SpeechMiner:
A Framework for Investigating and Measuring
Speculative Execution Vulnerabilities

Yuan Xiao, Yinqian Zhang, Radu Teodorescu

The Ohio State University

SPEculative Execution side Channel Hardware
(SPEECH) Vulnerabilities

Leverage transient execution on modern x86 processors to leak
secret data whose access 1s forbidden

Speculatively executes instructions

Execution leaves trace in cache
({} Execution results discarded
4

Secrets inferred by cache side channel

Race Condition

“..., there is a race condition between raising this exception and
our attack step 2 (ITransmitting the secret) ...”

-- Lipp et al., Meltdown: Reading Kernel Memory from User Space

o Is this true? What exactly are racing?

 (Can we create better race conditions to increase exploitation
success rate?

IAIK / meltdown ©® Watch = 158 % Star 3,729 YFork 473

<> Code Issues 2 Pull requests 2 Security Insights

This repository contains several applications, demonstrating the Meltdown bug. https://meltdownattack.com

exploit proof-of-concept side-channel

According to Original Authors’ Github...

* It just does not work on my computer, what can | do?
There can be a lot of different reasons for that. We collected a few things you can try:

o Ensure that your CPU frequency is at the maximum, and frequency scaling is disabled.

These seem too ad-hoc...

What 1f we directly peek mnto the processor hardware
o Use a different variant of Meltdown. This can be changed in 1ibkdump/libkdump.c inthe line #define MELTDOWN

meltdown_nonull . Try for example meltdown instead of meltdown_nonull, which works a lot better on some
machines (but not at all on others).

o Try to create many interrupts, e.g. by running the tool stress with stress -i 2 (or other values for the i
parameter, depending on the number of cores).

o Try to restart the demos and also your computer. Especially after a standby, the timing are broken on some
computers.

o Play around with the parameters of libkdump, e.g. increase the number of retries and/or measurements.

Overview
(Please Please Stay with Me and Don’t Get Lost)

1. SpeechMiner Framework
2. 2-phase Fault Handling Model
3. Understanding Speech Vulnerabilities

Basic x86 Execution Engine

<

Prediction
Unit

ROB

(out-of-order)

Instruction (uops)

Instruction (uops)

Instruction (uops)

N

tops

SpeechMiner

Input: Settings: Results:
Instruction Execution Covert
Sequence Environment Channel

« Systematically test the Infer processor micro-
vulnerabilities on specific hardware architectural states

* Understand the Speech from covert channel
vulnerabilities better data

An example

Instruction Sequence

/l/ 9RBX: address of uncached covert channel buffer

/I 9RDX: address of another uncached memory buffer

/] *(%RDX) = 9%RBX

/I 9RCX: illegal address whose data is 0x42000

/1

// Windowing Gadget
movq (%rdx) ., %rdx

- Windowing Gadget.

- Enlarge the speculation window

/1
// Speculation Primitive
movq (%rcx), %rcx

E = R -~ P]

- Eliminate side-effects of

-

/]
/' Disclosure Gadget
movq (%rbx , %rcx, 1), %rbx

Instruction issuing

b

0 Speculation Primitive. * All assembly code follows AT&T syntax.
- One or two 1nstructions that will raise an exception when executed

- Generated from Intel manual’s list of causes of exceptions

- Disclosure Gadget.

- Speculatively executed, utilizing covert-channel techniques to measure
the speculation windows or the latency of data fetching, etc.

Systematic Evaluation of Variants

Laptop 1 Laptop 2 Desktop 1 Desktop 2 Desktop 3 Desktop 4 Desktop 5 Desktop 6 Cloud 1

Variant KabyLake KabyLake Haswell-EP SandyBridge | Westmere-EP CoffeeLake | KabyLake AMD EPYC Skylake-SP
PTE (Present) Y N/A N/A N/A N/A Y Y N/A Y
PTE (Reserved) Y N/A N/A N/A N/A Y Y N/A Y
PTE (US) Y Y Y Y Y Y Y R Y
Load CR4 R R R R R R R R R
Load MSR (0x1a2) R R R R R R R N/A N/A
Protection Key (User) N/A N/A N/A N/A N/A N/A N/A N/A Y
Protection Key (Kernel) N/A N/A N/A N/A N/A N/A N/A N/A Y
SMAP violation Y Y N/A N/A N/A Y Y Y* YHF
PTE (write w/ RW=0) Y Y™ Y Y Y Y Y R Y
Load xmm0 (CRO.TS) Y Y Y Y Y Y Y N/A N/A
BOUND (32-bit) Y Y Y Y Y Y Y Y Y
DS Over-Limit (32-bit) N N N N N N N Y N
SS Over-Limit (32-bit) N N N N N N N Y N/A
DS Not-Present (32-bit) R R R R R R R R R
SS Not-Present (32-bit) R R R R R R R R R
DS Execute-Only (32-bit) R R R R R R R R R
CS Execute-Only (32-bit) R R R R R R R R R
DS Read-Only (write, 32-bit) Y Y Y Y Y Y Y R Y
S5S Read-Only (32-bit) R R R R R R R R R
DS Null (32-bit) N N N N N N N R N
SS Null (32-bit) R R R R R R R R R
SS DPL # CPL (32-bit) R R R R R R R R R

Exploitability of certain variants are implementation-specific. All tests are
done with secret in L1D and TLB entry present.

Overview
(Here Comes the Big Part... Are You Still Here?)

1. SpeechMiner Framework
2. 2-phase Fault Handling Model
3. Understanding Speech Vulnerabilities

2-phase Fault Handling Model

| | | >

TLB entry Exception Captured Retirement
ready By CPU (P1) (P2)

 P1: Processor’s exception handling scheme on executing uop
 P2: To commit execution result of the instruction

Retirement (P2)

- Squashes following instructions in ROB
- Already executed: results discarded; never retires

- Not executed: never executes

- IDQ stops 1ssuing 1instructions to ROB and 1s flushed

- Exception information is saved for exception handler
usage

- Frontend 1s redirected to exception handler

Exception Captured By CPU (P1)

« Assumption: processor’s security check takes constant time after
TLB 1s ready (given the same execution environment).
 Change data fetching latency and prove:
* P1 stops current computation (LD for Meltdown-type)
* P1 only affects current execution unit

| | | | >

TLB entry P1 Data P2
ready Available

« If data not fetched yet (from memory):
« Stops fetching
 Returns dummy value (0) as data

Exception Captured By CPU (P1)

Q: Why does the

original

Meltdown often
capture 0s?

| | | | >

TLB entry Data P1 P2
ready Available

« If data already fetched (from L1D):
 Data immediately used by following instructions when
1t 1s available
* Nothing to stop at P1

Overview
(It’s Almost Over... Hang in There A Little Bit!)

1. SpeechMiner Framework
2. 2-phase Fault Handling Model
3. Understanding Speech Vulnerabilities

The Two Races

 Race I: data fetching vs. processor fault handling
 Race II: covert channel transmission vs. speculative
Instruction squashing

| | | | | >

TLB entry Data P1 Covert Channel P2
ready Available Transmission

Race II Can Always Be Won

100 1| // 9RBX: address of uncached covert channel buffer
2| /] 9RCX: illegal address whose data is 0x42000
3| AL

140 4| |// Windowing Gadget

= 5 movapd \%xmm0, \%xmml
_8 120 6 addpd \%xmml, \%xmmO
c 7 | [cpuid] |
E 100¢ 8 mulpd \%xmml, \%xmmO
9
- 80 10 movapd \%xmm0, \%xmml
RS I 11 addpd \%xmml, \%xmmO
1o 12 mulpd \%xmml, \%xmm0
= 60} 13| 77
O 14| // Speculation Primitive
()] | 15 movq (%rcx), %rcx
Q. 40 16| L1
n 20 17| |// Disclosure Gadget
i 18 [add $1, %rcx]
19 [sub $1, %rcx]
0

S
(=]

0 10 20 30 40 50 60 70
effective windowing gadget length

movq (%rbx, %rcx, 1), %rbx

o
—

Listing 7: Tuning P2 latency.

Race 1I: covert channel transmission vs. speculative instruction
squash

Race I Can Be Quantitatively Measured
(Race I: data fetching vs. processor fault handling)

T(SPEC1)
|
T(DELAY) | T(DATA_FETCHING) T(SPEC2)

[I [T |

I I IT(ADD)IT(SUB)IT(ADD)I e >
Suppressing Speculation | Correct data fetched Suppressing
Primitive Primitive Primitive
Execution Execution Retirement

Begins Begins

// Suppressing Primitive
[MOV (%RAX), %RAX] // legal

MOV (%RAX), %RAX] // legal

MOVQ (%RAX), %RAX // illegal

« T(SPEC1) = Suppressing Primitive window
 T(SPEC2) = Speculation Primitive window

« T(P1) =T(SPEC1) - T(SPEC2) — T(DELAY)
 Similarly, T(DATA_FETCHING)

= T(SPEC1) - T'(SPEC2) — T(DELAY)
 Thus, T(RACE1)

= T(DATA_FETCHING) - T(P1)

= T(SPEC2) - T"(SPEC2)

// Speculation Primitive
MOVQ (%RCX), %RCX //

measured

// Disclosure Gadget
[ADD $1, %RCX]
[SUB $1, %RCX]

MOVQ (%RBX, %RCX, 1), %RCX

an
k=
G
+
D
P
@)
s
D
-
O

Q: Why can Meltdown-US steal secrets not in L1D while
Foreshadow (L1TF) requires that the secrets are in L1D?

27™ USENIX
Uncachable memory SECURY SYMPOSIUM

. It 1 - Mark pages in page tables as UC (uncachable)
: - Every read or write operation will go to main memory

HNE Anmmmm]
T - If the attacker can trigger a legitimate load (system call, ...)
- Fac i;lﬂlﬂEHﬂEllﬂ:n

SRR, TR on the same CPU core, the data still can be leaked
« Meltdown might read the data from one of the fill buffers

- as they are shared between threads running on the same
core

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg

Study of Prefetching Effects of Meltdown-US

5e5 5e5t -
= [« Experiment:
3e5 3e5t

1. Force data 1n certain cache or in

2e5t 1 2e5;
| memory.
le5 le5 [. . o« .
= ‘ L—i_\ 2. (a) Execute speculation primitive
. i . . .
26730 40 50 60 70 g0 90>100 20 30 §0 50 € 70 80 90>100 to access the 1llegal data.
(a) Data in LLC, w/o prefetching. (b) Data in LLC, w/ prefetching. (b) Go to Step 3

ge5 ges| | 3. Reload data and measure 1ts
access latency.

6e5: 1 6e5
4. Repeat for 1,000,000 times and
4e5 4e5; . . .
count distribution of reload
2e5 2e5

latency.

0 0

160 165 170 175 180 185>190 160 165 170 175 180 185>190

(c) Data in memory, w/o prefetching. (d) Data in memory, w/ prefetching.

X-ax1s: access latency; y-axis: frequency of latency

Study of Prefetching Effects of Meltdown-P

8e5 —— 8e5f
6e5t 1 6e5 ___
4e5t 1 4e5;
2e5t 1 2e5 H
0 20 30 40 50|eMp'90>100 0——50630 40 50 B0 70 £o|9'0>100

(e) Terminal fault, data in LLC, w/o(f) Terminal fault, data in LLC, w/
prefetching. prefetching.

X-axis: access latency; y-axis: frequency of latency

* Meltdown-P 1s the speculative primitive of L1TF.

Truth of Attacking Non-Li1D Secret

- ONE ROUND of Meltdown-US can only fetch LL1D data, but its
Speculation Primitive 1s able to “PREFETCH” LL2/1.3 data into faster cache
to facilitate future attacks.

- “PREFETCH” with Speculation Primitive also needs time during
speculation. Memory-to-cache seems too slow to finish.

- The Speculation Primitive of Meltdown-P CANNOT “PREFETCH” L2/L3
data into faster cache, probably due to “terminal fault”.

- For claims that Meltdown-US also works for non-cached data, we believe
they actually refer to the newly disclosed RIDL-like attacks which
leverages LLE'B whose latency 1s lower than L1D.

Finally... Thank You!

x120.465@osu.edu

SpeechMiner:
A Framework for Investigating and Measuring

Speculative Execution Vulnerabilities

Yuan Xiao, Yinqian Zhang, Radu Teodorescu
The Ohio State University

