Metamorph: Injecting Inaudible Commands into Over-the-air Voice Controlled Systems

Tao Chen¹ Longfei Shangguan² Zhenjiang Li¹ Kyle Jamieson³

¹City University of Hong Kong, ²Microsoft, ³Princeton University

Voice Assistants in Smart Home

Voice Assistants in Smart Home

Voice Assistants in Smart Home

111.8 million people in U.S. use voice assistants and related services!

Are they safe enough?

Neural networks

Speech Recognition Models (SR)

Perturbation: δ

Audio Adversarial Attack

x0.01

 $dB_I(\delta)$,

Perturbation: δ

such that SR(I) = T,

 $SR(I + \delta) = T'$

Challenge

Hardware Heterogeneity

Challenge

Channel Effect

Hardware Heterogeneity

$$SR(I + \delta)$$
 VS $SR(H(I + \delta))$

H is unknown in advance!

Understand Over-the-air Attack

Channel Effect

" Open the door"

" Open the door"

Understand Over-the-air Attack

Hardware Heterogeneity

Anechoic Chamber Testing

Anechoic Chamber Testing

Anechoic Chamber Testing

Anechoic Chamber Testing

Not strong, device's inherent feature, compensable!

Character Successful Rate (CSR):

Anechoic Chamber Testing

Static, predictable and compensable

Understand Over-the-air Attack

Channel Effect

Multi-path

Office Corridor Home

Tx to Rx: From 0.5m to 8m

Office Corridor Home

Tx to Rx: From 0.5m to 8m

Character Successful Rate (CSR):

Unknown, but share similarity!

$$\arg\min_{\delta} \alpha \cdot dB_I(\delta) + \frac{1}{M} \sum_{i} Loss(SR(H_i(I+\delta)), T')$$

Transcript and Character Successful Rate:

$$\operatorname{arg\,min}_{\delta} \alpha \cdot dB_{I}(\delta) + \frac{1}{M} \sum_{i} Loss(SR(H_{i}(I+\delta)), T')$$

Metamorph: Meta-Enha

Adversarial Example Generator

Metamorph: Meta-Qual

Acoustic Graffiti:

$$distance(\delta, \hat{N})$$

Reducing Perturbation's Coverage:

L1/L2 regularization

Evaluation: Audio Quality

Examples

Classical music

Original: [no transcription]

Meta-Enha: "hello world"

Meta-Qual: "hello world"

Human speech

Original:

"your son went to
serve at a distant
place and became
a centurion"

Meta-Enha: "open the door"

Meta-Qual: "open the door"

Evaluation: Attack Successful Rate

Attack Target: "DeepSpeech" (White-Box)

A multi-path prevalent office

Evaluation: Attack Successful Rate

Line-of-Sight (LOS) Attack

Meta-Enha: > 90% attack successful rate

Evaluation: Attack Successful Rate

No-Line-of-Sight (NLOS) Attack

Character Successful Rate

Transcript Successful Rate

Meta-Enha: over 85% attack successful rate across 11/20 NLOS location!

Conclusion

- 1. Investigate over-the-air audio adversarial attacks systematically.
- 2. Propose a "generate-and-clean" two-phase design and improve the audio quality.
- 3. Develop a prototype and conduct extensive evaluations.

Visit <u>acoustic-metamorph-system.github.io</u> for more information!