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Motivation & Preliminaries
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Parties with confidential data want to learn statistics over joint data while preserving privacy
§ Real-world examples

– Ad conversions: link online ads with offline purchases
▫ Google & Mastercard [B18]

– Tax fraud detection
▫ Estonian Tax and Customs Board (MTA) & Companies [BJSV15] 

– Studies
▫ MTA & Estonian Ministry of Education and Research [BKKRST16] 
▫ Boston Women’s Workforce Council & Employers [LVBJV16] 

Our focus: 2 semi-honest parties computing rank-based statistics, especially the median

Distributed Private Learning
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Rank of a value w.r.t. a data set !: first position in sorted data (zero-indexed)

Why rank-based statistics & median?

Data set ! 0 1 1 2 3 5 8 13 21 34

Rank 0 1 3 4 5 6 7 8 9

Rank-based statistics: versatile & robust
§ min

§ max

§ In general, +,--ranked element (.,--percentile)

– median
▫ “typical value” in data

▫ more robust to outliers than mean

Example: income in Medina, Washington

§ Population ≈3,000

§ Median Income ≈ $186,000

§ Average Income ≫$1,000,000,000

– „outliers“ Jeff Bezos and Bill Gates
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Median is one value from the data
§ no protection (not even aggregation), we want privacy guarantee

Why Differential Privacy (DP) and Secure Compuation?

!-DP is a strong privacy guarantee used by Google, Microsoft, Apple
§ restricts output differences when input changes in one element
§ implementation models

– with trusted third party (better accuracy)
– without trusted party (better privacy)

§ we want high accuracy without trusted third party

Secure Computation
§ „simulate“ trusted party with cryptography
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Differential Privacy techniques
Probabilistic Selection
§ Exponential mechanism [MT07]

– outputs ! with probability ∝ exp & ' (,*
+,'

▫ Utility function -:
„scores“ closeness to median

– Linear in size of the data domain

Additive Noise
§ E.g., Laplace mechanism [DR14]

– outputs median 4 + 67897:; ,<
=

▫ Smooth sensitivity Δ? [NRS07]:

analyzes data 4 to reduce noise

– Δ@ computation time linear in data size

Why use the Exponential Mechanism?

Exponential mechanism for the median

§ achieves high accuracy for low &
– low avg. absolute error

▫ Credit card transactions (left)

▫ Walmart shipment weights (right)

§ we provide sublinear-time computation
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Secure Computation Basics

We use both techniques and optimize our protocol for their respective advantages

§ Implemented with ABY [DSZ15]

– 2PC with secret sharing and garbled circuits
– provides conversions between techniques

Secure Computation techniques
Garbled Circuits [Yao86]

§ Efficient for Boolean computations, e.g.,

– comparison

Secret Sharing [Shamir79]

§ Efficient for arithmetic computations, e.g.,

– addition / subtraction

– scalar multiplication



Secure Exponential Mechanism for Median
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Exponential mechanism outputs domain element ! with probability ∝ exp & ⋅ ( ),!
§ running time linear in size of data domain
§ costly secure exponentiation

Large data domain? We use sorted data.
§ sorted unique data has data-independent utility scores

– extendable to non-unique data and entire data domain
§ Large data size? We prune data.

– iterative pruning, preserves the median [AMP10] 
▫ DP-relaxation: prune-neighbors [HMFS17]

Costly secure exponentiation? We don‘t need it.
§ data-independent utility function à data-independent exponentiation

Overview
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Parties !, # with sorted data

Step by step Party ! Party #
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Parties !, # with sorted data
§ (I) Prune large data [AMP10]

– parties compare their medians,
keep half of data with mutual median

Step by step Party ! Party #
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Parties !, # with sorted data
§ (I) Prune large data [AMP10]

– parties compare their medians,
keep half of data with mutual median

§ (II) Oblivious Merge [HEK12] & Secret Share
– merge faster than sort
– secret sharing for efficient arithmetics

Step by step Party ! Party #
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Parties !, # with sorted data

§ (I) Prune large data [AMP10]
– parties compare their medians,

keep half of data with mutual median

§ (II) Oblivious Merge [HEK12] & Secret Share
– merge faster than sort
– secret sharing for efficient arithmetics

§ (III) Selection Probability
– .

▫ $%: simplified utility function
▫ &'(: count of consecutive elements

with same utility

Step by step Party ! Party #
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Parties !, # with sorted data

§ (I) Prune large data [AMP10]
– parties compare their medians,

keep half of data with mutual median

§ (II) Oblivious Merge [HEK12] & Secret Share
– merge faster than sort
– secret sharing for efficient arithmetics

§ (III) Selection Probability
– .

▫ $%: simplified utility function
▫ &'(: count of consecutive elements

with same utility

§ (IV) Median Selection
– Select output via CDF

Step by step Party ! Party #



Evaluation
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§ Evaluated in different AWS regions

– runs in seconds for millions of records

– with real-world latency, bandwidth

– on t2.medium instances

§ Two versions:

– GC: only garbled circuits

– GC+SS: garbled circuits & secret sharing

Running time in WANs

~12 ms RTT, ~430 MBits/s (Ohio and N. Virginia)

~25 ms RTT, ~160 MBits/s (Ohio and Canada)

~100 ms RTT, ~100 MBits/s (Ohio and Frankfurt)

GC GC+SS

GC GC+SS

GC GC+SS
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Secure Sublinear Time Differentially Private Median Computation

Conclusion

§ extensible to rank-based 
statistics

–versatile & robust

§ sublinear time median selection

–normally, exponential mechanism is linear in domain size

§ strong privacy guarantee

–adopted by industry

§ via exponential mechanism

–high accuracy, low !

§ secure computation

–efficient implementation

without trusted third party



Contact information:

jonas.boehler@sap.com

Thank you.
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