
Broken Metre:
Attacking Resource Metering in EVM

Daniel Perez and Benjamin Livshits

Imperial College London



Ethereum Smart Contracts



Gas Metering

• Each instruction consumes gas to execute

• Program gas cost = base cost + sum of instructions cost

• Program stops if it runs over its gas budget

• Transaction sender choses gas price and pays “gas cost x 
gas price”



Previous Attacks on Metering

EXTCODESIZE attack
• EXTCODESIZE is IO-intensive: needs 

to read the state

• Only cost 20 gas at time of attack

• Attacker spammed network with 
transactions performing many 
EXTCODESIZE

• Price was increased to 700 gas

SUICIDE attack
• SUICIDE kills a contract and sends 

all the Ether to a specified target
• SUICIDE was free at time of attack
• Specifying a new address when 

calling SUICIDE would create it for 
free

• Attacker spammed network with 
address creation/destruction

• SUICIDE priced changed to 5,000 
and creating contract now 
consumes gas



Analysis Setup

• Fork aleth (C++ client)

• Instrument CPU
• Record execution time/instruction

• Aggregate over 1,000 instructions

• Instrument memory
• Override new/delete

• Replay transactions and record stats



Gas and Resources Correlation

• Compute correlation between 
gas usage and different resources

• Correlation with CPU (execution 
time) alone is non-existent

• Adding CPU decreases the 
correlation with gas

Resource Correlation

Memory 0.755

CPU 0.507

Storage 0.907

Storage/Memory 0.938

Storage/Memory/CPU 0.893



High-Variance Instructions

• Most high-variance instructions 
depend on state

• Even when aggregated over 
1,000 calls, standard deviation is 
close to mean

Instruction Mean (μs) Stdev

BLOCKHASH 768 578

BALANCE 762 449

SLOAD 514 402

EXTCODECOPY 403 361

EXTCODESIZE 221 245



Effect of Cache on Execution Time

• Focus on OS page cache 

• Generate random programs and 
measure speed with and without 
cache

• Programs run on average 28 
times faster with page cache



Resource Exhaustion Attack

• Goal is to find programs which minimize throughput (gas / second)

• Can be formulated as a search problem
• Search space: Set of valid programs

• Function to optimize: throughput

• Constraint: gas budget

• Search space is too large to be explored entirely
• We use a genetic algorithm to approximate a solution



Generated Programs

• We create programs valid by construction
• Enough elements on stack

• No stack overflows

• Only access “reasonable” memory locations

• Cross-over and mutations also only create valid programs

• Generated programs do not contains loop
• i.e. we do not include JUMP or JUMPI instructions



Initial Program Construction

• Good initialization values are important to converge in reasonable 
time

• To create initial program, we sample instructions as follow: given set 
of instructions I, we define the weight and probability of choosing an 
instruction with

𝑊 𝑖 ∈ 𝐼 = log 1 +
1

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑖

𝑃(𝑖 ∈ 𝐼) =
𝑊(𝑖)

σ𝑖′∈𝐼𝑊(𝑖′)



Genetic Algorithm Results 

• Initial program throughput: ~3M gas/s 
(compared to 20M on average)

• Decreases quickly to 500K

• Plateau at ~100K gas/s at generation 
200

200x slower than average contract



DoS potential

• Implications
• Nodes not being able to sync

• Decrease in network throughput

• Probable attackers
• Miners (selfish-mining)

• Parties hostile to Ethereum (other 
chains)

• Speculators

• Feasibility
• Costs only ~0.7 USD to keep 

commodity hardware node out-of-
sync for 1 block (~2M gas/block)

• Limitations
• Current attack works best on 

commodity hardware

• Hard to know what hardware full 
nodes are running



Evaluation on Different Clients

Client Throughput (gas/s) Time (s) IO load (MB/s)

Aleth 107,349 93.6 9.12

Parity 210,746 47.1 10.0

Geth 131,053 75.6 6.57

Parity (bare-metal) 542,702 18.2 17.2

Geth (fixed) 3,021,038 3.33 0.72

Evaluation of different clients when executing 10M (1 block) gas worth of malicious transactions



Improving Metering

Short term

• Increase cost of IO operations
• Already seen in EIP 150 or EIP 

2200

• Reduce number of required IO 
accesses
• Flattened contracts state

• Bloom filter to reduce search of 
inexistent contracts

Long term

• Stateless clients
• Client do not need to keep track of 

all the state

• Necessary data is sent with the 
transactions

• Sharding
• Not a direct solution but less state 

needed per node



Summary

• Re-execute several months of transactions and measure gas, CPU and 
memory consumption
• Find several inconsistencies

• Show the impact of caching on execution speed

• Present a new attack targeted at metering
• Show that the attack works on all major clients

• Disclosed attack to Ethereum Foundation and tested fixes
• Thanks to Matthias Egli and Hubert Ritzdorf from PwC Switzerland



Supporting Slides



Responsible Disclosure

• 2019/10/3: Sent report to Ethereum Foundation through bounty 
program (thanks to Matthias Egli and Hubert Ritzdorf from PwC 
Switzerland)

• 2019/10/4: Reply from Ethereum Foundation

• 2019/10 – 2019/11: Tests with ongoing fixes

• 2019/11/17: Ethereum Foundation confirmed reward of 5000 USD

• 2020/1/7: Official bounty reward announcement



Arithmetic Instructions

Instruction Gas 
cost

Count Mean 
time 
(ns)

Throughput 
(gas/μs)

ADD 3 453,069 82.20 36.50

MUL 5 62,818 96.96 51.57

DIV 5 107,972 476.23 10.50

EXP ~51 186,004 287.93 177.1

Gas pricing for arithmetic instructions is very inconsistent



Analysis Summary

• Gas cost: Many inconsistencies

• IO operations: very high execution time variance

• Cache: very important effect on speed

• Overall: cannot model IO operations very well


