

Towards Plausible Graph Anonymization

Yang Zhang, Mathias Humbert, <u>Bartlomiej Surma</u>, Praveen Manoharan, Jilles Vreeken, Michael Backes

Graph sharing

IJCNN Social Network Challenge

This competition requires participants to predict edges in an online social network. The winner will receive free registration and the opportunity to present their solution at IJCNN 2011.

\$950 · 117 teams · 9 years ago

 Find a fundamental flaw in graph anonymization designs

- Find a fundamental flaw in graph anonymization designs
- Exploit it to recover original graph

- Find a fundamental flaw in graph anonymization designs
- Exploit it to recover original graph
- Use our findings to enhance anonymization designs

- Find a fundamental flaw in graph anonymization designs
- Exploit it to recover original graph
- Use our findings to enhance anonymization designs
- Evaluate privacy and usability of enhanced techniques on 3 real life datasets:
 - Enron, NO, Snap

Graph anonymization methods

- '08 Liu et al. k-anonymity (k-DA)
- '08 Zhou et al. k-anonymity (k-NA)
- '10 Cheng et al. k-anonymity (k-iso)
- '11 Sala et al. differential privacy
- '12 Mittal et al. random walk privacy
- '14 Xiao et al. differential privacy

SalaDP algorithm

Social network graph properties

Social network graph properties

Social network graph properties

Graph recovery attack - overview

- Node embeddings with node2vec '16 Grover and Leskovec
- Mapping users into continuous vector space
- User's vector reflects structural properties

Plausibility is cosine similarity between embeddings

Plausibility is cosine similarity between embeddings

Find a cutoff point and remove non-plausible edges

	Enron	NO	SNAP
k-DA ($k = 50$)	0.792	0.642	0.857
k-DA ($k = 75$)	0.796	0.710	0.869
k-DA ($k = 100$)	0.812	0.761	0.881
SalaDP ($\epsilon=100$)	0.672	0.712	0.853
SalaDP ($\epsilon=50$)	0.750	0.723	0.835
SalaDP ($\epsilon=10$)	0.819	0.876	0.802

F1 score

Enhancing anonymization

- get fake edges with highest plausibility?
 - the distribution will look unnatural

Enhancing anonymization

- get fake edges with highest plausibility?
 - the distribution will look unnatural
- draw fake edges from same plausibility distribution?

Enhancing anonymization

- get fake edges with highest plausibility?
 - the distribution will look unnatural
- draw fake edges from same plausibility distribution?

k-DA (k=100)

Enhanced k-DA (k=100)

Resilience to graph recovery attack

• F1 score for original anonymizations

	Enron	NO	SNAP
k-DA ($k = 50$)	0.792	0.642	0.857
k-DA ($k = 75$)	0.796	0.710	0.869
k-DA ($k = 100$)	0.812	0.761	0.881
SalaDP ($\epsilon=100$)	0.672	0.712	0.853
SalaDP ($\epsilon=50$)	0.750	0.723	0.835
SalaDP ($\epsilon=10$)	0.819	0.876	0.802

k-DA drops by: 26~51%

SalaDP drops by: 37~48%

F1 score for enhanced anonymizations

	Enron	NO	SNAP
k-DA ($k = 50$)	0.531	0.391	0.632
k-DA ($k = 75$)	0.428	0.433	0.609
k-DA ($k = 100$)	0.510	0.501	0.597
SalaDP ($\epsilon = 100$)	0.422	0.370	0.515
SalaDP ($\epsilon = 50$)	0.390	0.411	0.522
SalaDP ($\epsilon = 10$)	0.439	0.527	0.490

Utility of Enhanced anonymization

Resilience to deanonymization attack

We find flaws in current graph anonymizations

We find flaws in current graph anonymizations

We recover the original, pre-anonymized graph

We find flaws in current graph anonymizations

We recover the original, pre-anonymized graph

We enhance the anonymization techniques

We find flaws in current graph anonymizations

We recover the original, pre-anonymized graph

We enhance the anonymization techniques

We evaluate privacy and utility of enhanced anonymization