SymTCP: Eluding Stateful Deep Packet Inspection
with Automated Discrepancy Discovery

Zhongjie Wang, Shitong Zhu, Yue Cao, Zhiyun Qian,
Chengyu Song, Srikanth Krishnamurthy, Kevin Chan, and Tracy Braun

RIVERSIDE [zEveom

What is DPI (Deep Packet Inspection)?

Censorship and Surveillance

FCC’S PROPOSAL:
NO NET NEUTRALITY

ISP Traffic Differentiation

& MUSIC FANATIC?
4 FAMILY LIFER?
© CREATIVE CONTEMPLATER?

@ IVE AND TAKER?
4 [/SPOSABLE SPENDER?
o GOAL ACHIEVER?

CONTENTED OPTIMIST? S
CREATIVE? ®
SPONTANEQUS LIFER? @
NATURAL LEADER? &
NATURAL COLLABORATOR? €

Modeling Users for Online Ads

How does DPI work?

Application
Protocol

Tép O

L

How does DPI work?

Application
Protocol

1

TCP

T
IP

How does DPI work?

T S

- —%—%—@

Implementation-level discrepancy

// Linux TCP timestamp validation

if ((signed int)(last_tsval - current_tsval) <= 1) { o)
// succeed
} else {
// fail last_tsval - 1 <= current_tsval <= last_tsval + 23 '
}

// Snort TCP timestamp validation

if ((signed int)((current_tsval - last tsval) + 1) < @) {
// fail

} else {
// succeed

last_tsval - 1 <= current_tsval <= last_tsval + 23" - 2

}

/2R
S
=) %

Huge search space!!!

@ Successful
" o~—| ftestcases
O

Workflow of SymTCP

‘(4&& B Successful

N "o~ | testcases
A\ S o

Highly effective Symbolic
test cases Execution

Problem with symbolic execution

All possible packets All possible execution paths

Path explosion!!!

Pruning decisions

Labeling
In the program, we label where a packet gets dropped or accepted
“drop” / “accept” [N g
poin ts (i.e. TCP state changed). We try to cover these accept/drop points.

Bounding We allow each TCP option to occur only once, and at most 5
TCP Options different TCP options in a packet.

Pruning
uninteresting
TCP states

We terminate an execution path once it reaches any
uninteresting TCP state (e.g., TIME_WAIT, CLOSED)

Differential testing DPI

Server @\
p1

p2
() E

Complete packet sequence

Packet triggering Packet triggering
discrepancies feedback

Test case Follow-up packets

LISTEN ESTABLISHED
state state

Symbolic execution performance

Linux kernel v4.9.3
72 core Intel Xeon CPU and 256GB memory

1/2/3 symbolic packets
20/40/60 byte length packet

No TCP options

of 20-byte TCP pkts 40-byte TCP pkts
pkts Time Covered Time Covered 56,787 test cases
to cover drop points to cover drop points Sampled 10,000 test cases

1 5s 8 5s 9
2 20s 16 20m 19 % 18
3 50s 31 1h2m 39 40m 38

Time cost could vary due to randomness in path selection of symbolic execution.

Zeek (formerly Bro)

e 6082 successful test cases, 9 strategies, 2 novel strategies

TABLE 1V. SUCCESSFUL STRATEGIES ON ZEEK V2.6
Strategy TCP state Insertion/Evasion packet Linux Zeek
T SYN with data L/SR/E (I) SYN packet with data Ignore data Accept data
T Multiple SYN SR/E (I) SYN packet with out-of-window SEQ num Discard and send ACK Reset TCB
T Pure FIN E (I) Pure FIN packet without ACK flag Discard (may send ACK) Flush and reset receive buffer
1 Bad RST/FIN SR/E (I) RST or FIN packet with out-of-window SEQ num Discard (may send ACK) Flush and reset receive buffer

T Data overlapping SR/E

(I) Out-of-order data packet, then overlapping in-order data packet

Accept in-order data

Accept first data

1 Data without ACK SR/E (I) Data packet without ACK flag Discard Accept
1 Data bad ACK E (I) Data packet with ACK > snd_nxt or < snd_una - window_size Discard Accept
* Big gap SR/E (I) Data packet with SEQ > rcv_nxt + max_gap_size (16384) Accept Ignore later data
+ SEQ < ISN SR/E (E) Data packet with SEQ num < client ISN and in-window data Accept in-window data Ignore

* TCP State: L - Listen, SR - SYN_RECYV, E - ESTABLISHED. (I) - Insertion, (E) - Evasion. 1 - Old strategy, * - New strategy.

e 652 successful test cases, 11 strategies, 3 novel

TABLE V. SUCCESSFUL STRATEGIES ON SNORT v2.9.13

Strategy TCP state Insertion/Evasion packet Linux Snort

T Multiple SYN E (I) SYN packet with in-window SEQ num Discard and send ACK Teardown TCB

T In-window FIN E (I) FIN packet with SEQ num in window but # rcv_nxt Ignore FIN (may accept data) Cut off later data
1 FIN/ACK bad ACK E (I) FIN/ACK packet with ACK num > snd_nxt or < snd_una - window_size Discard (may send ACK) Cut off later data
T FIN/ACK MDS5 SR/E (I) FIN/ACK packet with TCP MDS5 option Discard Cut off later data
T In-window RST E (I) RST packet with SEQ num # rcv_nxt but still in window Discard and send ACK Teardown TCB

1 RST bad timestamp SR (I) RST packet with bad timestamp Discard Teardown TCB

7 RST MD5 SR/E (I) RST packet with TCP MDS5 option Discard Teardown TCB

7 RST/ACK bad ACK num SR (I) RST/ACK packet with ACK num # server ISN + 1 Discard Teardown TCB

* Partial in-window RST E (I) RST packet with SEQ num < rcv_nxt but partial data in window Discard Teardown TCB

* Urgent data SR/E (E) Data packet with URG flag and urgent pointer set Consume 1 byte urgent data Ignore all data

before urgent pointer

+ Time gap SR/E (E) Data packet timestamp = last timestamp + Ox7fffffff/0x80000000 Accept Ignore

* TCP State: L - Listen, SR - SYN_RECYV, E - ESTABLISHED. (I) - Insertion, (E) - Evasion. { - Old strategy, = - New strategy.

Great Firewall of China (GFW)

e 4587 successful test cases, 12 strategies, 9 novel

TABLE VL SUCCESSFUL STRATEGIES ON THE GFW

Strategy TCP state Insertion/Evasion packet Linux GFW

1 Bad RST SR/E (I) RST packet with bad checksum or TCP MD5 option Discard Teardown TCB
1 Bad data SR/E (I) Data packet with bad checksum or TCP MD5 option or bad timestamp Discard Accept

i Data without ACK SR/E (I) Data packet without ACK flag Discard Accept

* SEQ < ISN SR/E (E) Data packet with SEQ num < client ISN and in-window data Accept in-window data Ignore

* Small segments SR (E) Data packet with payload size < 8 bytes Accept Ignore

* FIN with data SR/E (I) FIN packet with data and without ACK flag Discard Teardown TCB
* Bad FIN/ACK data E (I) FIN/ACK packet with data and bad checksum or TCP MDS5 option or bad timestamp Discard Teardown TCB
* FIN/ACK data bad ACK E (I) FIN/ACK packet with data and ACK num > snd_nxt or < snd_una - window_size Discard Teardown TCB
* Out-of-window SYN data SR (I) SYN packet with SEQ num out of window and data Discard and send ACK Desynchronized
* Retransmitted SYN data SR (I) SYN packet with SEQ num = client ISN and data Discard Desynchronized
* RST bad timestamp SR (I) RST packet with bad timestamp Discard Teardown TCB
* RST/ACK bad ACK num SR (I) RST/ACK packet with SEQ num # server ISN + 1 Discard Teardown TCB

* TCP State: L - Listen, SR - SYN_RECYV, E - ESTABLISHED. (I) - Insertion, (E) - Evasion. { - Old strategy, * - New strategy.

Case study

Client Snort Server Client Zeek/GFW Server
SYN gEQ:X
SYNIACK | _—| SYNIACK | — |
G' Data: "sensitive data & junk” 4 Data: "AAsensitive data"
jur?lt(Urgent pointer: point to junk Ignored SEQ=X-1 (expected to be X+1)

1. Urgent Pointer (Snort) 2. Underflow SEQ (Zeek & GFW)

Key contributions

e A novel approach that combines whitebox and blackbox testing
o Whitebox: Extract a reference model from server with symbolic execution

o Blackbox: Infer internal states of DPI with follow-up packets

e First to run symbolic execution on full-fledged TCP implementation and
send multiple symbolic packets

e Highly efficient and effective automated tool to unearth discrepancies
between different TCP implementations

o Facilitate DPI elusion

o Help developers fix implementation bugs

Conclusion

e A novel approach combines whitebox and blackbox testing to automatically
discover TCP implementation-level discrepancies

e Evaluated against 3 well-known DPI systems, Zeek (Bro), Snort, and the
GFW, and found 14 novel strategies

e A significant step in testing and eluding DPI systems

I Email: zwang048@ucr.edu
h On ’ OM Homepage: https://zhongjie.me

GitHub Repo

