
DeepBinDiff: Learning Program-Wide Code
Representations for Binary Diffing

Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin

1

Motivation

Binary Code Differential Analysis

● quantitatively measure the similarity
between two given binaries

● produce the fine-grained basic block
level matching

Motivation

vulnerability analysis [ICSE’17]
plagiarism detection[FSE’14] exploit generation

[NDSS’11]

Existing Techniques

Static Approaches:
Bindiff, Binslayer [PPREW’13], Tracelet

[PLDI’14], CoP [ASE’14], Pewny et.al. [SP’15],

discovRE [NDSS’16], Esh [PLDI’16]

Dynamic Approaches:
iBinHunt [ISC’12]

Blanket Execution [USENIX SEC’14]

BinSim [USENIX SEC’17]

Slow runtime performance
Inaccurate matching
Poor code coverage

Existing Techniques

Learning-based Approaches:
● Genius [CCS’16]

○ traditional machine learning
○ function matching

● Gemini [CCS’17]
○ deep learning based approach
○ manually crafted features
○ function matching

● InnerEye [NDSS’19]
○ basic block comparison
○ instruction semantics by NLP

● Asm2vec [SP’19]
○ token and function semantic info by NLP
○ function matching

Existing Techniques

Limitations of Learning-based Approaches:
● No efficient binary diffing at basic block level

○ InnerEye takes 0.6ms to compare one pair of
basic blocks

○ millions of basic block comparisons for binary
diffing

● No program-wide dependency information
○ what if the two binaries contain multiple similar

basic blocks
● Heavily rely on labeled training data

○ extreme diversity of binaries
○ overfitting problem

Problem Definition
Given two binaries p1 = (B1, E1) and p2 = (B2, E2), find the
optimal basic block matching that maximizes:

Problem Definition
● Our goal: Solve the binary diffing problem

a. sim(mi): leveraging both the token (opcode and
operand) semantics and program-wide contextual info
to calculate similarity

b. M(p1,p2): efficient basic block matching

● Assumptions
○ only stripped binaries
○ compiler optimization techniques applied
○ same architecture

Our solution: DeepBinDiff program-wide contextual info learning

semantic info learning efficient matching Mcalculate sim(mi)

Complete unsupervised
learning approach

Learning Token Semantics
● Token semantic info

○ each instruction: opcode + potentially multiple operands
○ represented as token embeddings, learned by leveraging NLP technique
○ aggregated to generate feature vector for each basic block

embedding for opcode TF-IDF model embeddings for operands

Learning Token Semantics

embedding for opcode
cmp: [0.03, 0.16, 1.92, …]

embeddings for normalized operands
im: [0.62, -0.125, 0.76, …]

reg1: [1.5, 1.6, -0.92 …]
0.33

TF-IDF model

||weighted embedding
[0.01, 0.0528, 0.63, …]

*

[0.01, 0.0528, 0.63, …2.12, 1.475, -0.16]

[2.12, 1.475, -0.16, …]

embedding for instruction

Learning Semantics Info

aggregation

Learning Program-wide Contextual Info
● Program-wide contextual info

○ useful for differentiating similar basic blocks in different contexts
○ learned from inter-procedural CFG
○ leverage Text-associated DeepWalk algorithm (TADW)

Basic Block A

Basic Block A’

Basic Block B

Basic Block B’

if str == ‘hello’ do if str == ‘hello’ do

Learning Program-wide Contextual Info
● Now that we have two ICFGs

○ merge two ICFGs into one
○ learning algorithm runs only once
○ embeddings can be comparable
○ boost the similarity
○ graph structure stays unchanged

Learning Program-wide Contextual Info

● contain both semantic info and contextual
info

● used to calculate basic block similarity
● solve sim(mi)

merged graph

TADW
algorithm

feature vector

basic block embeddings

0.053, 0.16, 0.032 …
0.12, 0.44, -0.009 …

0.411, -0.2206, 0.4 …
0.55, 0.656, 0.33 …

0.055, 0.004, -0.07 …
0.07, -0.314, 0.305 …

0.335, -0.93, 0.1189 …
-1.8e-06, 0.092, 0.06 ...

a

b c
d

1

2

3

Code Diffing: k-hop greedy matching

a

b c

d 3

2

1

Initially, matching_set = {(a, 1)}

● find k-hop neighbors of a matching pair

○ 1hn(a) = {b,c}

○ 1hn(1) = {2,3}

● use basic block embeddings to calculate similarities

among 1hn(a) and 1hn(1)

● find most similar pair (must be above a threshold),

put it into matching_set
● run the process iteratively

● use linear assignment algorithm for unmatched ones

● Goal: Given two input binaries p1 and p2, find optimal

matching M(p1,p2).

ref: ‘hello’ ref: ‘hello’

Evaluation

● Dataset
○ C binaries:

■ Coreutils, Diffutils, Findutils
■ Multiple versions (5 for Coreutils, 4 for Diffutils, and 3 for Findutils)
■ 4 different compiler optimization levels (O0, O1, O2 and O3)

○ C++ binaries:
■ 2 popular open-source projects (10 binaries)
■ contain plenty of virtual functions
■ 3 versions for each project, compile with default optimization levels

○ Case study
■ 2 real-world vulnerabilities in OpenSSL

● The most comprehensive evaluation for cross-version and
cross-optimization-level binary diffing.

Evaluation
● Baseline techniques

○ De-facto commercial tool
■ BinDiff

○ State-of-the-art techniques
■ Asm2Vec + k-hop
■ InnerEye + k-hop

● only used to evaluate a subset of binaries
○ Our tool without contextual info

■ DeepBinDiff-ctx

Evaluation - Cross-version diffing

● Outperform the de facto commercial tool by
23% and 7% in recall and precision

● Outperform state-of-the-art technique by
11% and 22% in recall and precision

● Contextual info is proven to be very useful

Evaluation - Cross-version diffing

Evaluation - Cross-optimization level diffing

● Outperform the de facto commercial tool by
28% and 5% in recall and precision

● Outperform state-of-the-art technique by
18% and 19% in recall and precision

Evaluation - Cross-optimization level diffing

Evaluation - Case study

handle function inlining

Evaluation - Case study

handle basic block
insertion/deletion

Discussion - Compiler Optimizations
● Instruction scheduling

○ choose not to use sequential info
● Instruction replacement

○ NLP technique to distill semantic info
● block reordering

○ treat ICFG as undirected graph when matching
● function inlining

○ generate random walks across function boundaries
○ avoid function level matching
○ k-hop matching is done upon ICFG rather than CFG

● register allocation
○ register name normalization

Summary

● A novel unsupervised program-wide code
representation learning technique

● k-hop greedy matching algorithm for efficient
matching

● Comprehensive evaluation against state-of-the-art
techniques and the de facto commercial tool

Summary

Open source project:
https://github.com/deepbindiff/DeepBinDiff

THANK YOU!

https://github.com/deepbindiff/DeepBinDiff

