A NDSS

Poseidon: Mitigating Volumetric DDoS Attacks
with Programmable Switches

Menghao Zhang!, Guanyu Li!, Shicheng Wang!, Chang Liu!, Ang Chen?,
Hongxin Hu3, Guofei Gu*, Qi Li!, Mingwei Xu!, Jianping Wu!

i

TEXASR

SIT Yo

DDoS Attacks are Getting Worse

DDoS attacks

The Rise of loT Boitnet Threats and

Increase in scale

ALL BORDER Bits per Second

Increase in diversity

The latest DDoS attacks are
mostly multi-vector and
morph over time

Major

=
AWS, Twitter, Spotify and more b 8

DOS attack on

Dyn disrupts

g D guaant

DDoS Defense Today — Traffic Scrubbing Center

LE—- | mm|
H o0 m
00 1 | mm|
._. :D
F |

\ o T
: o - e .
I' .' \ '. l
- \ Your ISP rewat L1
The Internet \ / Rl irewall
@ #

|

!

Middlebox Network Function Virtualization
» High performance > Flexible, elastic
» Expensive, inflexible » Low Performance

*malware.news

Ideal DDoS Traffic Scrubbing Service

» Increasing numb%@FSf&T botnets

> Volumetrlc DDOS attaCkS Y D tc t
our pata center
» Newnaria ts, of | | _.S atlaﬁfs\ |
Y/ ~D0os
BotNeL@N £ Protectio / i, F|€XIbr\ _— %& |
Cost | ¢ T} +—+—Deptoym ;;;
= oo] "._ Your ISP : g
. . l/ 00 mi NEREENN. o
Y Sbos 00 m
Protection [LO@__#é
“DDoS
Protection
High

Performance

New Opportunities: Programmable Switches

Parser Program

Header and Data Declarations

parser parse ethernet ({
extract (ethernet) ;

return switch (ethernet.ethertype) {
parse vlan tag;
parse ipvi4;
parse mpls;
ingress;

0x8100 :
0x0800 :
0x8847
default:

header type ethernet t { ..}
header type 12 metadata t { ..}

header ethernet t ethernet;
header vlan tag t
vlan tag[2];

metadata 12 metadata t 12 meta;

l

3

Programmable

Parser

ARANNE -
FLNAVLY,

>
=
(e

v
I
(VAVAVAVAVAV.

\

Tables and Control Flow

(VAVAVAVAVAY/

(VAVAVAVAVAV/

e

Y

Programmable Match-Action Pipeline

*www.barefootnetworks.com

New Opportunities: Programmable Switches

» Programmed using P4
* Flexibility to support future defenses
» Same power and cost as fixed-function
switches
 Lower unit capital cost
» Programs always run at line-rate
* High packet processing performance

Poseidon: Bring these benefits to

DDoS defense

Poseidon System Overview

Infrastructure

. .
Deployment scenario ek
— Traffic scrubbing center 2 Detection
|
 Threat model v
. . Defense Policies
— Volumetric and Dynamic DDoS iyt
attacks against victims [roSmmmmmmmmomomsSecomsooososososose \
: Resource Runtime i
E Orchestration Management ’:
\""""""';'N'; """""""
* Workflow L A S~ _._._._, Control Plane
Attack traffic A
Server

—)

Legitimate

Legitimate traffic '

traffic

Poseidon Design Challenges

* Policy representation
— Accommodate to heterogeneous DDoS defense mechanisms

e Resource orchestration

— Limited on-chip resources and restrictive computational models 1n
switching ASICs

* Handling dynamic attacks
— Naively recompile the P4 program for switches
* State loss and flow interruption

— Update the defenses when all flow states are no longer needed
* Waste of precious and high-density defense resources (1.e., switching ASICs)

1. Expressing Detense Policies

e Observation

— Key components common to
many volumetric attacks
* Adapted from
NetCore [POPL’12]

— High modularity

— High-level abstractions and
customizations for DDoS
defense

Expression

E == v|h|MWV)|EcFE

Predicate

P = EoFE | P&P | P|P|-P

Monitor

M = count(P,h,every) | aggr(P, h, every)
Action

A = drop | pass | log | rlimit | sproxy | puzzle
Policy

C == A|if P: Celse: C | (C|C)

o 00N B W N =

1. Policy Example

e SYN Flood Detfense

syn_count = count (pkt.tcp.flag == SYN, [ip.src], 5)

ack_count = count (pkt.tcp.flag == ACK, [ip.src], 5)

if syn_count ([pkt.ip.src]) - ack_count ([pkt.ip.src]) > T:
drop

else if syn_count ([pkt.ip.src]) == ack_count ([pkt.ip.src]):
pass

else:
SProxy

POSEIDON: 9 lines of code

[Y S N

/+* Header declaration */
struct headers {
ether_t ether;
ipvd_t 1ipv4;
tep_t tcp;

}
// Definitions of ether_t, ipv4_t and tcp_t are omitted

/+* Metadata declaration #*/
header_type syn_proxy_meta_t {
fields { }

metadata syn_proxy_meta_t meta;
// We remove the specific fields of metadata

/* Parser declaration */
parser parse_ether ({
extract (ether);
return select (latest.etherType) {
ETHERTYPE_IPV4: parse_ipv4;
default: ingresss;
}
}
parser parse_ipvé4 {
extract (ipv4) ;
return select (latest.protocol) {
IP_PROTOCOLS_TCP : parse_tcp;

Aafanl+ - inmraca-s

= P4: 91 lines of code

// Calculation of checksum is ignored

/* Monitor (counter) declaration */
register syn_count_cm_sketch_rowl {
width : WIDTH;
instance_count : COLUMN;

register syn_count_cm_sketch_rowl_last_period {
width : WIDTH;
instance_count : COLUMN;
}
register ack_count_cm_sketch_rowl {
width : WIDTH;
instance_count : COLUMN;

register ack_count_cm_sketch_rowl_last_period {
width : WIDTH;
instance_count : COLUMN;

// We omit the other rows of two count-min sketches

/* Match—-Action Table declaration */
table syn_count_update_table {
read {
tcp.syn : exact;
}

2. Analyzing Defense Primitives

Primitives Switch Component | Switch Resource Usage | Server Component
monitors
count(P, h,every)| match-action entry + | stages: 2, hash functions: [log; /2 d1, stateful ALUs: 6, SRAM: for the ¢ biggest | N/A
count-min sketch elements in a set, in order to achieve a relative error bound of € with probability 9,
641)
usage = f_(f;@
aggr(P, l_{, every) | match-action entry + | stages: 2, hash functions: [log; /2 d1, stateful ALUs: 6, SRAM: for the ¢ biggest | N/A
count-min sketch elements in a set, in order to achieve a relative error bound of € with probability 9,
_ 64[logy /5 4]
usage = T
actions
drop flow entry stages: 1, hash functions: 0, stateful ALUs: 0, SRAM: negligible N/A
pass flow entry stages: 1, hash functions: 0, stateful ALUs: 0, SRAM: negligible N/A
rlimit meter + flow entry stages: 3, hash functions: 1, stateful ALUs: 0, SRAM: in order to achieve a false | N/A
positive rate of €, usage = m(1/8(+6))
sproxy handshake proxy + | stages: 3, hash functions: 2, staggful ALUs: 4, SRAM: in order to achieve a false | N/A
. .y _ n
session relay positive rate of €, usage = In(i/(1=2))
puzzle - - CAPTCHA
log selecting, grouping stages: 3, hash functions: 2, staggful ALUs: 2, SRAM: in order to achieve a false | aggregation
e - n
pOSlthC rate of €, usage = m
branches
if...else... tag-based match action | stages: 1, hash functions: 0, stateful ALUs: 0, SRAM: negligible | N/A

11

2. Placing Defense Primitives

Solving this partition problem using

Integer Linear Program (ILP)

2. Partition ILP

. Programmable Persistent Persistent Persistent Persistent
Constraints Parser State State State State
Stateful Memory ALU ALU ALU
Number of
Actions

Total Stages
Node Order

Goal: Minimize packets sending to servers

Programmable
Deparser

13

3. Handling Dynamic Attacks

* Key idea
— Copy necessary states 1n the switches to servers

* States requiring replication /
— Identify the states which will

still take effect for legitimate ﬁ

traffic even when attacks finish

* Approach to replication

— Distribute the replication overhead across a period
— Spread the traffic from a switch across a set of servers

I

o G

14

Implementation & Evaluation

. Implementation ' [Poseidon | [Poseidon | | Poseidon ||
: Program 1 Program 2 Programn |: .
P 1 . R S e P ESRGRSSECEEE s Defense Policy
— Policy primitives - s'| DT
* P4 for switch part oo — legitimate traffic
4Result = attacking traffic
@ DPDK fOI' SCrver part . . ' —> state replication traffic
. 4 Runtime Reconfiguration \ stateful Legitimate traffic
— Resource orchestration)/ T Poseidon '\ in last attacking period
. . / y Program Segment\
* Policy enforcement engine Routing Policy ,’ Enforcement .\ Configuration File
. / Engine \
— Runtime management K P4 Analyzer & '
. . Modifier
* Switch/server interface S/ "4 Code \, Control Plane

. , e Fa LOdE e L N e,
» { <

* State replication mechanism —S := > = > oo Stai':e Sltate sl
. S . Packet | Replication
e Evaluation —p & » parser | Module

\ DDoS Defense T’

— Real-world testbeds + - | Modules |servers
Trace'driven evaluatiOIlS | Infrastructure

15

Overall Eftectiveness

B Attack UDP Packets B |egitimate TCP Flows 106
301 - _ ! mmm Middlebox mmm Bohatei mmm Poseidon
8 i 1
% 20 Attack Start : ‘Sender Side| Attack Stops b
E 10 : 2
wn | 3‘1 3
0 : l i g
v 30 . Dpfense Takes Effect : 510
G 20 | P — |
= | Receiver Side | 101
f —
” | 10w DNS HTTP Slowloris UDP Elephant
00 —g— . 2'0() 30 40 Flood Amplication Flood owens Flood ?:?oven
ime (s
Throughput restoration for legitimate flows End-to-end latency in traffic
during attacks scrubbing center

Poseidon can mitigate DDoS attacks effectively

16

Neliie Sl B Y S

0NN AW

Policy Expressiveness

syn_count = count (pkt.tcp.flag == SYN, [ip.src], 5)
ack_count = count (pkt.tcp.flag == ACK, [ip.src], D5)
if sg? dns_query = count (pkt.tcp.dport == 53, [ip.src], 3600)
)
elsep?:’, if pkt.tcoo.sport == 53:
else:: 11 http_get_counter = count (pkt.http == GET, [ip.src], b5)
ST 2
2 €3 if http_get_counter ([pkt.ip.src]) >= T:
A Nni7z71la
1 packet_byte = aggr (True, [ip.src], 5)
2 connection_number = count (pkt.tcp.flag == SYN, [ip.src], 5)|
? L R PR T A T B e, L ~ a1\ /
1 udp_counter = count (pkt.ip.protocol == UDP, [ip.src], 5)
3 if udp_counter([pkt.ip.src]) >= T: defense
packet_byte_counter = aggr(True, [ip.src, ip.dst,
ip.protocol, tcp.sport, tcp.dport], 5) | defense

if packet_byte_count([ip.src, ip.dst, ip.protocol,
tcp.sport, tcp.dport]) >= T:

rlimit
else:
pass

Elephant flow defense

17

Policy Expressiveness

 Lines of Code

Policy Attack POSEIDON | P4 | DPDK
1 SYN flood 9 939 1070
2 DNS amplification 7 255 898
3 HTTP flood 6 354 1184
4 Slowloris 8 513 995
5 UDP flood 6 376 911
6 Elephant flow 6 373 903

18

Policy Expressiveness

Protocol | DDoS attack Ii)escription Typical defense solution Poseidon defense
ICMP Flood e victim servers are flooded with fabricated ICMP echo- | Rate-limit received ICMP packets fromf| count +
ICMP equest packets from a wide range of IP addresses the same address or subnet rlimit/pass
Smurf Attack large number of fake ICMP echo-request packets with the | Filter ICMP echo-reply packets that arel|| count +
victim severs’ IP address are broadcast to a large network | not queried by the victim servers drop/pass
using an IP broadcast address
SYN Flood e victim servers are bombarded with fabricated SYN | SYN Cookie/Proxy count +
equests containing fake source IP addresses sproxy/pass/drop
TCP SYN-ACK [l'he victim servers are flooded with a large number of fake | Filter SYN-ACK packets that are notl|| count +
Flood SYN-ACK packets queried by the victim servers pass/drop
ACK Flood e victim servers are flooded with fabricated ACK packets | Filter ACK packets that have not beenfj| count +
om a wide range of IP addresses responded by the victim servers withl|| pass/drop
SYN-ACK packets
FIN/RST e victim servers are bombarded with fake RST or FIN | Filter FIN/ACK packets that do not be-§| count +
Flood packets that do not belong to any of active connections long to any action connections, thenll| rlimit/pass/drop

Poseidon can support a wide range of state-of-the-art

rate-limit received FIN/RST packets
from the same connection

DDoS defense mechanisms easily

Attack
SSDP DDoS e attacker spoofs discovery packets with the victim | Filter SSDP replies that are not queriedj| count +
Attack servers’ IP address to each plug-and-play device, to request | by the victim servers pass/drop
or as much data as possible by setting certain flags
QUIC Reflec- y spoofing the victims’ IP address and sending a “hello” | Filter QUIC replies that are not queried || count +
tion Attack essage to QUIC servers, the attacker tricks the servers into | by the victim servers pass/drop
sending large amounts of unwanted data to the victim servers
NTP Amplifi- e attacker sends numerous NTP requests providing the | Filter NTP replies that are not queriedff| count +
cation Attack [\l/-ik(’:tim servers’ IP address by the victim servers pass/drop
Memcached e attacker spoofs requests to a vulnerable UDP mem- | Filter Memcached replies that are notf| count +
DDoS Attack ached server, which then floods a targeted victims with | queried by the victim servers pass/drop
arge amount of traffic
HTTP HTTP Flood e attacker generates large numbers of HTTP requests and | Set limits for client sessions,| count +
[slz;lds them to the victim servers CAPTCHA pass/puzzle
SlowLoris e victim servers are bombarded with too many open | Rate limit IP sources that establish nu-lJ| count/aggr +
Attack I’ar(l)‘nnections merous connections but send a few bytesfl| rlimit/pass

19

Policy Placement Mechanism

361

— Poseidon
= |D first

- N w
o e o

Packet Rate (Mpps)

=
N

(o)}

Number of Switches

Traffic arriving at servers

Poseidon can orchestrate the defense resources efficiently

20

Dynamic DDoS Attacks

00
o
B

100 T1 Poseidon
-1 T2 Poseidon
801 60 T3 Poseidon 3]

T1 w/o Poseidon

T2 w/o Poseidon

Received Packets Ratio (%)

Broken Connection Ratio (%)

&
601 —— T1 Poseidon 401 T3 w/o Poseidon %2
——— T2 Poseidon 0
407 —— T3 Poseidon 20+ =
—— T1 w/o Poseidon g 1-
201 —— T2 w/o Poseidon - Lg)
- T3 w/0 Poseidon 0
% 1 2 3 4 5 6 0 1 2 3 4 5 6 %9 10 20 30 40 50 60 70 80 90
Time (s) Time (s) Attack Packets / Normal Packets (%)
Received packets before/after Broken connections before/after Control traffic/workload
policy transition (packet loss) policy transition traffic ratio

(flow interruption)

Poseidon can cope with dynamic DDoS attacks

effectively with minor overheads

21

Conclusion

DDoS defense today: expensive, inflexible, and low performance

Poseidon: programmable switches for cost-efficient, flexible and
performant DDoS defense

Key challenges: heterogeneity, resource constraint, dynamic

Main solutions:
— Simple, modular policy representation
— Optimized, efficient defense orchestration
— Handling dynamic attacks at runtime

Highly effective in mitigating modern DDoS attacks

22

Thanks!
Q&A

zhangmhl6(@mails.tsinghua.edu.cn

23

