
†CSE, University of South Florida
hoangm@mail.usf.edu, attilaayavuz@usf.edu

‡Robert Bosch LLC – RTC
Jorge.GuajardoMerchan@us.bosch.com

MACAO: A Maliciously-Secure and Client-Efficient
Active ORAM Framework

Thang Hoang†, Jorge Guajardo‡, Attila A. Yavuz†

NDSS Symposium 2020

mailto:hoangm@mail.usf.edu
mailto:attilaayavuz@usf.edu
mailto:Jorge.GuajardoMerchan@us.bosch.com

Physical read/write

§ Oblivious Random Access Machine (ORAM) allows a client to hide the access
pattern when accessing data stored on untrusted memory.

ORAM applications: Cloud storage-as-a-service (personal data storage, health-record database, password
management), searchable encryption, secure multiparty computation

ORAM
Logical read

Logical write

Oblivious RAM

2

§ ORAM was first introduced by Goldreich for software protection
§ Recent attempts focused on reducing ORAM communication overhead

1996 2013 2015

§Partition ORAM (NDSS)
! log% comm.
! % client storage

§Tree-ORAM (AsiaCrypt)
! 1 client storage
! log' % comm.

1987 2011 2014 2016

2017

§Square-root
ORAM (STOC)
!(%) comm.

§Hierarchical ORAM
(JACM)
!(log* %) comm.

§ORAM lower bound
(JACM)

§Path-ORAM (CCS)
! log% comm.
! + client storage

§Multi-cloud ObliviStore (CCS)
! % client storage
! 1 comm.

§Path-PIR (NDSS)
! log% comm.

§Apon et al. (PKC)
FHE
! 1 comm.

§Circuit-ORAM (CCS)
! log% comm.

§C-ORAM (CCS)
Insecure

§Bucket-ORAM
FHE

§S3ORAM (CCS)
! 1 comm.
! 1 client storage
semi-honest security

§Onion-ORAM (TCC)
! 1 comm.
AHE

2018

§Passive ORAM lower bound
(Crypto)

§ 2-server ORAM (Asiacrypt)
! % computation

2019

§Ring-Onion ORAM
(CCS)
! 1 comm.
! log % client storage
semi-honest security

Oblivious RAM – Timeline

3

Tree-ORAM Paradigm [SCSL11]

4

§ Binary tree data structure
§ Block data located somewhere in the tree path
§ Empty nodes are filled with dummy data

A C E

B D F

1 2 3 4 5 6 7 8pID

Client

A

Position map
Block A B C D E F
pID 3 6 5 7 814

Server

Stash

General Access Protocol

1. Get pID of A: 1
2. Retrieve path of A

3. Update A (if needed)
4. Randomly select new path for A: 4
5. Evict

§ Due to unit vectors created in retrieval phase
§ Contain only one element 1, while others are 0
§ Malicious adversary can tamper with the blocks

corresponding to elements “0”
§ Computation result is still correct ➔ cannot be detected

by client
§ Learn real block positions
§ Access pattern leakage

PIR-based ORAM: Malicious Security Concern

5

!

0

0

0

1

×

×

×

+

+

+

§ Based on (authenticated) additive secret sharing [DPSZ11]

MACAO Framework

6

!" ∈ $% !& ∈ $%
s.t. ! = !" + !&

§ ! ∈)% is authenticated shared if each party *+ has random values
!+, -+,.+ ∈)% s.t.

! =/
+
!+

- =/
+
-+

-! =/
+
.+

§ Authenticated share of ! is denoted as ! = ! , -!

Random global MAC key

Any linear function of shared values can be computed locally

§ Given constants 0", 0& and shared values ! , 1
0" ⋅ ! + 0& ⋅ 1 = 0"! + 0&1 = 3

!

§ !"[$, & + 1] = 1 : Pick the block at index $
§ !"[1, $] = 1 : Drop the holding block to index $
§ !" 1, & + 1 = 1 : Move the holding block to next level ℎ + 1
§ !"[$ + 1, $] = 1 : Keep the block at index $ remain

Create (, + 1) permutation matrices !" sized Z + 1 ×(Z + 1) s.t. & = 2

Circuit-ORAM Eviction Principle:
§ Only scan once from root to leaf
§ For each level, pick or drop (at most) 1 block
§ At any time, can only hold (at most) 1 block

MACAO Framework
Harness Circuit-ORAM eviction [WCS15] and permutation matrix [HOY+17] principles
§ 2(1) client bandwidth overhead
§ Bucket size & = 2 1
§ Each eviction takes a block from the stash and writes it back to the tree

7

B

Stash S

C

A

D |4| = 2(log8)

Two main schemes

§ !"##
§ Replicated secret sharing (RSS)

§ 3-server setting with honest majority

§ !#$%&
§ SPDZ secret sharing

§ General ℓ-server setting with dishonest majority

MACAO Framework

8

Retrieval
§ Select query ! = 0,… , 1, … , 0 '()

1. XOR-PIR: a pair of PIR queries !*) , !*+ per authenticated
share , *

§ !*
()) ←$ 0,1 '(), !*

(+) ← !⊕ !*
())

MACAO Framework - Π344 scheme

9

S0

S1

S2

, 5 ,)

,) , +

, + , 5

!)(+)

!)())

6)(+) ← !)(+) ⊕ ,)

6)()) ← !)()) ⊕ ,)7) ← 6)()) ⊕ 6)+

7 5 ← 65()) ⊕ 65+

7 + ← 6+()) ⊕ 6++

6)(+)

6)())

!5(+)

!5())

65()) ← !5()) ⊕ , 5

65(+) ← !5(+) ⊕ , 5

65())

65(+)

6++ ← !+(+) ⊕ , +

6+) ← !+()) ⊕ , +

(8, 9) ← 7 5 + 7) + 7 +

Check if ;8 =?9

Retrieval
§ Select query ! = 0,… , 1, … , 0 '()

2. RSS-PIR: two RSS queries !*, +*() per server ,*
§ !- + !) + !/ = q, where !* ←$ 34'()

MACAO Framework - Π677 scheme

10

,-

,)

,/

8 - 8)

8) 8 /

8 / 8 -

Check if 9: =?<

!-, !), !/

= - ← !- ⋅ 8 - + !) ⋅ 8 - + !- ⋅ 8)

=) ← !) ⋅ 8) + !/ ⋅ 8) + !) ⋅ 8 /

= / ← !/ ⋅ 8 / + !- ⋅ 8 / + !/ ⋅ 8 -

!-, !)!), !/!-, !?

= -

=)

= /

(:, <) ← = - + =) + = /

Eviction: based on RSS-based matrix multiplication protocol

MACAO Framework - Π"## scheme

11

RSSMatMult(, , .)

§ 01 ← , 1× . 1 + , 156× . 1 + , 1× . 156

§ 71 sends 8196
1 , 8196

1 to 7196, 8196
1 , 8196

1 to
7156, where 01 = ∑<=>

? 8<
(1)

Output: ,×. 1 ← 81
(>) + 81

(6) + 81
(?)

,×. 156 ← 8156
(>) + 8156

(6) + 8156
(?)

(Random linear combination)

MACCheck(F)

§ G ← ∑H∑1 ∑< I
J F[L, M] H

§ O ← ∑H∑1 ∑< I
J PF[L, M] H

§ Pass if P ⋅ G =? O

FH
S ← RSSMatMult TH , FH

PFH
S ← RSSMatMult TH , PFH

§ RSS-share of evicting block U and (V + 1) RSS-shares of
permutation matrices TH

TH = TH > + TH 6 + TH ?

U = U > + U 6 + U ?

TH >, TH 6TH >, TH ?TH 6, TH ?

U >, U 6U 6, U ?U >, U ?

FH: holding block and current blocks at level ℎ

Jointly execute MACCheck(F H) to verify eviction integrity

7> 76 7?

Both retrieval and eviction are based on SPDZ-based authenticated matrix multiplication protocol

MACAO Framework - Π"#$% scheme

12

SPDZMatMult(0 , 2)

Initialization: Each 45 has 6 5, 7 5, 8 5, authenticated
shares of Beaver triples (8 = 6×7, ;8 = ;(6×7))

§ < 5 ← 0 5 − 6 5,	 @ 5 ← 2 5 − 7 5

§ Open	< and	@

§ MACCheck < and	MACCheck(@)

Output: 0×2 5 ← 8 5 + <× 7 5 + 6 5×@ + <×@
;0×2 5 ← ;8 5 + <× 7 5 + 6 5×@ + ; 5<×@

MACCheck(M, ;M)

§ N ← ∑5 ∑P QRM[T, U]

§ W ← ∑5 ∑P QR ;M[T, U]

§ Pass if ; ⋅ N = W

Y Z,
7 Z,

[\ Z Y
ℓ , 7

ℓ , [
\ ℓ

4Z 4^_`

SPDZMatMult Y , M / SPDZMatMult [\ , M\

…

Jointly execute MACCheck to
verify retrieval and eviction

integrity

(Random linear combination)

§ Retrieval: Select query Y = 0 ,… , 1 , … , 0 de`

§ Eviction: SPDZ-share of evicting block 7 and (f + 1)
SPDZ-shares of permutation matrices [\

§ Bandwidth Reduction
§ Pseudo-random function (PRF) to generate additive shares locally [CDI05, DSZ14, RWTS+17]

MACAO Framework - Extension

13

S0 S1 S2

! = !# + !% + !&

PRF(+%) PRF(+&)

+% +&!#, .#

. = .# + .% + .&

+̂%#+̂#% +̂%& +̂&%
+̂#& +̂&#

Retrieval path

PIW to put a block

Triplet Eviction

Bucket size =
0(log4)

§ Client Storage Reduction
§ Stash sized 0(log4) was stored at the client (due to Circuit-ORAM eviction)
§ Two ways to reduce client stash storage

1. Store stash at the server-side, and use Private-Information Writing (PIW)
to privately put the block into the stash

2. Triplet Eviction [SvDFR+16]
§ Stash not needed in place of 0(log4) bucket size)

MACAO Framework – Performance (1/3)

14

§ MACAO schemes were 7× faster than single-server ORAMs and up to 1.5× slower than S3ORAM

20 22 24 26 28 210
0.2

0.4

0.6

0.8

1

1.2

|DB| (GB)

D
el

ay
(s

ec
)

⇧rss ⇧prf

rss
⇧spdz

⇧prf

spdz
Path-ORAM Ring-ORAM

Circuit-ORAM S3ORAM

(a) Block size |b|= 4 KB

20 22 24 26 28 210
0

5

10

15

20

25

30

35

40

|DB| (GB)

D
el

ay
(s

ec
)

⇧rss ⇧prf

rss
⇧spdz

⇧prf

spdz
Path-ORAM Ring-ORAM

Circuit-ORAM S3ORAM

(b) Block size |b|= 256 KB

Fig. 13: End-to-end delay of MACAO schemes and their counterparts.

parts with 4 KB and 255 KB block sizes and database sizes
from 1 GB to 1 TB. In the home network setting, all MACAO

schemes outperformed Path-ORAM and Circuit-ORAM in all
testing cases, especially when the block size was large (i.e.,
256 KB). Specifically, Path-ORAM and Circuit-ORAM took
369 ms to 650 ms and 625 ms to 1.2 s to access a 4 KB
block, respectively, whereas MACAO schemes took 198 ms to
336 ms. All MACAO schemes (except ⇧rss) were also faster
than Ring-ORAM for 4 KB block access. For 256 KB block
access, the performance gap between MACAO and single-
server ORAM schemes significantly increased since MACAO

featured the constant client-bandwidth blowup. In particular,
Path-ORAM, Circuit-ORAM and Ring-ORAM took 16 s to
32 s, 17 s to 34 s and 12 s to 24 s, respectively, for each
256 KB-block access, whereas MACAO schemes only took
3.3 s to 5.5 s. This resulted in MACAO being up to 7⇥ faster
than single-server ORAM schemes.

On the other hand, the performance of MACAO schemes
was comparable to S3ORAM, where S3ORAM took 312 ms
to 451 ms per 4 KB-block access, and 1.78 s to 3.11 s per
256 KB-block access, respectively. ⇧spdz scheme was faster
than S3ORAM for 4 KB-block access since it operated on two
servers (vs. 3 in S3ORAM) with small amount of data, and
the retrieval phase of MACAO incurred less number of blocks
to be computed than S3ORAM (O(logN) vs. O(log2 N)).
We notice that ⇧spdz operates on the preprocessing model,
where their online access operation performance depends on
the availability of authenticated matrix multiplication shares
computed in the offline phase. For 256 KB-block access,
S3ORAM was approximately 1.5 times faster than MACAO

schemes. This is mainly because MACAO schemes perform the
computation on the information-theoretic MAC components,
whose size is equal to the block size. Notice that S3ORAM
does not have the MAC and it does not offer integrity and
security against the malicious adversary.

One might also observe from Figure 13 that the bandwidth
reduction trick in §IV-E1 significantly lowered the end-to-
end delays of MACAO schemes (denoted as ⇧prf

rss and ⇧prf

spdz

schemes). This trick allowed us to reduce the performance gap
between the MACAO schemes using RSS and SPDZ when
the amount of data to be transmitted was large as in the
256 KB-block access. The price to pay for such efficiency
is the reduction from information-theoretic to computational

security. To aid more understanding, we provide the detailed
cost of MACAO schemes in the following section.

4) Cost Breakdown: We decomposed the delay of MACAO

schemes to investigate cost factors that impact the perfor-
mance. As shown in Figure 14, there were four main sources
of delay including client processing, server processing, client-
server communication and server-server communication.

Client-side processing. MACAO schemes incurred very low
computation at the client-side thereby, making them the ideal
choice for resource-limited clients such as mobile devices. The
client main task was to generate shares of the retrieval query
and permutation matrices for eviction by invoking pseudo/true-
random number generator. The client recovered the accessed
block and verified its integrity by performing some modular
additions and multiplications. All these operations are very
lightweight, all of which cost less than 4 ms and 40 ms for
4 KB and 256 KB block size on 1 TB database, respectively.

Disk I/O access. We disabled default caching mechanisms
[52] to minimize the impact of random access sequence on the
I/O latency. The disk access contributed a small amount to the
delay of MACAO schemes due to the following reasons. The
MACAO structure was stored on a network-based storage unit
called EBS with 2.1 Gbps throughput. Meanwhile, the amount
of data to be loaded per retrieval was small, which was only
4|b|(H+1) KB, where |b| 2 {4, 256} and H 2 {11, . . . , 27}
for up to 1 TB of outsourced data. In MACAO schemes, the
disk I/O access only impacted the retrieval, but not eviction.
This is because MACAO schemes follow the deterministic
eviction, where the data along the eviction path can be pre-
loaded into the memory before the push-down operation.
Hence, the data can be read directly from the cache if needed,
given that they were processed in the previous operations but
have not been written to the disk yet.

Server computation. This contributed a large portion to the
total delay, mostly due to the matrix multiplication in the
eviction phase. The server computation in ⇧rss was higher than
in ⇧spdz since it incurred more number of additions than ⇧spdz

for each homomorphic multiplication.

Client-server communication. MACAO schemes feature a
constant client-bandwidth blowup similar to S3ORAM. There-
fore, only the query size and the eviction matrix size increased

11

End-to-end delay of MACAO schemes and their counterparts.

Configuration: Library: NTL, tomcrypt, zeroMQ, pthread; Client: Macbook Pro 2018; Servers: Amazon EC2 c5.4xlarge, EBS-based storage; Client-server bandwidth: 29/5 Mbps;
Inter-server bandwidth: 250/250 Mbps; DB Size: 1GB – 1TB; Block size: 4KB, 256KB

MACAO Framework – Performance (2/3)

15

§ Server computation contributed the most portion to the overall delay
§ Bandwidth reduction trick significantly reduced the communication costs

Configuration: Library: NTL, tomcrypt, zeroMQ, pthread; Client: Macbook Pro 2018; Servers: Amazon EC2 c5.4xlarge, EBS-based storage; Client-server bandwidth: 29/5 Mbps;
Inter-server bandwidth: 250/250 Mbps; DB Size: 1GB – 1TB; Block size: 4KB, 256KB

0 100 200 300 400 500

rss

rss

rss

rss

rss

rss

spdz

spdz

spdz

spdz

spdz

spdz

Delay (ms)

|D
B
|(

G
B

)

Client Computation Server Disk I/O Server Computation

20

22

24

26

28

210

Client-server Communication Saved by Reduced Bandwidth Trick

(a) |b|= 4 KB

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

rss

rss

rss

rss

rss

rss

spdz

spdz

spdz

spdz

spdz

spdz

Delay (ms)

|D
B
|(

G
B

)

Client-server Communication Inter-server Communication

20

22

24

26

28

210

Inter-server Communication Saved by Reduced Bandwidth Trick

(b) |b|= 256 KB
Fig. 14: Cost breakdown of MACAO schemes.

when the database size increased while the number of data
blocks to be transmitted remained the same. Therefore, al-
though it was one of the most significant factors contributing
to the total delay, the client-server communication cost of
MACAO schemes was likely to remain the same when in-
creasing the database size as shown in Figure 14, where most
of the time was spent to download/upload a constant number
authenticated shares of the data blocks. ⇧spdz incurred less
client-server communication delay than ⇧rss because it only
needs two servers, instead of three. Figure 14 also shows that
the bandwidth reduction trick significantly reduced the client
communication delay (the green bar with red filled pattern).
This trick allows the client to send the authenticated share
to only one server, thereby making the client-communication
overhead of ⇧rss and ⇧spdz schemes almost the same.

Server-server communication. It is the second smallest
portion of the total delay. We can also see that the bandwidth
reduction trick also helped to reduce the server-server com-
munication in ⇧rss scheme (the yellow bar with red pattern in
Figure 14). The ⇧rss scheme had higher inter-server communi-
cation delay than ⇧spdz since three servers communicated with
each other, compared with only two in ⇧spdz.

Storage overhead. MACAO schemes harness the eviction
strategy in [66] so that they incur a constant server storage
blowup. In ⇧rss, every server stores two authenticated shares
of the ORAM tree so that storage overhead per server is 8|DB|
(i.e., 4 times blowup from [66]). On the other hand, every
server in ⇧spdz stores one authenticated shared ORAM tree,
and therefore, the server storage overhead is 4|DB| (2 times
blowup from [66]). Regarding the client storage, ⇧rss schemes
add an extra of O(N log logN) bits to the storage overhead of
[66], which is analytically |N | log2 N + log2(log2 N) + 80|b|
in total. Empirically, with 1 TB DB and 256 KB block size,
the client storage overhead of ⇧rss, ⇧spdz is 33.23 MB. With
1 TB DB and 4 KB block size, it is 1.33 GB.

5) MACAO Performance with Varying Privacy Levels: We
conducted an experiment to evaluate the performance of ⇧spdz

and ⇧prf

spdz
schemes under higher privacy levels by increasing

the number of servers. Due to RSS, we did not evaluate ⇧rss

and ⇧prf
rss since they incur significant server storage for high

privacy levels. Figure 15 outlines the delay of ⇧spdz and ⇧prf

spdz

scheme under 1 TB database with 4 KB and 256 KB block
sizes. When increasing the number of servers, ⇧prf

spdz
incurred

1 2 3 4 5

0

2

4

6

8

10

12

Privacy level (t)

D
el

ay
(s

ec
)

⇧spdz (4 KB) ⇧prf

spdz
(4 KB)

⇧spdz (256 KB) ⇧prf

spdz
(256 KB)

Fig. 15: End-to-end delay with varied privacy levels.

much less delay than ⇧spdz, especially in the 256 KB block
size setting, since the client only sent data to one server while
the other servers generated authenticated shares on their own.

VI. RELATED WORKS

Goldreich was the first to propose the ORAM concept for
software protection [30]. Since then, several ORAM schemes
have been proposed (e.g., [31], [51]); however, none of these
can achieve the logarithmic bandwidth overhead that was
proven as the ORAM lower bound under O(1) blocks of client
storage [31]. In 2011, Shi et al. proposed a breakthrough in
ORAM constructions by using a tree structure [59]. This tree
paradigm led to efficient ORAM scheme proposals (e.g., [64],
[66], [53], [28], [67], [14]) that can achieve the Goldreich-
Ostrovsky logarithmic communication bound in [31]. The most
simple and efficient ORAM based on tree-ORAM paradigm
is Path-ORAM [64], where the client only needs to perform
read and write operations over a data path, whereas the server
only needs to provide storage functionality (e.g., data sending
and receiving only). Tree-based ORAMs have been adapted to
enable access pattern obliviousness in many applications such
as secure processors [43], oblivious data structures [68], [37],
[54], multi-party computation [67] and oblivious storage [17],
[56], [41], [70], [49], [4]. There are several ORAM schemes
that are specifically designed for oblivious file systems (e.g.,
[6], [44], [45], [14], [10]). We note that all these schemes are
different from our framework, where they focused on some
specific properties in file system applications such as range
queries [14], multi-client [44], [10] and/or parallel access [15].

12

Cost breakdown of MACAO schemes

MACAO Framework – Performance (3/3)

16

§ Bandwidth reduction trick also helped to reduce the delay when increasing number of servers for
higher privacy levels

0 100 200 300 400 500

rss

rss

rss

rss

rss

rss

spdz

spdz

spdz

spdz

spdz

spdz

Delay (ms)

|D
B
|(

G
B

)

Client Computation Server Disk I/O Server Computation

20

22

24

26

28

210

Client-server Communication Saved by Reduced Bandwidth Trick

(a) |b|= 4 KB

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

rss

rss

rss

rss

rss

rss

spdz

spdz

spdz

spdz

spdz

spdz

Delay (ms)

|D
B
|(

G
B

)

Client-server Communication Inter-server Communication

20

22

24

26

28

210

Inter-server Communication Saved by Reduced Bandwidth Trick

(b) |b|= 256 KB
Fig. 14: Cost breakdown of MACAO schemes.

when the database size increased while the number of data
blocks to be transmitted remained the same. Therefore, al-
though it was one of the most significant factors contributing
to the total delay, the client-server communication cost of
MACAO schemes was likely to remain the same when in-
creasing the database size as shown in Figure 14, where most
of the time was spent to download/upload a constant number
authenticated shares of the data blocks. ⇧spdz incurred less
client-server communication delay than ⇧rss because it only
needs two servers, instead of three. Figure 14 also shows that
the bandwidth reduction trick significantly reduced the client
communication delay (the green bar with red filled pattern).
This trick allows the client to send the authenticated share
to only one server, thereby making the client-communication
overhead of ⇧rss and ⇧spdz schemes almost the same.

Server-server communication. It is the second smallest
portion of the total delay. We can also see that the bandwidth
reduction trick also helped to reduce the server-server com-
munication in ⇧rss scheme (the yellow bar with red pattern in
Figure 14). The ⇧rss scheme had higher inter-server communi-
cation delay than ⇧spdz since three servers communicated with
each other, compared with only two in ⇧spdz.

Storage overhead. MACAO schemes harness the eviction
strategy in [66] so that they incur a constant server storage
blowup. In ⇧rss, every server stores two authenticated shares
of the ORAM tree so that storage overhead per server is 8|DB|
(i.e., 4 times blowup from [66]). On the other hand, every
server in ⇧spdz stores one authenticated shared ORAM tree,
and therefore, the server storage overhead is 4|DB| (2 times
blowup from [66]). Regarding the client storage, ⇧rss schemes
add an extra of O(N log logN) bits to the storage overhead of
[66], which is analytically |N | log2 N + log2(log2 N) + 80|b|
in total. Empirically, with 1 TB DB and 256 KB block size,
the client storage overhead of ⇧rss, ⇧spdz is 33.23 MB. With
1 TB DB and 4 KB block size, it is 1.33 GB.

5) MACAO Performance with Varying Privacy Levels: We
conducted an experiment to evaluate the performance of ⇧spdz

and ⇧prf

spdz
schemes under higher privacy levels by increasing

the number of servers. Due to RSS, we did not evaluate ⇧rss

and ⇧prf
rss since they incur significant server storage for high

privacy levels. Figure 15 outlines the delay of ⇧spdz and ⇧prf

spdz

scheme under 1 TB database with 4 KB and 256 KB block
sizes. When increasing the number of servers, ⇧prf

spdz
incurred

1 2 3 4 5

0

2

4

6

8

10

12

Privacy level (t)

D
el

ay
(s

ec
)

⇧spdz (4 KB) ⇧prf

spdz
(4 KB)

⇧spdz (256 KB) ⇧prf

spdz
(256 KB)

Fig. 15: End-to-end delay with varied privacy levels.

much less delay than ⇧spdz, especially in the 256 KB block
size setting, since the client only sent data to one server while
the other servers generated authenticated shares on their own.

VI. RELATED WORKS

Goldreich was the first to propose the ORAM concept for
software protection [30]. Since then, several ORAM schemes
have been proposed (e.g., [31], [51]); however, none of these
can achieve the logarithmic bandwidth overhead that was
proven as the ORAM lower bound under O(1) blocks of client
storage [31]. In 2011, Shi et al. proposed a breakthrough in
ORAM constructions by using a tree structure [59]. This tree
paradigm led to efficient ORAM scheme proposals (e.g., [64],
[66], [53], [28], [67], [14]) that can achieve the Goldreich-
Ostrovsky logarithmic communication bound in [31]. The most
simple and efficient ORAM based on tree-ORAM paradigm
is Path-ORAM [64], where the client only needs to perform
read and write operations over a data path, whereas the server
only needs to provide storage functionality (e.g., data sending
and receiving only). Tree-based ORAMs have been adapted to
enable access pattern obliviousness in many applications such
as secure processors [43], oblivious data structures [68], [37],
[54], multi-party computation [67] and oblivious storage [17],
[56], [41], [70], [49], [4]. There are several ORAM schemes
that are specifically designed for oblivious file systems (e.g.,
[6], [44], [45], [14], [10]). We note that all these schemes are
different from our framework, where they focused on some
specific properties in file system applications such as range
queries [14], multi-client [44], [10] and/or parallel access [15].

12

End-to-end delay with varied privacy levels

Configuration: Library: NTL, tomcrypt, zeroMQ, pthread; Client: Macbook Pro 2018; Servers: Amazon EC2 c5.4xlarge, EBS-based storage; Client-server bandwidth: 29/5 Mbps;
Inter-server bandwidth: 250/250 Mbps; DB Size: 1GB – 1TB; Block size: 4KB, 256KB

Conclusion & Future Work

17

§ Proposed MACAO, a multi-server active ORAM framework providing integrity, access pattern
obliviousness against active adversaries, and secure computation capability.

§ Based on Authenticated additive secret sharing and tree ORAM paradigm
Recently, Larsen and Nielsen in [40] have re-confirmed the

existence of the logarithmic bandwidth overhead in passive

ORAM schemes (i.e., the server is storage-only). To reduce
the communication overhead, the concept of active ORAM
has been proposed, where the server can perform some com-
putation. Although many active ORAM schemes have been
presented (e.g., [53], [22], [25], [46], [5], [26], [21], [47]), most
of them either cannot surpass the logarithmic bound (i.e., [53],
[46]) or were shown insecure (i.e., [47], [3]). To the best of
our knowledge, only active ORAM schemes that harness HE
techniques [27], [19] can achieve the O(1) client bandwidth
overhead under reasonably large block sizes (e.g., O(log5 N)
where N is the number of data blocks) [5], [22], [25]. Despite
their communication efficiency, it has been shown in [33], [47]
that performing HE computation during the ORAM access
incurred significantly more latency than streaming O(logN)
data blocks as in passive ORAM schemes.

To improve computation efficiency, ORAM has been ex-
plored in the distributed setting [61], [3], [33], [42], [32]. The
first multi-server ORAM was proposed by Stefanov et al. [61],
where the (single-server) Partition-ORAM [63] paradigm was
transformed into the multi-server setting to achieve O(1) client
bandwidth overhead and low computation at the servers. The
main limitation of this scheme is that it incurs high client
storage overhead (i.e., O(

p
N)) due to the Partition-ORAM

paradigm. Lu et al. [42] and Kushilevitz et al. [39] adapted
the hierarchical ORAM construction in [31] to the multi-server
setting to reduce the communication overhead. Abraham et al.
proposed a two-server ORAM scheme [3], which exploits the
XOR-PIR protocol [18] for oblivious retrieval. Gordon et al.
proposed a two-server ORAM scheme [32], which removes
the need of updating the position map component in the
tree-ORAM paradigm, thereby saving the factor of O(logN)
communication rounds incurred by accessing the position map
recursively at the server. Chan et al. [16] proposed a 3-server
construction with perfect security based on the hierarchical
model [31]. One of the most efficient multi-server ORAM
schemes is S3ORAM [33], which harnesses Shamir secret
sharing [57] to perform homomorphic computations efficiently
over the tree-ORAM layout with triplet eviction [22]. These
two schemes only offer semi-honest security.

Another line of distributed ORAM research focuses on
the context of multi-party computation in the RAM model
[24], [67], [23], [38]. We note that this setting is different
from the standard client-server setting, in which there is no
trusted party having full access to the data, and all the client
operations are emulated by multiple parties in a privacy-
preserving manner. The aim is to perform secure computation
in the RAM model where both instructions and functions
are hidden from participants and thus ORAM is simply used
as a building block. Due to the stronger privacy model, all
these distributed ORAM schemes are less efficient than the
distributed ORAM in the standard client-server setting. In
contrast to generic ORAM, there exist some special ORAMs
that conceal only either read or write patterns (but not both)
[11], [55], [65]. We note that most of these constructions are
more efficient than generic ORAMs since they target on the
specific operation type (read or write).

VII. DISCUSSION AND CONCLUSION

In this paper, we proposed a new multi-server active
ORAM framework called MACAO that provides integrity,

System call layer

Virtual File System (VFS)

NFS Client

RPC client
stub

Local file
system interface

System Call Layer

Virtual File System (VFS)

NFS server

RPC server stub

Local file system interface

MACAO Client

MACAO
Computation

Module

MACAO Server

Position
map

System Call Layer

Virtual File System (VFS)

NFS server

RPC server stub

Local file system interface

MACAO
Computation

Module

MACAO Server

ڭ ڭڭ

netw
ork

Inter-server dedicated netw
ork

Fig. 16: The proposed ODFS model.

access pattern obliviousness against an active adversary,
and the ability to perform secure computation simultane-
ously. MACAO synergies authenticated secret sharing and tree
ORAM paradigm to offer low client communication and server
computation while achieving a high level of security and
privacy in the presence of active adversaries. We conducted
extensive experiments on actual cloud platforms to validate
the efficiency of MACAO compared with the state-of-the-art.

• Use-Case – Oblivious Distributed File System: Our main
objective to design MACAO is to enable oblivious storage
and secure computation against active adversaries in data
outsourcing applications. MACAO schemes can be integrated
into existing distributed file systems to enable secure com-
putation with strong security and privacy including data con-
fidentiality, integrity and access pattern obliviousness against
active adversaries. For instance, we sketch in Figure 16 an
instance of Oblivious Distributed File System (ODFS) by
integrating MACAO (i.e., gray boxes) into the Network File
System (NFS) [58]. Since NFS components are independent
with MACAO ones, the performance of ODFS can be easily
estimated given that the cost of every MACAO component was
presented in detail in §V-B. We leave the actual integration
and implementation of ODFS to our future work. Another
critical feature is to support the multi-user setting in ODFS,
where multiple users can obliviously access the outsourced
data concurrently. This requires a trusted proxy (as in [56])
to handle concurrent requests and enforce the access control
policy. Our MACAO can also serve as the oblivious access
protocol between the proxy and the servers. We leave such an
implementation to our future work.

REFERENCES

[1] “Libtomcrypt, a fairly comprehensive, modular and portable crypto-
graphic toolkit,” Available at https://github.com/libtom/libtomcrypt.

[2] “Zeromq distributed messaging,” Available at http://zeromq.org.
[3] I. Abraham, C. W. Fletcher, K. Nayak, B. Pinkas, and L. Ren,

“Asymptotically tight bounds for composing oram with pir,” in IACR

International Workshop on Public Key Cryptography. Springer, 2017,
pp. 91–120.

[4] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data
oblivious filesystem for intel sgx.” in NDSS, 2018.

[5] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam, “Verifiable oblivi-
ous storage,” in International Workshop on Public Key Cryptography.
Springer, 2014, pp. 131–148.

13

The proposed ODFS Model

Future Work

§ Oblivious Distributed File System (ODFS)

implementation

§ Multi-user Oblivious Storage based on
MACAO

Thank you for your attention!

MACAO code: https://github.com/thanghoang/MACAO

?
18

https://github.com/thanghoang/MACAO

References

19

§ [CDI05] Cramer, Ronald, Ivan Damgård, and Yuval Ishai. "Share conversion, pseudorandom secret-sharing and applications to secure computation." In Theory of
Cryptography Conference, pp. 342-362. Springer, Berlin, Heidelberg, 2005.

§ [SCSL11] Shi, Elaine, T-H. Hubert Chan, Emil Stefanov, and Mingfei Li. "Oblivious RAM with O ((logN) 3) worst-case cost." In International Conference on The Theory

and Application of Cryptology and Information Security, pp. 197-214. Springer, Berlin, Heidelberg, 2011.

§ [DPSZ11] Damgård, Ivan, Valerio Pastro, Nigel Smart, and Sarah Zakarias. "Multiparty computation from somewhat homomorphic encryption." In Annual Cryptology

Conference, pp. 643-662. Springer, Berlin, Heidelberg, 2012.

§ [DSZ14] Demmler, Daniel, Thomas Schneider, and Michael Zohner. "Ad-hoc secure two-party computation on mobile devices using hardware tokens." In 23rd

{USENIX} Security Symposium ({USENIX} Security 14), pp. 893-908. 2014.

§ [WCS15] Wang, Xiao, Hubert Chan, and Elaine Shi. "Circuit oram: On tightness of the goldreich-ostrovsky lower bound." In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, pp. 850-861. 2015

§ [SvDFR+16] Devadas, Srinivas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi, and Daniel Wichs. "Onion ORAM: A constant bandwidth blowup
oblivious RAM." In Theory of Cryptography Conference, pp. 145-174. Springer, Berlin, Heidelberg, 2016.

§ [HOY+17] Hoang, Thang, Ceyhun D. Ozkaptan, Attila A. Yavuz, Jorge Guajardo, and Tam Nguyen. "S3oram: A computation-efficient and constant client bandwidth

blowup oram with shamir secret sharing." In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 491-505. 2017.

§ [RWTS+17] Riazi, M. Sadegh, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori, Thomas Schneider, and Farinaz Koushanfar. "Chameleon: A hybrid

secure computation framework for machine learning applications." In Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp.
707-721. 2018.

§ Single-server active ORAM (e.g., Onion-ORAM) offers O(1) bandwidth blowup and
malicious security
§ High computation overhead due to Homomorphic Encryption (HE)
§ Cut-and-choose technique → incurs higher communication and computation

overhead for malicious security
§ Multi-server active ORAM (i.e., S3ORAM) offers O(1) bandwidth with efficient

computation
§ However, it only offers semi-honest security

An efficient multi-server ORAM with active security?

Our Motivation

20

Distributed setting

§ Tree-ORAM paradigm
§ Exploit the efficiency of multi-party computation in distributed setting

§ Shamir Secret Sharing (SSS) Scheme
§ Retrieval: SSS-Private Information Retrieval – Eviction: Permutation Matrix

Secret-Sharing Multiplication Protocol

S3ORAM System Model:
• ℓ ≥ 2$ + 1 servers
• # colluding servers <= t
• All servers are semi-honest

S3ORAM [HOY+17]

21

SSS SSSSS
S

MACAO Framework – Summary

22

TABLE I: Summary of state-of-the-art ORAM schemes.

Scheme Bandwidth Overhead† Block
Size⇤

Client
Block Storage‡ # servers§ Security Comp. over

Enc. DataClient-server Server-server
Ring-ORAM [53] O(logN) - ⌦(1) O(logN) 1 Semi-Honest ⇥

CKN+18 [16] O(logN) - ⌦(log2
N) O(1) 3 Semi-Honest ⇥

GKW18 [32] O(logN) - ⌦(1) O(logN) 2 Semi-Honest ⇥

S3ORAM [33] O(1) O(logN) ⌦(log2
N) O(1) 2t + 1 Semi-Honest X

Path-ORAM [64] O(logN) - ⌦(1) O(logN) 1 Malicious ⇥

Circuit-ORAM [66] O(logN) - ⌦(1) O(logN) 1 Malicious ⇥

SS13 [61] O(1) O(logN) ⌦(log2
N) O(

p
N) 2 Malicious ⇥

LO13 [42] O(logN) - ⌦(1) O(1) 2 Malicious ⇥

Onion-ORAM [22] O(1) - ⌦(log6
N) O(1) 1 Malicious X

MACAO (⇧rss)
O(1) O(logN) ⌦(logN) O(logN)

3 Malicious X
MACAO (⇧spdz) t + 1

• We refer reader to §V-B for the detail experimental comparisons between MACAO schemes and some of these counterparts.
†

Bandwidth overhead denotes the number of blocks being transmitted between the client and the server(s) or between the servers.
⇤This indicates the minimal block size needed to absorb the transmission cost of the retrieval query and the eviction instructions, thereby
achieving the desirable client-bandwidth overhead.
‡

Client block storage is defined as the number of data blocks being temporarily stored at the client. This is equivalent to the stash component
used in [64], [53], which, therefore, does not include the cost of storing the position map of size O(N logN). Notice that all the ORAM
schemes in this table, except [42], [32], require such a position map component. However, we can apply recursive technique in [59] to store
the position map on the server at the cost of increasing a small number of communication rounds [61], [59].
§S3ORAM and ⇧spdz offer the property that allows a certain number of colluding servers in the system (privacy level t � 1) by increasing the
number of servers. Other multi-server ORAM schemes do not offer this scalability (t = 1) efficiently, and require a fixed number of servers.

access pattern and data integrity. While malicious security can
be easily achieved with passive ORAMs (e.g., using Merkle
tree or authentication techniques), it has not been extensively
explored in the active ORAM setting. Devadas et al. [22]
proposed a solution to achieve malicious security for active
ORAM. However, it requires the client to transmit a large
portion of data and perform homomorphic computations to
verify the integrity of server computation. This strategy may
significantly increase the access delay due to the increase of
bandwidth and computation overhead at the client.

Our objective is to create an active ORAM framework
that achieves low client communication and storage over-
head, efficient computation, and security against active ad-
versaries simultaneously. Our framework creates synergies
among various secure multi-party computation techniques,
information-theoretic message authentication codes and tree-
ORAM paradigm to achieve these properties while offering a
natural extension for secure computation over the encrypted
data. The overall goal is to develop ORAM schemes that are
suitable for privacy-preserving distributed applications such
as oblivious distributed file systems.

B. Our Contributions

In this paper, we propose MACAO, a comprehensive
MAliciously-secure and Client-efficient Active ORAM frame-
work. MACAO harnesses suitable secret sharing techniques, ef-
ficient eviction strategy along with information-theoretic Mes-
sage Authentication Code (MAC), which (i) offers integrity
check, (ii) prevents malicious behaviors and (iii) achieves
a comparable efficiency to state-of-the-art ORAM schemes
simultaneously. Our MACAO framework comprises two main
multi-server ORAM schemes: ⇧rss and ⇧spdz. We design ⇧rss

based on replicated secret sharing [35], which requires three
servers and there is no collusion among the servers (privacy
level t = 1). On the other hand, ⇧spdz is built on SPDZ
secret sharing [20] following the preprocessing model, which

can operate in the `-server setting (` � 2) with the optimal
level of privacy (i.e., t = ` � 1). We construct a series of
authenticated PIR protocols based on RSS and SPDZ and
prove that they are secure against the malicious adversary.
Additionally, we propose several optimization tricks to reduce
the bandwidth overhead at the cost of reducing information-
theoretic to computational security. Table I outlines some
key characteristics of MACAO compared with state-of-the-art
ORAM schemes.

In summary, our main contributions are as follows.

• Multi-server active ORAM with security against active

adversaries: MACAO offers data confidentiality and integrity,
access pattern obliviousness in the presence of malicious
adversaries. MACAO enables the client to detect, with high
probability, if the malicious server(s) has tampered with the
inputs/outputs of the protocol.
• Oblivious distributed file system applications and secure

computation: Our MACAO framework relies on secret sharing
as the core building block, which offers additive and multi-
plicative homomorphic properties. Therefore, after a block is
accessed, it can be computed further directly on the server(s).
This property permits MACAO to serve as a core building
block towards designing a full-fledged Oblivious Distributed
File System (ODFS) with secure computation capacity.
• Full-fledged implementation and performance evaluation:

We fully implemented MACAO framework and compared its
performance with state-of-the-art ORAM schemes on real-
cloud platforms (i.e., Amazon EC2). Our experimental results
confirmed the efficiency of MACAO, in which it is up to
seven times faster than single-server ORAMs. The delay of
MACAO schemes is comparable to S3ORAM [33] while
offering malicious security. We provide detail cost analysis
of MACAO schemes in §V-B4.

In addition, it is important to point out that in the context of
a multi-server active ORAM scheme with malicious security,

2

Asymptotic comparison of state-of-the-art ORAM schemes.

MACAO Security

23

Definition 1 (Simulation-based Multi-server ORAM Security with Verifiability). Considering the ideal and real worlds as follows.
§ Ideal world. Let ℱ"#$% be an ideal functionality, which maintains the latest version of the database on behalf of the client, and

answers the client’s requests as follows.
§ Setup: Environment & provides DB to the client, who sends DB to ℱ"#$%. ℱ"#$%notifies simulator)"#$% the setup is

complete and the DB size.)"#$% returns ok or abort to ℱ"#$%. ℱ"#$% returns ok or ⊥ to client accordingly.

§ Access: Environment & specifies op ∈ read bid, ⊥ ,write bid, data as client’s input. Client sends op to ℱ"#$%. ℱ"#$%
notifies)"#$% (without revealing op). If)"#$% returns ok to ℱ"#$%, ℱ"#$% sends data′ ← DB[bid] to client, and updates
DB[bid] ← data if op = write. Client returns data′ to &. If)"#$% returns abort to ℱ"#$%, ℱ"#$% returns ⊥ to client.

§ Real world. & gives the client DB. Client executes Setup protocol with servers <=, … , <ℓ@A on DB. For each access, &
specifies an input op ∈ read bid, ⊥ ,write bid, data to client. Client executes Access protocol with servers <=, … , <ℓ@A . &
gets the view of the adversary B after each access. Client outputs to & the accessed block or abort.

A protocol Πℱ securely realizes ℱ"#$% in the presence of a malicious adversary corrupting D servers iff for any PPT real-world
adversary corrupting D servers, there exists a simulator)"#$%, such that for all non-uniform, polynomial-time E, there exists a
negligible function negl such that

Pr REALNℱ,B,& O = 1 − Pr IDEALℱSTUV,)STUV,& O = 1 ≤ negl(Y)

Theorem 1 (MACAO security). MACAO framework is statistically (information-theoretically) secure by Definition
1.

