

DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing

Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin

Motivation

- quantitatively measure the similarity between two given binaries
- produce the fine-grained basic block level matching

Motivation

vulnerability analysis [ICSE'17]

exploit generation [NDSS'11]

plagiarism detection[FSE'14]

Existing Techniques

Existing Techniques

Learning-based Approaches:

- Genius [CCS'16]
 - traditional machine learning
 - o function matching
- Gemini [CCS'17]
 - o deep learning based approach
 - o manually crafted features
 - o function matching
- InnerEye [NDSS'19]
 - o basic block comparison
 - o instruction semantics by NLP
- Asm2vec [SP'19]
 - o token and function semantic info by NLP
 - o function matching

Existing Techniques

Limitations of Learning-based Approaches:

- No efficient binary diffing at basic block level
 - InnerEye takes 0.6ms to compare one pair of basic blocks
 - millions of basic block comparisons for binary diffing
- No program-wide dependency information
 - what if the two binaries contain multiple similar basic blocks
- Heavily rely on labeled training data
 - extreme diversity of binaries
 - o overfitting problem

Problem Definition

Given two binaries p1 = (B1, E1) and p2 = (B2, E2), find the optimal basic block matching that maximizes:

$$SIM(p1, p2) = \max_{m_1, m_2, \dots, m_k \in M(p_1, p_2)} \sum_{i=1}^k sim(m_i)$$
, where:

- $B_1 = \{b_1, b_2, ..., b_n\}$ and $B_2 = \{b'_1, b'_2, ..., b'_m\}$ are two sets containing all the basic blocks in p_1 and p_2 ;
- Each element e in $E \subseteq B \times B$ corresponds to *control* flow dependency between two basic blocks;
- Each element m_i in $M(p_1, p_2)$ represents a matching pair between b_i and b'_j ;
- $sim(m_i)$ defines the quantitative similarity score between two matching basic blocks.

Problem Definition

- Our goal: Solve the binary diffing problem
 - *a. sim(mi)*: leveraging both the token (opcode and operand) semantics and program-wide contextual info to calculate similarity
 - b. M(p1,p2): efficient basic block matching

• Assumptions

- o only stripped binaries
- o compiler optimization techniques applied
- o same architecture

Our solution: DeepBinDiff

program-wide contextual info learning

Learning Token Semantics

- Token semantic info
 - each instruction: opcode + potentially multiple operands
 - represented as token embeddings, learned by leveraging NLP technique
 - aggregated to generate feature vector for each basic block

Learning Token Semantics

embedding for instruction [0.01, 0.0528, 0.63, ...2.12, 1.475, -0.16]

Learning Semantics Info

Learning Program-wide Contextual Info

- Program-wide contextual info
 - o useful for differentiating similar basic blocks in different contexts
 - o learned from inter-procedural CFG
 - leverage Text-associated DeepWalk algorithm (TADW)

Learning Program-wide Contextual Info

- Now that we have two ICFGs
 - o merge two ICFGs into one
 - o learning algorithm runs only once
 - o embeddings can be comparable
 - boost the similarity
 - o graph structure stays unchanged

Learning Program-wide Contextual Info

• solve *sim(mi)*

Code Diffing: *k*-hop greedy matching

Goal: Given two input binaries p1 and p2, find optimal matching *M(p1,p2)*.

Initially, matching_set = {(a, 1)}

- find *k*-hop neighbors of a matching pair
 - 0 1hn(a) = {b,c}
 - 0 1hn(1) = {2,3}
- use basic block embeddings to calculate similarities among 1hn(a) and 1hn(1)
- find most similar pair (must be above a threshold), put it into *matching_set*
- run the process iteratively
- use linear assignment algorithm for unmatched ones

Evaluation

- Dataset
 - C binaries:
 - Coreutils, Diffutils, Findutils
 - Multiple versions (5 for Coreutils, 4 for Diffutils, and 3 for Findutils)
 - 4 different compiler optimization levels (O0, O1, O2 and O3)
 - C++ binaries:
 - 2 popular open-source projects (10 binaries)
 - contain plenty of virtual functions
 - 3 versions for each project, compile with default optimization levels
 - Case study
 - 2 real-world vulnerabilities in OpenSSL
- The most comprehensive evaluation for cross-version and cross-optimization-level binary diffing.

Evaluation

- Baseline techniques
 - De-facto commercial tool
 - BinDiff
 - State-of-the-art techniques
 - Asm2Vec + *k*-hop
 - InnerEye + *k*-hop
 - only used to evaluate a subset of binaries
 - Our tool without contextual info
 - DeepBinDiff-ctx

Evaluation - Cross-version diffing

v5

Coreuti

Diffut

Finduti

 Outperform the de facto commercial tool by 23% and 7% in recall and precision DIF

0.748

0.885

- Outperform state-of-the-art technique by 11% and 22% in recall and precision
- Contextual info is proven to be very useful

Evaluation - Cross-version diffing

(a) v5.93 compared with v8.30 (b) v6.4 compared with v8.30

(c) v7.6 compared with v8.30 (d) v8.1 compared with v8.30

Evaluation - Cross-optimization level diffing

Evaluation - Cross-optimization level diffing

Evaluation - Case study

Discussion - Compiler Optimizations

- Instruction scheduling
 - choose not to use sequential info
- Instruction replacement
 - NLP technique to distill semantic info
- block reordering
 - o treat ICFG as undirected graph when matching
- function inlining
 - generate random walks across function boundaries
 - o avoid function level matching
 - o k-hop matching is done upon ICFG rather than CFG
- register allocation
 - register name normalization

Summary

- A novel unsupervised program-wide code representation learning technique
- *k*-hop greedy matching algorithm for efficient matching
- Comprehensive evaluation against state-of-the-art techniques and the de facto commercial tool

Open source project: <u>https://github.com/deepbindiff/DeepBinDiff</u>

THANK YOU!