrix-bgpsim and bgpsim generates all routes
between any random 10 to 100 ASes, respectively, on the
aforementioned sampled topology. matrix—-bgpsim is
also tested under varying number of CPU processes and
GPU.

Use the results from of the previous step and the dis-
covered real-world incidents to evaluate the performance
of our framework in terms of accuracy, robustness, and
efficiency, and reproduce all figures and tables in §VII.
[Results] The benchmark results are stored in CSV for-
mat under “performance-evaluation/.cache”. Figure 15-17 in
PDF format and Table VI in Tex format are created under
“performance-evaluation/results”, which support C8-C10.

2)


https://yhchen.cn/stealthy-bgp-hijacking
http://localhost:3000/
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