U ORN
Runtime Provenance-Based Detector
for Advanced Persistent Threats

Xueyuan Han, James Mickens Thomas Pasquier
Harvard University University of Bristol
Adam Bates Margo Seltzer
University of lllinois at Urbana-Champaign University of British Columbia

HARVARD -%U UBC| THE UNIVERSITY
ﬁ John A. Paulson niversity of][ILLINOIS NI OF BRITISH COLUMBIA
olibien AEBRISTOL MR 7

1

Advanced Persistent Threats

Reconnaissance
Identify Target & Explore Vulnerabilities

Design Backdoor & Penetration Plan

|¢

Deliver the Weapon

|¢

Victim Triggers Vulnerability

\ 4

Installation
Install Backdoor or Malware

Command & Control
Give Remote Instructions to Victim

» Active Scanning
» Passive Scanning

» Malware
|~ » Scripting

» Spearphishing
|~ » Supply-chain Attack

» Application Shimming
|~ » Job Scheduling

» Hooking
» Dylib Hijacking

» Connection Proxy
» Domain Fronting

Zero-Day Exploits

> Diverse Attack Vectors

\ 4

Long Duration —

Low-and-Slow Attack Patterns

2

Whole-System Data Provenance

Low-and-Slow Attack Patterns

version

P Process B > File F
exec \
I fork IP read
Process A | Process C version —| Process C w

\
file read

*»(FileW

Process D

= Process C
file write

Previous Provenance-Based Approaches

- ~
/’ \\

I/' \\\‘
Single-hop graph exploration pa)
constrains contextual analysis
Process B File F »(_ File F s ‘ g
exec \ " Exfiltration
fork Rule!
IP read % - Rule-based approaches
Process A 1 Process C version = Process C -a.b.c.d :
require expert knowledge
file read ’ & susceptible to 0-day

Progéss D

s
’

Process C Snapshot static modeling lacks
flexibility while runtime dynamic
model update is unsuitable for

low-and-slow attack patterns

file write

IP write

’
Q
’
4
s
’
4
’’
’
s
__ 1

N,
N\,
- —— - ittt e el
N,

U ORN Goals

We formalize system-wide intrusion detection problem in APT

campaigns as a real-time, graph-based anomaly detection problem on
large, attributed, streaming whole-system provenance graphs.

» Continuously analyze provenance graph with space and time

efficiency while leveraging its rich historical context and system-wide
causality relationships

» Consider the entire duration of system execution without making
assumptions of attack behavior

»Learn only normal system behavior changes but not those directed by
the attackers

U

auljaWi] UoIl1NIdX]

ORN

Overview

-l

— [[IITTT]

—_—

®

. Takes as input a labeled, streaming provenance graph

Jull =

I II o) [([[[[]] |
O
@ ®

. Builds at runtime an in-memory graph histogram
. Computes a fixed-size graph sketch periodically

. Clusters

sketches into a system model

Graph Histogram

Iterative, vertex-centric,

new label = Hash (3,
histogram[new label]

Weisfeiler-Lehman label update:

1A2B)
+= 1

-

= [0
IIII = [OIIIO
@

®

After R iterations:
+* Each vertex explored R-hop
neighborhood
+»* Rich execution context
* histogram contains entire graph
statistics
¢ Full historical context
Efficient streaming variant:
+* Leverage partial ordering
guarantee from the provenance
capture system

o
Gl

We model and monitor long-term system behavior, which often
changes over time.

Discount Histogram for Concept Drift

»Such changes result in changes in the underlying statistical properties
of the histogram. This phenomenon is called concept drift.

»We use exponential weight decay to gradually forget outdated data.

» Unicorn focuses on current system execution as well as elements that are
causally related to current execution even if they are temporally distant.

» Unicorn maintains fading “memory” of the past.

auljaWi] UoI1NIdX]

Graph Sketch

1M | = [OTTTT]

1 |" = AR

W= =
i ul

We want to measure based on the ® ®

10|

underlying distribution of graph

features, instead of absolute counts
o i B I

We employs HistoSketch:
Similarity-Preserving *»* Hash histograms to compact,
Data Sketching fixed-size sketch vectors
s Approximate histograms based on
normalized Jaccard similarity
¢ Constant time algorithm to

‘ - support real-time streaming
I v % Sketch size | S| controls tradeoffs

In a streaming setting, # of histogram
elements changes continuously

between information loss and
computation efficiency

QuljaWl] UoIINIAX]

Evolutionary Model

Periodic data sketching
during model building

—_—

** With evolutionary modeling,
U CoORN learns system
behavior at many points in
time during a single training
execution trace.

** With gradually forgetting
scheme, U <~ oRrN focuses
on the most relevant
activities at each time point.

10

allad mmwem) S
Anomaly Detection]
A il =
Online model fitting e "
L [(TTTTT] _
| 0 9%@ c
o S
= @
3
®
c
D

a1 g

An evolutionary sub-model
generated during training

11

Evaluation Datasets

*StreamSpot dataset: We compare Ui corN against a state-of-
the-art provenance-based anomaly detection system StreamSpot

using its published dataset
¢ Can U corN outperform StreamSpot? If so, what are the factors?

**DARPA TC dataset: Data obtained during a red-team vs blue-team
adversarial engagement with various provenance capture systems

** Can U corN accurately detect anomalies in long-running systems?
** Is the algorithm generalizable to different capture systems?

s*Simulated supply-chain (SC) attack dataset: Our own controlled
dataset using CamF1ow whole-system provenance capture system

*How do U cornN’s different design decisions affect APT detection?

12

STreamsSpot dataset

Can U coRrRN outperform StreamSpot? If so, what are the factors?

Experiment Precision Recall Accuracy F-Score
StreamSpot (baseline) 0.74 N/A 0.66 N/A
R=1 0.51 1.0 0.60 0.68
R=3 0.98 0.93 0.96 0.94

StreamSpot creates snapshot-based static model and

dynamically updates the model at runtime.

* Results in a significant number of false alarms, creating an
opportune time window for attackers

s Persistent attackers can manipulate the model to gradually and
slowly change system behavior to avoid detection

** U corN’s evolutionary model reduces false positives (see
paper) and prevents model manipulation

13

TC dataset

Can U
capture systems?

ORN accurately detect anomalies in long-running systems? Is the algorithm generalizable to different

s* DARPA’S 2-week long third adversarial engagement with datasets collected from a network of

hosts running different audit systems
** Benign background activity generated from the red team allows us to model normal system

behavior
Experiment Precision Recall Accuracy F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0

High detection performance that accurately
detects anomalies in long-running systems
without prior attack knowledge

14

SC attack dataset: Detection Performance

How do U corN’s different design decisions affect APT detection?

We identify four important parameters that can affect detection performance:

X/

% Hop count (R): size of neighborhood exploration

Rate

0

4 S |"Accuracy #Precision ¥ Recall BF-Score

(a): Hop

15

SC attack dataset: Detection Performance

How do U corN’s different design decisions affect APT detection?

We identify four important parameters that can affect detection performance:

X/

s Sketch size (| S |): size of fixed-size graph sketches

Rate

] OOO 2000* 3000 l 0000 ¥ Accuracy #Precision ¥ Recall BF-Score

(b): Sketch 16

SC attack dataset: Detection Performance

How do U corN’s different design decisions affect APT detection?
We identify four important parameters that can affect detection performance:

/7

%* Interval of sketch generation: how often we construct new graph sketches as the provenance graph
grows during system execution

Rate

0

500 1000 3000* 5500 |"Accuracy IPrecision ¥ Recall BF-Score

(¢): Interval

17

SC attack dataset: Detection Performance

How do U corN’s different design decisions affect APT detection?

We identify four important parameters that can affect detection performance:

/7

+* Decay factor (1): the rate at which we forget the past and focus on present execution

Rate

0

0 0.02% 0.1 | ¥ Accuracy #Precision ¥ Recall #F-Score
(d): Decay

18

Runtime Performance

Hop count (R), sketch size (| S |), interval of sketch generation, and decay factor (A) minimally affect U= < orN’s
ability to process the provenance graph as new edges arrive. We use batching to further improve its processing
speed. This means U = —oRN can perform real-time detection with parameters optimized for detection accuracy.

100

Configuration Parameter =~ Parameter Value Max Memory Usage (MB)

R=1 562
H R=2 624
| R =4 749 o
R=5 812 L
|S| =500 312 8 o0
i |S| = 1.000 437 =
2:‘;‘““ |S| = 2,000 687 o
|S| = 5,000 1,374 2w
S| = 10,000 2,498 @)
R

Vf

Memory usage depends on hop count and
sketch size, but empirically large Rand | S | B
are not ideal for detection performance.

PO\ ooV ‘!-0\‘ o 1I~\\\‘ ORI L EEPT\ LR L Ao
A e A\ n}, n”, n}. 15. ‘Bv

19

Discussion & Conclusion

“*Ur CORN is a real-time provenance-based anomaly detector that
efficiently analyze system-wide data provenance for APT attacks.

\/

U corN leverages graph sketching to build an incrementally
updatable, fixed-size, longitudinal graph data structure to enable
online, streaming analysis.

s*Anomaly-based detection requires a “good” set of benign behavior to
learn from, can be susceptible to evasion techniques, and needs
human-in-the-loop to verify FPs and update the model.

**Reasoning about anomaly alerts (forensics) can be difficult and
requires additional tools.

20

Q& A

U ORN: Runtime Provenance-Based Detector for Advanced Persistent Threats

A ORS:

Xueyuan Han (presenter), Thomas Pasquier, Adam Bates, James Mickens, and
Margo Seltzer

P ECT R

https://qgithub.com/crimson-unicorn

=2y HARVARD

TS UNIVERSITY

Thank you for your time and attention!

21

https://github.com/crimson-unicorn

