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Motion Sensor Threat to Speech Privacy

* A smartphone gyroscope can pick up surface vibrations incurred by an independent
loudspeaker placed on the same table (Michalevsky et al., Usenix 2014).

» Gyroscopes are (lousy but still) microphones.
* Very low signal to noise ratio
* Low sampling frequency

Speaker Speaker Identification Digits Recognition
Mixed Female/Male 50% 17%
Female speakers 45% 26%

Male speakers 65% 23%




Motion Sensor Threat to Speech Privacy

* Only loudspeaker-rendered speech signals traveling through a solid surface can
create noticeable impacts on motion sensors (Anand et al., S&P 2018).
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The threat does not go beyond the Loudspeaker-Same-Surface]

setup studied by Michalevsky et al.




Commonly Believed Limitations

e Can only pick up a narrow band of speech signals
* Android has a sampling ceiling of 200 Hz
* iOS has a sampling ceiling of 100 Hz

Fundamental frequency range of human speech

a

85-180 Hz 165-255 Hz

* Does not go beyond the Loudspeaker-Same-Surface setup
* Very low SNR (Signal-to-Noise Ratio)
* Sensitive to sound angle of arrival




Our Observations: Sampling Frequency

* The actual sampling rates of motion sensors are determined by the performance
of the smartphone.

* Accelerometers on recent smartphones can cover almost the entire fundamental
frequency band (85-255Hz) of adult speech.

Sampling frequencies supported by Android [1]

Delay Options Delay | Sampling Rate
DELAY_NORMAL 200 ms 5 Hz
DELAY_UI 20 ms 50 Hz
DELAY_GAME 60 ms 16.7 Hz
DELAY_FASTEST 0 ms AFAP

Model Year | Sampling Rate
Moto G4 2016 100 Hz
Samsung J3 2016 100 Hz
LG G5 2016 200 Hz
Huawei Mate 9 2016 250 Hz
Samsung S8 2017 420 Hz
Google Pixel 3 2018 410 Hz
Huawei P20 Pro | 2018 500 Hz
Huawei Mate 20 | 2018 500 Hz

The 200 Hz sampling ceiling
no longer exists

[1] “Sensor Overview,” https://developer.android.com/guide/topics/sensors/sensors_overview.




Our Observations: New Setup

* Employs a smartphone’s accelerometer to eavesdrop on the speaker in the same
smartphone.

* Much Higher SNR
* Sound always arrives from the same direction
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Our Observations: New Setup

* Employs a smartphone’s accelerometer to eavesdrop on the speaker in the same
smartphone.

* Much Higher SNR
* Sound always arrives from the same direction

* A smartphone speaker is more likely to reveal sensitive
information than an independent loudspeaker.
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Accelerometer-based Smartphone Eavesdropping

* Preprocessing: convert acceleration signals into spectrograms.
* Speech Recognition: convert spectrograms to text.
* Speech Reconstruction: reconstructs voice signals from spectrograms
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* Problems in Raw Acceleration Signals

* Raw accelerometer measurements are not sampled at fixed interval.
* Raw accelerometer measurements can be distorted by human movement.

Preprocessing

* Raw accelerometer measurements have captured multiple digits and needs to be segmented.

Time| x-axis y-axis Z-axis

(ms) | (m/s?) (m/s?) (m/s*)
1 -0.2130 -0.1410 10.0020
2 -0.1870 -0.1440 9.9970
3 -0.2110 -0.1510 9.9970
> -0.2110 -0.1410 10.0070
3 -0.2080 -0.1340 10.0120
10 | -0.2150 -0.1320 10.0070
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Step 1: Generate Sanitized Single-word Signals

* Interpolation

e Upsample accelerometer signals to 1000 Hz
using linear interpolation.

Time  x-axis y-axis Z-axis

(ms) (m/s?) (m/s?) (m/s*)
1 -0.2130 -0.1410 10.0020
2 -0.1870 -0.1440 9.9970
3 -0.2110 -0.1510 9.9970
> -0.2110 -0.1410 10.0070
3 -0.2080 -0.1340 10.0120
10  -0.2150 -0.1320 10.0070




Step 1: Generate Sanitized Single-word Signals

* Interpolation

e Upsample accelerometer signals to 1000 Hz
using linear interpolation.

Time  x-axis y-axis Z-axis
(ms) (m/s®) (m/s?) (m/s?)
1 -0.2130 -0.1410 10.0020
2 -0.1870 -0.1440 9.9970
3 -0.2110 -0.1510 9.9970
4 -0.2110 -0.1460 10.0020
> -0.2110 -0.1410 10.0070
6 -0.2100 -0.1387 10.0087
7 -0.2090 -0.1363 10.0103
3 -0.2080 -0.1340 10.0120
S -0.2115 -0.1330 10.0095
10  -0.2150 -0.1320 10.0070




Step 1: Generate Sanitized Single-word Signals

* Interpolation

+ Upsample accelerometer signals to 1000 Hz Fundamental frequency range of human speech
using linear interpolation.

* High-pass filter Qe a

* Convert the acceleration signal along each 85-180 Hz 165-255 Hz

axis to the frequency domain and eliminate
frequency components below 80 Hz.
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Step 1: Generate Sanitized Single-word Signals

* Interpolation
e Upsample accelerometer signals to 1000 Hz

using linear interpolation.

* High-pass filter
* Convert the acceleration signal along each
axis to the frequency domain and eliminate
frequency components below 80 Hz.

Table setting

Handhold setting
; Accdofom'mmu?mm gz-axh) .

10

Accelerometer measurements (z-axis)
“‘é 10.2 T T T Y T
- 10
2 L 1 1 L 1 '
0 1 2 3 4 5 6 7 8 9 10
o2 Filtered acceleration signal (z-axis)
~ . T T T 1
v_",p:'
E o
o
2 02 i '
0 1 2 3 4 5 6 7 8 9
Time (secs)

o

Acc |rru'sz)
~d
o

1 i L i i i A
0 1 2 3 4 5 6 T 8

Filtered acceleration signal (z-axis)
f‘i-; 0.2 T T T T T
E o
%]
3 0.2 L 1
0 1 2 3 < 5 6 7 8

Time (secs)




Step 1: Generate Sanitized Single-word Signals

* Interpolation Table setting
. S thed itude of the acceleration al the z-axis
* Upsample accelerometer signals to 1000 Hz o e n the acceleration signal aleng the 2

using linear interpolation.

* High-pass filter o 1 2 85 4 5 & 7

8 o
Filtered acceleration signal with cutting points (z-axis)

+

* Convert the acceleration signal along each
axis to the frequency domain and eliminate
frequency components below 80 Hz.

. Time (secs)
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Step 2: Generate Spectrogram Images

* Signal-to-spectrogram conversion

e Divide the signal into multiple short segments
with a fixed overlap.

* Window each segment with a Hamming window
and calculate its spectrum through STFT (Short-
Time Fourier Transform).

* Three spectrograms can be obtained for each
single-word signal.
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Step 2: Generate Spectrogram Images

* Signal-to-spectrogram conversion WMETE om0 T T [
« Divide the signal into multiple short segments  _*® | 0 3 _4oof 60
with a fixed overlap. % 300) B0 3 Z300 A K
* Window each segment with a Hamming window  Z200 T g 3o o
and calculate its spectrum through STFT (Short- =, 10y kL 2
Time Fourier Transform). . 140 a 140
- T — 0 A geas 5 & gnan
° : 200 400 €00 200 400 600
T.hrele spe;trpgralms can be obtained for each Time (ms) Titme ()
single-word signal. : _
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* Generate Spectrogram-Images Time Time
* Fit the three m x n spectrograms into one m x n
X 3 tensor.

* Take the square root of all the elements in the
tensor and map the obtained values to integers
between 0 and 255.

* Export the m x n x 3 tensor as an image in PNG
format Table setting Handhold setting
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Speech Recognition

x; = Hi([x0, %1, ..., X1—1])
* DenseNet:
* Direct connections between each layer
* Fewer nodes and parameters
 Comparable performance with VGG & ResNet

’ ( S
dense block dense block
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y
acceleration conv layer |
conv layer :
spectrogram- I'y pooling classes
image +pooling + linear

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.



Recognition Results

e Dataset (80% training data and 20% testing data) :

* Digits: 10k single-digit signals from 20 speakers Audio Player
* Digits + Letter: 36*260 single-word signals from 10 speakers.

AccDataRec

* Recognizing Digits & Letters (common elements in password)

Tasks Topl Acc Top3 Acc SOTA

Previous SOTA results:

Digits 78% 96% 26% 26% on recognizing digits

D+L 55% 78% - "
.. . Traditional ML + gyroscope+
* Recognizing 20 Speakers (connect multiple attack results) e s sl Sa SR s

Topl Acc Top3Acc  SOTA . <
70% 88% 50% (10) Previous SOTA results:

50% on recognizing 10 speakers




Hot Word Search

* Locate and identify pre-trained hot (sensitive) words from sentences.

Insensitive words Hot words

[Here IS my] [social security number]

* Speakers

* Two males and two females

* Training data

 128*8 hot words

» 2176 insensitive words (negative samples)

* Testing data

e 200 short sentences, each of which contains several

insensitive words and one to three hot words.

Hot word | TPR | FPR
Password | 94% | 0.4%
Username | 97% | 0.4%
Social 100% | 0.3%
Security 91% | 0.0%
Number 88% | 0.1%
Email 88% 1.4%
Credit 88% | 0.3%
Card 97% | 1.4%




Attack scenario:

* The victim makes a phone call to a remote caller and requests a password during the conversation.

Case Study: End-to-End Attack

* The password is eight digits in length and is preceded by the hot word “password (is)”.

Attach process:

* 1) Hotword search: Locate password.
» 2) Digits recognition: Recognize eight-

digit password.

Training data

e 200 “password”s (Hotword search)
e 2200 other word (Hotword search)
» 280*10 digits (Digits recognition)

Testing data

e 80 conversations for each setting.
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Speech Reconstruction

* Reconstruction Network (Refer to StyleTransfer):
* Encoder: encode spectrograms into features
* Residue Blocks: refine encoded features by residual
mappings (inspired by ResNet)
* Decoder: decode the features into audio spectrograms

O &
* GL algorithm: o ‘
* Recover the phase from spectrogram S = &
* Recover audio signals TERT
residual * s
blocks G
acceleration conv layers deconv layers +
spectrogram- resize
image speech
spectrogram

Johnson, Justin, et al. "Perceptual losses for real-time style transfer and super-resolution." European conference on computer vision. Springer, Cham, 2016.



* Listen to some reconstructed examples
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Reconstruction Results

“ - Password is one two three
\

« = Angry bird is my username

. = Hereis my social security number
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Defense

* Limit the sampling rate of the accelerometer.

* According to Android Developer, the recommended sampling rates for the user interface
and mobile games are 16.7 Hz and 50 Hz respectively.

* Applications requiring sampling rates above 50 Hz should request a permission through
<user-permission >

Recognition accuracy on the digits dataset

Sampling rate 300 Hz 200 Hz 160 Hz 100 Hz 50 Hz
Recognition accuracy 73% 64 % 56% 47% 30%

* Notify the user when some applications are collecting accelerometer readings
in the background.




Conclusion

* Sound signals emitted by smartphone speakers can significantly affect the
accelerometer on the same smartphone.

* Accelerometers on recent smartphones almost cover the entire fundamental
frequency band of speech voice.

* Using deep learning techniques, it is possible to recognize and reconstruct the
speech signals from the accelerometer measurements.

Thank youl!

Zhongjie Ba, Email: zhongjie.ba@mcgill.ca



