
OmegaLog: High-Fidelity Attack Investigation via
Transparent Multi-layer Log Analysis

Wajih Ul Hassan, Mohammad A. Noureddine, Pubali Datta, Adam Bates
Network and Distributed System Security Symposium (NDSS) 2020

.

1

26 February 2020

2

State of Data Breaches

[1] Infographic from: https://link.medium.com/5Omijdiyg4

According to a
survey by RSA
73% of cyber
analysts have
inadequate
levels of capability
to detect/respond
to attack

[2] Survey and image from: https://www.rsa.com/content/dam/en/infographic/rsa-poverty-index-2016-update.pdf

[1]

2

https://link.medium.com/5Omijdiyg4

Threat Investigation

3

Process 1234 created from firefox.exe
……
Process 1234 reads from IP y.y.y.y
Process 1234 writes file ~\Downloads\A.pdf
……
Process 1234 reads from IP z.z.z.z
Process 1234 writes file ~\Downloads\Mal.exe
……

• Audit logs
• Maintain a history of events that occur during system execution

• System-Level Logs (e.g., Linux Audit) record events at the system call granularity

System-level Log

• To simplify investigation, we can parse
system logs into data provenance graphs
○ Vertex: File, Socket, Process, etc.
○ Edge: Causal event (i.e., syscall)

• Find root cause of the attack symptom
■ Backward Tracing

• Find the ramification of the attack
■ Forward Tracing

Data Provenance

4

~\Downloads\Mal.exe

Firefox

Z.Z.Z.Z

X.X.X.X

Mal.exe

• A simple WordPress website hosted on a web server

• In addition to system logs, the different components (load
balancer, server, database) also log application events.

Case Study: SQL Injection Attack

5

HAProxy

PostgreSQL
Database

Httpd Instance

Httpd Instance

Input
Requests

• Attacker performed SQL injection to steal credentials and used
Wordpress file plugin to change website content.

• Investigator knows that “accounts” table was accessed by attack

• Grep PostgreSQL query logs to find out which query read the
“accounts” table content.

• It returned the following query from the PostgreSQL logs:

Investigation using Application Logs

6

…
SELECT * FROM users WHERE user_id=123
UNION SELECT password FROM accounts;
…

• Query indicates SQL injection attack

PostgreSQL

Investigation using Application Logs

7

• However, admin is unable to proceed
further in the investigation using
application event logs alone.

• HAProxy and Apache logs contain
important evidence related to SQL
injection attack
• Cannot associate with PostgreSQL log

• Do not capture workflow dependencies between
applications

• Grep will not work on these logs because SQL
query was not in URL

Investigation using Application Logs

8

• However, admin is unable to proceed
further in the investigation using
application event logs alone.

• HAProxy and Apache logs contain
important evidence related to SQL
injection attack
• Cannot associate with PostgreSQL log

• Do not capture workflow dependencies between
applications

• Grep will not work on these logs because SQL
query was not in URL

…
SELECT * FROM users WHERE user_id=123
UNION SELECT password FROM accounts;
…

PostgreSQL

…
y.y.y.y POST /wordpress/wp-admin/admin-
ajax.php 200 - http://shopping.com/wordpress/
wp-admin/ admin.php?page=file-manager_setting
…

Apache Httpd

…
haproxy[30291]: x.x.x.x:45292 [TIME REMOVED] app-
http-in~app-bd/httpd-2 10/0/30/69/109 200 2750
POST /wordpress/ wp-admin/admin-ajax.php 200
…

HAProxy

???

???

• To proceed investigation, now admin uses a system-level
provenance graph

• It allows admin to trace dependencies across applications.

• Malicious query read database file: /usr/local/db/datafile.db

• Admin issues backward tracing query from that file
• Return provenance graph

Investigation using System Logs

9

Investigation using System Logs

10

HAProxy

v v

/usr/local/db/datafile.db PostgreSQL

user.php

Apache Httpd index.html

v

v v

v v

• Dependency Explosion: One
output event depends on all the
preceding input events on the
same process

• There is only one root-
cause (web request) of sql
injection attack

• Semantic Gap: Lacks
semantic information
present in application logs

Two Challenges:
1) Dependency Explosion
2) Semantic Gap

False Dependencies

OmegaLog

11

A provenance tracker that transparently solves both the dependency
explosion and semantic gap problems

• Solves dependency explosion problem by identifying event-handling
loop through the application log sequences

• Each iteration of event-handling loop is considered one semantically
independent execution unit (BEEP NDSS’13)…

• But unlike BEEP, no instrumentation or training is required!

• Tackles semantic gap problem by grafting application event logs onto
the system-level provenance graphs

OmegaLog

12

Do applications log
inside the

event-handling loop?

13

• 15 applications with no logging:
• Light-weight apps
• GUI apps

OmegaLog
Workflow

14

Consist of 3 Phases:

Static
Binary

Analysis
Phase

Runtime
Phase

Investigation
Phase

1. Identify log message printing functions
• Separate normal file writes from log file writes

e.g., logMsg(…); ap_log_error(…);

• Used heuristics to find them

• Well-known logging libraries (log4c) functions

• Functions writing to /var/log/

Static Binary Analysis Phase

15

App
Binary

2. Find call sites to those functions and
concretize log message string (LMS) passed
as argument

• Use symbolic execution
 “Opened file “%s””

 “Accepted connection with id %d”

Static Binary Analysis Phase

16

Static
Analysis

App
Binary

3. Build regex from concretized log message
strings for runtime matching

 “Opened file “.*””

 “Accepted connection with id [0-9]+”

Static Binary Analysis Phase

17

Static
Analysis

App
Binary

2. Find call sites to those functions and
concretize log message string (LMS) passed
as argument

• Use symbolic execution
 “Opened file “%s””

 “Accepted connection with id %d”

4. Perform control flow analysis
• Generate a set of all valid log message control flow

paths that can occur during execution

Static Binary Analysis Phase

18

Static
Analysis

App
Binary

LMS
Paths DB

log(“Server started”); // log1
while(...) {
 log(“Accepted Connection”); // log2
 ... /*Handle request here*/
 log(“Closed Connection”); // log3
}
log(“Server stopped”); // log4

log4

log1

log2

log3

log4

log1
log(“Server started”); // log1
while(...) {
 log(“Accepted Connection”); // log2
 ... /*Handle request here*/
 log(“Closed Connection”); // log3
}
log(“Server stopped”); // log4

log4

log1

log2

log3

log4

log1

Log message control flow paths will guide OmegaLog to identify event-
handling loop and partition execution of application into execution units

Code Snippet
Control

flow paths

• We collect whole-system logs using Linux Audit
Module

• A custom Linux Kernel Module (LKM)

• Intercepts write system calls

• Catch application log messages

• Add PID/TID to log message

• Allow us to combine log message with
corresponding system-level log entry.

Runtime Phase

19

Static
Analysis

App
Binary

LMS
Paths DB

App Process

U
se

r-
sp

ac
e

Linux
Audit LKM

ke
rn

el

System
Log

Enhanced
LMS

Runtime Phase

20

Static
Analysis

App
Binary

LMS
Paths DB

App Process

U
se

r-
sp

ac
e

Linux
Audit LKM

ke
rn

el

Universal
Provenance Log

System
Log

Enhanced
LMS

• We collect whole-system logs using Linux Audit
Module

• A custom Linux Kernel Module (LKM)

• Intercepts write system calls

• Catch application log messages

• Add PID/TID to log message

• Allow us to combine log message with
corresponding system-level log entry.

• Unify system logs and runtime log messages into
universal provenance log

• Given a symptom of an attack, OmegaLog uses
• Log message control flow paths database

• Universal provenance log

• Log parser partitions the system log into units
• By matching application log messages in universal

provenance log with log message string control flow paths

• Generates execution partition graph

Investigation Phase

21

Static
Analysis

App
Binary

Symptom

App Process

U
se

r-
sp

ac
e

Linux
Audit LKM

ke
rn

el

System
Log

Enhanced
LMS

Log Parser

Universal
Provenance Log

LMS
Paths DB

• Given a symptom of an attack, OmegaLog uses
• Log message control flow paths database

• Universal provenance log

• Log parser partitions the system log into units
• By matching application log messages in universal

provenance log with log message string control flow paths

• Generates execution partition graph

• Then add application log messages vertices to
execution-partitioned provenance graph

• Final output: universal provenance graph

Investigation Phase

22

Static
Analysis

App
Binary

Symptom

App Process

U
se

r-
sp

ac
e

Linux
Audit LKM

ke
rn

el

System
Log

Enhanced
LMS

Log Parser

Universal Provenance Graphs

Universal
Provenance Log

LMS
Paths DB

Back to our case study

23

Application Logs

24

…
SELECT * FROM users WHERE user_id=123
UNION SELECT password FROM accounts;
…

PostgreSQL

…
y.y.y.y POST /wordpress/wp-admin/admin-
ajax.php 200 - http://shopping.com/wordpress/
wp-admin/ admin.php?page=file-manager_setting
…

Apache Httpd

…
haproxy[30291]: x.x.x.x:45292 [TIME REMOVED] app-
http-in~app-bd/httpd-2 10/0/30/69/109 200 2750
POST /wordpress/ wp-admin/admin-ajax.php 200
…

HAProxy

???

???

HAProxy

v v

/usr/local/db/datafile.db PostgreSQL

user.php

Apache Httpd index.html

v

v v

v v

Provenance graph

1. Identifies which web request (root-cause) led to data exfiltration

Universal Provenance Graph

25

httpd

HAProxy

postgresql

x.x.x.x

user.php

Bash

haproxy[30291]: x.x.x.x:45292 [TIME REMOVED] app-http-
in~app-bd/httpd-2 10/0/30/69/109 200 2750 – – —-
1/1/1/1/0 0/0 {} {} “POST /user.php HTTP/1.0"

 y.y.y.y POST /wordpress/user.php 200 -
HTTP/1.1 200 1568 "-"

Statement: SELECT * FROM users WHERE
user_id=123 UNION SELECT password FROM
accounts;

1. Identifies which web request (root-cause) led to data exfiltration

26

httpd

HAProxy

postgresql

x.x.x.x

user.php

Bash

haproxy[30291]: x.x.x.x:45292 [TIME REMOVED] app-http-
in~app-bd/httpd-2 10/0/30/69/109 200 2750 – – —-
1/1/1/1/0 0/0 {} {} “POST /user.php HTTP/1.0"

 y.y.y.y POST /wordpress/user.php 200 -
HTTP/1.1 200 1568 "-"

Statement: SELECT * FROM users WHERE
user_id=123 UNION SELECT password FROM
accounts;

Universal Provenance Graph

Account
credentials were
stolen using SQL
injection attack

1. Identifies which web request (root-cause) led to data exfiltration

27

httpd

HAProxy

postgresql

x.x.x.x

user.php

Bash

haproxy[30291]: x.x.x.x:45292 [TIME REMOVED] app-http-
in~app-bd/httpd-2 10/0/30/69/109 200 2750 – – —-
1/1/1/1/0 0/0 {} {} “POST /user.php HTTP/1.0"

 y.y.y.y POST /wordpress/user.php 200 -
HTTP/1.1 200 1568 "-"

Statement: SELECT * FROM users WHERE
user_id=123 UNION SELECT password FROM
accounts;

Web request from
IP: X.X.X.X started
the attack

Account
credentials were
stolen using SQL
injection attack

Universal Provenance Graph

1. Identifies which web request (root-cause) led to data exfiltration

2. Reason about how the website was defaced

28

httpd

HAProxy

x.x.x.x

Index.html

Bash

 y.y.y.y POST /wordpress/wp-admin/admin-ajax.php
200 - http://shopping.com/wordpress/wp-admin/
admin.php?page=file-manager_settings

haproxy[30291]: x.x.x.x:45292 [TIME
REMOVED] app-http-in~app-bd/httpd-2
10/0/30/69/109 200 2750 POST /wordpress/
wp-admin/admin-ajax.php 200 …

Universal Provenance Graph

1. Identifies which web request (root-cause) led to data exfiltration

2. Reason about how the website was defaced

29

httpd

HAProxy

x.x.x.x

Index.html

Bash

 y.y.y.y POST /wordpress/wp-admin/admin-ajax.php
200 - http://shopping.com/wordpress/wp-admin/
admin.php?page=file-manager_settings

haproxy[30291]: x.x.x.x:45292 [TIME
REMOVED] app-http-in~app-bd/httpd-2
10/0/30/69/109 200 2750 POST /wordpress/
wp-admin/admin-ajax.php 200 …

A WordPress file
manager plugin
used to change
index.html.

Universal Provenance Graph

Evaluation

30

Evaluation Setup

31

Log Level inside event-
handling loop

None
2

INFO+DEBUG
10

DEBUG
1

INFO
5

Evaluation: Static Analysis

32

1 sec to 4 mins to
generate log
message string
control flow paths

One time effort to
concretize log message
string and generate
control flow paths

12 secs to 1 hour
to concretize log
message string

Applications
Time to

concretize log
message (sec)

Time to generated
log message

control path (sec)

Squid 831 46

PostgreSQL 3880 258

Redis 495 7

… … …

Wget 200 3

thttpd 157 8

Skod 12 0

Evaluation: Static Analysis

33

>95% Coverage
except for four
applications

Coverage: Concretized log
message strings relative to
identified call sites of log
printing functions

Evaluation: Runtime Overhead

34

0%
1%
2%
3%
4%
5%
6%
7%
8%

Httpd
NGINX

Squid
Redis

Transmission

OpenSSH

Memcached

Proftpd
PostgreSQL

HAProxy

Ntpd
Lighttpd

CUPSD
Post�x

wget
yafc

Ru
nt
im
e
O
ve
rh
ea
d

Average
runtime
overhead of
around 4%

Write
intensive
applications

• OmegaLog requires at least one log message inside event-
handling loop

• Good logging practice

• Works on C/C++ application binaries

• Does not work on programs that use asynchronous I/O
programming model

Limitations

35

• A new approach to
• Execution partition long-running processes

• Encode semantic information in system-level logs

• Program analysis to reconcile application
event logs with system-level logs

• Evaluation
• Low overhead

• High-fidelity attack investigation

Conclusion

36

• A new approach to
• Execution partition long-running processes

• Encode semantic information in system-level logs

• Program analysis to reconcile
application event logs with system-
level logs

• Evaluation
• Low overhead

• High-fidelity attack investigation

Conclusion

37

whassan3@illinois.edu

Thanks &
 Questions

Backup Slides

38

Examples

39

/* src/main.c */
static void daemon_loop(void) {
 ...
 while (TRUE){
 ...

listen_conn=pr_ipbind_accept_conn(&listenfds,&fd
);
 ...
 fork_server(fd,listen_conn,no_forking);
 ...
 }}
static void fork_server(int fd, conn_t *l, ...){
 ...
 pr_log_pri(PR_LOG_INFO,"%s session opened.",

pr_session_get_protocol(PR_SESS_PROTO_FL_LOGOUT)
);
 ...
}

Proftpd

/* /src/networking.c */
while(...) {
 /* Wait for TCP connection */
 cfd = anetTcpAccept(server.neterr, fd, cip,
sizeof(cip), &cport);

 serverLog(LL_VERBOSE,"Accepted %s:%d", cip,
cport);

 ... /*Process request here*/

 serverLog(LL_VERBOSE, "Client closed
connection");
}

Redis

40

Picked famous
applications for
each category

18 of those applications
were used in previous
work on provenance

Used software
categories from BEEP

(NDSS’13)

