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Biometrics as an API
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What if an attacker had
access to these APIs?
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What is the success of an attacker?

* Perception: FPR is indicative of success of this attacker.
Yes, if attacker inputs have the same distribution as biometric data.

If the API is available, an attacker has more freedom.

_ . . A ) Length of Input
In particular, an attacker can submit random inputs. ssumptions |

Value Bounds
User Identifier

What is the Security of the biometric
system against these Random Inputs?
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Contributions

A notion of Acceptance Region (AR): positively classified region of features.
* Formally and experimentally show AR is larger than positive user’s data region.

* Show Random Input attacker with black-box feature APl access succeeds more
than EER.

* Show Random Input attacker with Raw Input (before feature extraction) API
succeeds more than EER

* Demonstrate attack on four real-world biometric schemes, and four ML algorithms.
* Propose mitigation against attackers with either Raw or Feature API access.

* Release our code in our Repo : https://imathatguy.github.io/Acceptance-Region/
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https://imathatguy.github.io/Acceptance-Region/

Contributions

A notion of Acceptance Region (AR): positively classified region of features.

* Show Random Input attacker with black-box feature APl access succeeds more

than EER.
* Demonstrate attack on real-world biometric schemes, and ML algorithm:s.
* Propose mitigation against attackers Feature API access.

* Release our code in our Repo : https://imathatguy.github.io/Acceptance-Region/
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Outline

* What is the Random Input Attacker?

* How we evaluate a Random Input Attacker’s Success.

* Are Random Input Attacker successful on real-world datasets?

* Factors that may affect the Success of the Random Input Attacker.
* Evaluation of factors on Synthetic Data.

* Propose a defence mechanism.

* Code Available in our Repo: https://imathatguy.github.io/Acceptance-Region/
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Random Input Attacker

* How easy can a Random Input Attacker find an accepting sample?
* The region where biometric samples are labelled as positive, Acceptance Region (AR).
* And this is exactly equal to success probability of an attacker submitting random inputs.
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Evaluation Methodology
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Real-world Data Evaluation

Face Dataset , Random Forest Classifier

1.0
0.8 -

\
\
\
\
\
1
\
\
0.6
\
\
\

Error

044

02 7] \\

O-O I I I 1
0.0 0.2 0.4 0.6 0.8 1.0

System Parameter (Threshold)

e
DATA

%Im
SES————————— L



Real-world Data Evaluation

Face Dataset , Random Forest Classifier
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In many cases AR exceeds the EER
Hides a vulnerability not revealed by EER
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Real-world Data Evaluation
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Face Dataset , Random Forest Classifier
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Real-world Data Evaluation

Face Dataset, Linear SVM Classifier
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Real-world Data Evaluation - Individuals =
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Recap — Real World Data

v" Random Input Attacker, Leverages an exposed Feature Vector Input API to submit
crafted inputs

v The Acceptance Region an approximate measure of success of a Random Input
Attacker

v" The Random Input attacker has success comparable to EER in user averages.
v An individual’s EER is not a reliable indicator of Random Input Attacker success

* Qutline factors that may affect the Success of the Random Input Attacker.
* Evaluation of factors on Synthetic Data.
* Propose a defence mechanism.
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Factors Effecting the Acceptance Region "~ ™ -

* Both the positive and negative examples are
expected to be highly concentrated.

*
* |t is desirable for models to bound it’s decision *
boundary around this region * )¢
*

* However model-based classifiers do not
penalize empty space.

* Variability of the Positive class.

* Variability of the Negative class.
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Synthetic Data Evaluation - Positive User Variance
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A user with high feature variance, will be more

susceptible to a Random Input Attacker
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Synthetic Data Evaluation — Negative User Variance
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A User’s vulnerability to the Random Input Attacker can be
decreased by only increasing the variance of the Negative Class.
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Recap - Synthetic Data

v" A user with high feature variance, will be
more susceptible to a Random Input Attacker

v A User’s vulnerability to the Random Input
Attacker can be decreased by only increasing
the variance of the Negative Class.

* Propose a defence mechanism.
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Proposed Defence Mechanism

* |f we can increase the variance of the Negative class, 50
we can reduce the success of the Random Input o 40
c
Attacker. S .
o
O 2

* We can increase negative class variation with noise. 10 1

0.0 0.2 0.4 0.6 0.8 1.0

* Conveniently, Beta-distributed noise, will sample

. ) Feature Value
values distant from a user’s values.
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Proposed Defence Mechanism - Beta Noise

* Maintain balanced dataset.
* 1/3 positive, 1/3 negative, 1/3 beta noise.

Before Defence | After Defence

Gait 0.09
Touch 0.21
Face 0.03
Voice 0.04

T ————————

0.03 0.09
0.23 0.21
0.78 0.03
0.01 0.04

Random Forests

0.00
0.00
0.00
0.00

0.215

0.325

0.095
0.115

0.20 0.170
0.30 0.375
0.10 0.065
0.08 0.090
DNN

Before Defence | After Defence

0.00
0.00
0.04
0.02

The AR has been

substantially reduced below
EER

e
DATA
bl



MACQUARIE 5
H Unive?sity USIY\J)§EW

. SYDNEY-AUSTRALIA %@
Conclusions

Proposal of the Random Input Attacker

Probability of success by the Random Input Attacker is comparable to EER.
* Tuning system parameters may not necessarily mitigate the Random Attacker.

EER is not a consistent indicator of the Random Input Attacker’s success

Class variance tied to the success of the Random Input Attacker.

Mitigation the Random Input Attacker with beta-distributed noise at training.
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More in the Paper 77 o

* Formal Treatment of Random Input Attacker and Acceptance Region

* Success of the Raw Input APl Random Attacker
* More biometric modalities, and ML algorithms

* More Factors affecting Acceptance Region
* Distance-based classifier
* Number of Users.

* Defending against Raw input Random Attacks.
* Beta noise not completely sufficient
* Additional protections proposed.
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What else?

* Is the Random Input attacker equally effective against
one-class and multi-class approaches to authentication?

* The effects of a non-balanced dataset on the success of
the Random Input Attacker.

* Is the vulnerability of the Random Input Attacker as
measured by the Acceptance Region prevalent in other
ML applications!?
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Thank You

More details in Paper + Repo
Question(s)?

https://imathatguy.github.io/Acceptance-Region/

For details and further info:

Benjamin Zhao
(benjamin.zhao@unsw.edu.au)
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