Detecting Probe-resistant Proxies

Sergey Frolov, Jack Wampler, Eric Wustrow
University of Colorado Boulder

Proxies

A

Censored User

obfs3
proxy

Censor-Controlled Network

Active Probing

obfs37??
Let’s confirm!

Censored User

obfs3
proxy

Censor-Controlled Network

Active Probing

speaks obfs3

A

Censored User

Censor-Controlled Network

Active Probing

*speaks
obfs3 back*

A

Censored User

proxy

Censor-Controlled Network

Active Probing

Okay, now | can
safely block this
endpoint.

Censored User

obfs3
proxy

Censor-Controlled Network

Thwarting Active Probing

e Probe-Resistant proxies
o Require knowledge of shared secret to use
o Don’t know secret? Server remains silent

Thwarting Active Probing

*Tries to speak obfs4
without knowing
server’s password*

A

Censored User

Censor-Controlled Network

Thwarting Active Probing

Remains silent

A

Censored User

proxy

Censor-Controlled Network

Thwarting Active Probing

Not sure if |
can block this

Censored User

obfs4
proxy

Censor-Controlled Network

Probing Probe-Resistant proxies

Are these proxies actually probe-resistant in practice?

e How common is the behavior of proxies to never
respond to HTTP, TLS, ...any protocol?
o |f not common, censor can block it.

Probing Probe-Resistant proxies

We need a source of TCP endpoints on the internet to
compare their responses with Probe-Resistant proxies
responses. We have 2 datasets:

Z o,

ZMap Dataset Tap Dataset
785k endpoints 433k endpoints

Probing Probe-Resistant proxies

We used the following probes:

HTTP

TLS ClientHello

Modbus

S7

Random bytes (23B - 17KB)
Empty probe

DNS zone Transfer

STUN

© NSO Ok~

Probing Probe-Resistant proxies

For each probe we record 3-tuple result:

e Time to close
e Type of close (FIN, RST or TIMEOUT)
e Size of response data
e Probe-resistant proxies never respond!

Endpoints that respond with data

Probe Tap dataset

TLS 87.8%

HTTP 64.6%

DNS-AXFR 58.8%

S7 56.9%

STUN 52.5%

Modbus 51.4%
Empty 8.4%

Any 94.0%

Response alone can distinguish 94% of endpoints in the
realistic Tap dataset from proxies.

Endpoints that respond with data

Probe Tap dataset ZMap dataset
TLS 87.8% 0.90%
HTTP 64.6% 0.95%
DNS-AXFR 58.8% 0.67%
S7 56.9% 0.66%
STUN 52.5% 0.56%
Modbus 51.4% 0.54%
Empty 8.4% 0.23%
Any 94.0% 1.16%

N

Very few “legitimate” services
(lots of firewalls/honeypots)

Probing Probe-Resistant proxies

How do our probe-resistant proxies respond to those probes?
We examine:

Lampshade

0 MTProto Proxy

' Shadowsocks-Outline

Q Shadowsocks-Python

Probing ObfuscatedSSH

How else can we distinguish proxies from remaining 6%?7

Probe Close Close Probe Close Close
Time (s) Type Time (s) Type
Modbus 30.237 | FIN HTTP GET 0.250 RST
S7 30.236 | FIN TLS ClientHello | 0.240 RST
Random 23 30.238 | FIN Random 25,47, 0.237- |RST

51, 7KB, 17KB 0.251

Empty probe 30.238 FIN
DNS AXFR 0.242 RST

STUN 0.236 RST

Proxy server code

clientConn := listener.Accept()

Proxy server code

clientConn := listener.Accept()

clientConn.SetDeadline(in30Seconds)

Proxy server code

clientConn := listener.Accept()
clientConn.SetDeadline(in30Seconds)

buffer := make([]byte, 50)

Proxy server code

clientConn := listener.Accept()
clientConn.SetDeadline(in306Seconds)

buffer := make([]byte, 50)

error := io.ReadFull(clientConn, buffer)

if error != nil { // didn’'t get 50 bytes in 30s
clientConn.Close()
return

Proxy server code

clientConn := listener.Accept()
clientConn.SetDeadline(in306Seconds)

buffer := make([]byte, 50)

error := io.ReadFull(clientConn, buffer)

if error != nil { // didn’'t get 50 bytes in 30s
clientConn.Close()
return

}

if !checkCredentials(buffer) {
clientConn.Close()
return

}
// do the proxying here

Close Thresholds

Probe Size Response Close
Size Time

49 bytes or fewer 0 30s

50 bytes 0 Right away

51 bytes or more 0 Right away

Close
Type

Can probe-resistant proxies be distinguished from other

servers due to such thresholds?

Investigating Close Thresholds

e Built a threshold scanner to binary search for close
thresholds
o Send random data of different lengths
o Scanned Tap/ZMap endpoints to compare with
probe-resistant proxies
o Check for “stability”

Proxies’ thresholds

Proxy FIN Threshold | RST Threshold
ObfuscatedSSH 24 B 25B
Shadowsocks-Python 50 B -
Shadowsocks-Outline 50 B 51 B
Lampshade 256 B 257 B
obfs4 8 KB - 16 KB | next mod 1448

MTProto - -

Investigating Close Thresholds

Tap Dataset ZMap Dataset
Endpoints 433k 779K
“Stable” thresholds 144k (33.5%) 116k (15%)

Investigating Close Thresholds

Tap Dataset ZMap Dataset

Endpoints 433k 779K
“Stable” thresholds 144k (33.5%) 116k (15%)

Why so few stable close thresholds?

Sent data response 257k (59.5%) 5k (0.7%)
Error 3k (0.8%) 568k (73%)
“Unstable” thresholds 27k (6.2%) 88k (11.3%)

Tap Endpoints’ Stable Thresholds

5, 11 and no threshold are the most common.

100

10

0.1

Percent endpoints (logscale)

0.01

0.001

il

] IHI

5 11 100

1KB

8-16KB

close threshold (bytes)

100KB 1MB+

Decision Trees

We built manual decision trees to detect Probe-Resistant
proxies based on their responses to our probes.

We also evaluated automatic decision trees, but they seemed
less practical (see Appendix).

Manual ObfuscatedSSH decision tree

S7, Modbus, rand-23, empty

FIN and > 30s

%
not OSSH
RST and < 2s
0@

L
5
y (?/J’G

OSSH not OSSH

Manual Lampshade Decision Tree

rand-7k, rand-17k

RST and < 2s

N4

VY others

not Lampshade

FIN and > 90s

Lampshade not Lampshade

Decision tree results

Decision Tree Labeled

Proxy

Tap ZMap
Lampshade 0 1
ObfuscatedSSH 8 0
obfs4 2 0
Shadowsocks-Python 0 8
Shadowsocks-Outline 0 14

MTProto 3144 296

Manual MTProto decision tree

vV probes

TIMEOUT

Q
<& '??40

MTProto not MTProto

Defense Strategies

e Recommended: never respond, never close connection
o 0.56% of Tap dataset

e Randomizing parameters, such as timeout, on a
per-server basis increases the overall size of “Anonymity
Set” for your transport.

e Stable thresholds are a fingerprint
o To fix don’t close immediately after handshake fails

and keep draining the buffer until the timeout

Responsible Disclosure

We disclosed the presence of unique close thresholds to the
devs, and as a result, it was removed from:

OSSH on May 13, 2019

obfs4 on June 21, 2019 (version 0.0.11)
SS-Outline on September 4, 2019 (version 1.0.7)
Lampshade on October 31, 2019

Timeouts still have to be chosen with care.

Occurrences

Probe-indifferent Server Timeouts (Tap)

103 E

102 3

10! 7

10° .

B FIN
Bl RST
B TIMEOUT
I
Mmen L] || ‘ - | |
0 10 20 30 60 90 120 180 240 300

But note: popular values might be limited to specific applications

Response Time(s)

Conclusions

e Probe-resistant proxies aren’t (or weren't!)
o Never responding with data is uncommon on the
Internet
o Connection timeouts and thresholds can be used to
fingerprint server applications
e Notified proxy developers
o Removed thresholds
o But choosing timeouts still tricky
e Long-term: investigate alternative proxy protocols
o e.g. Domain Fronting, Refraction, HT TPS-proxy

FIN

Thank you for attention!

Backup

Internet Censorship

Mean percentage of domains from Satellite input list blocked per country.
Source: https.//censoredplanet.org/data/visualizations

https://censoredplanet.org/data/visualizations

https://gfw.report

e “How China Detects and Blocks Shadowsocks”
describes evidence of a similar active probing attack
occuring in China in 2019.

https://gfw.report

Removing Close Threshold

How to fix this behavior?

Probe Size Response
Size

49 bytes or fewer 0

50 bytes 0

51 bytes or more 0

Close
Time

30 sec
Right away
Right away

Close
Type

FIN
FIN
RST

Removing Close Threshold

clientConn := listener.Accept()
clientConn.SetDeadline(in306Seconds)

buffer := make([]byte, 50)

error := io.ReadFull(clientConn, buffer)

if error != nil { // didn’'t get 50 bytes in 30s
clientConn.Close()
return

}

if !checkCredentials(buffer) {
clientConn.Close()
return

}
// do the proxying here

Removing Close Threshold

clientConn := listener.Accept()
clientConn.SetDeadline(in306Seconds)

buffer := make([]byte, 50)

error := io.ReadFull(clientConn, buffer)

if error != nil { // didn’'t get 50 bytes in 30s
clientConn.Close()
return

}

if !checkCredentials(buffer) {
io.Copy(ioutil.Discard, clientConn)
clientConn.Close()
return

Removing Close Threshold

Probe Size Response Close Close
Size Time Type

49 bytes or fewer 0 30 sec FIN

950 bytes 0 30 sec FIN

51 bytes or more 0 30 sec FIN

