

NDSS 2020, February 26, 2020

Post-Quantum Authentication in TLS 1.3: A Performance Study

Dimitrios Sikeridis^{1,2}, Panos Kampanakis², Michael Devetsikiotis¹ ¹Dept. of Electrical and Computer Engineering, The University of New Mexico, USA ²Security & Trust Organization, Cisco Systems, USA

Quantum Computing

- Practical Quantum Computing existence/timeline is still debatable¹
- QC research funding is increasing
- IBM has multiple small-scale prototypes
- Google's quantum supremacy claim

¹Dyakonov, Mikhail. "When will useful quantum computers be constructed? Not in the foreseeable future, this physicist argues. Here's why: The case against: Quantum computing." *IEEE Spectrum* 56.3 (2019): 24-29

IBM's Quantum Computer

Quantum Computing – Practical impact?

- A large scale QC will be able to solve Integer Factorization and Discrete Logarithm Problems¹
- Will our current cryptographic algorithms be secure?

Software Updates Secure Email e-Payments e-Banking IoT, e-Health, Cloud

TLS/SSL Digital Signatures SSH, VPN

RSA, ECDH, ECDSA, DSA

~ 0 bits Post-Quantum Security Level

¹Shor, Peter W. "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer." *SIAM review* 41.2 (1999): 303-332

NIST Post-Quantum Project

- PQ Algorithm Standardization
- Currently in Round 2
- 9 PQ Digital Signature Algorithms
- 17 PQ Key Exchange Algorithms

Post-Quantum Cryptography

f G+ У

Round 2 Submissions

Official comments on the Second Round Candidate Algorithms should be submitted using the "Submit Comment" link for the appropriate algorithm. Comments from the pqc-forum Google group subscribers will also be forwarded to the pqc-forum Google group list. We will periodically post and update the comments received to the appropriate algorithm.

All relevant comments will be posted in their entirety and should not include PII information in the body of the email message.

Please refrain from using OFFICIAL COMMENT to ask administrative questions, which should be sent to pqccomments@nist.gov

Post-Quantum Transport Layer Security (TLS) Status

- No complete solution yet
 - Google, Cloudflare¹, Microsoft, and Amazon have been looking into PQ Key Exchange
- This work:
 - Focuses on PQ Authentication
 - Experiments with PQ signature algorithm candidates to study their impact on TLS 1.3
- Open Quantum Safe Project²: liboqs, OQS openssl

¹<u>https://blog.cloudflare.com/the-tls-post-quantum-experiment/</u> ²<u>https://openquantumsafe.org</u>

Post-Quantum Authentication in TLS 1.3

- 9 PQ Signature Algorithms for possible integration
 - SPHINCS+, Dilithium, Falcon, MQDSS, Picnic, Rainbow, qTesla, LUOV, GeMSS
- Performance Differences for Sign/Verify Operations
- Various Key/Signature Sizes
- Various Certificate Sizes

• What will be the impact on TLS 1.3?

TLS 1.3 Handshake and PQ X.509 Certificate

Performance of Sign/Verify Operations

Average Sign and Verify Times	Signature	Local Machine (ms)	
	Algorithm	Sign	Verify
	RSA 3072	3.19	0.06
	ECDSA 384	1.32	1.05
ſ	Dilithium II	0.82	0.16
	Falcon 512	5.22	0.05
	MQDSS 48	10.30	7.25
	Picnic $L1FS$	4.09	3.25
NIST Category 1 (~ 128-bit security)	SPHINCS ⁺ SHA256-128f-simple	93.37	3.92
	Rainbow Ia	0.34	0.83
NIST Category 3 (192-bit security)	Dilithium IV	1.25	0.30
NIST Category 5 (256-bit security)	Falcon 1024	11.37	0.11

Certificate Chains and Sizes

Signature	Cert Chair	n Size (KB)	CertificateVerify	
Algorithm	One ICA	Two ICAs	Size (KB)	
RSA 3072	1.63	2.44	0.38	
ECDSA 384	1.34	2.15	0.05	
Dilithium II	6.90	10.42	2.04	
Falcon 512	3.54	5.37	0.69	
MQDSS 48	42.24	63.42	20.85	
Picnic $L1FS$	66.20	99.57	30.03	
$SPHINCS^+$	34.46	51.74	16.98	
Rainbow Ia	116.86	175.35	0.06	
Dilithium IV	10.70	16.11	3.37	
Falcon 1024	6.56	9.89	1.33	

Experimental Procedures

Goal: Evaluate PQ Authentication Impact on TLS 1.3 under realistic network conditions

- Local client in RTP, NC Remote Google Cloud Platform server
- X25519 key exchange
- RSA 3072, ECDSA 384 used as baselines
- No AVX2 optimizations
- TCP initial congestion window parameter at 10 MSS

PQ Handshake Time

NIST Category 3,5 (~192, 256-bit security)

- excessive message size error
- SSL Alert for certificate public key size
- *: partial handshake

Combining PQ Signature Schemes

Root CA Falcon 1024		TLS Handshake (ms)		
PQ Root Cert.	Signature			
	Scheme	Mean	St. Dev.	
For Int	RSA 3072	15.13	6.03	
Cert. a	Dilithium IV	24.20	2.62	
PQ Server - Dilithium IV	Falcon 1024	27.14	3.30	
Cert.	Fal. 1024 & Dil. <i>IV</i>	18.11	1.58	

- Single ICA, Client Server roundtrip ~11ms
- TLS Handshake Time of the Dilithium-Falcon Combination:
 - $\cdot \downarrow$ 25% vs Dilithium IV
 - \downarrow 33% vs Falcon 1024

PQ TLS 1.3 - Global Scale Performance

Additional Latency by PQ - Percentiles

- Additional Latency over RSA at the 50th and 95th Percentile
- 5-10% slowdown
- < 20% slowdown for Falcon 1024

Signature	Handshake (ms)		Latency (%)	
Algorithm	50^{th}	95^{th}	50^{th}	95^{th}
RSA3072	131.54	227.26	0	0
Dilithium II	140.20	232.51	6.58	2.31
Falcon 512	142.22	235.46	8.12	3.49
MQDSS 48	598.61	726.20	355.05	219.53
Picnic $L1FS$	634.90	985.88	382.63	333.79
SPHINCS $^+$ 128f	553.15	904.98	320.49	298.19
Dilithium IV	276.55	449.88	110.22	97.95
Falcon 1024	152.96	240.74	16.28	5.93
Fal. 1024 & Dil. <i>IV</i>	140.74	228.42	6.98	0.50

PQ Authenticated Server – Stress Testing

- PQ TLS 1.3 on NGINX Server
- Siege 4.0.4 with PQ TLS 1.3
- Google Cloud Platform servers
- Clients uniformly allocated across four US locations
- Requested webpage size \rightarrow 0.6 KB

PQ Authenticated Server – Stress Testing

- Dilithium II vs RSA3072:
- ~25% more connections/sec
- Falcon underperforms due to slow signing

NIST Category 1 (~ 128-bit security)

PQ Authenticated Server – Stress Testing

- Dilithium II vs RSA3072:
 ~25% more connections/sec
- Falcon underperforms due to slow signing

NIST Category 1 (~ 128-bit security)

Transaction rate of the multi-algorithm combination:

- 个 10% vs RSA 3072
- \uparrow 4% vs Dilithium IV

Changes to Enable PQ Authenticated Tunnels

- ICA Suppression
 - TLS extension to convey ICA certificate unnecessity $^{\rm 1}$
 - Omit certificates from handshake using pre-established dictionary²
- PQ Scheme Combinations: Root CA
 - Multivariate candidates or Stateful HBS with small tree heights
- Increase TCP initial congestion window parameter (initcwnd)
 - >34 MSS to accommodate all PQ algorithms without round-trips
 - Effect on TCP congestion control ?

PQ Authenticated Tunnels: Key Takeaways

(1/2)

- Dilithium and Falcon
 - Dilithium/Falcon NIST Level 1 performed **sufficiently**, but <u>at <128 bits of classic security</u>
 - <u>Scheme combinations</u> made schemes of NIST Level >3 competitive
 - Falcon uses significantly more power than Dilithium¹

- Web connections will be more impacted
 - Short-lived, Small amounts of data per connection
 - Is there an acceptable slowdown value ?

¹Saarinen, Markku-Juhani O. "Mobile Energy Requirements of the Upcoming NIST Post-Quantum Cryptography Standards." arXiv preprint arXiv:1912.00916 (2019)

PQ Authenticated Tunnels: Key Takeaways

(2/2)

- VPNs would not suffer by slower PQ Authentication
 - Long-lived Tunnels, Establishment takes ~5 seconds

- Complications will arise for TLS in case Dilithium/Falcon are not standardized
 - Industry constantly striving for faster handshakes
 - Drastic protocol changes
- Further experimentation
 - PQ Key Exchange (Cloudflare, Google) + Authentication impact on tunnels
 - Impact of PQ signatures on authenticated tunnels in lossy environments (e.g. wireless)

Thank you!

Questions? dsike@unm.edu

Appendix

Post-Quantum Authentication – NIST Candidates

• 9 PQ Signature Algorithms for possible integration

Dilithium: MLWE - Module Learning with Errors Falcon: NTRU with Fast Fourier trapdoor Gaussian sampling qTesla: R-LWE Picnic: Multiparty computation as (Zero Knowledge Proofs) using Hash commitment