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Kevin Ashton (British 
entrepreneur) coined 
the term IoT in 1999.
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• 20th Century: computers were 
brains without senses—-they 
only knew what we told them. 

• More info in the world than what 
people can type on keyboard 

• 21st century: computers sense 
things, e.g., GPS we take for 
granted in our phones 



New Privacy Concerns
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In Addition to Privacy, There is Another Problem:  
Data Trustworthiness
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Privacy

Security

Utility

This work

Privacy vs. Utility 

We Need to Provide 3 Properties

1. Classical Utility 
• Usable Statistics 
• Reason for data collection 

2. Privacy 
• Protect consumer data 

3. Security 
• Trustworthy data 
• Detect data poisoning 
• Different from classical utility because this 

is an adversarial setting
!5



DP

 !1

 !2

 !"

Database

Query 
Response

DP

DP

Sensor 1

Sensor 2

Sensor 3

Sensor n

New Adversary Model

• Consumer data 
protected by Differential 
Privacy (DP) 

• Classical adversary in 
DP is curious 
• Our adversary is 

different: data 
poisoning by hiding 
their attacks in DP 
noise 

• Global and local DP
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Adversary Goals
• Intelligently poison the data in a way that is 

hard to detect (hide attack in DP noise) 
• Achieve maximum damage to the utility of the 

system (deviate estimate as much as possible)
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Functional Optimization Problem

• We have to find a probability distribution  
• A probability density function 

• Among all possible continuous functions as 
long as  

• What is the shape of      ?
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Solution: Variational Methods

• Variational methods are a useful tool to find 
the shape of functions or the structure of 
matrices 

• They replace the function or matrix 
optimization problem with a parameterized 
perturbation of the function or matrix 

• We can then optimize with respect to the 
parameter to find the “shape” of the function/
matrix 

• The Lagrange multipliers give us the final 
parameters of the function
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Solution
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Least-Favorable Laplace Attack
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Example: Traffic Flow Estimation
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- Vehicle count
- Occupancy

We use loop 
detection data from 

California



Classical Bad Data Detection in  
Traffic Flow Estimation
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The Attack Can Hide in DP Noise and 
Cause a Larger Impact
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Without DP the 
attack is limited

With DP, the attacker can 
lie more without 

detection 

Can we do better?



Defense Against Adversarial (Adaptive) 
Distributions

•Player 1 designs classifier D ∈ S minimize Φ(D,A) (e.g., 

Pr[Miss Detection] Subject to fix false alarms) 

-Player 1 makes the first move

•Player 2 (attacker) has multiple strategies A∈ F 

-Makes the move after observing the move of the classifier

•Player 1 wants provable performance guarantees:

-Once it selects Do by minimizing Φ, it wants proof that no matter what 
the attacker does, Φ<m, i.e.
•
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Defense in Traffic Case

• With classical defense
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Proposed new defense as game 
between attacker and defender:

• With our defense



Another Example: Sharing Electricity 
Consumption
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Conclusions

• Growing number of applications where we 
need to provide utility, privacy, and security 
• In particular, adversarial classification 

under differential privacy 
• Various possible extensions 

• Different quantification of privacy loss 
(e.g., Rényi DP) 

• Adversary models (noiseless privacy), etc. 
• Related work on DP and adversarial ML 

• Certified robustness
!18



Strategic Adversary + Defender
• Player 1 designs classifier D ∈ S minimizing 
Φ(D,A) (e.g., Pr[Error])  

– Defender makes the first move 
• Player 2 (attacker) has multiple strategies 

A∈ F  
– Attacker makes the move after observing the move of 

the classifier 
• Player 1 wants provable performance 

guarantees: 
– Once it selects Do by minimizing Φ, it wants proof that 

no matter what the attacker does, Φ<m, i.e.
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Strategy: Solve maximin and Show 
Solution is equal to minimax

– For any finite, zero sum-game: 
– Minimax = Maximin = Nash Equilibrium (saddle point)
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Sequential Hypothesis Testing

• Sequence of random variables X1,X2,...  
– Honest sensors have X1,X2,...,Xi distributed as 

f0(X1,X2,...,Xi)  (Defined by DP) 
– Tampered sensor has X1, X2,...,Xi distributed as f1(X1, 

X2,…,Xi) (note that f1 is unknown)  
• Collect enough samples i until we have 

enough information to make a decision! 
– D=(N,dN) where N=stopping time, dN=decision
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Sequential Probability Ratio Test 
(SPRT)

The solution of this problem is the SPRT:
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