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DDoS Attacks are Getting Worse
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DDoS Defense Today — Traffic Scrubbing Center
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Ideal DDoS Traffic Scrubbing Service
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New Opportunities: Programmable Switches

Parser Program

Header and Data Declarations

parser parse ethernet ({
extract (ethernet) ;

return switch (ethernet.ethertype) {
parse vlan tag;
parse ipvi4;
parse mpls;
ingress;

0x8100 :
0x0800 :
0x8847
default:

header type ethernet t { ..}
header type 12 metadata t { ..}

header ethernet t ethernet;
header vlan tag t
vlan tag[2];

metadata 12 metadata t 12 meta;

l
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New Opportunities: Programmable Switches

» Programmed using P4
* Flexibility to support future defenses
» Same power and cost as fixed-function
switches
 Lower unit capital cost
» Programs always run at line-rate
* High packet processing performance

Poseidon: Bring these benefits to

DDoS defense



Poseidon System Overview
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Poseidon Design Challenges

* Policy representation
— Accommodate to heterogeneous DDoS defense mechanisms

e Resource orchestration

— Limited on-chip resources and restrictive computational models 1n
switching ASICs

* Handling dynamic attacks
— Naively recompile the P4 program for switches
* State loss and flow interruption

— Update the defenses when all flow states are no longer needed
* Waste of precious and high-density defense resources (1.e., switching ASICs)



1. Expressing Detense Policies

e Observation

— Key components common to
many volumetric attacks
* Adapted from
NetCore [POPL’12]

— High modularity

— High-level abstractions and
customizations for DDoS
defense

Expression

E == v|h|MWV)|EcFE

Predicate

P = EoFE | P&P | P|P|-P

Monitor

M = count(P,h,every) | aggr(P, h, every)
Action

A = drop | pass | log | rlimit | sproxy | puzzle
Policy

C == A|if P: Celse: C | (C|C)



o 00N B W N =

1. Policy Example

e SYN Flood Detfense

syn_count = count (pkt.tcp.flag == SYN, [ip.src], 5)

ack_count = count (pkt.tcp.flag == ACK, [ip.src], 5)

if syn_count ([pkt.ip.src]) - ack_count ([pkt.ip.src]) > T:
drop

else if syn_count ([pkt.ip.src]) == ack_count ([pkt.ip.src]):
pass

else:
SProxy

POSEIDON: 9 lines of code

[ Y S N

/+* Header declaration */
struct headers {
ether_t ether;
ipvd_t 1ipv4;
tep_t tcp;

}
// Definitions of ether_t, ipv4_t and tcp_t are omitted

/+* Metadata declaration #*/
header_type syn_proxy_meta_t {
fields { }

metadata syn_proxy_meta_t meta;
// We remove the specific fields of metadata

/* Parser declaration */
parser parse_ether ({
extract (ether);
return select (latest.etherType) {
ETHERTYPE_IPV4: parse_ipv4;
default: ingresss;
}
}
parser parse_ipvé4 {
extract (ipv4) ;
return select (latest.protocol) {
IP_PROTOCOLS_TCP : parse_tcp;

Aafanl+ - inmraca-s

= P4: 91 lines of code

// Calculation of checksum is ignored

/* Monitor (counter) declaration */
register syn_count_cm_sketch_rowl {
width : WIDTH;
instance_count : COLUMN;

register syn_count_cm_sketch_rowl_last_period {
width : WIDTH;
instance_count : COLUMN;
}
register ack_count_cm_sketch_rowl {
width : WIDTH;
instance_count : COLUMN;

register ack_count_cm_sketch_rowl_last_period {
width : WIDTH;
instance_count : COLUMN;

// We omit the other rows of two count-min sketches

/* Match—-Action Table declaration */
table syn_count_update_table {
read {
tcp.syn : exact;
}




2. Analyzing Defense Primitives

Primitives Switch Component | Switch Resource Usage | Server Component
monitors
count(P, h,every)| match-action entry + | stages: 2, hash functions: [log; /2 d1, stateful ALUs: 6, SRAM: for the ¢ biggest | N/A
count-min sketch elements in a set, in order to achieve a relative error bound of € with probability 9,
641 )
usage = f_(f;@
aggr(P, l_{, every) | match-action entry + | stages: 2, hash functions: [log; /2 d1, stateful ALUs: 6, SRAM: for the ¢ biggest | N/A
count-min sketch elements in a set, in order to achieve a relative error bound of € with probability 9,
_ 64[logy /5 4]
usage = T
actions
drop flow entry stages: 1, hash functions: 0, stateful ALUs: 0, SRAM: negligible N/A
pass flow entry stages: 1, hash functions: 0, stateful ALUs: 0, SRAM: negligible N/A
rlimit meter + flow entry stages: 3, hash functions: 1, stateful ALUs: 0, SRAM: in order to achieve a false | N/A
positive rate of €, usage = m(1/8(+6))
sproxy handshake proxy + | stages: 3, hash functions: 2, staggful ALUs: 4, SRAM: in order to achieve a false | N/A
. .y _ n
session relay positive rate of €, usage = In(i/(1=2))
puzzle - - CAPTCHA
log selecting, grouping stages: 3, hash functions: 2, staggful ALUs: 2, SRAM: in order to achieve a false | aggregation
e - n
pOSlthC rate of €, usage = m
branches
if...else... tag-based match action | stages: 1, hash functions: 0, stateful ALUs: 0, SRAM: negligible | N/A
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2. Placing Defense Primitives

Solving this partition problem using

Integer Linear Program (ILP)



2. Partition ILP

. Programmable Persistent Persistent Persistent Persistent
Constraints Parser State State State State
Stateful Memory ALU ALU ALU
Number of
Actions

Total Stages
Node Order

Goal: Minimize packets sending to servers

Programmable
Deparser
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3. Handling Dynamic Attacks

* Key idea
— Copy necessary states 1n the switches to servers

* States requiring replication /
— Identify the states which will

still take effect for legitimate ﬁ

traffic even when attacks finish

* Approach to replication

— Distribute the replication overhead across a period
— Spread the traffic from a switch across a set of servers

I
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Implementation & Evaluation

. Implementation ' [ Poseidon | [ Poseidon | ...... | Poseidon ||
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4Result = attacking traffic
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Overall Eftectiveness
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Poseidon can mitigate DDoS attacks effectively
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Policy Expressiveness

syn_count = count (pkt.tcp.flag == SYN, [ip.src], 5)
ack_count = count (pkt.tcp.flag == ACK, [ip.src], D5)
if sg? dns_query = count (pkt.tcp.dport == 53, [ip.src], 3600)
)
elsep?:’, if pkt.tcoo.sport == 53:
else:: 11 http_get_counter = count (pkt.http == GET, [ip.src], b5)
ST 2
2 €3 if http_get_counter ([pkt.ip.src]) >= T:
A Nni7z71la
1 packet_byte = aggr (True, [ip.src], 5)
2 connection_number = count (pkt.tcp.flag == SYN, [ip.src], 5)|
? L R PR T A T B e, L ~ a1\ /
1 udp_counter = count (pkt.ip.protocol == UDP, [ip.src], 5)
3 if udp_counter([pkt.ip.src]) >= T: defense
packet_byte_counter = aggr(True, [ip.src, ip.dst,
ip.protocol, tcp.sport, tcp.dport], 5) | defense

if packet_byte_count([ip.src, ip.dst, ip.protocol,
tcp.sport, tcp.dport]) >= T:

rlimit
else:
pass

Elephant flow defense
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Policy Expressiveness

 Lines of Code

Policy Attack POSEIDON | P4 | DPDK
1 SYN flood 9 939 1070
2 DNS amplification 7 255 898
3 HTTP flood 6 354 1184
4 Slowloris 8 513 995
5 UDP flood 6 376 911
6 Elephant flow 6 373 903

18



Policy Expressiveness

Protocol | DDoS attack Ii)escription Typical defense solution Poseidon defense
ICMP Flood e victim servers are flooded with fabricated ICMP echo- | Rate-limit received ICMP packets fromf| count +
ICMP equest packets from a wide range of IP addresses the same address or subnet rlimit/pass
Smurf Attack large number of fake ICMP echo-request packets with the | Filter ICMP echo-reply packets that arel|| count +
victim severs’ IP address are broadcast to a large network | not queried by the victim servers drop/pass
using an IP broadcast address
SYN Flood e victim servers are bombarded with fabricated SYN | SYN Cookie/Proxy count +
equests containing fake source IP addresses sproxy/pass/drop
TCP SYN-ACK [l'he victim servers are flooded with a large number of fake | Filter SYN-ACK packets that are notl|| count +
Flood SYN-ACK packets queried by the victim servers pass/drop
ACK Flood e victim servers are flooded with fabricated ACK packets | Filter ACK packets that have not beenfj| count +
om a wide range of IP addresses responded by the victim servers withl|| pass/drop
SYN-ACK packets
FIN/RST e victim servers are bombarded with fake RST or FIN | Filter FIN/ACK packets that do not be-§| count +
Flood packets that do not belong to any of active connections long to any action connections, thenll| rlimit/pass/drop

Poseidon can support a wide range of state-of-the-art

rate-limit received FIN/RST packets
from the same connection

DDoS defense mechanisms easily

Attack
SSDP DDoS e attacker spoofs discovery packets with the victim | Filter SSDP replies that are not queriedj| count +
Attack servers’ IP address to each plug-and-play device, to request | by the victim servers pass/drop
or as much data as possible by setting certain flags
QUIC Reflec- y spoofing the victims’ IP address and sending a “hello” | Filter QUIC replies that are not queried || count +
tion Attack essage to QUIC servers, the attacker tricks the servers into | by the victim servers pass/drop
sending large amounts of unwanted data to the victim servers
NTP Amplifi- e attacker sends numerous NTP requests providing the | Filter NTP replies that are not queriedff| count +
cation Attack [\l/-ik(’:tim servers’ IP address by the victim servers pass/drop
Memcached e attacker spoofs requests to a vulnerable UDP mem- | Filter Memcached replies that are notf| count +
DDoS Attack ached server, which then floods a targeted victims with | queried by the victim servers pass/drop
arge amount of traffic
HTTP HTTP Flood e attacker generates large numbers of HTTP requests and | Set limits for client sessions,| count +
[slz;lds them to the victim servers CAPTCHA pass/puzzle
SlowLoris e victim servers are bombarded with too many open | Rate limit IP sources that establish nu-lJ| count/aggr +
Attack I’ar(l)‘nnections merous connections but send a few bytesfl| rlimit/pass

19



Policy Placement Mechanism
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Poseidon can orchestrate the defense resources efficiently
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Dynamic DDoS Attacks
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Poseidon can cope with dynamic DDoS attacks

effectively with minor overheads
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Conclusion

DDoS defense today: expensive, inflexible, and low performance

Poseidon: programmable switches for cost-efficient, flexible and
performant DDoS defense

Key challenges: heterogeneity, resource constraint, dynamic

Main solutions:
— Simple, modular policy representation
— Optimized, efficient defense orchestration
— Handling dynamic attacks at runtime

Highly effective in mitigating modern DDoS attacks
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zhangmhl6(@mails.tsinghua.edu.cn
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