
You Are What You Do:
Hunting Stealthy Malware via Data

Provenance Analysis

Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Junghwan Rhee,
Zhengzhang Chen, Wei Cheng, Carl A. Gunter, Haifeng Chen

NDSS 2020

Feb 26th, 2020, San Diego

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ As malware detection has greatly advanced, adversaries are increasingly
focusing on new techniques to evade detection.

§ One recent line of stealthy attacks achieve their attack goals by
impersonating or abusing well-trusted programs (e.g., IE, Java).

running process

Malware is Becoming Stealthier

2

The malicious behavior is blended with benign behaviors of IE.

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ Advanced stealthy techniques are being actively developed.

Stealthy Malware/Attacks

3

§ Various stealthy strategies are being employed.
– Fileless techniques (i.e., minimizing the usage of regular file systems)
– Living off the land (i.e., using dual-use tools such as certutil)

– Memory code injection
• E.g., reflective DLL injection, process hollowing

– Script-based attacks
• Embedding payload in documents like MS Word and Excel

– Vulnerability exploits
• E.g., CVE- 2019-0541 allows arbitrary code execution in IE

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

Attacker Server

A Real-world Stealthy Attack

4

Phishing Email Word File

powershell.exe powershell.exe

Empire Backdoor

Dropbox Server

open invoke
cmd.exe

invoke

execute Empireexecute 0.ps1

fetch 0.ps1 fetch Empire.ps C&C No files were created

during the attack!

Technical reports estimated that stealthy attacks grew by 265% in the first half of 2019,

and are 10 times more likely to succeed compared to traditional attacks!

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ Taking advantages of well-trusted
programs in the system.
– Living off the land

Challenges for Detecting Stealthy Attacks

5

§ Residing in the victim process’s
memory.
– Being fileless

§ There are a variety of stealthy
techniques.

Could bypass whitelisting.

A general and effective approach to detect stealthy attacks is needed!

Signature-based or file-based
solutions are ineffective.

Solutions target certain techniques do
not work for others.

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ While a stealthy malware could employ different techniques to impersonate
benign processes, its malicious behavior will inevitably interact with the
underlying operating systems and leave traces.

Our Insights

6

OS-level
provenance tracking

…

§ Thus, we could use OS-level provenance analysis to differentiate benign and
hijacked (malicious) processes.
– We consider three types of system entities: processes, files and sockets.

processes, files, sockets

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d. Problem Solved?

7

Target Program

…

Benign Profile
…

…

…

Benign Provenance Graphs

…
collect build

new instance

Benign or Malicious?

§ Detection of marginal deviation
– Stealthy malware tends to incur only marginal deviation

for its malicious behavior.
§ Scalable model building and detection
– The size of the provenance graph grows rapidly over

time.

Challenges

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d. ProvDetector

8

Graph Building Representation
Extraction Embedding

predication

predication

predication

predication

Anomaly
Detection

Process

Final
Decision

Provenance Database Frequency Database

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ We propose to use causal paths as the features for a
provenance graph.
– The marginal malicious paths are blended with normal paths.

§ How to choose the malicious paths?
– Rare paths are more likely to be malicious.

Representation Extraction

9

Frequency
Database

winword.exe outlook.exe*.doc x.x.x.x
write writeread_by

winword.exe powershell.exe
create

cmd.exe powershell.exe
create create

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ We use regularity score to define the rareness of a path.

Rareness-based Path Selection

10

− For a path , where , the regularity
score is:

Out stability In stability Event
frequency

Finding paths with the lowest regularity scores from a provenance graph.

The less frequent and less stable an event is,
the less regularity score it has.

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ How to feed the paths to anomaly detection models?
– The lengths of causal paths are not fixed.
– The attributes of nodes are unstructured data (e.g., file names).

§ Projecting paths into numerical vector space.
– We view a causal path as a sentence/document.

• Each node is treated as a “noun” and each edge is treated as a “verb”.
• Embed the “sentence” into vector using doc2vec.

Embedding

11

winword.exe outlook.exet1.doc 168.x.x.x
write writeread_by

Process:winword.exe write File:t1.doc read by Process:outlook.exe write Socket:168.x.x.x.

In vector space, similar paths are closer while different paths are far away.

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ We use a novelty detection model to determine if a path is
abnormal.
– We train the model with only the embeddings of benign paths.
– It is able to detect unknown attacks or zero-day attacks.

§ We then use a threshold-based method to make the final
decision.
– If more than n path vectors are predicted as malicious, we treat the

provenance graph as malicious.

Anomaly Detection

12

predication

predication

predication

predication

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ Provenance dataset preparation
– Malicious dataset

• We ran about 15,000 malware samples from VirusShare and VirusSign.

– Benign dataset
• We deployed ProvDetector in an enterprise with 306 Windows hosts for 3 months.

§ We identified 23 target programs in both datasets.
– Popular applications

• E.g., IE Browser and Microsoft Word.

– Preinstalled system tools
• E.g., Windows Common Line (cmd) and Windows Certificate Services Tool (certutil)

Evaluation

13

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

How effective is ProvDetector in detecting stealthy
malware?

14

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ We evaluate with the 23 target programs.
– For each program, we chose 250 benign and 50 malicious processes.

• 200 benign process were used for training.
• 50 benign and 50 malicious processes were used for evaluation.

– For each process, we select the top 20 rarest paths from its provenance graph.

Detection Accuracy

15

Threshold Precision Recall F1-Score
3 0.957 1.000 0.978
4 0.995 1.000 0.997

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

16

Why the Whole Graph is not an effective feature?

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ A graph embedding approach
– Embedding a provenance graph into a vector using graph2vec.

Comparison with Graph Embedding

17

Approach Precision Recall F1-Score
ProvDetector 0.957 1.000 0.978

graph2vec 0.899 0.452 0.601

The whole graph is not an effective feature for detecting stealthy
attacks!

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ We use MS word as an example (50 benign and 50 malicious)

Why Using Paths are More Effective?

18

t-SNE plot of random paths

We randomly selected 20 paths from
benign and malicious graphs.

t-SNE plot of selected paths

We selected top 20 rarest paths from
benign and malicious graphs.

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ OS-level data provenance could capture the malicious
behavior of stealthy attacks.

§ We propose a rareness-based path selection algorithm to
identify the potentially malicious part as detection features.

§ We present ProvDetector, a provenance-based approach to
automatically detect stealthy attacks.

§ We demonstrate its effectives through a systematic
evaluation in an enterprise environment.

Summary

19

Thanks!

Q&A

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

Backup Slides

20

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ We implement ProvDetector for both Windows and Linux.
– Provenance tracking is implemented with Windows ETW framework and the Linux Audit

framework.
– The provenance graph builder and the representation extractor are implemented using

about 15K lines of Java code.
– Embedding and anomaly detection are implemented in Python.

§ Provenance Data Preprocessing
– Path Abstraction

• We remove user specific details from process entities and file entities.
• E.g., *:/USERS/*/DESKTOP/PAPER.DOC

– Socket Connection Abstraction
• We remove the source part of an outgoing connection and the destination part of an

incoming connection.

Implementation

21

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d. Graph-level Detection Accuracy

22

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

Pr
ec

is
io

n
or

 R
ec

al
l

Threshold

Precision
Recall

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ Training overhead
– One-time effort

§ Detection overhead
– Building provenance graphs and path selection. (7s)
– Embedding the selected paths. (20ms)
– Prediction overhead of the anomaly detection model. (1.2ms)

Runtime Performance

23

For an enterprise which has 100 hosts and there are 30 programs to monitor, it
will take 5.7 hours per day to check all the created instances in the enterprise.

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ Editing distance between causal paths
– We define the editing distance between two causal paths as the minimum

number of actions needed to convert one path to another.
• Add, modify and delete

– On average, the editing distance between malicious paths and benign paths is
about five.

§ Since a causal path embeds the contextual causality among different
system entities (e.g., processes), it is much harder to evade ProvDetector
than the approaches that focus only on the behavior of one process.

Mimicry Attacks

24

T
h
e
pi
ct
ur
e
ca
n'
t
b
e
di
s
pl
ay
e
d.

§ A lot of today’s malware has anti-analysis capabilities.

– E.g., anti-VM or anti-debug

§ 289 (26%) of the malware samples in our evaluation are identified as anti-
VM by VirusTotal.

§ 238 (20.7%) of them are identified to be anti-debug by VirusTotal.

§ Unlike virtualization based solutions, ProvDetector is designed to run on
bare metal machines and does not require isolated environments.

Anti-analysis Malware

25

