
FUSE: Finding File Upload Bugs
via Penetration Testing

Taekjin Lee, Seongil Wi, Suyoung Lee, Sooel Son
KAIST

Upload Functionality

• Sharing user-provided content has become a de facto
standard feature of modern web applications

2

File Uploading Procedure

3

NDSS.png

Upload
request

PHP interpreter
File

Web application

Web server

NDSS.png

Content-filtering
checks

[HTTP(S) POST]

Disable uploading
specified file types

Extractor

User A

File Uploading Procedure

4

User B

Access
https://wsplab.com/NDSS.png

Download

https://wsplab.com/NDSS.png

User A

NDSS.png

Upload
request

PHP interpreter File Web application
Web server

NDSS.png

Extractor Content-filtering
checks

https://wsplab.com/NDSS.png
https://wsp-lab.ac.kr/NDSS_LOGO.png

Disable Uploading Malicious Files

5

Attacker

Upload
request

5

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

Discard
webshell.php

webshell.php

<?php
system(‘ls’);

?>

6

<?php
$black_list = array(‘js’,‘php’,‘html’,...)
if (!in_array(ext($file_name), $black_list)) {
move($file_name, $upload_path);

}
else {
message('Error: forbidden file type');

}
?>

Content-filtering checks
php

Content-filtering Checks

webshell.php

<?php
system(‘ls’);

?>
PHP interpreter

Error:
forbidden
file type

File Upload Vulnerabilities - Server Side

7

Attacker

Upload
request

7

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

webshell.php

<?php
system(‘ls’);

?>

webshell.php

<?php
system(‘ls’);

?>

What will be happening?

Discard
webshell.php

Potential code
execution

Unrestricted File Upload
(UFU)

File Upload Vulnerabilities - Server Side

88

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

webshell.php

<?php
system(‘ls’);

?>

Potential code
execution

Unrestricted File Upload
(UFU)

Attacker

Access
https://wsplab.com/webshell.php

Arbitrary code execution
via a URL

Unrestricted Executable
File Upload (UEFU)

https://wsplab.com/webshell.php5

File Upload Vulnerabilities - Client Side

99

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

xss.html

<html>
<script>

alert(‘xss’);
</script>

</html>
<html>

<script>
alert(‘xss’);

</script>
</html>

xss.html

Victim

Access
https://wsplab.com/xss.html

https://wsplab.com/xss.html

Attacker

Upload
request

Arbitrary code execution
via a URL

Unrestricted Executable
File Upload (UEFU)

Unrestricted File Upload
(UFU)

https://wsplab.com/xss.html
https://wsplab.com/xss.html

How to Find UEFU Vulnerabilities?

10

Attacker

Upload
request

10

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

#1: Bypassing
application-specific checks

Executable

How to Find UEFU Vulnerabilities?

11

Attacker

Upload
request

11

PHP interpreter
File

Web application

Web server

Extractor
Content-filtering

checks

#1: Bypassing
application-specific checks

Executable

Victim

https://wsplab.com/Executable

#2: Preserving the
execution semantic

https://wsplab.com/Executable

#2: Preserving the Execution Semantic

12

Attacker

Upload
request

12

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

webshell.foo

<?php
system(‘ls’);

?>

webshell.foo

<?php
system(‘ls’);

?>php → foo

#1: Bypassing
application-specific checks

#2: Preserving the Execution Semantic

1313

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

webshell.foo

<?php
system(‘ls’);

?>

Potential code
execution

#1: Bypassing
application-specific checks

13

Attacker

Access
https://wsplab.com/webshell.foo

A web server does not
execute webshell.foo

(Not a php-style extension)

#2: Preserving the
execution semantic

https://wsplab.com/webshell.php5

Summary

14

Attacker

Upload
request

14

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

#1: Bypassing
application-specific checks

Executable

Victim

https://wsplab.com/Executable

#2: Preserving the
execution semantic

https://wsplab.com/Executable

Previous Studies

• Static analysis
− Pixy, Oakland ’06
− Merlin, PLDI ’09

• Dynamic analysis
− Saner, Oakland ’08
− Riding out DOMsday, NDSS ’18

• Symbolic execution
− NAVEX, USENIX ’18
− SAFERPHP, PLAS ’11

15

Few studies have addressed
finding U(E)FU vulnerabilities!

16

How we address
all the challenges?

17

We propose

FUSE

Our Approach

1818

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

Initial upload
requestFUSE

Rejected

Our Approach - Mutate Upload Request

1919

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

FUSE

Rejected

Mutated upload
request

UEFU
vulnerability

Our Approach

2020

PHP interpreter File Web application

Web server

Extractor Content-filtering
checks

Initial upload
requestFUSE

Executable

#1: Bypassing
application-specific checks

#2: Preserving the
execution semantic

Victim

https://wsplab.com/Executable

Investigate root causes
of U(E)FU bugs

Analyze web servers
and browsers

https://wsplab.com/Executable

Our Approach

2121

PHP interpreter
File

Web application

Web server

Extractor
Content-filtering

checks

Initial upload

request
FUSE

Executable

Victim

https://wsplab.com/Executable

Analyze web servers

and browsers

Investigate root causes

of U(E)FU bugs

Analyze web servers

and browsers

Web server

https://wsplab.com/Executable

Mutate Upload Request

2222

Initial upload
requestFUSE

Investigate root causes
of U(E)FU bugs

Analyze web servers
and browsers

Web server

Design 13
mutation operations

Mutate

Our Goal: Finding U(E)FU Bugs

23

Uploader
Mutated

upload request

Mutator

Our Goal: Finding U(E)FU Bugs

24

Uploader

UFU and UEFU
vulnerabilities

Mutated
upload request

Upload
information

Mutator Validator

Upload Request

25

FUSE

Web server

filename

content-type

content

Upload
request

Upload Request

26

xss.html

<html>
<script>

alert(‘xss’);
</script>

</html>

Upload
request

filename

content-type

content

xss.html

<html><script>al
ert(‘xss’)</scri
pt></html>

text/html

Mutation Objectives

27

if (finfo_file(content) not in expected_type)
reject(file);

if (ext(file_name) not in expected_ext)
reject(file);

if (expected_keyword in content)
reject(file);

if (content_type not in expected_type)
reject(file);

accept(file)

Content-filtering checks

Five objectives that trigger
common mistakes in
implementing checks

filename

content-type

content

xss.html

<html><script>al
ert(‘xss’)</scri
pt></html>

text/html

Upload
request

if (finfo_file(content) == ‘text/html’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file);

accept(file)

Content-filtering checks

Mutation Objectives #1

28

Exploiting the absence of
content-filtering checks

No mutation

filename

content-type

content

xss.html

<html><script>al
ert(‘xss’)</scri
pt></html>

text/html

Upload
request

if (finfo_file(content) == ‘text/html’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file);

accept(file)

Content-filtering checks

Mutation Objectives #2

29

Causing incorrect type
inferences based on

content

M1: Prepending a resource header

‘image/png’
filename

content-type

content

xss.html

<html><script>al
ert(‘xss’)</scri
pt></html>

text/html

\x89\x50\x4e\x47
\x0d\x0a\x1a...
<html><script>al
ert(‘xss’)</scri
pt></html>

PNG header

Upload
request

webshell.phpwebshell.php5

application/x-php
if (finfo_file(content) == ‘text/html’)

reject(file);
if (ext(file_name) == ‘php’)

reject(file);
if (‘<?php’ in content)

reject(file);
if (content_type == ‘text/html’)

reject(file);
accept(file)

Mutation Objectives #3

30

Content-filtering checks

Exploiting incomplete
blacklist based on

extension

M4: Changing a file extension

‘php5’filename

content-type

content

<?php
system(‘ls’);
?>

Upload
request

if (finfo_file(content) == ‘text/html’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file);

accept(file)

Mutation Objectives #4

31

Content-filtering checks
Bypassing keyword

checks based on content

M5: Replace PHP tags with short tags

‘<?’

application/x-php

filename

content-type

content

webshell.php

<?php
system(‘ls’);
?>

<?
system(‘ls’);
?>

Upload
request

Mutation Objectives #5

32

if (finfo_file(content) == ‘text/html’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file);

accept(file)

Content-filtering checks

Bypassing filtering logic
based on content-type

M3: Changing the content-type of an upload request

‘image/png’

filename

content-type

content

xss.html

<html><script>al
ert(‘xss’)</scri
pt></html>

text/htmlimage/png

Upload
request

Combinations of Mutation Operations

33

if (finfo_file(content) == ‘text/html’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file);

accept(file)

Content-filtering checks

co

filename

content-type

content

xss.html

<html><script>al
ert(‘xss’)</scri
pt></html>

text/html

\x89\x50\x4e\x47
\x0d\x0a\x1a...
<html><script>al
ert(‘xss’)</scri
pt></html>

+

image/png

‘image/png’
‘image/png’

M1: Prepending a resource header

M3: Changing the content-type of an upload request

Upload
request

More in the Paper

• M2: Inserting a seed into metadata
• M6: Converting HTML into EML
• M7: Removing a file extension
• M8: Converting a file in SVG
• M9: Prepending an HTML comment
• M10: Changing a file extension to an arbitrary string
• M11: Converting a file extension to uppercase
• M12: Prepending a file extension
• M13: Appending a resource header

34

Evaluation

35

Uploader

UFU and UEFU
vulnerabilities

Mutated
upload request

Upload
information

Mutator Validator

Experimental Setup

• 33 popular PHP web applications

• Web server: Apache 2.4

• PHP engine: PHP 5.6, 7.0, 7.1

36

WordPress Joomla Concrete5 OsCommerce2 Monstra Drupal
ZenCart Bludit Textpattern CMSMadeSimple Pagekit Backdrop

CMSimple Composr OctoberCMS phpBB3 Elgg Microweber
XE SilverStripe ECCube3 GetSimpleCMS DotPlant2 MyBB

HotCRP Subrion SymphonyCMS AnchorCMS WeBid Collabtive
X2engine ClipperCMS Codiad

Real-World UEFU Finding

• Found 30 UEFU vulnerabilities in 23 applications with 176
distinct upload request

−WordPress, Concrete5, OsCommerce2, ZenCart, …

• Reported all the vulnerabilities
−15 CVEs from 9 applications

• 8 bugs have been patched
• 5 bugs are being patched

37

<?php
system(‘ls’);
?>

Case Study - Microweber

38

if (finfo_file(content) == ‘application/x-php’)
reject(file);

if (ext(file_name) == ‘php’)
reject(file);

if (‘<?php’ in content)
reject(file);

if (content_type == ‘text/html’)
reject(file);

accept(file)

Content-filtering checks

co

M13: Appending a resource header
+

M4: Changing a file extension

application/x-php

filename

content-type

content

webshell.php

<?php
system(‘ls’);
?>
\xff\xd8\xff\xee
\x00\x10JF

webshell.pht
‘application/octet-stream’

‘pht’8 bytes header
of a JPG file

Upload
request

vs. State-of-the-Arts

• Fuxploider: open-source upload vulnerability scanning tool
• UploadScanner: an extension for Burp Suit Pro, a commercial

platform for web application security testing
• Ran on the same benchmarks and counted vulnerabilities

39

Vulnerability (Seed) FUSE Fuxploider UploadScanner

UEFU (PHP) 12 7 5

UEFU (HTML) 23 N/A 14

UFU (JS) 26 N/A 21

Why FUSE found more bug than the others?

40

Vulnerability (Seed) FUSE Fuxploider UploadScanner

UEFU (PHP) 12 7 5

UEFU (HTML) 23 N/A 14

UFU (JS) 26 N/A 21

• Better extension coverage (pht, php7, …)
• Better mutation operation coverage

• M9: Prepending an HTML comment
• M13: Appending a resource header
• Combination: M4+M13
• …

• Implementational Issues
• Retrieving URLs

Vulnerability Causes

41

Causes Description UFU + UEFU
Bugs Found

#1 Exploiting the absence of checks 27

#2 Causing incorrect type inferences based on content 5

#3 Exploiting incomplete blacklist based on extension 35

#4 Bypassing keyword checks based on content 6

#5 Bypassing checks based on content-type 5

#2+#3 Combined Operation 6

#2+#3+#4 Combined Operation 1

Inferring upload file types based on user-provided
extensions opens a door for further attacks

Limitation

• There may exist other mutation operations that we didn’t
consider

• Manually examined the execution constraints of browsers and
PHP interpreters

42

Conclusion

• Propose FUSE, a penetration testing tool designed to find
U(E)FU vulnerabilities

• Present 13 operations that mutate upload request to bypass
content-filtering checks, but to remain executable in target
execution environments

• Found 30 UEFU vulnerabilities including 15 CVEs from 33 PHP
applications

43

Open Science

44

https://github.com/WSP-LAB/FUSE

https://github.com/WSP-LAB/FUSE

45

Question?

Previous Work: UChecker, DSN ’2019

46

Attacker

Upload
request

46

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

Conducting
symbolic execution

Executable

PHP

Previous Work: UChecker, DSN ’2019

47

Attacker

Upload
request

47

PHP interpreter
File

Web application

Web server

Extractor
Content-filtering

checks

Executable

PHP

#1: Bypassing
application-specific checks

#2: Preserving the
execution semantic

Reachability constraint

Extension constraint

Challenges in UChecker

48

Attacker

Upload
request

48

PHP interpreter File Web application
Web server

Extractor Content-filtering
checks

Executable

PHP
Reachability constraint

Extension constraint

Require deep
understanding

Limited search space

Found only 3 bugs from
9,160 WordPress plugins

Seed Files

• We selected these file types because they are directly involved
in code executions (CEs) or potential code executions (PCEs)
in Web execution environments.

49

Why XHTML Seed File?

• More structural

• More strict for grammar – Mutation is different

• MIME type is different with html

50

vs. State-of-the-Arts

- First attempts to find UEFU vulnerabilities by leveraging
penetration testing

- Baseline for further research
- More comprehensive mutation operation

- M5: Replacing PHP tags with short tags
- M7: Removing a file extension
- M9: Prepending an HTML comment
- M10: Changing a file extension to an arbitrary string
- M13: Appending a resource header

- Comprehensive combination of mutation operation
- File monitoring system

51

vs. Symbolic Execution

- Modeling the relationships of the symbol for various PHP built-in
function is different

- Hard to pinpoint reachable sink from the source
- Path explosion

- Penetration testing is more efficient

52

Admin Required

- Among the 30 UEFU vulnerabilities, 14 bugs required an
administrator-level privilege for their exploitation

- Web hosting administrator often separates application
administrators from the host management

- CSRF…,

53

Execution Constraints

- We manually analyzed the source code of Chrome 74, Firefox
68, eight different versions of Apache mod_php modules, and
PHP 5.6 interpreter engines

54

Execution Constraints

- A PHP interpreter executes a PHP file that contains the PHP
start tag (i.e., <?php or <?)

- An Apache mod_php module requires an executable PHP file to
have one of the seven PHP-style file extensions (e.g., php3,
phar) for its execution via direct URL invocations

- In the Chrome and Firefox browsers, we also identified that an
executable HTML file must start with pre-defined start tags
within its first 512 bytes with subsequent valid HTML code

- An executable XHTML file shares the same constraints as the
HTML case but requires the presence of xmlns tags

- …
55

56

Chain Length

57

CVEs

58

Mutation Conflicts

• For a given operation (M1), we defined a conflicting mutation
(M2) as when

1. both M1 and M2 revise the same portion of a mutation
vector, or

2. M1 combined with M2 causes a CE failure, thus rendering
M2 unnecessary.

59

60

How Validator Works?

1. Check uploading
2. Extract URL

− Common prefix of URLs
− Upload response and summary webpage
− File Monitor

3. Validate Bugs
− PHP: Sting checking
− HTML, JS, XHTML: Checks whether the Content-Type header in the

response is among our selections of 10 MIME types

61

