Towards Plausible Graph Anonymization

Yang Zhang, Mathias Humbert, Bartlomiej Surma, Praveen Manoharan, Jilles Vreeken, Michael Backes
Graph sharing

Netflix Prize data
Dataset from Netflix's competition to improve their recommendation algorithm
Netflix • updated 3 months ago (Version 2)

Twitch Social Networks
Andrea Garritano • updated 3 months ago (Version 1)

IJCNN Social Network Challenge
This competition requires participants to predict edges in an online social network. The winner will receive free registration and the opportunity to present their solution at IJCNN 2011.

$950 • 117 teams • 9 years ago
Graph anonymization
Graph anonymization
Graph anonymization

id 1

id 2

id 3

id 4

id 5

id 6

id 7

id 8
Graph anonymization
Graph anonymization
Our work

- Find a fundamental flaw in graph anonymization designs
Our work

- Find a fundamental flaw in graph anonymization designs
- Exploit it to recover original graph
Our work

- Find a fundamental flaw in graph anonymization designs
- Exploit it to recover original graph
- Use our findings to enhance anonymization designs
Our work

- Find a fundamental flaw in graph anonymization designs
- Exploit it to recover original graph
- Use our findings to enhance anonymization designs
- Evaluate privacy and usability of enhanced techniques on 3 real life datasets:
 - Enron, NO, Snap
Graph anonymization methods

- ’08 Liu et al. - k-anonymity (k-DA)
- ’08 Zhou et al. - k-anonymity (k-NA)
- ’10 Cheng et al. - k-anonymity (k-iso)
- ’11 Sala et al. - differential privacy
- ’12 Mittal et al. - random walk privacy
- ’14 Xiao et al. - differential privacy
k-DA algorithm
k-DA algorithm
k-DA algorithm
k-DA algorithm

Node Degree Distribution

<table>
<thead>
<tr>
<th>Node Degree</th>
<th># Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

2-DA

Node Degree Distribution

<table>
<thead>
<tr>
<th>Node Degree</th>
<th># Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

2-DA
SalaDP algorithm

dK-2 series

ε-DP

perturbed dK-2 series
Social network graph properties
Social network graph properties
Social network graph properties
Social network graph properties
Graph recovery attack - overview

A: [1.2, 5.7, -3.2, 0.9]
B: [0.8, -3.4, 5.2, 1.3]
C: [0.9, -1.2, 0.2, 4.3]
D: [-3.2, 0.4, 0.7, 1.1]
E: [7.7, 2.4, -0.2, 0.3]
F: [3.8, -9.3, 0.3, 3.2]
Graph recovery attack - graph embedding

- Node embeddings with node2vec ’16 Grover and Leskovec
- Mapping users into continuous vector space
- User’s vector reflects structural properties
Graph recovery attack - graph embedding

Plausibility is cosine similarity between embeddings

![Graph representation](image)

- A [1.2, 5.7, -3.2, 0.9]
- B [0.8, -3.4, 5.2, 1.3]
- C [0.9, -1.2, 0.2, 4.3]
- D [-3.2, 0.4, 0.7, 1.1]
- E [7.7, 2.4, -0.2, 0.3]
- F [3.8, -9.3, 0.3, 3.2]

- \(s_A(A, B) \)
- \(s_A(A, C) \)
- \(s_A(A, D) \)
- \(s_A(A, F) \)
- \(s_A(B, E) \)
- \(s_A(C, E) \)
- \(s_A(C, F) \)
- \(s_A(D, E) \)
- \(s_A(D, F) \)
Graph recovery attack - graph embedding

Plausibility is cosine similarity between embeddings
Graph recovery attack - graph embedding

Find a cutoff point and remove non-plausible edges

<table>
<thead>
<tr>
<th></th>
<th>Enron</th>
<th>NO</th>
<th>SNAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-DA ($k = 50$)</td>
<td>0.792</td>
<td>0.642</td>
<td>0.857</td>
</tr>
<tr>
<td>k-DA ($k = 75$)</td>
<td>0.796</td>
<td>0.710</td>
<td>0.869</td>
</tr>
<tr>
<td>k-DA ($k = 100$)</td>
<td>0.812</td>
<td>0.761</td>
<td>0.881</td>
</tr>
<tr>
<td>SalaDP ($\epsilon = 100$)</td>
<td>0.672</td>
<td>0.712</td>
<td>0.853</td>
</tr>
<tr>
<td>SalaDP ($\epsilon = 50$)</td>
<td>0.750</td>
<td>0.723</td>
<td>0.835</td>
</tr>
<tr>
<td>SalaDP ($\epsilon = 10$)</td>
<td>0.819</td>
<td>0.876</td>
<td>0.802</td>
</tr>
</tbody>
</table>

F1 score
Enhancing anonymization

- get fake edges with highest plausibility?
 - the distribution will look unnatural
Enhancing anonymization

- get fake edges with highest plausibility?
 - the distribution will look unnatural
- draw fake edges from same plausibility distribution?
Enhancing anonymization

- get fake edges with highest plausibility?
 - the distribution will look unnatural
- draw fake edges from same plausibility distribution?

![k-DA (k=100)](image1.png)

![Enhanced k-DA (k=100)](image2.png)
Resilience to graph recovery attack

- F1 score for original anonymizations

<table>
<thead>
<tr>
<th></th>
<th>Enron</th>
<th>NO</th>
<th>SNAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-DA ($k = 50$)</td>
<td>0.792</td>
<td>0.642</td>
<td>0.857</td>
</tr>
<tr>
<td>k-DA ($k = 75$)</td>
<td>0.796</td>
<td>0.710</td>
<td>0.869</td>
</tr>
<tr>
<td>k-DA ($k = 100$)</td>
<td>0.812</td>
<td>0.761</td>
<td>0.881</td>
</tr>
<tr>
<td>SalaDP ($\epsilon = 100$)</td>
<td>0.672</td>
<td>0.712</td>
<td>0.853</td>
</tr>
<tr>
<td>SalaDP ($\epsilon = 50$)</td>
<td>0.750</td>
<td>0.723</td>
<td>0.835</td>
</tr>
<tr>
<td>SalaDP ($\epsilon = 10$)</td>
<td>0.819</td>
<td>0.876</td>
<td>0.802</td>
</tr>
</tbody>
</table>

- F1 score for enhanced anonymizations

<table>
<thead>
<tr>
<th></th>
<th>Enron</th>
<th>NO</th>
<th>SNAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-DA ($k = 50$)</td>
<td>0.531</td>
<td>0.391</td>
<td>0.632</td>
</tr>
<tr>
<td>k-DA ($k = 75$)</td>
<td>0.428</td>
<td>0.433</td>
<td>0.609</td>
</tr>
<tr>
<td>k-DA ($k = 100$)</td>
<td>0.510</td>
<td>0.501</td>
<td>0.597</td>
</tr>
<tr>
<td>SalaDP ($\epsilon = 100$)</td>
<td>0.422</td>
<td>0.370</td>
<td>0.515</td>
</tr>
<tr>
<td>SalaDP ($\epsilon = 50$)</td>
<td>0.390</td>
<td>0.411</td>
<td>0.522</td>
</tr>
<tr>
<td>SalaDP ($\epsilon = 10$)</td>
<td>0.439</td>
<td>0.527</td>
<td>0.490</td>
</tr>
</tbody>
</table>

- k-DA drops by: 26~51%
- SalaDP drops by: 37~48%
Utility of Enhanced anonymization

- Eigencentrality (Enron)
- Eigencentrality (NO)
- Eigencentrality (SNAP)
- Degree distribution (Enron)
- Degree distribution (NO)
- Degree distribution (SNAP)
- Triangle count (Enron)
- Triangle count (NO)
- Triangle count (SNAP)
Resilience to deanonymization attack

Anonymity gain (%)

- k-DA ($k = 50$)
- k-DA ($k = 75$)
- k-DA ($k = 100$)
- SalaDP ($\epsilon = 100$)
- SalaDP ($\epsilon = 50$)
- SalaDP ($\epsilon = 10$)
Conclusion

We find flaws in current graph anonymizations
Conclusion

We find flaws in current graph anonymizations

We recover the original, pre-anonymized graph
Conclusion

We find flaws in current graph anonymizations

We enhance the anonymization techniques

We recover the original, pre-anonymized graph
Conclusion

We find flaws in current graph anonymizations

We enhance the anonymization techniques

We recover the original, pre-anonymized graph

We evaluate privacy and utility of enhanced anonymization