A NDSS

When Match Fields Do Not Need to Match:
Buffered Packet Hijacking in SDN

Jiahao Cao, Renjie Xie, Kun Sun, Q1 L1,
Guofeil Gu, and Mingwei Xu

““\“\\\“". /
G Do 240
| A TR A
A A 1 N UNIVERSITY
"c.'*"«' =4 Tsinghua University UNIVERSITY .
{0 L \\\\\““‘




Outline

* SDN Overview

- Background on SDN Rule Installation

- A New Vulnerability: Buffered Packet Hijacking
- Buffered Packet Hijacking Attacks

* Defense

* Conclusion



Outline

« SDN Overview



SDN Overview

- SDN applications (apps) [[ app | [app | [ app | [Capp | [ APp ]]
- Extend controller capacities and )
SDN functionalities
« SDN controller l SDN Cimmner ]
- Take centralized network control I ANN
P I \, \\\OpenFlow

* SDN switches TS ..
 Forward and process flows )
according to the controller



Outline

- Background on SDN Rule Installation



Rule Installation in SDN

 Packet-in
* Query network decisions
for a new flow

e Contain a buffer ID and
packet headers

* Flow-mod
1. Install rules with match
fields and actions

2. Specity a buffer ID to
release a buffered packet

Routing

App &)

K

4

’

4 (4) flow-mod

SDN Controller

\
) v
/
& &7 ‘g N
4

(R

S

(1) new flow / %

Buffer ID: 1 |2

(2) buffer in S,

o

Match

Action

\ | ip_dst:10.0.0.2

output: S,

(5) flow rules in S,

N



Rule Conflict in SDN

* Conflict reason
* Multiple apps process the
same flow may generate
conflicting rules

» Conflict abuse
* Apps install conflicting
rules to override other
apps’ decisions

Routing

App &)

Malicim.l:
App &

" g SDN Controller
Vv
/o ,;'/' KN
’

~
@}\}
\\

N\

(1) new flow

(4) flow-mod x2

Buffer ID: 1 , | Mateh Action o
\ | ip_dst:10.0.0.2 output: Sp CO““‘C
Y ip_dst:10.0.0.2 drop
(2) buffer in S, (5) flow rules in S,



Rule Contlict Detection

* Rule conflict detection Routing Malicious \
- Extract match fields and App il

actions in all flow-mod + flow-mod + flow-
* match: ip \dst:10.0.0.1 .

messages . |
. . * action: forward ction: drop
* Check potential conflict + buffer id: 1 -/ buffer id: 1
when installing new rules @

VerfiFlow (NSDI *13), SE-Floodlight (NDSS 15), FortNOX (HotSDN 12)...

Do not consider potential buffer ID abuse



Outline

- A New Vulnerability: Buffered Packet Hijacking



Buffered Packet Hiyjacking Vulnerability

¢ MCChaIllSIn Routing Malicim&J
* Manipulate buffer IDs to hijack srp @ ML
buffered packets + flow-mod -+ flow-thod

* match: ip Wdst:10.0.0.1 atch: ip_dst:1.1.1.1

e action: forward
e bufferid: 1

* Action: drop
/ bufferid: 2 2 1

* Root Cause
* No checking on the inconsistency
between buffer IDs and match A
fields when installing rules Buffer ID: 1 [IE0| Hijack buffered packets
Buffer ID: 2 |HBM|  without conflicting rules!

10



Outline

- Buffered Packet Hijacking Attacks

11



Threat Model

- Attacker Objective
- Exploit the vulnerability to attack all three SDN layers

* System Assumptions
* SDN controllers, switches, and control channels are secure
- Existing SDN defense may be deployed
- Apps are untrusted, which may originate from third parties

- A malicious app has basic permissions of listening packet-in
and 1nstalling flow rules

12



Attacks and Testbed

* Four attacks * Real SDN testbed
- Attacking application * Open source controller
1. cross-app poisoning * Floodlight
- Attacking control plane * Commercial SDN switches
2. control traffic amplification - EdgeCore AS4610-54T
- Attacking data plane - Real background flows
3. security policy bypass » Traffic trace from CAIDA

4. TCP connection disruption * Crafted test flows

13



Attack 1: Cross-App Poisoning (CAP)

- A malicious app resends modified buffered packets to the controller

APPY learns: APPY learns:
(Host, Port) = (h,, port,) (Host, Port) = (h,, port;)

PP X

FLOW-MO

Incorrect mapping!

match: other flow
APP X: FLOW-MOD { buf id: |
action: set-field (IP. SRC=>1P h,),
output:controller

14



Evading Defense against CAP

- Existing CAP attacks and defense

- Attack by modifying shared data objects in the control plane
» Defend by checking information flow control policy violations”

* This CAP attack

- Manipulate buffered packets in the data plane
- Evade defense since there are no policy violations

* Ujcich, Benjamin E., et al. “Cross-app poisoning in software-defined networking.” CCS *18

15



Attack 2: Control Traffic Amplification Bomb

- A malicious app copies massive buffered packets to trigger packet-in
messages consuming bandwidth and computing resources

100

Available Bandwidth (%)
2 4 (=) o0
o o o (]

o

90%

1

1

bandwidth

16

24
# of Action Buckets

32

100 -+ —t
100%
80 -
60 -
50, =2& SDN Controller
0 =+ SDN Switch
40 +
20 F -
v _——— — X
O | | 1 |
0 8 16 24 32 40

# of Action Buckets

16



Evading Defense against Packet-in Flooding

- Existing flooding attacks and defense

- Attack by generating packets matching no rules to trigger massive
packet-1n messages

* Detect malicious flows or adopt TCP SYN proxy to throttle TCP-
based flooding”

» This flooding attack
- Hijack buffered packets of benign flows to trigger massive
packet-1n messages

* Generate no malicious flows and can hijack UDP flows

* Shin, Seungwon, et al. “Avant-guard: Scalable and vigilant switch flow management in software-defined networks.” CCS *13
Shang, Gao, et al. “FloodDefender: Protecting data and control plane resources under SDN-aimed DoS attacks.” INFOCOM ’17

17



Attack 3: Network Security Policy Bypass

- A malicious app redirects buffered packets to different ports

PP X

FLOW-M

N

buf id: | [

d Sl

match: red
APPY: FLOW-MOD { buf id: |
action: output:Firewall

APPY

e @\

match: other flow

APP X: FLOW-MOD { buf id: 1
action: output:S,

Successfully bypass firewall !

18



Evading Defense against Security Bypass

- Existing security bypass attacks and defense
* Generate conflicting rules to bypass security policies
» Detect rule conflict to prevent security policy bypass”

* This attack

- Manipulate buffer IDs to bypass security policies
- Evade defense by generating no conflicting rules

* Porras, Phillip A., et al. “Securing the software defined network control layer.” NDSS *15.
Khurshid, Ahmed, et al. “Veriflow: Verifying network-wide invariants in real time.” NSDI 13
Porras, Philip, et al. “A security enforcement kernel for OpenFlow networks.” HotSDN *12

19



Attack 4: TCP Connection Disruption

- TCP three-way handshake process

* A TCP connection 1s established only after a successful TCP three-
way handshake

Client Server

SYN

The first packet of a TCP flow
1s always the TCP SYN packet

SYN/ACK

handshake

AGK

20



Attack 4: TCP Connection Disruption

- A malicious app drops a buffered TCP SYN packet

after 1s try again

S /
buf id: 1 [

Every 100 ms latency may cost 1% in business revenue for Amazon.

CDF

10 ms —— 1000 ms

- Normal Case
== Attack Case

taaal L Lol L PR L L L
10 100 1000
Connection Completion Time (ms)

No existing SDN defense solutions consider this attack !

21



Hijacking Probability: Intra-Chain Hijacking

» Single Processing Chain

* Apps in the same processing chain process packet-in and send
flow-mod messages 1n turn

* Success Condition - Processing Chain |
. e . . APP1 —» APP2 —*HPP 3 —» APP4 .o APPn
- A malicious app 1s in )
front of the app that chff;;”fa 0oz [maich 1111 { match 10,00,
will process the flow buf_id: 2 {2’;{;,’,‘,’;’ 5 { o2
(target app) s X !
ID 1 2 . | m .
Buffer Pkt | @ 1 OI O SDN Switch Flow Rule Space

22



Hijacking Probability: Inter-Chain Hijacking

* Multiple Processing Chains

- Apps 1n different processing chains process packet-in and send

flow-mod messages independently

Processing Chain IT

41 APP1 (| APP2 [—| APP3 || APP4 APP
* Success Condition n
o« . ‘ Processing Chain 1
* A malicious app could
. c L . APP | APP 2 APP3 |—p| APP4 APPn
be in any position, 1f 5
FLOW_MOD FLOW_MOD
PACKET IN match: 1.1.1.1 match: 10.0.0.2
{ pkt_hdr: 1§.0.0.2 { buf id: 2 { buf id: 2
o buf id: 2 action: X action: ¥
malicious target
z delay < Z delay — vy 23 v v
i=1 i=1 Buffer o |l é] : SDN Switch Flow Rule Space

23



Hijacking Probability: Experimental Results

- Experiments with two processing chains in real SDN testbed

Processing Chain1l | e [ntra-chain hijacking probability is either 0 or

0 Topology 1 Device 2 Load 3 . 4 0
Manager Manager Balancer Forwarding [—» 100 /0
£  Inter-chain hijacking probability decreases when
PACKET IN P - 5 Chai .. )
rocessing Chain I the malicious app moves towards tail, e.g., from
0 DoS 1 ARP 2 . 3 Leaming i}
Detection Proxy Switch 100% to 36.3% for Load Balancer
Malicious Hijacking Probability with a Target App Malicious ___ __ Hijacking Probability with a Target App
App’s s 1| Learning 1 1o | App’s - :
P DoS Learning Load o o | Load .1 Dos Learning |
Position | potection Hub Switch J| Balancer Forwarding Position | pajancer Forwarding | Detection Hub Switch
Chain I: 0 100.0% 100.0% 100.0% 100.0% 100.0% [ Chain II: 0 100.0% 100.0% 89.3% 100.0% 100.0% |
Chain I: 1 0 100.0% 100.0% 90.0% 91.7% I Chain 1II: 1 100.0% 100.0% 48.8% 92.2% 95.7% |
Chain I: 2 | 0 100.0% 100.0% 70.5% 82.0% Chain II: 2 100.0% 100.0% 33.3% 85.7% 93.9%
Chain I: 3 | 0 0 100.0% 68.5% 80.9% Chain II: 3 0 100.0% 9.7% 30.6% 62.3%
Chain I: 4 | 0 0 0 36.3% 57.1% Chain II: 4 0 0 8.3% 18.3% 41.9%
Note Intra-Chain Hijacking _Ilger-_Chain_Hij_acEng_ Note Intra-Chain Hijacking Inter-Chain Hijacking

24



Hijacking Probability: Theory Analysis

» Der1ve hijacking probability from processing chain model
* Intra-chain hijacking probability:

100%, if j € {1._2,...,(3—1}
Pintra(@r e, ar-.j) = ap ;
0, if je{e+1le+2,...,n.}

=z

 Inter-chain hijacking probability:

]

{) oo boo .
pl-m_(,,.(n..,_.t,,a,l-.j) = / (/ . / ) H fin(te —te 1)
L)D\ (s @] [s_a] J}‘_:]
e

1

* a,.: malicious app, the c-th application in the - je—1
r-th processing chain H fra(tive—1 —tjvk) - fre(tjife1 —2)- H dty. - dz
* a;;: target app, the i-th application in the j-th k=t k=1
processing chain .
* fi;: probability density function of processing Detalls 1n our papel”!
delays in a;
25



Outline

* Defense

26



Detense: ConCheck

- Add consistency check between buffer IDs and match fields

bu f id: 2 SDN Applications
L ——
FLOW MOD PAC I<ET _IN API Calls Buffered Consistency
Extractor Packets DB Checker
7y
ConCheck /
match: 1.1.1.1  pkt hdr: 10.0.0.2 ——
/
/ PACKET IN Flow Rule Other Core
Notifier Service Services
T SDN ControllerT
| PACKET IN v FLOW_MOD l
Detection Example ConCheck Architecture

27



Outline

* Conclusion

28



Conclusion

- We discover a new vulnerability in SDN rule installation.

- We 1dentify four buffered packet hijacking attacks that disrupt
all SDN layers and can evade all existing defense systems.

- We propose a lightweight and application-transparent
countermeasure.

29



Thank you!

Kun Sun
ksun3(@gmu.edu



Backup: Permissions

- The ratio of applications with the permission of listening
packet-in messages and installing flow rules

Controller Total APPs APPs with the Permission Ratio
OpenDaylight Neon! 13 6 46.2%
ONOS wv2.1.0-rcl 97 23 23.7%
Floodlight v1.2 29 12 41.4%
RYU v4.31 28 19 67.9%

POX eel version 18 11 61.1%

T Only counting the applications implemented with openflowplugin.

Many apps have the permissions



Backup: Vulnerability Report & Response

* Mainstream SDN vendor Picag

- Acknowledged our report and said "we have filed tracking tickets and are
waiting for product management decision on releasing the fix in major/minor
or patch builds"

- Mainstream carrier-grade SDN controller ONOS

- Helped us file a defect in the ONOS community with the comment that "the
defect will be visible to the community and this info can be available for
someone to pick 1t up to fix 1t"

* Popular SDN controller RYU

* Several developers and users 1in the community confirmed our report

32



Evaluation on ConCheck

- We implement a prototype of ConCheck in Floodlight

1

0.8

0.6

CDF

04

02F

minor overhead for apps
to install flow rules

- Baseline

== ConCheck

5 10 15
Flow Setup Time (ms)

20

33



