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Query Leakage Terminology

o Query equality pattern (geq)
o If and when the search is the same (search pattern)
« Response identity pattern (rid)
« The file identifiers matching the query (access pattern)
o Co-occurrence pattern (co-occ)
e The number of files shared by any two queries
e Response length pattern (rlen)
e The number of files matching a query
« Volume pattern (vol) / Total volume pattern (tvol)

« The number of bits of each file / the sum of file sizes in bits



Q . do we leak all of these patterns “at once”?
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. can we use the disclosed leakage to recover user’s data?
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Assumptions

o Adversarial model

o persistent: needs encrypted index, documents and queries
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— o snapshot: needs encrypted index and documents

o Auxiliary information

101 0111
110 1071 o known sample: needs sample from same distribution
119 5680
ﬁ% %g% « known data: needs actual data or/and user queries
e . &: fraction of adversarially-known data

é o Passive vs. active

e injection (chosen-data): needs to inject data
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Impact of IKK & Count

« “For example, IKK demonstrated that by observing accesses to an encrypted
email repository, an adversary can infer as much as 80% of the search
queries”

* “Itis known that access patterns, to even encrypted data, can leak sensitive
information such as encryption keys [IKK]”

* “Arecent line of attacks [...,Count,...] has demonstrated that such access
pattern leakage can be used to recover significant information about data in

encrypted indices. For example, some attacks can recover all search queries
[Count,...]...”



A closer look at IKK & Count attacks



Non-trivial limitations

0.2
e High known-data rates 0.15i; e
e Count v1requires more than 80% and 5% of the queries
e IKK requires more than 95% and 5% of the queries % I S —
o Count v2 requires more than 60% & VU Sorasel o
o Practical vs. Theoretical? oos b ]
e Low-vs. high selectivity keywords

o Experiments all run on high-selectivity keywords 0 ‘ ‘ ‘ ‘
0 2000 4000 6000 8000 10000

» Keywords that are frequent in the user’s data Keywords rank

o Re-ran on low-selectivity keywords and failed High- Pseudo-low Low
» Both exploit co-occurrence selectivity selectivity selectivity
(> 13) (10-13) (1-2)

« relatively easy to hide (using OPQ SSE)



Q . can we de better than IKK & Count?
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Summary of our Attacks
Injection attacks Ly

~ - Vulnerable
‘ schemes

. Baseline STE

DBl 2 . Semi-ORAM
tvol Binary Query recovery 0PQ STE

. Full ORAM

attacks

First injection attack was by [Zhang-Katz-Papamanthoul6] and
works against Baseline STE and Semi-0RAM
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The SubgraphVt Attack

e We need to match q; to some w;

e [he volumes are the ground of truth

Observed Graph

Known Graph

V0|(K2) VOI(K4) V0|(D1) V0|(D2) V0|(D3) V0|(D4)

W1 W4 Ws Q1 g2 g3 Q4 Qs
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The SubgraphVt Attack

 Observations: if g; = w; then

* N(w) € Nlg) and #N(w,) = © - #N(qg|

Observed Graph
Known Graph

V0|(K2) VOI(K4) V0|(D1) V0|(D2) V0|(D3) V0|(D4)

W1 Wq W5 Q1 gz g3 g4 gs .,
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The SubgraphVt Attack

o [T a single word is left that's the match

e Remove it from other queries’ candidate sets

Nlqs) = O O Clgn) ={wq}
N(q2) = O O

\ Nlgs) = O
Nw) = O \ Nlgs) = O @ Clga) = {wa}

Known Graph N(q5) = O . C(QS) ={wa,ws, w1}

Candidate Sets

Observed Graph




The SubgraphVt Attack

o [T a single word is left that's the match

e Remove it from other queries’ candidate sets

Known Graph

Nlai) = Q ©

q2) = O O
q3) = O

\:

q4) = O .

Observed Graph

C(q1) ={W1}

C(UI4) = {W4}

C(‘Is) ={ws,ws,w1}
Candidate Sets

25



The SubgraphVt Attack

o [T a single word is left that's the match

e Remove it from other queries’ candidate sets

Known Graph

Nlai) = Q ©
N(q2) = O O

\ Nlgs) = O
\ N(qs) = O.
Nigs) =O.

Observed Graph

c(‘h) ={W1}

C(UI4) = {W4}

C(‘Is) ={ws,ws,w1}
Candidate Sets

25



The SubgraphVt Attack
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The SubgraphVt Attack

o [T a single word is left that's the match
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Evaluation of our Attacks
Setting

e ENron dataset:
o ~HU0K emalls
o Folder for every employee
o Lreation of different document collections
o Une user setting
e Multiple user setting
e Size of the query space: 000 & 5000
o LOomposition of the query space

e Juery frequency:high, pseudo-low, low



Evaluation of our Attacks
Single User - 500 Keywords - Entire composition
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Recovery rate

Evaluation of our Attacks
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Summary of our Attacks
Against Enron Dataset

\ery theoretical

Theoretical

Practical

O needed for RR : 20%

Attack Pattern  Known Queries & for HS O for PLS O for LS
IKK known-data |co Yes 295% I ?
Count known-data |rlen Yes/No >80% I ?
ZKP injection rid No N/A N/A N/A
Subgrap!D known-data |rid No 25% 250% 260%
o o 6=’|
SubgraphVt  [known-data |vol No 25% 250% .
recovers<10%
VolAn known-data |tvol No 285% 285% o=1
recovers<10%
SelVolAn known-data |[tvol, rlen No 280% 285% o1 .
recovers<10%
Decoding injection tvol No N/A N/A N/A
Binary injection Tvol No N/A N/A N/A
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Takeaways

o Cryptanalysis in Encrypted search should be more “nuanced” — there is a lot more to learn!
e Baseline STE is still OK for low-selectivity gueries
o URAM-based search is also vulnerable to volume-based known-data attacks
o URAM-based search is also vulnerable to injection attacks
e Subgraph attacks are practical for high-selectivity queries
e Needonly d: 9%
o Countermeasures
o for & < 80% use QPO [this work]
e for & > 80% use PBS [Kamara-M-0hrimenkol18] or use VLH or AVLH [Kamara-M19]
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Thank you!
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