
SpeechMiner:
A Framework for Investigating and Measuring

Speculative Execution Vulnerabilities

Yuan Xiao, Yinqian Zhang, Radu Teodorescu

The Ohio State University

SPEculative Execution side Channel Hardware
(SPEECH) Vulnerabilities

• Leverage transient execution on modern x86 processors to leak
secret data whose access is forbidden

Speculatively executes instructions

Execution leaves trace in cache

Execution results discarded

Secrets inferred by cache side channel
2

Race Condition

“…, there is a race condition between raising this exception and
our attack step 2 (Transmitting the secret) …”

-- Lipp et al., Meltdown: Reading Kernel Memory from User Space

• Is this true? What exactly are racing?
• Can we create better race conditions to increase exploitation

success rate?

3

According to Original Authors’ Github…

4

These seem too ad-hoc…

What if we directly peek into the processor hardware?

Overview
(Please Please Stay with Me and Don’t Get Lost)

1. SpeechMiner Framework
2. 2-phase Fault Handling Model
3. Understanding Speech Vulnerabilities

5

Fetch

Decode

Issue

Execute

Prediction
Unit

IDQ

ROB

Ports

Instruction (uops)

Instruction (uops)

Instruction (uops)

…

Basic x86 Execution Engine

uops

uops

uops

…

(out-of-order)

Fetch

Decode

Issue

Execute

SpeechMiner

Input:
Instruction
Sequence

Settings:
Execution

Environment
Execution

Results:
Covert

Channel

Infer processor micro-
architectural states
from covert channel

data

• Systematically test the
vulnerabilities on specific hardware

• Understand the Speech
vulnerabilities better

7

Instruction Sequence

8

• Windowing Gadget.
� Enlarge the speculation window
� Eliminate side-effects of

instruction issuing

• Speculation Primitive.
� One or two instructions that will raise an exception when executed
� Generated from Intel manual’s list of causes of exceptions

• Disclosure Gadget.
� Speculatively executed, utilizing covert-channel techniques to measure

the speculation windows or the latency of data fetching, etc.

An example

* All assembly code follows AT&T syntax.

Exploitability of certain variants are implementation-specific. All tests are
done with secret in L1D and TLB entry present.

Systematic Evaluation of Variants

9

Overview
(Here Comes the Big Part… Are You Still Here?)

1. SpeechMiner Framework
2. 2-phase Fault Handling Model
3. Understanding Speech Vulnerabilities

10

TLB entry
ready

Exception Captured
By CPU (P1)

Retirement
(P2)

• P1: Processor’s exception handling scheme on executing uop
• P2: To commit execution result of the instruction

2-phase Fault Handling Model

11

•Squashes following instructions in ROB
�Already executed: results discarded; never retires
�Not executed: never executes

• IDQ stops issuing instructions to ROB and is flushed
•Exception information is saved for exception handler
usage
•Frontend is redirected to exception handler

Retirement (P2)

12

• Assumption: processor’s security check takes constant time after
TLB is ready (given the same execution environment).

• Change data fetching latency and prove:
• P1 stops current computation (LD for Meltdown-type)
• P1 only affects current execution unit

• If data not fetched yet (from memory):
• Stops fetching
• Returns dummy value (0) as data

TLB entry
ready

P1 P2Data
Available

Exception Captured By CPU (P1)

13

• If data already fetched (from L1D):
• Data immediately used by following instructions when

it is available
• Nothing to stop at P1

Exception Captured By CPU (P1)

TLB entry
ready

P1 P2Data
Available

Q: Why does the
original

Meltdown often
capture 0s?

14

Overview
(It’s Almost Over… Hang in There A Little Bit!)

1. SpeechMiner Framework
2. 2-phase Fault Handling Model
3. Understanding Speech Vulnerabilities

15

The Two Races

TLB entry
ready

P1 P2Data
Available

Covert Channel
Transmission

• Race I: data fetching vs. processor fault handling
• Race II: covert channel transmission vs. speculative

instruction squashing

16

Race II Can Always Be Won

Race II: covert channel transmission vs. speculative instruction
squash

17

Race I Can Be Quantitatively Measured

• T(SPEC1) = Suppressing Primitive window
• T(SPEC2) = Speculation Primitive window
• T(P1) = T(SPEC1) – T(SPEC2) – T(DELAY)
• Similarly, T(DATA_FETCHING)

= T(SPEC1) – T’(SPEC2) – T(DELAY)
• Thus, T(RACE1)

= T(DATA_FETCHING) – T(P1)
= T(SPEC2) – T’(SPEC2)

// Suppressing Primitive
[MOV (%RAX), %RAX] // legal
[MOV (%RAX), %RAX] // legal
…
MOVQ (%RAX), %RAX // illegal

// Speculation Primitive
MOVQ (%RCX), %RCX //
measured

// Disclosure Gadget
[ADD $1, %RCX]
[SUB $1, %RCX]
…
MOVQ (%RBX, %RCX, 1), %RCX

Correct data fetched

T(DATA_FETCHING)

18

(Race I: data fetching vs. processor fault handling)

One more thing…

19

Q: Why can Meltdown-US steal secrets not in L1D while
Foreshadow (L1TF) requires that the secrets are in L1D?
• Our experiment results (both Meltdown-P and Meltdown-US
require secret to be in L1D) seem to contradict such claims.

• A common mis-understanding.

• It is untold by the authors of Meltdown how exactly they
implemented their attack to steal non-L1D secret.
• Fact?

20

Study of Prefetching Effects of Meltdown-US

21

• Experiment:
1. Force data in certain cache or in

memory.
2. (a) Execute speculation primitive

to access the illegal data.
(b) Go to step 3.

3. Reload data and measure its
access latency.

4. Repeat for 1,000,000 times and
count distribution of reload
latency.

x-axis: access latency; y-axis: frequency of latency

Study of Prefetching Effects of Meltdown-P

22

x-axis: access latency; y-axis: frequency of latency

* Meltdown-P is the speculative primitive of L1TF.

Truth of Attacking Non-L1D Secret

• ONE ROUND of Meltdown-US can only fetch L1D data, but its
Speculation Primitive is able to “PREFETCH” L2/L3 data into faster cache
to facilitate future attacks.

• “PREFETCH” with Speculation Primitive also needs time during
speculation. Memory-to-cache seems too slow to finish.

• The Speculation Primitive of Meltdown-P CANNOT “PREFETCH” L2/L3
data into faster cache, probably due to “terminal fault”.

• For claims that Meltdown-US also works for non-cached data, we believe
they actually refer to the newly disclosed RIDL-like attacks which
leverages LFB whose latency is lower than L1D.

23

SpeechMiner:
A Framework for Investigating and Measuring

Speculative Execution Vulnerabilities

Yuan Xiao, Yinqian Zhang, Radu Teodorescu
The Ohio State University

Finally… Thank You!
xiao.465@osu.edu

