Omegalog: High-Fidelity Attack Investigation via
Transparent Multi-layer Log Analysis

Wajih Ul Hassan, Mohammad A. Noureddine, Pubali Datta, Adam Bates

Network and Distributed System Security Symposium (NDSS) 2020
26 Feobruary 2020

L ILLINOIS

State of Data Breaches

2008 2018 @uanp According to a

survey by RSA
— VS = ' of cyber
analysts have
- .
35.7 Milli 1244 | 446.5 Milli Inadequate
. 1Hiion y . 1iion =g=
brezg::wseg records exposed breaches | records exposed Ievels Of capablllty

to detect/respond
to attack”

2X the number of data breaches & over 10X the amount of
records exposed in 2018 compared to 2008! [1]

[1] Infographic from: https://link.medium.com/50mijdiyg4
[2] Survey and image from: https://www.rsa.com/content/dam/en/infographic/rsa-poverty-index-2016-update.pdf

https://link.medium.com/5Omijdiyg4

Threat Investigation

e Audit logs
e Maintain a history of events that occur during system execution

e System-Level Logs (e.g., Linux Audit) record events at the system call granularity

1 N

PDF

System-level Log

Process 1234 created from firefox.exe

Process 1234 reads from IP y.y.y.y
Process 1234 writes file ~\Downloads\A.pdf

Process 1234 reads from IP z.z.z.z
Process 1234 writes file ~\Downloads\Mal.exe

Data Provenance

e To simplify investigation, we can parse

system logs into data provenance graphs - N

o Vertex: File, Socket, Process, etc. \QJ Firefox y
o Edge: Causal event (i.e., syscall) .
@loads\@
e Find root cause of the attack symptom \
s Backward Tracing
» Find the ramification of the attack [@ M’al.exe]

s forward Tracing A

Case Study: SQL Injection Attack

e A simple WordPress website hosted on a web server

Req

Input —
uests Httpd Instance
. N
|1} — ostgre
atabase

Httpd Instance

HAProxy

e In addition to system logs, the different components (loaa
balancer, server, database) also log application events.

Attacker pertormed SQL injection to steal credentials and usead

Wordpress file plugin to change website content.

Investigation using Application Logs

* Investigator knows that "accounts” table was accessed by attack

e Grep PostgreSQL query logs to find out which query read the
"accounts” table content.

* |t returned the following query tfrom the PostgreSQL logs:

PostgreSQL
SELECT * FROM users WHERE user 1d=123

UNION SELECT password FROM accounts;

 Query indicates SQL injection attack

Investigation using Application Logs

e However, admin is unable to proceed
further in the investigation using
application event logs alone.

e HAProxy and Apache logs contain
important evidence related to SQL
injection attack

e Cannot associate with PostgreSQL log

Do not capture workflow dependencies between
applications

e Grep will not work on these logs because SQL
query was not in URL

Investigation using Application Logs

e However, admin is unable to proceed
further in the investigation using
application event logs alone.

e HAProxy and Apache logs contain
important evidence related to SQL
injection attack

e Cannot associate with PostgreSQL log

Do not capture workflow dependencies between
applications

 Grep will not work on these logs because SQL
query was not in URL

haproxy[30291]: X.X.X.X:45292 [TIME REMOVED] app-

http-in~app-bd/httpd-2 10/0/30/69/109 200 2750
POST /wordpress/ wp-admin/admin-ajax.php 200

?7?7?
Apache Httpd

Yy.Y.Y.y POST /wordpress/wp-admin/admin-
ajax.php 200 - http://shopping.com/wordpress/
wp-admin/ admin.php?page=file-manager setting

???
PostgreSQL

SELECT * FROM users WHERE user 1d=123

UNION SELECT password FROM accounts;

Investigation using System Logs

* To proceed investigation, now admin uses a system-level
provenance graph

e |t allows admin to trace dependencies across applications.

e Malicious query read database file: /usr/local/db/datafile.db

e Admin issues backward tracing query from that file

e Return provenance graph

Investigation using System Logs

False Dependencies

- Dependency Explosion: One M “ ‘A‘}

output event depends on all the

preceding input events on the

same

MlUEE Two Challenges:
%?s; 1) Dependency Explosion
2) Semantic Gap

e Semc¢
sema

D%
present in application logs \\‘!}
/usr/local/db/datafile.db

10

Omegalog

A provenance tracker that transparently solves both the dependency
explosion and semantic gap problems

11

Omegalog

e Solves dependency explosion problem by identitying event-handling

loop through the application log sequences

e Each iteration of event-handling loop is considered one semantically
independent execution unit (BEEP NDSS'13)...

e But unlike BEEP, no instrumentation or training is required!

e Tackles semantic gap problem by grafting application event logs onto

the system-level provenance graphs

12

INFO+DEBUG: 39
Log-level: 64

Total Apps: 79

Do appl

INFO: 8
insi
event-ha None: 15

DEBUG: 17

e 15 applications with no logging:
e Light-weight apps
e GUI apps

Consist of 3 Phases:

Static
Binary

Omegalog “Phase
Workflow

Static Binary Analysis Phase

1. ldentity log message printing functions
* Separate normal file writes from log file writes
e.g., logMsg(..); ap_log_error(..);
* Used heuristics to find them
* Well-known logging libraries (log4c) tunctions

* Functions writing to /var/log/

15

Static Binary Analysis Phase

2. Find call sites to those functions and

concretize log message string (LMS) passed
as argument

* Use symbolic execution
Analysis
“Opened file “%s””

“Accepted connection with 1d %d”

16

Static Binary Analysis Phase

2. Find call sites to those functions and

concretize log message string (LMS) passed
inary
as argument

» Use symbolic execution Static
Analysis
“Opened file “%s””

“Accepted connection with 1d %d”

3. Build regex from concretized log message
strings for runtime matching

“Opened file «.*””

“Accepted connection with 1d [0-9]+”

17

Static Binary Analysis Phase

4. Pertorm control tflow analysis

. . App
Generate a set of all valid log message control flow

paths that can occur during execution

Control

Code Snippet flow paths
log(“Server started”); // logl 202VSIS
while(...) {
log(“Accepted Connection”); // logZ
... /*Handle request here*/ L MS
log(“Closed Connection”); // log3 log3 Paths DB
}
log(“Server stopped”); // log4

Log message control flow paths will guide Omegalog to identify event-

handling loop and partition execution of application into execution units

18

Runtime Phase

 We collect whole-system logs using Linux Audit
Module

e A custom Linux Kernel Module (LKM)

App Process

* Intercepts write system calls System [{|Enhanced
Log LMS

e Catch application log messages

e Add PID/TID to log message

e Allow us to combine log message with
corresponding system-level log entry.

19

Runtime Phase

 We collect whole-system logs using Linux Audit
Module

e A custom Linux Kernel Module (LKM)

App Process

* Intercepts write system calls

System Enhanced
Log LMS
Universal
Provenance Log

e Catch application log messages

e Add PID/TID to log message

e Allow us to combine log message with
corresponding system-level log entry.

e Unity system logs and runtime log messages into
universal provenance log

20

Investigation Phase

e Given a symptom of an attack, Omegalog uses

 Log message control flow paths database

e Universal provenance log

e | og parser partitions the system log into units

* By matching application log messages in universal

provenance log with log message string control flow paths

 (enerates execution partition graph

LMS
Paths DB Universal
Provenance Log
[

21

Investigation Phase

e Given a symptom of an attack, Omegalog uses

 Log message control flow paths database

e Universal provenance log

* Log parser partitions the system log into units

* By matching application log messages in universal
provenance log with log message string control flow paths

LMS
Paths DB
Universal Provenance Graphs

22

Universal
Provenance Log

 (enerates execution partition graph

e Then add application log messages vertices to
execution-partitioned provenance graph

Symptom

i

e Final output: universal provenance graph

Back to our case study

HAProx

http-in~app-bd/httpd-2 10/0/30/69/109 200 2750 ‘
POST /wordpress/ wp-admin/admin-ajax.php 200 FLAFWOXY
Apache Httpd ' c '
ajax.php 200 - http://shopping.com/wordpress/ Apache Httpd
wp-admin/ admin.php?page=file-manager setting

haproxy[30291]: xX.X.X.X:45292 [TIME REMOVED] app-
V.Yy.Y.y POST /wordpress/wp-admin/admin-
/usr/local/db/datafile.db PostgreSQL

PostgreSQL

SELECT * FROM users WHERE user 1d=123

UNION SELECT password FROM accounts;

24

Universal Provenance Graph

1. Identifies which web request (root-cause) led to data extfiltration

@W

HAProxy —_

haproxy[30291]: x.x.x.x:45292 [TIME REMOVED] app-http-
in~app-bd/httpd-2 10/0/30/69/109 200 2750 — — —
1/1/1/1/0 0/0 {} {} "POST /user.php HTTP/1.0"

y.y.y.y POST /wordpress/user.php 200 -
HTTP/1.1 200 1568 "-"

Statement: SELECT * FROM users WHERE

user id=123 UNION SELECT password FROM
postgresql - = accounts;

25

Universal Provenance Graph

1. Identifies which web request (root-cause) led to data extfiltration

e

APy | _

haproxy[30291]: x.x.x.x:45292 [TIME REMOVED] app-http-
in~app-bd/httpd-2 10/0/30/69/109 200 2750 — — —
1/1/1/1/00/0 {} {} "POST /user.php HTTP/1.0"

Account
credentials were

- =3 y.y.y.y POST /wordpress/user.php 200 -
HTTP/l.l 200 1568 "-"

stolen using SQL

Statement: SELECT * FROM users WHERE

user id=123 UNION SELECT password FROM o o ®
postgresql [~ — = sccounts injection attack

26

Universal Provenance Graph

1. Identifies which web request (root-cause) led to data extfiltration

® " Bash Web request from
IP: X.X.X.X started

I

the attack

haproxy[30291]: x.x.x.x:45292 [TIME REMOVED] app-http-
in~app-bd/httpd-2 10/0/30/69/109 200 2750 — — —
1/1/1/1/00/0 {} {} "POST /user.php HTTP/1.0"

m Account

y.y.y.y POST /wordpress/user.php 200 -
HTTP/1.1 200 1568 "-"

credentials were

stolen using SQL
o :22];1:123 UNION SELECT password FROM injeCtiOn attaCk

Statement: SELECT * FROM users WHERE

27

Universal Provenance Graph

1. Identifies which web request (root-cause) led to data extfiltration

2. Reason about how the website was defaced

o> Do

haproxy[30291]: x.x.x.x:45292 [TIME
REMOVED] app-http-in~app-bd/httpd-2

10/0/30/69/109 200 2750 POST /wordpress/
wp-admin /admin-ajax.php 200 ...

@
C Index.html =

28

Universal Provenance Graph

1. Identifies which web request (root-cause) led to data extfiltration

2. Reason about how the website was defaced

o> Do

A WordPress file
manager plugin

haproxy[30291]: x.x.x.x:45292 [TIME
REMOVED] app-http-in~app-bd/httpd-2

10/0/30/69/109 200 2750 POST /wordpress/
wp-admin /admin-ajax.php 200 ...

used to change

index.html.
CIndex.html =

29

Evaluation

Fvaluation Setup

Program Binary

Size (kB)
Squid 64,250
PostgreSQL 22,299
Redis 8,296
HAProxy 4,095
ntpd 3,003
OpenSSH 2,959
NGINX 2,044
Httpd 1,473
Proftpd 1,392
Lighttpd 1,212
CUPSD 1,210
yafc 1,007
Transmission 930
Postfix 900
memcached 673
wget 099
thttpd 105
skod 47

DEBU

Log

_evel inside event-

nandling IR~ L DEBUG
10

31

Fvaluation: Static Analysis

Time to Time to generated
Applications concretize log log message

message (sec) control path (sec) 1secto4 minsto

generate log
message string
control flow paths

12 secs to 1 hour
to concretize log
message string

Squid

PostgreSQL

Redis

One time effort to
concretize log message
200 3 string and generate
control flow paths

157 3

12 0

32

Fvaluation: Static Analysis

Completeness
Program

Callsites Cov. %
Squid 70 91
PostgreSQL 5,529 64
Redis 394 95
HAProxy o6 95
ntpd 518 95
OpenSSH 869 97
NGINX 925 100
Httpd 211 100
Proftpd 718 100
Lighttpd 398 97
CUPSD 531 100
yafc 60 95
Transmission 227 78
Postfix 98 98
memcached 69 93
wget 275 31
thttpd 5 80

skod 25

Coverage: Concretized log
message strings relative to
identified call sites of log
printing functions

>95% Coverage
except for four
applications

33

Fvaluation: Runtime Overhead

Write
intensive

applications

Runtime Overhead

8%
7%
6%
5%
4%
3%
2%
1%
0%

:

Average
runtime

overhead of
around 4%

34

LImitations

e Omegalog requires at least one log message inside event-
handling loop

e Good logging practice
e Works on C/C++ application binaries

 Does not work on programs that use asynchronous /O
programming model

35

Conclusion

e A new approach to
* Execution partition long-running processes

 Encode semantic information in system-level logs

 Program analysis to reconcile application
event logs with system-level logs

e Fvaluation

e |ow overhead

 High-fidelity attack investigation

36

Conclusion

* A new approach to
 Execution partition long-running processes

* Encode semantic information in system-level logs Tha n ks &

* Program analysis to reconcile

application event logs with system- Qu eStIOnS

level logs M whassan3@1llinols.edu

e Evaluation

e |ow overhead

e High-fidelity attack investigation

Backup Slides

Examples

/* src/main.c */
static void daemon loop(void) {

while (TRUE
() { /* /src/networking.c */

while(...) {

/* Wait for TCP connection */

cfd = anetTcpAccept(server.neterr, £fd, cip,
sizeof (cip), &cport);

listen conn=pr ipbind accept conn(&listenfds, &fd

) ;

serverLog(LL VERBOSE, "Accepted %s:%d",

fork server(fd,listen conn,no forking);
Icport);

}}
static void fork server(int fd, conn t *1, ...
— — ... /*Process request here*/

pr log pri(PR LOG INFO, "%$s session opened.', oo
— T - serverLog(LL VERBOSE, 'Client closed

pr session get protocol (PR SESS PROTO FL LOGOUT) connection) ;

) ;
}

Proftpd

39

Used software
categories from BEEP

(NDSS'13)

Picked famous
applications for
each category

18 of those applications
were used In previous
WOrk on provenance

TABLE II: Logging behavior of long-running applications.

Category Total | Apps with Log Verbosity of
Apps | IN+DE | INFO | DEBUG | None

Web server 9 7 1 0 1
Database server 9 7 1 1 0
SSH server S S 0 0 0
FTP server S 4 0 1 0

. | Mail server 4 3 1 0 0
g Proxy server 4 3 1 0 0
A | DNS server 3 2 0 1 0
< [Version control server | 2 0 1 1 0
.= | Message broker 3 2 0 1 0
© [Print server 2 1 0 1 0
FTP client 6 0 1 4 1
Email client 3 1 0 1 1
Bittorrent client 4 3 1 0 0
NTP client 3 0 1 2 0
Audio/Video player 8 1 0 3 4

CSD PDF reader 4 0 0 0 4
Image tool S 0 0 1 4
Total 79 39 3 17 15

40

