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Upload Functionality

• Sharing user-provided content has become a de facto
standard feature of modern web applications
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File Uploading Procedure

3

NDSS.png

Upload
request

PHP interpreter
File

Web application

Web server

NDSS.png

Content-filtering 
checks

[HTTP(S) POST]

Disable uploading 
specified file types

Extractor

User A



File Uploading Procedure
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Disable Uploading Malicious Files
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<?php
$black_list = array(‘js’,‘php’,‘html’,...)
if (!in_array(ext($file_name), $black_list)) {
move($file_name, $upload_path); 

} 
else {
message('Error: forbidden file type'); 

}
?>

Content-filtering checks
php

Content-filtering Checks

webshell.php

<?php
system(‘ls’);

?>
PHP interpreter

Error: 
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file type



File Upload Vulnerabilities - Server Side 
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File Upload Vulnerabilities - Server Side

88

PHP interpreter File Web application
Web server

Extractor Content-filtering 
checks

webshell.php

<?php
system(‘ls’);

?>

Potential code 
execution

Unrestricted File Upload 
(UFU)

Attacker

Access
https://wsplab.com/webshell.php

Arbitrary code execution 
via a URL

Unrestricted Executable 
File Upload (UEFU) 

https://wsplab.com/webshell.php5


File Upload Vulnerabilities - Client Side 

99

PHP interpreter File Web application
Web server

Extractor Content-filtering 
checks

xss.html

<html>
<script>

alert(‘xss’);
</script>

</html>
<html>

<script>
alert(‘xss’);

</script>
</html>

xss.html

Victim

Access
https://wsplab.com/xss.html

https://wsplab.com/xss.html

Attacker

Upload
request

Arbitrary code execution 
via a URL

Unrestricted Executable 
File Upload (UEFU) 

Unrestricted File Upload 
(UFU)

https://wsplab.com/xss.html
https://wsplab.com/xss.html


How to Find UEFU Vulnerabilities?
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How to Find UEFU Vulnerabilities?
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#2: Preserving the Execution Semantic
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#2: Preserving the Execution Semantic
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Summary
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Previous Studies

• Static analysis 
− Pixy, Oakland ’06
− Merlin, PLDI ’09

• Dynamic analysis
− Saner, Oakland ’08
− Riding out DOMsday, NDSS ’18

• Symbolic execution
− NAVEX, USENIX ’18
− SAFERPHP, PLAS ’11
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Few studies have addressed 
finding U(E)FU vulnerabilities!
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How we address 
all the challenges?



17

We propose

FUSE



Our Approach
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Our Approach - Mutate Upload Request
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Our Approach
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Our Approach

2121

PHP interpreter
File

Web application

Web server

Extractor
Content-filtering 

checks

Initial upload

request
FUSE

Executable

Victim

https://wsplab.com/Executable

Analyze web servers 

and browsers 

Investigate root causes 

of U(E)FU bugs

Analyze web servers

and browsers 

Web server

https://wsplab.com/Executable


Mutate Upload Request
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Our Goal: Finding U(E)FU Bugs 
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Our Goal: Finding U(E)FU Bugs 
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Upload Request
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Upload Request
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Mutation Objectives
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if (finfo_file(content) not in expected_type)
reject(file);

if (ext(file_name) not in expected_ext)
reject(file);

if (expected_keyword in content)
reject(file);

if (content_type not in expected_type)
reject(file); 

accept(file)
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implementing checks
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if (finfo_file(content) == ‘text/html’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file); 

accept(file)

Content-filtering checks

Mutation Objectives #1
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if (finfo_file(content) == ‘text/html’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file); 

accept(file)

Content-filtering checks

Mutation Objectives #2
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webshell.phpwebshell.php5

application/x-php
if (finfo_file(content) == ‘text/html’)

reject(file);
if (ext(file_name) == ‘php’)

reject(file);
if (‘<?php’ in content)

reject(file);
if (content_type == ‘text/html’)

reject(file); 
accept(file)

Mutation Objectives #3
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if (finfo_file(content) == ‘text/html’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file); 

accept(file)

Mutation Objectives #4
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Mutation Objectives #5
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if (finfo_file(content) == ‘text/html’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file); 

accept(file)

Content-filtering checks

Bypassing filtering logic 
based on content-type

M3: Changing the content-type of an upload request
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Combinations of Mutation Operations
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if (finfo_file(content) == ‘text/html’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file); 

accept(file)
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More in the Paper

• M2: Inserting a seed into metadata
• M6: Converting HTML into EML
• M7: Removing a file extension
• M8: Converting a file in SVG
• M9: Prepending an HTML comment
• M10: Changing a file extension to an arbitrary string
• M11: Converting a file extension to uppercase
• M12: Prepending a file extension
• M13: Appending a resource header
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Evaluation
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Experimental Setup

• 33 popular PHP web applications

• Web server: Apache 2.4

• PHP engine: PHP 5.6, 7.0, 7.1
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WordPress Joomla Concrete5 OsCommerce2 Monstra Drupal
ZenCart Bludit Textpattern CMSMadeSimple Pagekit Backdrop

CMSimple Composr OctoberCMS phpBB3 Elgg Microweber
XE SilverStripe ECCube3 GetSimpleCMS DotPlant2 MyBB

HotCRP Subrion SymphonyCMS AnchorCMS WeBid Collabtive
X2engine ClipperCMS Codiad



Real-World UEFU Finding

• Found 30 UEFU vulnerabilities in 23 applications with 176 
distinct upload request

−WordPress, Concrete5, OsCommerce2, ZenCart, …

• Reported all the vulnerabilities
−15 CVEs from 9 applications

• 8 bugs have been patched
• 5 bugs are being patched
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<?php
system(‘ls’);
?>

Case Study - Microweber
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if (finfo_file(content) == ‘application/x-php’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file); 

accept(file)

Content-filtering checks

co

M13: Appending a resource header
+

M4: Changing a file extension
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filename
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<?php
system(‘ls’);
?>
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‘application/octet-stream’

‘pht’8 bytes header 
of a JPG file

Upload
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vs. State-of-the-Arts

• Fuxploider: open-source upload vulnerability scanning tool
• UploadScanner: an extension for Burp Suit Pro, a commercial 

platform for web application security testing
• Ran on the same benchmarks and counted vulnerabilities
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Vulnerability (Seed) FUSE Fuxploider UploadScanner

UEFU (PHP) 12 7 5

UEFU (HTML) 23 N/A 14

UFU (JS) 26 N/A 21



Why FUSE found more bug than the others?

40

Vulnerability (Seed) FUSE Fuxploider UploadScanner

UEFU (PHP) 12 7 5

UEFU (HTML) 23 N/A 14

UFU (JS) 26 N/A 21

• Better extension coverage (pht, php7, …)
• Better mutation operation coverage

• M9: Prepending an HTML comment
• M13: Appending a resource header
• Combination: M4+M13
• …

• Implementational Issues
• Retrieving URLs



Vulnerability Causes
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Causes Description UFU + UEFU 
Bugs Found

#1 Exploiting the absence of checks 27

#2 Causing incorrect type inferences based on content 5

#3 Exploiting incomplete blacklist based on extension 35

#4 Bypassing keyword checks based on content 6

#5 Bypassing checks based on content-type 5

#2+#3 Combined Operation 6

#2+#3+#4 Combined Operation 1

Inferring upload file types based on user-provided 
extensions opens a door for further attacks



Limitation

• There may exist other mutation operations that we didn’t 
consider

• Manually examined the execution constraints of browsers and 
PHP interpreters
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Conclusion 

• Propose FUSE, a penetration testing tool designed to find 
U(E)FU vulnerabilities

• Present 13 operations that mutate upload request to bypass 
content-filtering checks, but to remain executable in target 
execution environments

• Found 30 UEFU vulnerabilities including 15 CVEs from 33 PHP 
applications 
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Open Science
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https://github.com/WSP-LAB/FUSE

https://github.com/WSP-LAB/FUSE
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Question?



Previous Work: UChecker, DSN ’2019
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Previous Work: UChecker, DSN ’2019
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Challenges in UChecker
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Seed Files

• We selected these file types because they are directly involved 
in code executions (CEs) or potential code executions (PCEs) 
in Web execution environments.
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Why XHTML Seed File?

• More structural

• More strict for grammar – Mutation is different

• MIME type is different with html
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vs. State-of-the-Arts

- First attempts to find UEFU vulnerabilities by leveraging 
penetration testing

- Baseline for further research
- More comprehensive mutation operation

- M5: Replacing PHP tags with short tags
- M7: Removing a file extension
- M9: Prepending an HTML comment
- M10: Changing a file extension to an arbitrary string
- M13: Appending a resource header

- Comprehensive combination of mutation operation
- File monitoring system 
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vs. Symbolic Execution

- Modeling the relationships of the symbol for various PHP built-in 
function is different

- Hard to pinpoint reachable sink from the source
- Path explosion

- Penetration testing is more efficient
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Admin Required

- Among the 30 UEFU vulnerabilities, 14 bugs required an 
administrator-level privilege for their exploitation

- Web hosting administrator often separates application 
administrators from the host management

- CSRF…,
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Execution Constraints

- We manually analyzed the source code of Chrome 74, Firefox 
68, eight different versions of Apache mod_php modules, and 
PHP 5.6 interpreter engines
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Execution Constraints

- A PHP interpreter executes a PHP file that contains the PHP 
start tag (i.e., <?php or <?)

- An Apache mod_php module requires an executable PHP file to 
have one of the seven PHP-style file extensions (e.g., php3, 
phar) for its execution via direct URL invocations

- In the Chrome and Firefox browsers, we also identified that an 
executable HTML file must start with pre-defined start tags 
within its first 512 bytes with subsequent valid HTML code

- An executable XHTML file shares the same constraints as the 
HTML case but requires the presence of xmlns tags

- …
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Chain Length
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CVEs
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Mutation Conflicts

• For a given operation (M1), we defined a conflicting mutation 
(M2) as when

1. both M1 and M2 revise the same portion of a mutation 
vector, or 

2. M1 combined with M2 causes a CE failure, thus rendering 
M2 unnecessary.
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How Validator Works?

1. Check uploading
2. Extract URL

− Common prefix of URLs
− Upload response and summary webpage
− File Monitor

3. Validate Bugs
− PHP: Sting checking
− HTML, JS, XHTML: Checks whether the Content-Type header in the 

response is among our selections of 10 MIME types
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