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Cryptocurrencies based on permissionless blockchains could

❖ Decentralize the global financial system

❖ Reduce trust assumptions

❖ Increase operational transparency

❖ Improve user privacy
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• Retail Payments

• Point-of-Sale Purchases

• Time-critical Transactions
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On-chain Improvements

➢ e.g., Proof-of-Stake, Sharding

➢ Improve the throughput of the blockchain.

➢ Improve latency only under a relaxed threat model.
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On-chain Improvements

➢ e.g., Proof-of-Stake, Sharding

➢ Improve the throughput of the blockchain.

➢ Improve latency only under a relaxed threat model.

No improvement in latency under the original threat model.
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Layer 2 Protocols

➢ Move transactions off the chain.

➢ Use the blockchain only when necessary.

➢ High-throughput and low-latency.
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Layer 2 Protocols

➢ Move transactions off the chain.

➢ Use the blockchain only when necessary.

➢ High-throughput and low-latency.

Payment channels 

❖ Large amount of locked-in funds for customers.

❖ Require a separate deposit for each channel.

❖ Pre-deposit their future expenditure.
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Layer 2 Protocols
➢ Move transactions off the chain.

➢ Use the blockchain only when necessary.

➢ High-throughput and low-latency.

Payment channels 

❖ Large amount of locked-in funds for customers.

❖ Require a separate deposit for each channel.

❖ Pre-deposit their future expenditure.

Payment networks, Payment hubs, Side-chains

❖ Incompatible with the unilateral nature of retail payments (no rebalancing).

❖ Additional trust assumptions.
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Snappy
➢ Low latency (<2 secs) suitable for retail payments.

➢ Operates on top of low-throughput and high-latency blockchains.

➢ Future on top of high-throughput and high/mid-latency blockchains.
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Snappy
➢ Low latency (<2 secs) suitable for retail payments.
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❖No changes to the underlying consensus protocol. 

❖No additional trust assumptions.

❖No additional operational requirements.
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Snappy
➢ Low latency (<2 secs) suitable for retail payments.

➢ Operates on top of low-throughput and high-latency blockchains.

➢ Future on top of high-throughput and high/mid-latency blockchains.

Key Features

❖No changes to the underlying consensus protocol. 

❖No additional trust assumptions.

❖No additional operational requirements.

❖ Small opportunity cost.

❖ Requires smartcontract language.
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Snappy

Application scenarios

❖ A large number of users (e.g., 1,000,000 customers).

❖ A moderate set of recipients (e.g., 100 merchants). 
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Snappy

Application scenarios

❖ A large number of users (e.g., 100,000 customers).

❖ A moderate set of recipients (e.g., 100 merchants). 

❖Users pay the recipients.

❖ Small- to mid-value transactions.
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Snappy

Application scenarios

❖ A large number of users (e.g., 100,000 customers).

❖ A moderate set of recipients (e.g., 100 merchants). 

❖Users pay the recipients.

❖ Small- to mid-value transactions.

❖ The recipients give the products, once they receive the funds.
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How does latency occur?

❖ Block interval (e.g., ~13 seconds for Ethereum)

❖ Probabilistic finality (>1 confirmations)

❖ The number of confirmations, 
depends on the transaction value
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How does latency occur?
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❖ Probabilistic finality (>1 confirmations)

❖ The number of confirmations, 
depends on the transaction value

Can we do zero-confirmation txs?

18

mc



How does latency occur?

❖ Block interval (e.g., ~13 seconds for Ethereum)

❖ Probabilistic finality (>1 confirmations)

❖ The number of confirmations, 
depends on the transaction value

Can we do zero-confirmation txs?

mc
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Trivial Solutions

❖ Convince your supermarket to trust you?

❖ Pre-deposit funds to your local supermarket?

❖ Try to catch double-spending early?
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Trivial Solutions

❖ Convince your supermarket to trust you?

❖ Pre-deposit funds to your local supermarket?

❖ Try to catch double-spending early?

Can we do better?

❖ Customers keep their money in their wallet.

❖ Merchants guaranteed to get their money.

❖ No trust to/reliance on third parties.
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Idea: Collaterals

1. Customer places collateral (e.g., $100) on a smartcontract.

2. Victim merchants can claim funds if the customer cheats.

m Arbc
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Idea: Collaterals
1. Customer places collateral (e.g., $100) on a smartcontract.
2. Victim merchants can claim funds if the customer cheats.

A settlement “claim” requires
❖ The payment transaction (given to the merchant by the customer).

❖ Its conflicting transaction (from the blockchain).

❖ In Ethereum, conflicting transactions share the same nonce.

m Arbc

The collateral is used only when doublespending!
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Triple-spending Attack

Scaling collaterals to multiple merchants

❖ Need to keep track of “pending” transactions.

❖ Merchants accept payment, if the collateral suffices for everyone.

m1 Arbc

m2
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Proposal #1: Trusted Merchants
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Proposal #1: Trusted Merchants
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Proposal #1: Trusted Merchants
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Proposal #1: Trusted Merchants

Drawbacks

❖ Assumes all merchants are trustworthy.

❖ Requires 100% availability of all merchants.

Side-chain variant

❖ Additional trust assumptions

❖ e.g., BFT -> 1/3 malicious merchants
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Proposal #2: Trusted Third Party
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Proposal #2: Trusted Third Party
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Proposal #2: Trusted Third Party
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Proposal #2: Trusted Third Party
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Proposal #2: Trusted Third Party
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Drawbacks
- What if the statekeeper equivocates?
- What if the statekeeper colludes with customers?



Proposal #3: Untrusted Third Party

❖ Almost the same as before

❖ Statekeeper places collateral per merchant.

❖ If the customer’s collateral get depleted, 
the statekeeper’s collateral is used.
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Proposal #3: Untrusted Third Party

❖ Almost the same as before

❖ Statekeeper places collateral per merchant.

❖ If the customer’s collateral get depleted, 
the statekeeper’s collateral is used.
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Drawbacks
- We still rely on a third party.



Snappy: Statekeeping Merchants
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Snappy: Statekeeping Merchants
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Snappy: Statekeeping Merchants
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Snappy: Statekeeping Merchants
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Snappy: Statekeeping Merchants
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Snappy: Statekeeping Merchants
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Snappy: Statekeeping Merchants
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50%+1 Approvals



Snappy: Statekeeping Merchants
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Approval: “I haven’t approved another transaction from c1 with the same index number.”

50%+1 Approvals



Snappy: Statekeeping Merchants
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Snappy: Statekeeping Merchants
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Proof of Merchant Equivocation
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Proof of Merchant Equivocation
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Proof of Merchant Equivocation
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Approval Protocol

1. The customer initializes the payment.

2. Merchant verifies the collateral suffices.

3. Payment approval (50%+1).

4. Statekeeper evaluation.

5. Signature aggregation (e.g., BLS).

6. Customer signs final transaction.

7. Merchant verifies and completes checkout.

8. Transaction logged in blockchain and 
by the smartcontract.
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Scalability: Latency
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Scalability: Small Collaterals 

❖Only need to cover the expenditure within the latency period.

❖ Reusable.

❖ Flexible.

❖ Independent of the number of customers.
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Takeaways

❖ An honest merchant never loses funds.

❖Deployable on top of existing blockchains (e.g.,Ethereum).

❖No additional trust assumptions.

❖ Small amount of locked in funds.

❖ Very low latency.
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Thank you! Questions?
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