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Packing Employed By Malware Authors
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Packing Evolution

• Most packers are not this simple anymore...
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Packing Evolution

• Most packers are not this simple anymore...
• Different methods of obfuscation or encryption are being used
• Packing happens at multiple layers
• Unpacking routines are not necessarily executed in a straight line
• Only a single fragment of the original code at any given time
• Usually anti-debugging or anti-reverse-engineering techniques are employed

10



Why Does Packing Matter?

• It hampers the analysis of the code
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Why Does Packing Matter?

• It hampers the analysis of the code
• Makes malware classification more challenging!
• Especially, when using only static analysis
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Malware Classification Using Static Analysis
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• What happens if the program is packed, i.e., the features are 
obfuscated?

Malware Classification Using Static Analysis
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Do Benign Software Programs Use Packing?
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Packing Is Common in Benign Programs
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Packing Is Common in Benign Programs

• Rahbarinia et al. [84], who studied 3 million web-based software 
downloads over 7 months in 2014, found that both malicious and 
benign files use known packers (58% and 54%, respectively)
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B. Rahbarinia, M. Balduzzi, and R. Perdisci, “Exploring the Long Tail of (Malicious) Software Downloads,” 

in Proc. of the International Conference on Dependable Systems and Networks (DSN), 2017. 
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“Packing == Malicious”



“Packing == Malicious” on VirusTotal?
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613 Windows 10 binaries located 
in C:\Windows\System32 Pack with Themida Submit to VT



Dataset Pollution
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Does static analysis on packed binaries provide 
rich enough features to a malware classifier?
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Datasets

1. Wild Dataset (50,724 executables):
• 4,396 unpacked benign
• 12,647 packed benign
• 33,681 packed malicious

26



Datasets

1. Wild Dataset (50,724 executables):
• 4,396 unpacked benign
• 12,647 packed benign
• 33,681 packed malicious

2. Lab Dataset:
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Wild 
Dataset

Pack with 9 packers 
(including Themida, 
PECompact, UPX, …)

91,987 Benign Samples

198,734 Malicious Samples



Nine Feature Categories

28

Category # Features

PE headers 28
PE sections 570
DLL imports 4,305
API imports 19,168
Rich Header 66
Byte n-grams 13,000
Opcode n-grams 2,500
Strings 16,900
File generic 2



Our Research Questions

1. Do packers preserve static analysis features that are useful for 
malware classification?
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Experiment “Different Packed Ratios (lab)”

1. We exclude packed benign samples from the training set
2. Then, we keep adding more packed benign samples to the training 

set
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Experiment “Different Packed Ratios (lab)”

1. We exclude packed benign samples from the training set.
2. Then, we keep adding more packed benign samples to the training 

set

• Surprisingly, the classifier is doing ok!
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But, How??

• We focused on one packer at a time to identify useful features for 
each packer!

1. Some packers (e.g., Themida) often keep the Rich Header.
2. Packers often keep .CAB file headers in the resource sections of the 

executables. 
3. UPX keeps one API for each DLL.
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Our Research Questions

1. Do packers preserve static analysis features that are useful for 
malware classification? 

2. Do packers preserve static analysis features that are useful for 
malware classification?

3. Can a classifier that is carefully trained and not biased towards 
specific packing routines perform well in real-world scenarios?
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Packers preserve some information when packing 
programs that may be “useful” for malware 
classification, however, such information does not 
necessarily represent the real nature of samples



Our Research Questions

1. Do packers preserve static analysis features that are useful for 
malware classification? 

2. Can such a classifier perform well in real-world scenarios?
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Our Research Questions

1. Do packers preserve static analysis features that are useful for 
malware classification?

2. Can such a classifier perform well in real-world scenarios?

38

Generalization to unseen packers Adversarial examples



Generalization To Unseen Packers

• Runtime packers are evolving, and malware authors often tend to use 
their own custom packers
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Generalization To Unseen Packers

1. Experiment “withheld packer” 
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Generalization To Unseen Packers

1. Experiment “withheld packer” 
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Withheld Packer FPR (%) FNR (%)
PELock 7.30 3.74
PECompact 47.49 2.14
Obsidium 17.42 3.32
Petite 5.16 4.47
tElock 43.65 2.02
Themida 6.21 3.29
MPRESS 5.43 4.53
kkrunchy 83.06 2.50
UPX 11.21 4.34



Generalization To Unseen Packers

2. Experiment “lab against wild” 
• We train the classifier on Lab Dataset
• And evaluate it on packed executables in Wild Dataset
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Generalization To Unseen Packers

2. Experiment “lab against wild” 
• We train the classifier on Lab Dataset
• And evaluate it on packed executables in Wild Dataset

• We observed the false negative rate of 41.84%, and false positive rate 
of 7.27%
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Poor Generalization To 
Unseen Packers
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Adversarial Examples

• Machine-learning-based malware detectors shown to be vulnerable 
to adversarial samples
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Adversarial Examples

• Machine-learning-based malware detectors shown to be vulnerable 
to adversarial samples
• Packing produces features not directly deriving from the actual 

(unpacked) program
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Adversarial Examples

• Machine-learning-based malware detectors shown to be vulnerable 
to adversarial samples
• Packing produces features not directly deriving from the actual 

(unpacked) program
• Generating such adversarial samples would be easier for an adversary
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Adversarial Examples

50

Packed 
Malicious

Packed 
Benign

Training Set

Random 
Forest

Train RF Model

Training:

Unpacked 
Benign



Adversarial Examples

51

Packed 
Malicious

Packed 
Benign

Training Set

Random 
Forest

Train RF Model

Training:

Test Set Prediction

MaliciousEvasion:

Unpacked 
Benign

Packed 
Malicious

Benign 
Strings



Adversarial Examples
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Machine Learning Static Evasion Competition
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Machine Learning Static Evasion Competition
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150 Malicious SamplesBenign 
Strings 50% Evasion!!!

• Recently, a group of researchers found a very similar way to subvert 
an AI-based anti-malware engine
• By simply taking strings from an online gaming program and 

appending them to known malware, like WannaCry



Vulnerable To Trivial 
Adversarial Examples
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Conclusion
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Conclusion
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Reproducibility

• The source code and our datasets of 392,168 executables are 
available at https://github.com/ucsb-seclab/packware
• All experiments can be simply executed in the provided Docker image
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https://github.com/ucsb-seclab/packware


Any Questions?
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Experiment “Good-Bad Packers”
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Experiment “Good-Bad Packers”
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Accuracy varied from 0.01% to 12.57%  across all splits 


