
Snappy
Fast On-chain Payments
with Practical Collaterals

Vasilios Mavroudis*, Karl Wüst†, Aritra Dhar†

Kari Kostiainen†, Srdjan Capkun†

*University College London †ETH Zurich

1

Cryptocurrencies based on permissionless blockchains could

❖ Decentralize the global financial system

❖ Reduce trust assumptions

❖ Increase operational transparency

❖ Improve user privacy

2

Throughput

Latency

Privacy

Centralized
Processors

Permissionless
Blockchains

Thousands
of txs/sec

Minutes to
finality

Confirmation
in <3 sec

[0, full privacy)

Open Challenges

Tenths
of txs/sec

Trusted third
party needed

3

Throughput

Latency

Privacy

Centralized
Processors

Permissionless
Blockchains

Thousands
of txs/sec

Minutes to
finality

Confirmation
in <3 sec

[0, full privacy)

Open Challenges

Tenths
of txs/sec

Trusted third
party needed

• Retail Payments

• Point-of-Sale Purchases

• Time-critical Transactions

4

On-chain Improvements

➢ e.g., Proof-of-Stake, Sharding

➢ Improve the throughput of the blockchain.

➢ Improve latency only under a relaxed threat model.

5

On-chain Improvements

➢ e.g., Proof-of-Stake, Sharding

➢ Improve the throughput of the blockchain.

➢ Improve latency only under a relaxed threat model.

No improvement in latency under the original threat model.

6

Layer 2 Protocols

➢ Move transactions off the chain.

➢ Use the blockchain only when necessary.

➢ High-throughput and low-latency.

7

Layer 2 Protocols

➢ Move transactions off the chain.

➢ Use the blockchain only when necessary.

➢ High-throughput and low-latency.

Payment channels

❖ Large amount of locked-in funds for customers.

❖ Require a separate deposit for each channel.

❖ Pre-deposit their future expenditure.

8

Layer 2 Protocols
➢ Move transactions off the chain.

➢ Use the blockchain only when necessary.

➢ High-throughput and low-latency.

Payment channels

❖ Large amount of locked-in funds for customers.

❖ Require a separate deposit for each channel.

❖ Pre-deposit their future expenditure.

Payment networks, Payment hubs, Side-chains

❖ Incompatible with the unilateral nature of retail payments (no rebalancing).

❖ Additional trust assumptions.

9

Snappy
➢ Low latency (<2 secs) suitable for retail payments.

➢ Operates on top of low-throughput and high-latency blockchains.

➢ Future on top of high-throughput and high/mid-latency blockchains.

11

Snappy
➢ Low latency (<2 secs) suitable for retail payments.

➢ Operates on top of low-throughput and high-latency blockchains.

➢ Future on top of high-throughput and high/mid-latency blockchains.

Key Features

❖No changes to the underlying consensus protocol.

❖No additional trust assumptions.

❖No additional operational requirements.

12

Snappy
➢ Low latency (<2 secs) suitable for retail payments.

➢ Operates on top of low-throughput and high-latency blockchains.

➢ Future on top of high-throughput and high/mid-latency blockchains.

Key Features

❖No changes to the underlying consensus protocol.

❖No additional trust assumptions.

❖No additional operational requirements.

❖ Small opportunity cost.

❖ Requires smartcontract language.

13

Snappy

Application scenarios

❖ A large number of users (e.g., 1,000,000 customers).

❖ A moderate set of recipients (e.g., 100 merchants).

14

Snappy

Application scenarios

❖ A large number of users (e.g., 100,000 customers).

❖ A moderate set of recipients (e.g., 100 merchants).

❖Users pay the recipients.

❖ Small- to mid-value transactions.

15

Snappy

Application scenarios

❖ A large number of users (e.g., 100,000 customers).

❖ A moderate set of recipients (e.g., 100 merchants).

❖Users pay the recipients.

❖ Small- to mid-value transactions.

❖ The recipients give the products, once they receive the funds.

16

How does latency occur?

❖ Block interval (e.g., ~13 seconds for Ethereum)

❖ Probabilistic finality (>1 confirmations)

❖ The number of confirmations,
depends on the transaction value

17

How does latency occur?

❖ Block interval (e.g., ~13 seconds for Ethereum)

❖ Probabilistic finality (>1 confirmations)

❖ The number of confirmations,
depends on the transaction value

Can we do zero-confirmation txs?

18

mc

How does latency occur?

❖ Block interval (e.g., ~13 seconds for Ethereum)

❖ Probabilistic finality (>1 confirmations)

❖ The number of confirmations,
depends on the transaction value

Can we do zero-confirmation txs?

mc

19

Trivial Solutions

❖ Convince your supermarket to trust you?

❖ Pre-deposit funds to your local supermarket?

❖ Try to catch double-spending early?

20

Trivial Solutions

❖ Convince your supermarket to trust you?

❖ Pre-deposit funds to your local supermarket?

❖ Try to catch double-spending early?

Can we do better?

❖ Customers keep their money in their wallet.

❖ Merchants guaranteed to get their money.

❖ No trust to/reliance on third parties.

21

Idea: Collaterals

1. Customer places collateral (e.g., $100) on a smartcontract.

2. Victim merchants can claim funds if the customer cheats.

m Arbc

22

Idea: Collaterals
1. Customer places collateral (e.g., $100) on a smartcontract.
2. Victim merchants can claim funds if the customer cheats.

A settlement “claim” requires
❖ The payment transaction (given to the merchant by the customer).

❖ Its conflicting transaction (from the blockchain).

❖ In Ethereum, conflicting transactions share the same nonce.

m Arbc

The collateral is used only when doublespending!
23

Triple-spending Attack

Scaling collaterals to multiple merchants

❖ Need to keep track of “pending” transactions.

❖ Merchants accept payment, if the collateral suffices for everyone.

m1 Arbc

m2

24

Proposal #1: Trusted Merchants

25

Proposal #1: Trusted Merchants

26

Proposal #1: Trusted Merchants

27

Proposal #1: Trusted Merchants

28

Proposal #1: Trusted Merchants

29

Proposal #1: Trusted Merchants

30

Proposal #1: Trusted Merchants

31

Proposal #1: Trusted Merchants

Drawbacks

❖ Assumes all merchants are trustworthy.

❖ Requires 100% availability of all merchants.

Side-chain variant

❖ Additional trust assumptions

❖ e.g., BFT -> 1/3 malicious merchants

32

Proposal #2: Trusted Third Party

34

Proposal #2: Trusted Third Party

35

Proposal #2: Trusted Third Party

36

Proposal #2: Trusted Third Party

37

Proposal #2: Trusted Third Party

38

Drawbacks
- What if the statekeeper equivocates?
- What if the statekeeper colludes with customers?

Proposal #3: Untrusted Third Party

❖ Almost the same as before

❖ Statekeeper places collateral per merchant.

❖ If the customer’s collateral get depleted,
the statekeeper’s collateral is used.

41

Proposal #3: Untrusted Third Party

❖ Almost the same as before

❖ Statekeeper places collateral per merchant.

❖ If the customer’s collateral get depleted,
the statekeeper’s collateral is used.

42

Drawbacks
- We still rely on a third party.

Snappy: Statekeeping Merchants

44

Snappy: Statekeeping Merchants

45

Snappy: Statekeeping Merchants

46

Snappy: Statekeeping Merchants

47

Snappy: Statekeeping Merchants

48

Snappy: Statekeeping Merchants

49

Snappy: Statekeeping Merchants

50

50%+1 Approvals

Snappy: Statekeeping Merchants

51

Approval: “I haven’t approved another transaction from c1 with the same index number.”

50%+1 Approvals

Snappy: Statekeeping Merchants

52

Snappy: Statekeeping Merchants

53

Proof of Merchant Equivocation

54

Proof of Merchant Equivocation

55

Proof of Merchant Equivocation

56

Approval Protocol

1. The customer initializes the payment.

2. Merchant verifies the collateral suffices.

3. Payment approval (50%+1).

4. Statekeeper evaluation.

5. Signature aggregation (e.g., BLS).

6. Customer signs final transaction.

7. Merchant verifies and completes checkout.

8. Transaction logged in blockchain and
by the smartcontract.

s1 s2 sl...
Sc, INTc

mc

τc m

Α

τc m

SigAggr

Cust Eval

Payment Approval
INTc

>k/2

Sk Eval

33

6

2

1

4

5

7

8

Tx Fin

Blockchain

57

Approval Protocol

1. The customer initializes the payment.

2. Merchant verifies the collateral suffices.

3. Payment approval (50%+1).

4. Statekeeper evaluation.

5. Signature aggregation (e.g., BLS).

6. Customer signs final transaction.

7. Merchant verifies and completes checkout.

8. Transaction logged in blockchain and
by the smartcontract.

s1 s2 sl...
Sc, INTc

mc

τc m

Α

τc m

SigAggr

Cust Eval

Payment Approval
INTc

>k/2

Sk Eval

33

6

2

1

4

5

7

8

Tx Fin

Blockchain

58

Scalability: Latency

64

Scalability: Small Collaterals

❖Only need to cover the expenditure within the latency period.

❖ Reusable.

❖ Flexible.

❖ Independent of the number of customers.

65

Takeaways

❖ An honest merchant never loses funds.

❖Deployable on top of existing blockchains (e.g.,Ethereum).

❖No additional trust assumptions.

❖ Small amount of locked in funds.

❖ Very low latency.

66

Snappy
Fast On-chain Payments with Practical Collaterals
Vasilios Mavroudis, Karl Wüst, Aritra Dhar, Kari Kostiainen, Srdjan Capkun

Thank you! Questions?

68

