
When Match Fields Do Not Need to Match:
Buffered Packet Hijacking in SDN

Jiahao Cao, Renjie Xie, Kun Sun, Qi Li,
Guofei Gu, and Mingwei Xu

Outline

� SDN Overview
� Background on SDN Rule Installation
� A New Vulnerability: Buffered Packet Hijacking
� Buffered Packet Hijacking Attacks
� Defense
� Conclusion

2

Outline

� SDN Overview

3

SDN Overview

� SDN applications (apps)
� Extend controller capacities and

SDN functionalities
� SDN controller

� Take centralized network control
� SDN switches

� Forward and process flows
according to the controller

4

Outline

� Background on SDN Rule Installation

5

� Packet-in
• Query network decisions

for a new flow
• Contain a buffer ID and

packet headers

� Flow-mod
1. Install rules with match

fields and actions
2. Specify a buffer ID to

release a buffered packet

Rule Installation in SDN

6

(2) buffer in S1

Buffer ID: 1

(3)
 pa
cke
t-in

(1) new flow

(5) flow rules in S1

h1 h2
S1 S2

SDN Controller

Routing
App

(4) flow-mod

Match Action

ip_dst:10.0.0.2 output: S2

Match Action

ip_dst:10.0.0.2 output: S2

� Conflict reason
• Multiple apps process the

same flow may generate
conflicting rules

� Conflict abuse
• Apps install conflicting

rules to override other
apps’ decisions

Rule Conflict in SDN

7

(2) buffer in S1

Buffer ID: 1

(4) flow-mod
(3)

 pa
cke
t-in

(1) new flow

(5) flow rules in S1

Match Action

ip_dst:10.0.0.2 output: S2

ip_dst:10.0.0.2 drop

h1 h2
S1 S2

SDN Controller

Routing
App

Conflict!

Malicious
App

x2

Rule Conflict Detection

� Rule conflict detection
� Extract match fields and

actions in all flow-mod
messages

� Check potential conflict
when installing new rules

8

• flow-mod
• match: ip_dst:10.0.0.1
• action: forward
• buffer id: 1

• flow-mod
• match: ip_dst:10.0.0.1
• action: drop
• buffer id: 1

Block!

VerfiFlow (NSDI ’13), SE-Floodlight (NDSS ‘15), FortNOX (HotSDN ‘12)…

Do not consider potential buffer ID abuse

Routing
App

Malicious
App

Outline

� A New Vulnerability: Buffered Packet Hijacking

9

Buffered Packet Hijacking Vulnerability

� Mechanism
� Manipulate buffer IDs to hijack

buffered packets

� Root Cause
� No checking on the inconsistency

between buffer IDs and match
fields when installing rules

10

• flow-mod
• match: ip_dst:10.0.0.1
• action: forward
• buffer id: 1

• flow-mod
• match: ip_dst:1.1.1.1
• action: drop
• buffer id: 2

Routing
App

Malicious
App

Buffer ID: 1

Buffer ID: 2

à 1

Hijack buffered packets
without conflicting rules!

Outline

� Buffered Packet Hijacking Attacks

11

Threat Model

� Attacker Objective
� Exploit the vulnerability to attack all three SDN layers

� System Assumptions
� SDN controllers, switches, and control channels are secure
� Existing SDN defense may be deployed
� Apps are untrusted, which may originate from third parties
� A malicious app has basic permissions of listening packet-in

and installing flow rules

12

Attacks and Testbed

� Four attacks
� Attacking application

1. cross-app poisoning
� Attacking control plane

2. control traffic amplification

� Attacking data plane
3. security policy bypass
4. TCP connection disruption

13

� Real SDN testbed
� Open source controller

� Floodlight
� Commercial SDN switches

� EdgeCore AS4610-54T

� Real background flows
� Traffic trace from CAIDA
� Crafted test flows

Attack 1: Cross-App Poisoning (CAP)

� A malicious app resends modified buffered packets to the controller

14

APP X APP Y

FLOW-MOD PACKET-IN

buf_id: 1 APP X: FLOW-MOD
match: other flow
buf_id: 1
action: set-field (IP_SRCàIP_h2),

output:controller

S1

h2h1

APP Y learns:
(Host, Port) = (h1, port1)

port1 port2

APP Y learns:
(Host, Port) = (h2, port1)

Incorrect mapping!

Evading Defense against CAP

15

� Existing CAP attacks and defense
� Attack by modifying shared data objects in the control plane
� Defend by checking information flow control policy violations*

� This CAP attack
� Manipulate buffered packets in the data plane
� Evade defense since there are no policy violations

* Ujcich, Benjamin E., et al. “Cross-app poisoning in software-defined networking.” CCS ’18

Attack 2: Control Traffic Amplification Bomb

� A malicious app copies massive buffered packets to trigger packet-in
messages consuming bandwidth and computing resources

16

APP X

FLOW-MOD

PACKET-IN x3

buf_id: 1 APP X: FLOW-MOD
match: other flow
buf_id: 1
action: no_buffer, group_all

(3 action buckets), output:controller

S1

h2h1

SDN
Controller

90%

0%

bandwidth

50%

100%

CPU

Evading Defense against Packet-in Flooding

17

� Existing flooding attacks and defense
� Attack by generating packets matching no rules to trigger massive

packet-in messages
� Detect malicious flows or adopt TCP SYN proxy to throttle TCP-

based flooding*

� This flooding attack
� Hijack buffered packets of benign flows to trigger massive

packet-in messages
� Generate no malicious flows and can hijack UDP flows
• Shin, Seungwon, et al. “Avant-guard: Scalable and vigilant switch flow management in software-defined networks.” CCS ’13

Shang, Gao, et al. “FloodDefender: Protecting data and control plane resources under SDN-aimed DoS attacks.” INFOCOM ’17

Attack 3: Network Security Policy Bypass

� A malicious app redirects buffered packets to different ports

18

Successfully bypass firewall�

APP X APP Y
APP Y: FLOW-MOD

match: red
buf_id: 1
action: output:FirewallFLOW-MOD FLOW-MOD

buf_id: 1
APP X: FLOW-MOD

match: other flow
buf_id: 1
action: output:S2

S1

S2

h2h1

S3

Evading Defense against Security Bypass

19

� Existing security bypass attacks and defense
� Generate conflicting rules to bypass security policies
� Detect rule conflict to prevent security policy bypass*

� This attack
� Manipulate buffer IDs to bypass security policies
� Evade defense by generating no conflicting rules

* Porras, Phillip A., et al. “Securing the software defined network control layer.” NDSS ’15.
Khurshid, Ahmed, et al. “Veriflow: Verifying network-wide invariants in real time.” NSDI ’13
Porras, Philip, et al. “A security enforcement kernel for OpenFlow networks.” HotSDN ’12

� TCP three-way handshake process
� A TCP connection is established only after a successful TCP three-

way handshake

Attack 4: TCP Connection Disruption

The first packet of a TCP flow
is always the TCP SYN packet

20

� A malicious app drops a buffered TCP SYN packet

Attack 4: TCP Connection Disruption

21

Every 100 ms latency may cost 1% in business revenue for Amazon.
No existing SDN defense solutions consider this attack�

APP X APP Y
APP Y: FLOW-MOD

match: red
buf_id: 1
action: output:h2FLOW-MOD FLOW-MOD

buf_id: 1

APP X: FLOW-MOD
match: other flow
buf_id: 1
action: drop

S1

h2h1

10 ms 1000 ms
after 1s try again

Hijacking Probability: Intra-Chain Hijacking

� Single Processing Chain
� Apps in the same processing chain process packet-in and send

flow-mod messages in turn

22

� Success Condition
� A malicious app is in

front of the app that
will process the flow
(target app)

Hijacking Probability: Inter-Chain Hijacking

� Multiple Processing Chains
� Apps in different processing chains process packet-in and send

flow-mod messages independently

23

� Success Condition
� A malicious app could

be in any position, if

!
"#$

%&'"(")*+
,-./0 < !

"#$

2&3452
,-./0

� Experiments with two processing chains in real SDN testbed

Hijacking Probability: Experimental Results

24

• Intra-chain hijacking probability is either 0 or
100%

• Inter-chain hijacking probability decreases when
the malicious app moves towards tail, e.g., from
100% to 36.3% for Load Balancer

Hijacking Probability: Theory Analysis

� Derive hijacking probability from processing chain model

25

• !",$: malicious app, the c-th application in the
r-th processing chain

• !%,&: target app, the i-th application in the j-th
processing chain

• '%,&: probability density function of processing
delays in !%,&

• Intra-chain hijacking probability:

• Inter-chain hijacking probability:

Details in our paper!

Outline

�Defense

26

Defense: ConCheck

� Add consistency check between buffer IDs and match fields

27

ConCheck Architecture

• API Calls Extractor intercepts API
calls on reading packet-in and
generating flow-mod messages

• Consistency Checker checks
inconsistency for API calls on
generating flow-mod messages

Detection Example

Outline

� Conclusion

28

Conclusion

� We discover a new vulnerability in SDN rule installation.

� We identify four buffered packet hijacking attacks that disrupt
all SDN layers and can evade all existing defense systems.

� We propose a lightweight and application-transparent
countermeasure.

29

Kun Sun
ksun3@gmu.edu

Thank you!

Backup: Permissions

� The ratio of applications with the permission of listening
packet-in messages and installing flow rules

31

Many apps have the permissions

Backup: Vulnerability Report & Response

� Mainstream SDN vendor Pica8
� Acknowledged our report and said "we have filed tracking tickets and are

waiting for product management decision on releasing the fix in major/minor
or patch builds"

� Mainstream carrier-grade SDN controller ONOS
� Helped us file a defect in the ONOS community with the comment that "the

defect will be visible to the community and this info can be available for
someone to pick it up to fix it"

� Popular SDN controller RYU
� Several developers and users in the community confirmed our report

32

Evaluation on ConCheck

� We implement a prototype of ConCheck in Floodlight

33

minor overhead for apps
to install flow rules

