

NDSS Symposium 2020

MACAO: A Maliciously-Secure and Client-Efficient Active ORAM Framework

Thang Hoang[†], Jorge Guajardo[‡], Attila A. Yavuz[†]

[†]CSE, University of South Florida

hoangm@mail.usf.edu, attilaayavuz@usf.edu

[‡]Robert Bosch LLC – RTC Jorge.GuajardoMerchan@us.bosch.com

Oblivious RAM

Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern when accessing data stored on untrusted memory.

ORAM applications: Cloud storage-as-a-service (personal data storage, health-record database, password management), searchable encryption, secure multiparty computation

Oblivious RAM – Timeline

Tree-ORAM Paradigm [SCSL11]

- Binary tree data structure
- Block data located somewhere in the tree path
- Empty nodes are filled with dummy data

A

Position map

Block	Α	В	С	D	Ε	F
pID	4	3	6	5	7	8

General Access Protocol

- 1. Get pID of A: 1
- 2. <u>Retrieve</u> path of A
- 3. Update A (if needed)
- 4. Randomly select new path for A: 4

PIR-based ORAM: Malicious Security Concern

- Due to <u>unit vectors</u> created in retrieval phase
 - Contain only one element 1, while others are 0
 - Malicious adversary can tamper with the blocks corresponding to elements "0"
 - Computation result is still correct → cannot be detected by client
 - Learn real block positions
 - Access pattern leakage

MACAO Framework

Based on (authenticated) additive secret sharing [DPSZ11]

 $x_i, \alpha_i, m_i \in F_p$ s.t.

Random global MAC key

0

Authenticated share of x

• Given constants v_1, v_2 and shared values [x], [y]

• $x \in F_p$ is <u>authenticated shared</u> if each party P_i has <u>random values</u>

$$x = \sum_{i} x_{i}$$

$$\alpha = \sum_{i} \alpha_{i}$$

$$\alpha x = \sum_{i} m_{i}$$
is denoted as $\langle x \rangle = (\llbracket x \rrbracket, \llbracket \alpha x \rrbracket)$

Any linear function of shared values can be computed locally

 $v_1 \cdot [x] + v_2 \cdot [y] = [v_1x + v_2y] = [z]$

MACAO Framework

Harness <u>Circuit-ORAM eviction</u> [WCS15] and <u>permutation matrix</u> [HOY+17] principles

- O(1) client bandwidth overhead
- Bucket size Z = O(1)
- Each eviction takes a block from the stash and writes it back to the tree

MACAO Framework

Two main schemes

- Π_{rss}
 - Replicated secret sharing (RSS)
 - 3-server setting with <u>honest majority</u>
- Π_{spdz}
 - SPDZ secret sharing
 - General *l*-server setting with <u>dishonest majority</u>

MACAO Framework - Π_{rss} scheme

<u>Retrieval</u>

- Select query $\mathbf{q} = (0, ..., 1, ..., 0)^{H+1}$
- **1. XOR-PIR**: a pair of PIR queries $(\mathbf{q}_i^{(1)}, \mathbf{q}_i^{(2)})$ per authenticated share $\langle \mathbf{T} \rangle_i$

•
$$\mathbf{q}_i^{(1)} \leftarrow_{\$} \{0,1\}^{H+1}, \, \mathbf{q}_i^{(2)} \leftarrow \mathbf{q} \oplus \mathbf{q}_i^{(1)}$$

$$(B)_{1} \leftarrow \mathbf{R}_{1}^{(1)} \oplus \mathbf{R}_{0}^{(2)}$$
$$(B)_{1} \leftarrow \mathbf{R}_{1}^{(1)} \oplus \mathbf{R}_{1}^{(2)}$$
$$(B)_{0} \leftarrow \mathbf{R}_{0}^{(1)} \oplus \mathbf{R}_{0}^{(2)}$$
$$(B)_{2} \leftarrow \mathbf{R}_{2}^{(1)} \oplus \mathbf{R}_{0}^{(2)}$$

 $(\mathbf{X},\mathbf{Y}) \leftarrow \langle \mathbf{B} \rangle_0 + \langle \mathbf{B} \rangle_1 + \langle \mathbf{B} \rangle_2$

Check if $\alpha \mathbf{X} = ? \mathbf{Y}$

MACAO Framework - Π_{rss} scheme

<u>Retrieval</u>

- Select query $\mathbf{q} = (0, ..., 1, ..., 0)^{H+1}$
- **2. RSS-PIR**: two RSS queries $(\mathbf{q}_i, \mathbf{q}_{i+1})$ per server S_i
 - $\mathbf{q}_0 + \mathbf{q}_1 + \mathbf{q}_2 = \mathbf{q}$, where $\mathbf{q}_i \leftarrow_{\$} \mathbb{F}_p^{H+1}$

 $(\mathbf{X},\mathbf{Y}) \leftarrow \langle \mathbf{R} \rangle_0 + \langle \mathbf{R} \rangle_1 + \langle \mathbf{R} \rangle_2$

Check if $\alpha \mathbf{X} = ? \mathbf{Y}$

 $\langle \mathbf{R} \rangle_1 \leftarrow \mathbf{q}_1 \cdot \langle \mathbf{T} \rangle_1 + \mathbf{q}_2 \cdot \langle \mathbf{T} \rangle_1 + \mathbf{q}_1 \cdot \langle \mathbf{T} \rangle_2$

MACAO Framework - Π_{rss} scheme

Eviction: based on RSS-based matrix multiplication protocol

RSS-share of evicting block B and (H + 1) RSS-shares of permutation matrices M_h

 $\mathbf{M}_{h} = \llbracket \mathbf{M}_{h} \rrbracket_{0}, \llbracket \mathbf{M}_{h} \rrbracket_{0}, \llbracket \mathbf{M}_{h} \rrbracket_{0}, \llbracket \mathbf{M}_{h} \rrbracket_{2}$ $\mathbf{B} = \llbracket \mathbf{B} \rrbracket_{0}, \llbracket \mathbf{B} \rrbracket_{0}, \llbracket \mathbf{B} \rrbracket_{2}$

Jointly execute MACCheck($\langle \mathbf{T} \rangle_h$) to verify eviction integrity

<u>RSSMatMult([[U], [[V]])</u>

• S_i sends $\left(\mathbf{R}_{i-1}^{(i)}, \mathbf{R}_{i-1}^{(i)}\right)$ to $S_{i-1}, \left(\mathbf{R}_{i-1}^{(i)}, \mathbf{R}_{i-1}^{(i)}\right)$ to S_{i+1} , where $\mathbf{X}_i = \sum_{j=0}^2 \mathbf{R}_j^{(i)}$

$$\underbrace{\text{Output:}}_{i} \llbracket \mathbf{U} \times \mathbf{V} \rrbracket_{i} \leftarrow \mathbf{R}_{i}^{(0)} + \mathbf{R}_{i}^{(1)} + \mathbf{R}_{i}^{(2)} \\ \llbracket \mathbf{U} \times \mathbf{V} \rrbracket_{i+1} \leftarrow \mathbf{R}_{i+1}^{(0)} + \mathbf{R}_{i+1}^{(1)} + \mathbf{R}_{i+1}^{(2)}$$

- $y \leftarrow \sum_{h} \sum_{i} \sum_{j} r^{t} [\![\alpha \mathbf{T}[i, j]]\!]_{h}$
- Pass if $\alpha \cdot x = ?y$

(Random linear combination)

 T_h : holding block and current blocks at level h

MACAO Framework - Π_{spdz} scheme

Both retrieval and eviction are based on SPDZ-based authenticated matrix multiplication protocol

- <u>Retrieval</u>: Select query $\langle \mathbf{q} \rangle = (\langle 0 \rangle, ..., \langle 1 \rangle, ..., \langle 0 \rangle)^{H+1}$
- Eviction: SPDZ-share of evicting block **B** and (H + 1)SPDZ-shares of permutation matrices \mathbf{M}_{h}

<u>SPDZMatMult($\langle \mathbf{U} \rangle, \langle \mathbf{V} \rangle$)</u>

Initialization: Each S_i has $\langle \mathbf{A} \rangle_i, \langle \mathbf{B} \rangle_i, \langle \mathbf{C} \rangle_i$, authenticated shares of Beaver triples ($\mathbf{C} = \mathbf{A} \times \mathbf{B}$, $\alpha \mathbf{C} = \alpha (\mathbf{A} \times \mathbf{B})$)

 $[\mathbf{E}]_i \leftarrow [\mathbf{U}]_i - [\mathbf{A}]_i, [\mathbf{P}]_i \leftarrow [\mathbf{V}]_i - [\mathbf{B}]_i$

Open **E** and **P**

MACCheck(**E**) and MACCheck(**P**)

<u>Output:</u> $[\mathbf{U} \times \mathbf{V}]_i \leftarrow [\mathbf{C}]_i + \mathbf{E} \times [\mathbf{B}]_i + [\mathbf{A}]_i \times \mathbf{P} + \mathbf{E} \times \mathbf{P}$ $[\alpha \mathbf{U} \times \mathbf{V}]_i \leftarrow [\alpha \mathbf{C}]_i + \mathbf{E} \times [\mathbf{B}]_i + [\mathbf{A}]_i \times \mathbf{P} + [\alpha]_i \mathbf{E} \times \mathbf{P}$

MACCheck(**T**, $[\alpha T]$)

$$x \leftarrow \sum_i \sum_j r^t \mathbf{T}[i, j]$$

$$y \leftarrow \sum_i \sum_j r^t [\![\alpha \mathbf{T}[i,j]]\!]$$

• Pass if
$$\alpha \cdot x = y$$

(Random linear combination)

MACAO Framework - Extension

Bandwidth Reduction

Pseudo-random function (PRF) to generate additive shares locally [CDI05, DSZ14, RWTS+17]

Client Storage Reduction

- Stash sized $O(\log N)$ was stored at the client (due to Circuit-ORAM eviction)
- Two ways to reduce client stash storage
 - 1. Store stash at the server-side, and use Private-Information Writing (PIW) to privately put the block into the stash
 - 2. Triplet Eviction [SvDFR+16]
 - Stash not needed in place of O(log N) bucket size)

MACAO Framework – Performance (1/3)

MACAO schemes were 7× faster than single-server ORAMs and up to 1.5× slower than S³ORAM

End-to-end delay of MACAO schemes and their counterparts.

Configuration: Library: NTL, tomcrypt, zeroMQ, pthread; Client: Macbook Pro 2018; Servers: Amazon EC2 c5.4xlarge, EBS-based storage; Client-server bandwidth: 29/5 Mbps; Inter-server bandwidth: 250/250 Mbps; DB Size: 1GB – 1TB; Block size: 4KB, 256KB

MACAO Framework – Performance (2/3)

- Server computation contributed the most portion to the overall delay
- Bandwidth reduction trick significantly reduced the communication costs

Cost breakdown of MACAO schemes

Configuration: Library: NTL, tomcrypt, zeroMQ, pthread; Client: Macbook Pro 2018; Servers: Amazon EC2 c5.4xlarge, EBS-based storage; Client-server bandwidth: 29/5 Mbps; Inter-server bandwidth: 250/250 Mbps; DB Size: 1GB – 1TB; Block size: 4KB, 256KB

MACAO Framework – Performance (3/3)

Bandwidth reduction trick also helped to reduce the delay when increasing number of servers for higher privacy levels

End-to-end delay with varied privacy levels

Configuration: Library: NTL, tomcrypt, zeroMQ, pthread; Client: Macbook Pro 2018; Servers: Amazon EC2 c5.4xlarge, EBS-based storage; Client-server bandwidth: 29/5 Mbps; Inter-server bandwidth: 250/250 Mbps; DB Size: 1GB – 1TB; Block size: 4KB, 256KB

Conclusion & Future Work

- Proposed MACAO, a multi-server active ORAM framework providing integrity, access pattern obliviousness against active adversaries, and secure computation capability.
 - Based on Authenticated additive secret sharing and tree ORAM paradigm

Future Work

- Oblivious Distributed File System (ODFS) implementation
- Multi-user Oblivious Storage based on MACAO

The proposed ODFS Model

Thank you for your attention!

MACAO code: https://github.com/thanghoang/MACAO

References

- [CDI05] Cramer, Ronald, Ivan Damgård, and Yuval Ishai. "Share conversion, pseudorandom secret-sharing and applications to secure computation." In Theory of Cryptography Conference, pp. 342-362. Springer, Berlin, Heidelberg, 2005.
- [SCSL11] Shi, Elaine, T-H. Hubert Chan, Emil Stefanov, and Mingfei Li. "Oblivious RAM with O ((logN) 3) worst-case cost." In International Conference on The Theory and Application of Cryptology and Information Security, pp. 197-214. Springer, Berlin, Heidelberg, 2011.
- [DPSZ11] Damgård, Ivan, Valerio Pastro, Nigel Smart, and Sarah Zakarias. "Multiparty computation from somewhat homomorphic encryption." In Annual Cryptology Conference, pp. 643-662. Springer, Berlin, Heidelberg, 2012.
- [DSZ14] Demmler, Daniel, Thomas Schneider, and Michael Zohner. "Ad-hoc secure two-party computation on mobile devices using hardware tokens." In 23rd {USENIX} Security Symposium ({USENIX} Security 14), pp. 893-908. 2014.
- [WCS15] Wang, Xiao, Hubert Chan, and Elaine Shi. "Circuit oram: On tightness of the goldreich-ostrovsky lower bound." In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 850-861. 2015
- [SvDFR+16] Devadas, Srinivas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi, and Daniel Wichs. "Onion ORAM: A constant bandwidth blowup oblivious RAM." In Theory of Cryptography Conference, pp. 145-174. Springer, Berlin, Heidelberg, 2016.
- [HOY+17] Hoang, Thang, Ceyhun D. Ozkaptan, Attila A. Yavuz, Jorge Guajardo, and Tam Nguyen. "S3oram: A computation-efficient and constant client bandwidth blowup oram with shamir secret sharing." In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 491-505. 2017.
- [RWTS+17] Riazi, M. Sadegh, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori, Thomas Schneider, and Farinaz Koushanfar. "Chameleon: A hybrid secure computation framework for machine learning applications." In Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 707-721. 2018.

Our Motivation

- Single-server active ORAM (e.g., Onion-ORAM) offers O(1) bandwidth blowup and malicious security
 - High computation overhead due to Homomorphic Encryption (HE)
 - Cut-and-choose technique \rightarrow incurs higher communication and computation overhead for malicious security
- Multi-server active ORAM (i.e., S³ORAM) offers O(1) bandwidth with efficient computation
 - However, it only offers semi-honest security

An efficient multi-server ORAM with active security?

S³ORAM [HOY+17]

- Tree-ORAM paradigm
- Exploit the efficiency of multi-party computation in distributed setting
 - Shamir Secret Sharing (SSS) Scheme
 - **Retrieval:** SSS-Private Information Retrieval **Eviction:** Permutation Matrix

S³ORAM System Model:

$\ell \geq 2t + 1$ servers # colluding servers <= t All servers are <u>semi-honest</u>

MACAO Framework – Summary

Asymptotic comparison of state-of-the-art ORAM schemes.

Scheme	Bandwidth Overhead [†]		Block	Client	# comuona§	Socurity	Comp. over
	Client-server	Server-server	Size*	Block Storage [‡]	# servers [®]	Security	Enc. Data
Ring-ORAM [53]	$\mathcal{O}(\log N)$	-	$\Omega(1)$	$\mathcal{O}(\log N)$	1	Semi-Honest	×
CKN+18 [16]	$\mathcal{O}(\log N)$	-	$\Omega(\log^2 N)$	$\mathcal{O}(1)$	3	Semi-Honest	×
GKW18 [32]	$\mathcal{O}(\log N)$	-	$\Omega(1)$	$\mathcal{O}(\log N)$	2	Semi-Honest	×
S ³ ORAM [33]	$\mathcal{O}(1)$	$\mathcal{O}(\log N)$	$\Omega(\log^2 N)$	$\mathcal{O}(1)$	2t + 1	Semi-Honest	\checkmark
Path-ORAM [64]	$\mathcal{O}(\log N)$	-	$\Omega(1)$	$\mathcal{O}(\log N)$	1	Malicious	×
Circuit-ORAM [66]	$\mathcal{O}(\log N)$	-	$\Omega(1)$	$\mathcal{O}(\log N)$	1	Malicious	×
SS13 [61]	$\mathcal{O}(1)$	$\mathcal{O}(\log N)$	$\Omega(\log^2 N)$	$\mathcal{O}(\sqrt{N})$	2	Malicious	×
LO13 [42]	$\mathcal{O}(\log N)$	-	$\Omega(1)$	$\mathcal{O}(1)$	2	Malicious	×
Onion-ORAM [22]	$\mathcal{O}(1)$	-	$\Omega(\log^6 N)$	$\mathcal{O}(1)$	1	Malicious	\checkmark
$\begin{array}{c} MACAO (\Pi_{rss}) \\ MACAO (\Pi_{spdz}) \end{array}$	$\mathcal{O}(1)$	$\mathcal{O}(\log N)$	$\Omega(\log N)$	$\mathcal{O}(\log N)$	$\begin{array}{c} 3 \\ t+1 \end{array}$	Malicious	\checkmark

MACAO Security

Definition 1 (Simulation-based Multi-server ORAM Security with Verifiability). Considering the ideal and real worlds as follows.

- Ideal world. Let \mathcal{F}_{oram} be an ideal functionality, which maintains the latest version of the database on behalf of the client, and answers the client's requests as follows.
 - Setup: Environment Z provides DB to the client, who sends DB to \mathcal{F}_{oram} . \mathcal{F}_{oram} notifies simulator \mathcal{S}_{oram} the setup is complete and the DB size. S_{oram} returns ok or abort to $\mathcal{F}_{\text{oram}}$. $\mathcal{F}_{\text{oram}}$ returns ok or \perp to client accordingly.
 - Access: Environment Z specifies op \in {read(bid, \perp), write(bid, data)} as client's input. Client sends op to \mathcal{F}_{oram} . \mathcal{F}_{oram} notifies S_{oram} (without revealing op). If S_{oram} returns ok to $\mathcal{F}_{\text{oram}}$, $\mathcal{F}_{\text{oram}}$ sends data' \leftarrow DB[bid] to client, and updates DB[bid] \leftarrow data if op = write. Client returns data' to Z. If S_{oram} returns abort to $\mathcal{F}_{\text{oram}}$, $\mathcal{F}_{\text{oram}}$ returns \perp to client.
- **Real world.** Z gives the client DB. Client executes Setup protocol with servers $(S_0, \dots, S_{\ell-1})$ on DB. For each access, Z specifies an input op \in {read(bid, \perp), write(bid, data)} to client. Client executes Access protocol with servers ($S_0, \dots, S_{\ell-1}$). Z gets the view of the adversary \mathcal{A} after each access. Client outputs to \mathcal{Z} the accessed block or abort.

A protocol $\Pi_{\mathcal{F}}$ securely realizes \mathcal{F}_{oram} in the presence of a malicious adversary corrupting t servers iff for any PPT real-world adversary corrupting t servers, there exists a simulator S_{oram} , such that for all non-uniform, polynomial-time Z, there exists a negligible function negl such that

$$|\Pr[\operatorname{REAL}_{\Pi_{\mathcal{F}},\mathcal{A},\mathcal{Z}(\lambda)} = 1] - \Pr[\operatorname{IDEAL}_{\mathcal{F}_{\operatorname{oram}},\mathcal{S}_{\operatorname{oram}},\mathcal{Z}(\lambda)} =$$

Theorem 1 (MACAO security). MACAO framework is statistically (information-theoretically) secure by Definition

 $1] \leq \operatorname{negl}(\lambda)$