Locally Differentially Private Frequency Estimation Exploiting Consistency

Tianhao Wang

Purdue University

Joint work with Milan Lopuhaä-Zwakenberg,

Zitao Li, Boris Skoric, Ninghui Li

Privacy in Practice

- Local differential privacy is deployed
 - In Google Chrome browser, to collect browsing statistics
 - In Apple iOS and MacOS, to collect typing statistics
 - In Microsoft Windows, to collect telemetry data over time
 - In Alibaba, we built a system to collect user transaction info
- Different algorithms are proposed.
- They work for different tasks and different settings.
- They are all based on *Randomized Response*.

Randomized Response

- Survey technique for private questions
- Survey people:
 - "Do you have disease X?"
- Each person:
 - Flip a secret coin
 - Answer truth if head (w.p. 0.5)
 - Answer randomly if tail (w.p. 0.5):
 - reply "yes"/"no" w.p. 0.5

 $\Pr[\text{disease} \rightarrow \text{yes}]$ $= \Pr[\text{disease} \rightarrow \text{yes} \land \text{head}]$ + $\Pr[\text{disease} \rightarrow \text{yes} \land \text{tail}]$ $= 0.5 \times 1 + 0.5 \times 0.5 = 0.75$ Similarly: $Pr[disease \rightarrow no] = 0.25$ $Pr[no \text{ disease} \rightarrow yes] = 0.25$ $Pr[no \text{ disease} \rightarrow no] = 0.75$

S L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. JASA. 1965.

Randomized Response

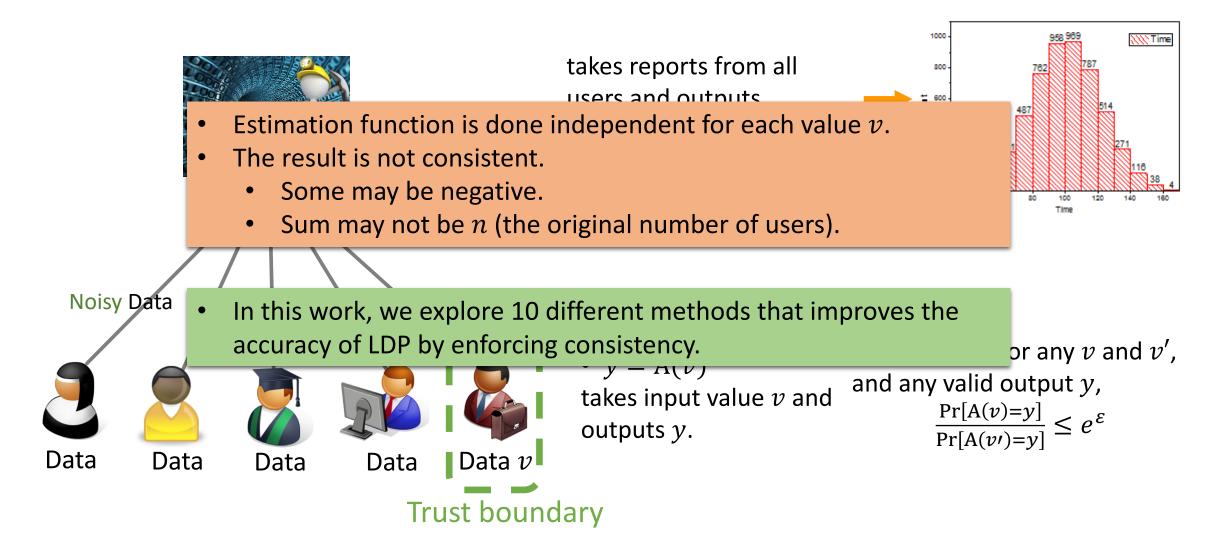
 $Pr[disease \rightarrow yes] = 0.75$ $Pr[disease \rightarrow no] = 0.25$ $Pr[no \text{ disease} \rightarrow no] = 0.25$ $Pr[no \text{ disease} \rightarrow yes] = 0.75$

- To estimate the distribution:
- If $n_{\rm ves}$ out of n An algorithm A is ε -LDP if and only if for see: any v and v', and any valid output y, answers $\frac{\Pr[A(v)=y]}{\Pr[A(v')=v]} \le e^{\varepsilon}$
- Inverting the a

Enumerating possibilities of v and v' taking disease or no disease, and y as yes or no, • It is the unbias the binary randomized response is ln3-LDP. $E[\hat{n}_{yes}] = \frac{0.5}{0.5}$ $= n_{\rm ves}$

Similar for the "no"

Local Differential Privacy (LDP)

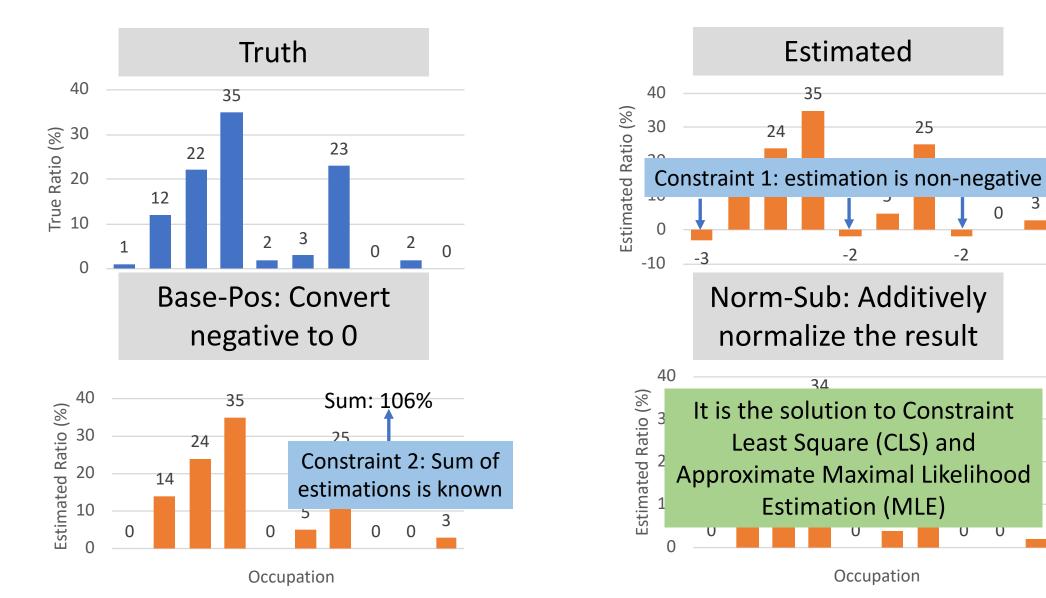


Making Estimations Consistent

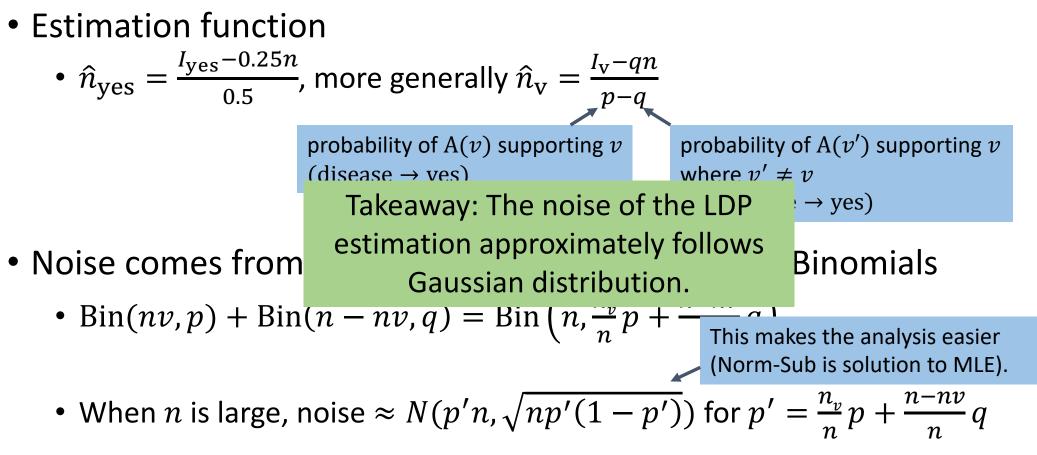
 The estimated frequency of each value is non-negative.
The sum of the estimated frequencies is 1.

	Method	Description	Non-neg	Sum to 1	Complexity
Γ	Base	Use existing estimation	No	No	N/A
Several	Base-Pos	Convert negative est. to 0	Yes	No	0(<i>d</i>)
Baselines	Post-Pos	Convert negative query result to 0	Yes	No	N/A
	Base-Cut	Convert est. below threshold <i>T</i> to 0	Yes	No	0(<i>d</i>)
Normalizati	Norm	Add δ to est.	No	Yes	0(<i>d</i>)
on-based	Norm-Mul	Convert negative est. to 0, then multiply Υ to positive est.	Yes	Yes	0(<i>d</i>)
Methods	Norm-Cut	Convert negative and small positive est. below	Yes	Almost	0(<i>d</i>)
L	Norm-Sub	Convert negative est. to 0 while adding δ to positive est.	Yes	Yes	O(d)
MLE-based	MLE-Apx	Convert negative est. to 0, then add δ to positive est.	Yes	Yes	0(<i>d</i>)
Needs	Power	Fit Power-Law dist., then minimize expected squared error.	Yes	No	$O(\sqrt{n}d)$
More Prior	PowerNS	Apply Norm-Sub after Power	Yes	Yes	$O(\sqrt{n}d)$

Post-Processing: Toy Example

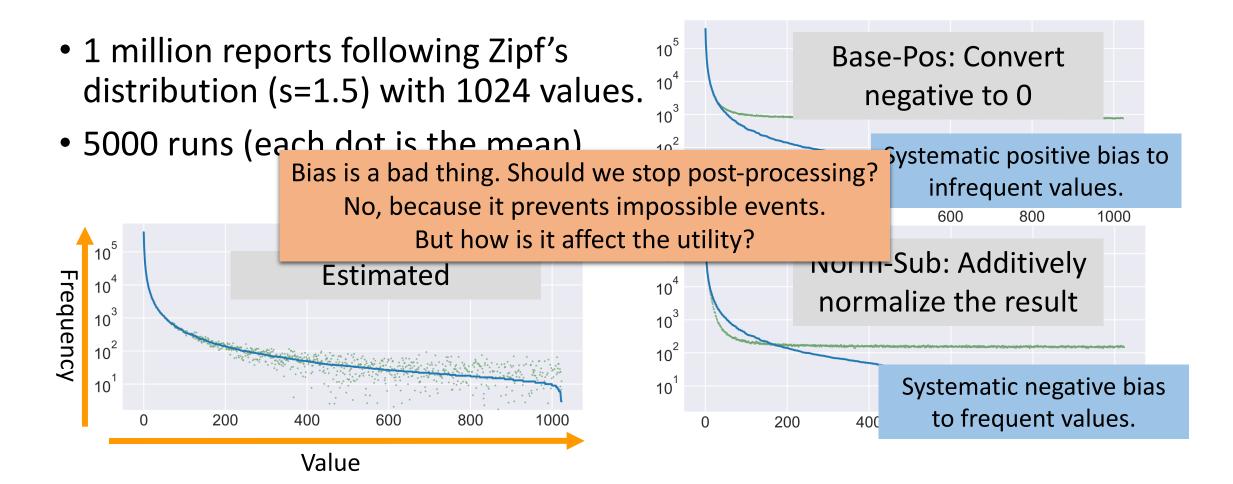


Analysis of the Estimation in LDP



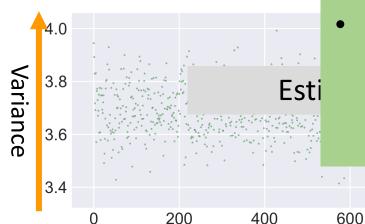
J, Jia, and N. Gong. Calibrate: Frequency estimation and heavy hitter identification with local differential privacy via incorporating prior knowledge. *INFOCOM 2019*.

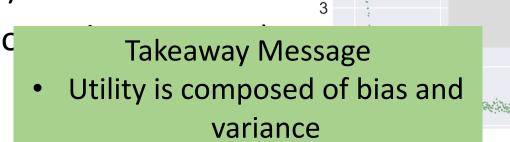
Empirical Understanding



Empirical Understanding

- 1 million reports following Zipf's distribution (s=1.5) with 1024 values.
- 5000 runs (each dc





- Post processing introduces bias but reduces variance
- Different method achieves different bias-variance tradeoff

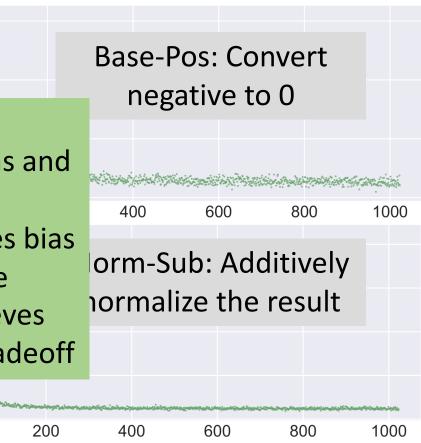
1000

800

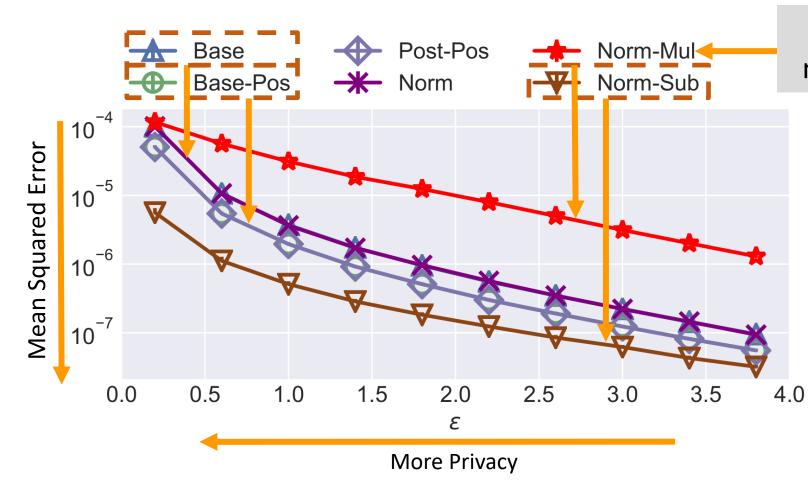
0

0

Variance is smaller for infrequent values.



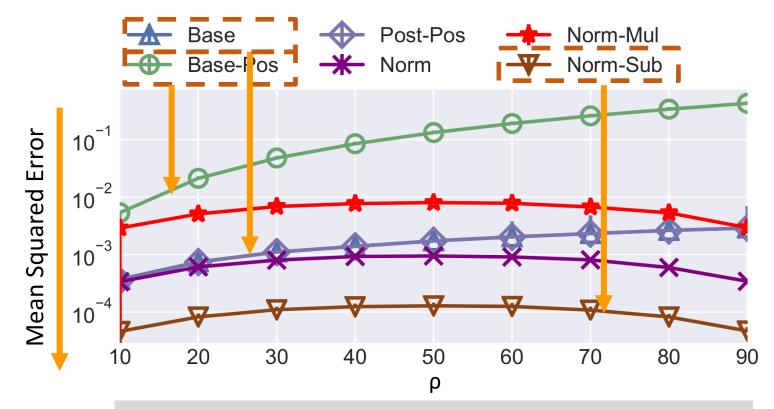
Comparison of Different Methods



Multiplicatively normalize the result

- Norm-Sub > Base-Pos > Base > Norm-Mul
- Exploiting constraint may or may not be helpful

Comparison of Different Methods



- Uniformly sample p% elements from the domain.
- MSE of estimating a subset of values (set-value).

- Normalizationbased methods works better.
- MSE is symmetric with ρ = 50 if the estimates sum up to 1.

Summary

- LDP noise follows Gaussian.
- Norm-Sub is the solution to MLE.
- Exploiting priors is helpful.
- Different method works for different tasks.

	Method	Description
	Base	Use existing estimation
	Base-Pos	Convert negative est. to 0
	Post-Pos	Convert negative query result to 0
	Base-Cut	Convert est. below threshold T to 0
	Norm	Add δ to est.
	Norm-Mul	Convert negative est. to 0, then multiply Υ to positive est.
	Norm-Cut	Convert negative and small positive est. below ϑ to 0
	Norm-Sub	Convert negative est. to 0 while adding δ to positive est.
	MLE-Apx	Convert negative est. to 0, then add δ to positive est.
	Power	Fit Power-Law dist., then minimize expected squared error.
	PowerNS	Apply Norm-Sub after Power

